| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "mir_to_lir-inl.h" |
| |
| #include "arm/codegen_arm.h" |
| #include "dex/compiler_ir.h" |
| #include "dex/dex_flags.h" |
| #include "dex/mir_graph.h" |
| #include "dex/quick/dex_file_method_inliner.h" |
| #include "dex/quick/dex_file_to_method_inliner_map.h" |
| #include "dex_file-inl.h" |
| #include "driver/compiler_driver.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "invoke_type.h" |
| #include "mirror/array.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/dex_cache.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/string.h" |
| #include "scoped_thread_state_change.h" |
| |
| namespace art { |
| |
| // Shortcuts to repeatedly used long types. |
| typedef mirror::ObjectArray<mirror::Object> ObjArray; |
| |
| /* |
| * This source files contains "gen" codegen routines that should |
| * be applicable to most targets. Only mid-level support utilities |
| * and "op" calls may be used here. |
| */ |
| |
| void Mir2Lir::AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume) { |
| class IntrinsicSlowPathPath : public Mir2Lir::LIRSlowPath { |
| public: |
| IntrinsicSlowPathPath(Mir2Lir* m2l, CallInfo* info_in, LIR* branch_in, LIR* resume_in) |
| : LIRSlowPath(m2l, info_in->offset, branch_in, resume_in), info_(info_in) { |
| } |
| |
| void Compile() { |
| m2l_->ResetRegPool(); |
| m2l_->ResetDefTracking(); |
| GenerateTargetLabel(kPseudoIntrinsicRetry); |
| // NOTE: GenInvokeNoInline() handles MarkSafepointPC. |
| m2l_->GenInvokeNoInline(info_); |
| if (cont_ != nullptr) { |
| m2l_->OpUnconditionalBranch(cont_); |
| } |
| } |
| |
| private: |
| CallInfo* const info_; |
| }; |
| |
| AddSlowPath(new (arena_) IntrinsicSlowPathPath(this, info, branch, resume)); |
| } |
| |
| /* |
| * To save scheduling time, helper calls are broken into two parts: generation of |
| * the helper target address, and the actual call to the helper. Because x86 |
| * has a memory call operation, part 1 is a NOP for x86. For other targets, |
| * load arguments between the two parts. |
| */ |
| // template <size_t pointer_size> |
| RegStorage Mir2Lir::CallHelperSetup(QuickEntrypointEnum trampoline) { |
| if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { |
| return RegStorage::InvalidReg(); |
| } else { |
| return LoadHelper(trampoline); |
| } |
| } |
| |
| LIR* Mir2Lir::CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc, |
| bool use_link) { |
| LIR* call_inst = InvokeTrampoline(use_link ? kOpBlx : kOpBx, r_tgt, trampoline); |
| |
| if (r_tgt.Valid()) { |
| FreeTemp(r_tgt); |
| } |
| |
| if (safepoint_pc) { |
| MarkSafepointPC(call_inst); |
| } |
| return call_inst; |
| } |
| |
| void Mir2Lir::CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| LoadConstant(TargetReg(kArg0, kNotWide), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0, |
| bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0, |
| bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| if (arg0.wide == 0) { |
| LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, arg0)); |
| } else { |
| LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide)); |
| } |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1, |
| bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| LoadConstant(TargetReg(kArg0, kNotWide), arg0); |
| LoadConstant(TargetReg(kArg1, kNotWide), arg1); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0, |
| RegLocation arg1, bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| if (arg1.wide == 0) { |
| LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1)); |
| } else { |
| RegStorage r_tmp = TargetReg(cu_->instruction_set == kMips ? kArg2 : kArg1, kWide); |
| LoadValueDirectWideFixed(arg1, r_tmp); |
| } |
| LoadConstant(TargetReg(kArg0, kNotWide), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0, |
| int arg1, bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| DCHECK(!arg0.wide); |
| LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0)); |
| LoadConstant(TargetReg(kArg1, kNotWide), arg1); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1, |
| bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| OpRegCopy(TargetReg(kArg1, arg1.GetWideKind()), arg1); |
| LoadConstant(TargetReg(kArg0, kNotWide), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1, |
| bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0); |
| LoadConstant(TargetReg(kArg1, kNotWide), arg1); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0, |
| bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| LoadCurrMethodDirect(TargetReg(kArg1, kRef)); |
| LoadConstant(TargetReg(kArg0, kNotWide), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0, |
| bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0)); |
| RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind()); |
| if (r_tmp.NotExactlyEquals(arg0)) { |
| OpRegCopy(r_tmp, arg0); |
| } |
| LoadCurrMethodDirect(TargetReg(kArg1, kRef)); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegRegLocationMethod(QuickEntrypointEnum trampoline, RegStorage arg0, |
| RegLocation arg1, bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| DCHECK(!IsSameReg(TargetReg(kArg2, arg0.GetWideKind()), arg0)); |
| RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind()); |
| if (r_tmp.NotExactlyEquals(arg0)) { |
| OpRegCopy(r_tmp, arg0); |
| } |
| LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1)); |
| LoadCurrMethodDirect(TargetReg(kArg2, kRef)); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline, |
| RegLocation arg0, RegLocation arg1, |
| bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) { |
| RegStorage arg0_reg = TargetReg((arg0.fp) ? kFArg0 : kArg0, arg0); |
| |
| RegStorage arg1_reg; |
| if (arg1.fp == arg0.fp) { |
| arg1_reg = TargetReg((arg1.fp) ? kFArg1 : kArg1, arg1); |
| } else { |
| arg1_reg = TargetReg((arg1.fp) ? kFArg0 : kArg0, arg1); |
| } |
| |
| if (arg0.wide == 0) { |
| LoadValueDirectFixed(arg0, arg0_reg); |
| } else { |
| LoadValueDirectWideFixed(arg0, arg0_reg); |
| } |
| |
| if (arg1.wide == 0) { |
| LoadValueDirectFixed(arg1, arg1_reg); |
| } else { |
| LoadValueDirectWideFixed(arg1, arg1_reg); |
| } |
| } else { |
| DCHECK(!cu_->target64); |
| if (arg0.wide == 0) { |
| LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kNotWide)); |
| if (arg1.wide == 0) { |
| if (cu_->instruction_set == kMips) { |
| LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg1, kNotWide)); |
| } else { |
| LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg1 : kArg1, kNotWide)); |
| } |
| } else { |
| if (cu_->instruction_set == kMips) { |
| LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide)); |
| } else { |
| LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg1 : kArg1, kWide)); |
| } |
| } |
| } else { |
| LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide)); |
| if (arg1.wide == 0) { |
| LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kNotWide)); |
| } else { |
| LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide)); |
| } |
| } |
| } |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CopyToArgumentRegs(RegStorage arg0, RegStorage arg1) { |
| WideKind arg0_kind = arg0.GetWideKind(); |
| WideKind arg1_kind = arg1.GetWideKind(); |
| if (IsSameReg(arg1, TargetReg(kArg0, arg1_kind))) { |
| if (IsSameReg(arg0, TargetReg(kArg1, arg0_kind))) { |
| // Swap kArg0 and kArg1 with kArg2 as temp. |
| OpRegCopy(TargetReg(kArg2, arg1_kind), arg1); |
| OpRegCopy(TargetReg(kArg0, arg0_kind), arg0); |
| OpRegCopy(TargetReg(kArg1, arg1_kind), TargetReg(kArg2, arg1_kind)); |
| } else { |
| OpRegCopy(TargetReg(kArg1, arg1_kind), arg1); |
| OpRegCopy(TargetReg(kArg0, arg0_kind), arg0); |
| } |
| } else { |
| OpRegCopy(TargetReg(kArg0, arg0_kind), arg0); |
| OpRegCopy(TargetReg(kArg1, arg1_kind), arg1); |
| } |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0, |
| RegStorage arg1, bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| CopyToArgumentRegs(arg0, arg1); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, |
| RegStorage arg1, int arg2, bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| CopyToArgumentRegs(arg0, arg1); |
| LoadConstant(TargetReg(kArg2, kNotWide), arg2); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmRegLocationMethod(QuickEntrypointEnum trampoline, int arg0, |
| RegLocation arg1, bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1)); |
| LoadCurrMethodDirect(TargetReg(kArg2, kRef)); |
| LoadConstant(TargetReg(kArg0, kNotWide), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmImmMethod(QuickEntrypointEnum trampoline, int arg0, int arg1, |
| bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| LoadCurrMethodDirect(TargetReg(kArg2, kRef)); |
| LoadConstant(TargetReg(kArg1, kNotWide), arg1); |
| LoadConstant(TargetReg(kArg0, kNotWide), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0, |
| RegLocation arg1, |
| RegLocation arg2, bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| DCHECK_EQ(static_cast<unsigned int>(arg1.wide), 0U); // The static_cast works around an |
| // instantiation bug in GCC. |
| LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1)); |
| if (arg2.wide == 0) { |
| LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2)); |
| } else { |
| LoadValueDirectWideFixed(arg2, TargetReg(kArg2, kWide)); |
| } |
| LoadConstant(TargetReg(kArg0, kNotWide), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation( |
| QuickEntrypointEnum trampoline, |
| RegLocation arg0, |
| RegLocation arg1, |
| RegLocation arg2, |
| bool safepoint_pc) { |
| RegStorage r_tgt = CallHelperSetup(trampoline); |
| LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0)); |
| LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1)); |
| LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2)); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, trampoline, safepoint_pc); |
| } |
| |
| /* |
| * If there are any ins passed in registers that have not been promoted |
| * to a callee-save register, flush them to the frame. Perform initial |
| * assignment of promoted arguments. |
| * |
| * ArgLocs is an array of location records describing the incoming arguments |
| * with one location record per word of argument. |
| */ |
| // TODO: Support 64-bit argument registers. |
| void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) { |
| /* |
| * Dummy up a RegLocation for the incoming StackReference<mirror::ArtMethod> |
| * It will attempt to keep kArg0 live (or copy it to home location |
| * if promoted). |
| */ |
| RegLocation rl_src = rl_method; |
| rl_src.location = kLocPhysReg; |
| rl_src.reg = TargetReg(kArg0, kRef); |
| rl_src.home = false; |
| MarkLive(rl_src); |
| StoreValue(rl_method, rl_src); |
| // If Method* has been promoted, explicitly flush |
| if (rl_method.location == kLocPhysReg) { |
| StoreRefDisp(TargetPtrReg(kSp), 0, rl_src.reg, kNotVolatile); |
| } |
| |
| if (mir_graph_->GetNumOfInVRs() == 0) { |
| return; |
| } |
| |
| int start_vreg = mir_graph_->GetFirstInVR(); |
| /* |
| * Copy incoming arguments to their proper home locations. |
| * NOTE: an older version of dx had an issue in which |
| * it would reuse static method argument registers. |
| * This could result in the same Dalvik virtual register |
| * being promoted to both core and fp regs. To account for this, |
| * we only copy to the corresponding promoted physical register |
| * if it matches the type of the SSA name for the incoming |
| * argument. It is also possible that long and double arguments |
| * end up half-promoted. In those cases, we must flush the promoted |
| * half to memory as well. |
| */ |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| RegLocation* t_loc = nullptr; |
| EnsureInitializedArgMappingToPhysicalReg(); |
| for (uint32_t i = 0; i < mir_graph_->GetNumOfInVRs(); i += t_loc->wide ? 2 : 1) { |
| // get reg corresponding to input |
| RegStorage reg = in_to_reg_storage_mapping_.GetReg(i); |
| t_loc = &ArgLocs[i]; |
| |
| // If the wide input appeared as single, flush it and go |
| // as it comes from memory. |
| if (t_loc->wide && reg.Valid() && !reg.Is64Bit()) { |
| // The memory already holds the half. Don't do anything. |
| reg = RegStorage::InvalidReg(); |
| } |
| |
| if (reg.Valid()) { |
| // If arriving in register. |
| |
| // We have already updated the arg location with promoted info |
| // so we can be based on it. |
| if (t_loc->location == kLocPhysReg) { |
| // Just copy it. |
| if (t_loc->wide) { |
| OpRegCopyWide(t_loc->reg, reg); |
| } else { |
| OpRegCopy(t_loc->reg, reg); |
| } |
| } else { |
| // Needs flush. |
| int offset = SRegOffset(start_vreg + i); |
| if (t_loc->ref) { |
| StoreRefDisp(TargetPtrReg(kSp), offset, reg, kNotVolatile); |
| } else { |
| StoreBaseDisp(TargetPtrReg(kSp), offset, reg, t_loc->wide ? k64 : k32, kNotVolatile); |
| } |
| } |
| } else { |
| // If arriving in frame & promoted. |
| if (t_loc->location == kLocPhysReg) { |
| int offset = SRegOffset(start_vreg + i); |
| if (t_loc->ref) { |
| LoadRefDisp(TargetPtrReg(kSp), offset, t_loc->reg, kNotVolatile); |
| } else { |
| LoadBaseDisp(TargetPtrReg(kSp), offset, t_loc->reg, t_loc->wide ? k64 : k32, |
| kNotVolatile); |
| } |
| } |
| } |
| } |
| } |
| |
| static void CommonCallCodeLoadThisIntoArg1(const CallInfo* info, Mir2Lir* cg) { |
| RegLocation rl_arg = info->args[0]; |
| cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1, kRef)); |
| } |
| |
| static void CommonCallCodeLoadClassIntoArg0(const CallInfo* info, Mir2Lir* cg) { |
| cg->GenNullCheck(cg->TargetReg(kArg1, kRef), info->opt_flags); |
| // get this->klass_ [use kArg1, set kArg0] |
| cg->LoadRefDisp(cg->TargetReg(kArg1, kRef), mirror::Object::ClassOffset().Int32Value(), |
| cg->TargetReg(kArg0, kRef), |
| kNotVolatile); |
| cg->MarkPossibleNullPointerException(info->opt_flags); |
| } |
| |
| static bool CommonCallCodeLoadCodePointerIntoInvokeTgt(const RegStorage* alt_from, |
| const CompilationUnit* cu, Mir2Lir* cg) { |
| if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) { |
| int32_t offset = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| InstructionSetPointerSize(cu->instruction_set)).Int32Value(); |
| // Get the compiled code address [use *alt_from or kArg0, set kInvokeTgt] |
| cg->LoadWordDisp(alt_from == nullptr ? cg->TargetReg(kArg0, kRef) : *alt_from, offset, |
| cg->TargetPtrReg(kInvokeTgt)); |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Bit of a hack here - in the absence of a real scheduling pass, |
| * emit the next instruction in a virtual invoke sequence. |
| * We can use kLr as a temp prior to target address loading |
| * Note also that we'll load the first argument ("this") into |
| * kArg1 here rather than the standard GenDalvikArgs. |
| */ |
| static int NextVCallInsn(CompilationUnit* cu, CallInfo* info, |
| int state, const MethodReference& target_method, |
| uint32_t method_idx, uintptr_t, uintptr_t, |
| InvokeType) { |
| UNUSED(target_method); |
| Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); |
| /* |
| * This is the fast path in which the target virtual method is |
| * fully resolved at compile time. |
| */ |
| switch (state) { |
| case 0: |
| CommonCallCodeLoadThisIntoArg1(info, cg); // kArg1 := this |
| break; |
| case 1: |
| CommonCallCodeLoadClassIntoArg0(info, cg); // kArg0 := kArg1->class |
| // Includes a null-check. |
| break; |
| case 2: { |
| // Get this->klass_.embedded_vtable[method_idx] [usr kArg0, set kArg0] |
| int32_t offset = mirror::Class::EmbeddedVTableOffset().Uint32Value() + |
| method_idx * sizeof(mirror::Class::VTableEntry); |
| // Load target method from embedded vtable to kArg0 [use kArg0, set kArg0] |
| cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile); |
| break; |
| } |
| case 3: |
| if (CommonCallCodeLoadCodePointerIntoInvokeTgt(nullptr, cu, cg)) { |
| break; // kInvokeTgt := kArg0->entrypoint |
| } |
| DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64); |
| FALLTHROUGH_INTENDED; |
| default: |
| return -1; |
| } |
| return state + 1; |
| } |
| |
| /* |
| * Emit the next instruction in an invoke interface sequence. This will do a lookup in the |
| * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if |
| * more than one interface method map to the same index. Note also that we'll load the first |
| * argument ("this") into kArg1 here rather than the standard GenDalvikArgs. |
| */ |
| static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state, |
| const MethodReference& target_method, |
| uint32_t method_idx, uintptr_t, uintptr_t, InvokeType) { |
| Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); |
| |
| switch (state) { |
| case 0: // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)] |
| CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds()); |
| cg->LoadConstant(cg->TargetReg(kHiddenArg, kNotWide), target_method.dex_method_index); |
| if (cu->instruction_set == kX86) { |
| cg->OpRegCopy(cg->TargetReg(kHiddenFpArg, kNotWide), cg->TargetReg(kHiddenArg, kNotWide)); |
| } |
| break; |
| case 1: |
| CommonCallCodeLoadThisIntoArg1(info, cg); // kArg1 := this |
| break; |
| case 2: |
| CommonCallCodeLoadClassIntoArg0(info, cg); // kArg0 := kArg1->class |
| // Includes a null-check. |
| break; |
| case 3: { // Get target method [use kInvokeTgt, set kArg0] |
| int32_t offset = mirror::Class::EmbeddedImTableOffset().Uint32Value() + |
| (method_idx % mirror::Class::kImtSize) * sizeof(mirror::Class::ImTableEntry); |
| // Load target method from embedded imtable to kArg0 [use kArg0, set kArg0] |
| cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile); |
| break; |
| } |
| case 4: |
| if (CommonCallCodeLoadCodePointerIntoInvokeTgt(nullptr, cu, cg)) { |
| break; // kInvokeTgt := kArg0->entrypoint |
| } |
| DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64); |
| FALLTHROUGH_INTENDED; |
| default: |
| return -1; |
| } |
| return state + 1; |
| } |
| |
| static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, |
| QuickEntrypointEnum trampoline, int state, |
| const MethodReference& target_method, uint32_t method_idx) { |
| UNUSED(info, method_idx); |
| Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); |
| |
| /* |
| * This handles the case in which the base method is not fully |
| * resolved at compile time, we bail to a runtime helper. |
| */ |
| if (state == 0) { |
| if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) { |
| // Load trampoline target |
| int32_t disp; |
| if (cu->target64) { |
| disp = GetThreadOffset<8>(trampoline).Int32Value(); |
| } else { |
| disp = GetThreadOffset<4>(trampoline).Int32Value(); |
| } |
| cg->LoadWordDisp(cg->TargetPtrReg(kSelf), disp, cg->TargetPtrReg(kInvokeTgt)); |
| } |
| // Load kArg0 with method index |
| CHECK_EQ(cu->dex_file, target_method.dex_file); |
| cg->LoadConstant(cg->TargetReg(kArg0, kNotWide), target_method.dex_method_index); |
| return 1; |
| } |
| return -1; |
| } |
| |
| static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info, |
| int state, |
| const MethodReference& target_method, |
| uint32_t, uintptr_t, uintptr_t, InvokeType) { |
| return NextInvokeInsnSP(cu, info, kQuickInvokeStaticTrampolineWithAccessCheck, state, |
| target_method, 0); |
| } |
| |
| static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, |
| const MethodReference& target_method, |
| uint32_t, uintptr_t, uintptr_t, InvokeType) { |
| return NextInvokeInsnSP(cu, info, kQuickInvokeDirectTrampolineWithAccessCheck, state, |
| target_method, 0); |
| } |
| |
| static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, |
| const MethodReference& target_method, |
| uint32_t, uintptr_t, uintptr_t, InvokeType) { |
| return NextInvokeInsnSP(cu, info, kQuickInvokeSuperTrampolineWithAccessCheck, state, |
| target_method, 0); |
| } |
| |
| static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, |
| const MethodReference& target_method, |
| uint32_t, uintptr_t, uintptr_t, InvokeType) { |
| return NextInvokeInsnSP(cu, info, kQuickInvokeVirtualTrampolineWithAccessCheck, state, |
| target_method, 0); |
| } |
| |
| static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu, |
| CallInfo* info, int state, |
| const MethodReference& target_method, |
| uint32_t, uintptr_t, uintptr_t, InvokeType) { |
| return NextInvokeInsnSP(cu, info, kQuickInvokeInterfaceTrampolineWithAccessCheck, state, |
| target_method, 0); |
| } |
| |
| // Default implementation of implicit null pointer check. |
| // Overridden by arch specific as necessary. |
| void Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) { |
| if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) { |
| return; |
| } |
| RegStorage tmp = AllocTemp(); |
| Load32Disp(reg, 0, tmp); |
| MarkPossibleNullPointerException(opt_flags); |
| FreeTemp(tmp); |
| } |
| |
| /** |
| * @brief Used to flush promoted registers if they are used as argument |
| * in an invocation. |
| * @param info the infromation about arguments for invocation. |
| * @param start the first argument we should start to look from. |
| */ |
| void Mir2Lir::GenDalvikArgsFlushPromoted(CallInfo* info, int start) { |
| if (cu_->disable_opt & (1 << kPromoteRegs)) { |
| // This make sense only if promotion is enabled. |
| return; |
| } |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| // Scan the rest of the args - if in phys_reg flush to memory |
| for (size_t next_arg = start; next_arg < info->num_arg_words;) { |
| RegLocation loc = info->args[next_arg]; |
| if (loc.wide) { |
| loc = UpdateLocWide(loc); |
| if (loc.location == kLocPhysReg) { |
| StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile); |
| } |
| next_arg += 2; |
| } else { |
| loc = UpdateLoc(loc); |
| if (loc.location == kLocPhysReg) { |
| if (loc.ref) { |
| StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile); |
| } else { |
| StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32, |
| kNotVolatile); |
| } |
| } |
| next_arg++; |
| } |
| } |
| } |
| |
| /** |
| * @brief Used to optimize the copying of VRs which are arguments of invocation. |
| * Please note that you should flush promoted registers first if you copy. |
| * If implementation does copying it may skip several of the first VRs but must copy |
| * till the end. Implementation must return the number of skipped VRs |
| * (it might be all VRs). |
| * @see GenDalvikArgsFlushPromoted |
| * @param info the information about arguments for invocation. |
| * @param first the first argument we should start to look from. |
| * @param count the number of remaining arguments we can handle. |
| * @return the number of arguments which we did not handle. Unhandled arguments |
| * must be attached to the first one. |
| */ |
| int Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) { |
| // call is pretty expensive, let's use it if count is big. |
| if (count > 16) { |
| GenDalvikArgsFlushPromoted(info, first); |
| int start_offset = SRegOffset(info->args[first].s_reg_low); |
| int outs_offset = StackVisitor::GetOutVROffset(first, cu_->instruction_set); |
| |
| OpRegRegImm(kOpAdd, TargetReg(kArg0, kRef), TargetPtrReg(kSp), outs_offset); |
| OpRegRegImm(kOpAdd, TargetReg(kArg1, kRef), TargetPtrReg(kSp), start_offset); |
| CallRuntimeHelperRegRegImm(kQuickMemcpy, TargetReg(kArg0, kRef), TargetReg(kArg1, kRef), |
| count * 4, false); |
| count = 0; |
| } |
| return count; |
| } |
| |
| int Mir2Lir::GenDalvikArgs(CallInfo* info, int call_state, |
| LIR** pcrLabel, NextCallInsn next_call_insn, |
| const MethodReference& target_method, |
| uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, |
| InvokeType type, bool skip_this) { |
| // If no arguments, just return. |
| if (info->num_arg_words == 0u) |
| return call_state; |
| |
| const size_t start_index = skip_this ? 1 : 0; |
| |
| // Get architecture dependent mapping between output VRs and physical registers |
| // basing on shorty of method to call. |
| InToRegStorageMapping in_to_reg_storage_mapping(arena_); |
| { |
| const char* target_shorty = mir_graph_->GetShortyFromMethodReference(target_method); |
| ShortyIterator shorty_iterator(target_shorty, type == kStatic); |
| in_to_reg_storage_mapping.Initialize(&shorty_iterator, GetResetedInToRegStorageMapper()); |
| } |
| |
| size_t stack_map_start = std::max(in_to_reg_storage_mapping.GetEndMappedIn(), start_index); |
| if ((stack_map_start < info->num_arg_words) && info->args[stack_map_start].high_word) { |
| // It is possible that the last mapped reg is 32 bit while arg is 64-bit. |
| // It will be handled together with low part mapped to register. |
| stack_map_start++; |
| } |
| size_t regs_left_to_pass_via_stack = info->num_arg_words - stack_map_start; |
| |
| // If it is a range case we can try to copy remaining VRs (not mapped to physical registers) |
| // using more optimal algorithm. |
| if (info->is_range && regs_left_to_pass_via_stack > 1) { |
| regs_left_to_pass_via_stack = GenDalvikArgsBulkCopy(info, stack_map_start, |
| regs_left_to_pass_via_stack); |
| } |
| |
| // Now handle any remaining VRs mapped to stack. |
| if (in_to_reg_storage_mapping.HasArgumentsOnStack()) { |
| // Two temps but do not use kArg1, it might be this which we can skip. |
| // Separate single and wide - it can give some advantage. |
| RegStorage regRef = TargetReg(kArg3, kRef); |
| RegStorage regSingle = TargetReg(kArg3, kNotWide); |
| RegStorage regWide = TargetReg(kArg2, kWide); |
| for (size_t i = start_index; i < stack_map_start + regs_left_to_pass_via_stack; i++) { |
| RegLocation rl_arg = info->args[i]; |
| rl_arg = UpdateRawLoc(rl_arg); |
| RegStorage reg = in_to_reg_storage_mapping.GetReg(i); |
| if (!reg.Valid()) { |
| int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set); |
| { |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| if (rl_arg.wide) { |
| if (rl_arg.location == kLocPhysReg) { |
| StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile); |
| } else { |
| LoadValueDirectWideFixed(rl_arg, regWide); |
| StoreBaseDisp(TargetPtrReg(kSp), out_offset, regWide, k64, kNotVolatile); |
| } |
| } else { |
| if (rl_arg.location == kLocPhysReg) { |
| if (rl_arg.ref) { |
| StoreRefDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, kNotVolatile); |
| } else { |
| StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile); |
| } |
| } else { |
| if (rl_arg.ref) { |
| LoadValueDirectFixed(rl_arg, regRef); |
| StoreRefDisp(TargetPtrReg(kSp), out_offset, regRef, kNotVolatile); |
| } else { |
| LoadValueDirectFixed(rl_arg, regSingle); |
| StoreBaseDisp(TargetPtrReg(kSp), out_offset, regSingle, k32, kNotVolatile); |
| } |
| } |
| } |
| } |
| call_state = next_call_insn(cu_, info, call_state, target_method, |
| vtable_idx, direct_code, direct_method, type); |
| } |
| if (rl_arg.wide) { |
| i++; |
| } |
| } |
| } |
| |
| // Finish with VRs mapped to physical registers. |
| for (size_t i = start_index; i < stack_map_start; i++) { |
| RegLocation rl_arg = info->args[i]; |
| rl_arg = UpdateRawLoc(rl_arg); |
| RegStorage reg = in_to_reg_storage_mapping.GetReg(i); |
| if (reg.Valid()) { |
| if (rl_arg.wide) { |
| // if reg is not 64-bit (it is half of 64-bit) then handle it separately. |
| if (!reg.Is64Bit()) { |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| if (rl_arg.location == kLocPhysReg) { |
| int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set); |
| // Dump it to memory. |
| StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile); |
| LoadBaseDisp(TargetPtrReg(kSp), out_offset, reg, k32, kNotVolatile); |
| } else { |
| int high_offset = StackVisitor::GetOutVROffset(i + 1, cu_->instruction_set); |
| // First, use target reg for high part. |
| LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low + 1), reg, k32, |
| kNotVolatile); |
| StoreBaseDisp(TargetPtrReg(kSp), high_offset, reg, k32, kNotVolatile); |
| // Now, use target reg for low part. |
| LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low), reg, k32, kNotVolatile); |
| int low_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set); |
| // And store it to the expected memory location. |
| StoreBaseDisp(TargetPtrReg(kSp), low_offset, reg, k32, kNotVolatile); |
| } |
| } else { |
| LoadValueDirectWideFixed(rl_arg, reg); |
| } |
| } else { |
| LoadValueDirectFixed(rl_arg, reg); |
| } |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| } |
| if (rl_arg.wide) { |
| i++; |
| } |
| } |
| |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| if (pcrLabel) { |
| if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { |
| *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags); |
| } else { |
| *pcrLabel = nullptr; |
| GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags); |
| } |
| } |
| return call_state; |
| } |
| |
| void Mir2Lir::EnsureInitializedArgMappingToPhysicalReg() { |
| if (!in_to_reg_storage_mapping_.IsInitialized()) { |
| ShortyIterator shorty_iterator(cu_->shorty, cu_->invoke_type == kStatic); |
| in_to_reg_storage_mapping_.Initialize(&shorty_iterator, GetResetedInToRegStorageMapper()); |
| } |
| } |
| |
| RegLocation Mir2Lir::InlineTarget(CallInfo* info) { |
| RegLocation res; |
| if (info->result.location == kLocInvalid) { |
| // If result is unused, return a sink target based on type of invoke target. |
| res = GetReturn(ShortyToRegClass(mir_graph_->GetShortyFromTargetIdx(info->index)[0])); |
| } else { |
| res = info->result; |
| DCHECK_EQ(LocToRegClass(res), |
| ShortyToRegClass(mir_graph_->GetShortyFromTargetIdx(info->index)[0])); |
| } |
| return res; |
| } |
| |
| RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) { |
| RegLocation res; |
| if (info->result.location == kLocInvalid) { |
| // If result is unused, return a sink target based on type of invoke target. |
| res = GetReturnWide(ShortyToRegClass(mir_graph_->GetShortyFromTargetIdx(info->index)[0])); |
| } else { |
| res = info->result; |
| DCHECK_EQ(LocToRegClass(res), |
| ShortyToRegClass(mir_graph_->GetShortyFromTargetIdx(info->index)[0])); |
| } |
| return res; |
| } |
| |
| bool Mir2Lir::GenInlinedReferenceGetReferent(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| |
| bool use_direct_type_ptr; |
| uintptr_t direct_type_ptr; |
| ClassReference ref; |
| if (!cu_->compiler_driver->CanEmbedReferenceTypeInCode(&ref, |
| &use_direct_type_ptr, &direct_type_ptr)) { |
| return false; |
| } |
| |
| RegStorage reg_class = TargetReg(kArg1, kRef); |
| Clobber(reg_class); |
| LockTemp(reg_class); |
| if (use_direct_type_ptr) { |
| LoadConstant(reg_class, direct_type_ptr); |
| } else { |
| uint16_t type_idx = ref.first->GetClassDef(ref.second).class_idx_; |
| LoadClassType(*ref.first, type_idx, kArg1); |
| } |
| |
| uint32_t slow_path_flag_offset = cu_->compiler_driver->GetReferenceSlowFlagOffset(); |
| uint32_t disable_flag_offset = cu_->compiler_driver->GetReferenceDisableFlagOffset(); |
| CHECK(slow_path_flag_offset && disable_flag_offset && |
| (slow_path_flag_offset != disable_flag_offset)); |
| |
| // intrinsic logic start. |
| RegLocation rl_obj = info->args[0]; |
| rl_obj = LoadValue(rl_obj, kRefReg); |
| |
| RegStorage reg_slow_path = AllocTemp(); |
| RegStorage reg_disabled = AllocTemp(); |
| LoadBaseDisp(reg_class, slow_path_flag_offset, reg_slow_path, kSignedByte, kNotVolatile); |
| LoadBaseDisp(reg_class, disable_flag_offset, reg_disabled, kSignedByte, kNotVolatile); |
| FreeTemp(reg_class); |
| LIR* or_inst = OpRegRegReg(kOpOr, reg_slow_path, reg_slow_path, reg_disabled); |
| FreeTemp(reg_disabled); |
| |
| // if slow path, jump to JNI path target |
| LIR* slow_path_branch; |
| if (or_inst->u.m.def_mask->HasBit(ResourceMask::kCCode)) { |
| // Generate conditional branch only, as the OR set a condition state (we are interested in a 'Z' flag). |
| slow_path_branch = OpCondBranch(kCondNe, nullptr); |
| } else { |
| // Generate compare and branch. |
| slow_path_branch = OpCmpImmBranch(kCondNe, reg_slow_path, 0, nullptr); |
| } |
| FreeTemp(reg_slow_path); |
| |
| // slow path not enabled, simply load the referent of the reference object |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); |
| GenNullCheck(rl_obj.reg, info->opt_flags); |
| LoadRefDisp(rl_obj.reg, mirror::Reference::ReferentOffset().Int32Value(), rl_result.reg, |
| kNotVolatile); |
| MarkPossibleNullPointerException(info->opt_flags); |
| StoreValue(rl_dest, rl_result); |
| |
| LIR* intrinsic_finish = NewLIR0(kPseudoTargetLabel); |
| AddIntrinsicSlowPath(info, slow_path_branch, intrinsic_finish); |
| ClobberCallerSave(); // We must clobber everything because slow path will return here |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedCharAt(CallInfo* info) { |
| // Location of reference to data array |
| int value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count |
| int count_offset = mirror::String::CountOffset().Int32Value(); |
| // Starting offset within data array |
| int offset_offset = mirror::String::OffsetOffset().Int32Value(); |
| // Start of char data with array_ |
| int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); |
| |
| RegLocation rl_obj = info->args[0]; |
| RegLocation rl_idx = info->args[1]; |
| rl_obj = LoadValue(rl_obj, kRefReg); |
| rl_idx = LoadValue(rl_idx, kCoreReg); |
| RegStorage reg_max; |
| GenNullCheck(rl_obj.reg, info->opt_flags); |
| bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK)); |
| LIR* range_check_branch = nullptr; |
| RegStorage reg_off; |
| RegStorage reg_ptr; |
| reg_off = AllocTemp(); |
| reg_ptr = AllocTempRef(); |
| if (range_check) { |
| reg_max = AllocTemp(); |
| Load32Disp(rl_obj.reg, count_offset, reg_max); |
| MarkPossibleNullPointerException(info->opt_flags); |
| } |
| Load32Disp(rl_obj.reg, offset_offset, reg_off); |
| MarkPossibleNullPointerException(info->opt_flags); |
| LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile); |
| if (range_check) { |
| // Set up a slow path to allow retry in case of bounds violation */ |
| OpRegReg(kOpCmp, rl_idx.reg, reg_max); |
| FreeTemp(reg_max); |
| range_check_branch = OpCondBranch(kCondUge, nullptr); |
| } |
| OpRegImm(kOpAdd, reg_ptr, data_offset); |
| if (rl_idx.is_const) { |
| OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg)); |
| } else { |
| OpRegReg(kOpAdd, reg_off, rl_idx.reg); |
| } |
| FreeTemp(rl_obj.reg); |
| if (rl_idx.location == kLocPhysReg) { |
| FreeTemp(rl_idx.reg); |
| } |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| LoadBaseIndexed(reg_ptr, reg_off, rl_result.reg, 1, kUnsignedHalf); |
| FreeTemp(reg_off); |
| FreeTemp(reg_ptr); |
| StoreValue(rl_dest, rl_result); |
| if (range_check) { |
| DCHECK(range_check_branch != nullptr); |
| info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked. |
| AddIntrinsicSlowPath(info, range_check_branch); |
| } |
| return true; |
| } |
| |
| // Generates an inlined String.is_empty or String.length. |
| bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| // dst = src.length(); |
| RegLocation rl_obj = info->args[0]; |
| rl_obj = LoadValue(rl_obj, kRefReg); |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| GenNullCheck(rl_obj.reg, info->opt_flags); |
| Load32Disp(rl_obj.reg, mirror::String::CountOffset().Int32Value(), rl_result.reg); |
| MarkPossibleNullPointerException(info->opt_flags); |
| if (is_empty) { |
| // dst = (dst == 0); |
| if (cu_->instruction_set == kThumb2) { |
| RegStorage t_reg = AllocTemp(); |
| OpRegReg(kOpNeg, t_reg, rl_result.reg); |
| OpRegRegReg(kOpAdc, rl_result.reg, rl_result.reg, t_reg); |
| } else if (cu_->instruction_set == kArm64) { |
| OpRegImm(kOpSub, rl_result.reg, 1); |
| OpRegRegImm(kOpLsr, rl_result.reg, rl_result.reg, 31); |
| } else { |
| DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64); |
| OpRegImm(kOpSub, rl_result.reg, 1); |
| OpRegImm(kOpLsr, rl_result.reg, 31); |
| } |
| } |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation. |
| return false; |
| } |
| RegLocation rl_dest = IsWide(size) ? InlineTargetWide(info) : InlineTarget(info); // result reg |
| if (rl_dest.s_reg_low == INVALID_SREG) { |
| // Result is unused, the code is dead. Inlining successful, no code generated. |
| return true; |
| } |
| RegLocation rl_src_i = info->args[0]; |
| RegLocation rl_i = IsWide(size) ? LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (IsWide(size)) { |
| if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) { |
| OpRegReg(kOpRev, rl_result.reg, rl_i.reg); |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } |
| RegStorage r_i_low = rl_i.reg.GetLow(); |
| if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) { |
| // First REV shall clobber rl_result.reg.GetReg(), save the value in a temp for the second REV. |
| r_i_low = AllocTemp(); |
| OpRegCopy(r_i_low, rl_i.reg); |
| } |
| OpRegReg(kOpRev, rl_result.reg.GetLow(), rl_i.reg.GetHigh()); |
| OpRegReg(kOpRev, rl_result.reg.GetHigh(), r_i_low); |
| if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) { |
| FreeTemp(r_i_low); |
| } |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| DCHECK(size == k32 || size == kSignedHalf); |
| OpKind op = (size == k32) ? kOpRev : kOpRevsh; |
| OpRegReg(op, rl_result.reg, rl_i.reg); |
| StoreValue(rl_dest, rl_result); |
| } |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) { |
| RegLocation rl_dest = InlineTarget(info); |
| if (rl_dest.s_reg_low == INVALID_SREG) { |
| // Result is unused, the code is dead. Inlining successful, no code generated. |
| return true; |
| } |
| RegLocation rl_src = info->args[0]; |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| RegStorage sign_reg = AllocTemp(); |
| // abs(x) = y<=x>>31, (x+y)^y. |
| OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 31); |
| OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg); |
| OpRegReg(kOpXor, rl_result.reg, sign_reg); |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) { |
| RegLocation rl_dest = InlineTargetWide(info); |
| if (rl_dest.s_reg_low == INVALID_SREG) { |
| // Result is unused, the code is dead. Inlining successful, no code generated. |
| return true; |
| } |
| RegLocation rl_src = info->args[0]; |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| // If on x86 or if we would clobber a register needed later, just copy the source first. |
| if (cu_->instruction_set != kX86_64 && |
| (cu_->instruction_set == kX86 || |
| rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg())) { |
| OpRegCopyWide(rl_result.reg, rl_src.reg); |
| if (rl_result.reg.GetLowReg() != rl_src.reg.GetLowReg() && |
| rl_result.reg.GetLowReg() != rl_src.reg.GetHighReg() && |
| rl_result.reg.GetHighReg() != rl_src.reg.GetLowReg() && |
| rl_result.reg.GetHighReg() != rl_src.reg.GetHighReg()) { |
| // Reuse source registers to avoid running out of temps. |
| FreeTemp(rl_src.reg); |
| } |
| rl_src = rl_result; |
| } |
| |
| // abs(x) = y<=x>>31, (x+y)^y. |
| RegStorage sign_reg; |
| if (cu_->instruction_set == kX86_64) { |
| sign_reg = AllocTempWide(); |
| OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 63); |
| OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg); |
| OpRegReg(kOpXor, rl_result.reg, sign_reg); |
| } else { |
| sign_reg = AllocTemp(); |
| OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetHigh(), 31); |
| OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), sign_reg); |
| OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), sign_reg); |
| OpRegReg(kOpXor, rl_result.reg.GetLow(), sign_reg); |
| OpRegReg(kOpXor, rl_result.reg.GetHigh(), sign_reg); |
| } |
| FreeTemp(sign_reg); |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) { |
| // Currently implemented only for ARM64. |
| UNUSED(info, size); |
| return false; |
| } |
| |
| bool Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) { |
| // Currently implemented only for ARM64. |
| UNUSED(info, is_min, is_double); |
| return false; |
| } |
| |
| bool Mir2Lir::GenInlinedCeil(CallInfo* info) { |
| UNUSED(info); |
| return false; |
| } |
| |
| bool Mir2Lir::GenInlinedFloor(CallInfo* info) { |
| UNUSED(info); |
| return false; |
| } |
| |
| bool Mir2Lir::GenInlinedRint(CallInfo* info) { |
| UNUSED(info); |
| return false; |
| } |
| |
| bool Mir2Lir::GenInlinedRound(CallInfo* info, bool is_double) { |
| UNUSED(info, is_double); |
| return false; |
| } |
| |
| bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| RegLocation rl_dest = InlineTarget(info); |
| if (rl_dest.s_reg_low == INVALID_SREG) { |
| // Result is unused, the code is dead. Inlining successful, no code generated. |
| return true; |
| } |
| RegLocation rl_src = info->args[0]; |
| StoreValue(rl_dest, rl_src); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| RegLocation rl_dest = InlineTargetWide(info); |
| if (rl_dest.s_reg_low == INVALID_SREG) { |
| // Result is unused, the code is dead. Inlining successful, no code generated. |
| return true; |
| } |
| RegLocation rl_src = info->args[0]; |
| StoreValueWide(rl_dest, rl_src); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) { |
| UNUSED(info); |
| return false; |
| } |
| |
| |
| /* |
| * Fast String.indexOf(I) & (II). Tests for simple case of char <= 0xFFFF, |
| * otherwise bails to standard library code. |
| */ |
| bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { |
| RegLocation rl_obj = info->args[0]; |
| RegLocation rl_char = info->args[1]; |
| if (rl_char.is_const && (mir_graph_->ConstantValue(rl_char) & ~0xFFFF) != 0) { |
| // Code point beyond 0xFFFF. Punt to the real String.indexOf(). |
| return false; |
| } |
| |
| ClobberCallerSave(); |
| LockCallTemps(); // Using fixed registers |
| RegStorage reg_ptr = TargetReg(kArg0, kRef); |
| RegStorage reg_char = TargetReg(kArg1, kNotWide); |
| RegStorage reg_start = TargetReg(kArg2, kNotWide); |
| |
| LoadValueDirectFixed(rl_obj, reg_ptr); |
| LoadValueDirectFixed(rl_char, reg_char); |
| if (zero_based) { |
| LoadConstant(reg_start, 0); |
| } else { |
| RegLocation rl_start = info->args[2]; // 3rd arg only present in III flavor of IndexOf. |
| LoadValueDirectFixed(rl_start, reg_start); |
| } |
| RegStorage r_tgt = LoadHelper(kQuickIndexOf); |
| GenExplicitNullCheck(reg_ptr, info->opt_flags); |
| LIR* high_code_point_branch = |
| rl_char.is_const ? nullptr : OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, nullptr); |
| // NOTE: not a safepoint |
| OpReg(kOpBlx, r_tgt); |
| if (!rl_char.is_const) { |
| // Add the slow path for code points beyond 0xFFFF. |
| DCHECK(high_code_point_branch != nullptr); |
| LIR* resume_tgt = NewLIR0(kPseudoTargetLabel); |
| info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked. |
| AddIntrinsicSlowPath(info, high_code_point_branch, resume_tgt); |
| ClobberCallerSave(); // We must clobber everything because slow path will return here |
| } else { |
| DCHECK_EQ(mir_graph_->ConstantValue(rl_char) & ~0xFFFF, 0); |
| DCHECK(high_code_point_branch == nullptr); |
| } |
| RegLocation rl_return = GetReturn(kCoreReg); |
| RegLocation rl_dest = InlineTarget(info); |
| StoreValue(rl_dest, rl_return); |
| return true; |
| } |
| |
| /* Fast string.compareTo(Ljava/lang/string;)I. */ |
| bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| ClobberCallerSave(); |
| LockCallTemps(); // Using fixed registers |
| RegStorage reg_this = TargetReg(kArg0, kRef); |
| RegStorage reg_cmp = TargetReg(kArg1, kRef); |
| |
| RegLocation rl_this = info->args[0]; |
| RegLocation rl_cmp = info->args[1]; |
| LoadValueDirectFixed(rl_this, reg_this); |
| LoadValueDirectFixed(rl_cmp, reg_cmp); |
| RegStorage r_tgt; |
| if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) { |
| r_tgt = LoadHelper(kQuickStringCompareTo); |
| } else { |
| r_tgt = RegStorage::InvalidReg(); |
| } |
| GenExplicitNullCheck(reg_this, info->opt_flags); |
| info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked. |
| // TUNING: check if rl_cmp.s_reg_low is already null checked |
| LIR* cmp_null_check_branch = OpCmpImmBranch(kCondEq, reg_cmp, 0, nullptr); |
| AddIntrinsicSlowPath(info, cmp_null_check_branch); |
| // NOTE: not a safepoint |
| CallHelper(r_tgt, kQuickStringCompareTo, false, true); |
| RegLocation rl_return = GetReturn(kCoreReg); |
| RegLocation rl_dest = InlineTarget(info); |
| StoreValue(rl_dest, rl_return); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) { |
| RegLocation rl_dest = InlineTarget(info); |
| |
| // Early exit if the result is unused. |
| if (rl_dest.orig_sreg < 0) { |
| return true; |
| } |
| |
| RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); |
| |
| if (Is64BitInstructionSet(cu_->instruction_set)) { |
| LoadRefDisp(TargetPtrReg(kSelf), Thread::PeerOffset<8>().Int32Value(), rl_result.reg, |
| kNotVolatile); |
| } else { |
| Load32Disp(TargetPtrReg(kSelf), Thread::PeerOffset<4>().Int32Value(), rl_result.reg); |
| } |
| |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info, |
| bool is_long, bool is_volatile) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| // Unused - RegLocation rl_src_unsafe = info->args[0]; |
| RegLocation rl_src_obj = info->args[1]; // Object |
| RegLocation rl_src_offset = info->args[2]; // long low |
| rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3] |
| RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info); // result reg |
| |
| RegLocation rl_object = LoadValue(rl_src_obj, kRefReg); |
| RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, LocToRegClass(rl_dest), true); |
| if (is_long) { |
| if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64 |
| || cu_->instruction_set == kArm64) { |
| LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k64); |
| } else { |
| RegStorage rl_temp_offset = AllocTemp(); |
| OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg); |
| LoadBaseDisp(rl_temp_offset, 0, rl_result.reg, k64, kNotVolatile); |
| FreeTemp(rl_temp_offset); |
| } |
| } else { |
| if (rl_result.ref) { |
| LoadRefIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0); |
| } else { |
| LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k32); |
| } |
| } |
| |
| if (is_volatile) { |
| GenMemBarrier(kLoadAny); |
| } |
| |
| if (is_long) { |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| StoreValue(rl_dest, rl_result); |
| } |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long, |
| bool is_object, bool is_volatile, bool is_ordered) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| // Unused - RegLocation rl_src_unsafe = info->args[0]; |
| RegLocation rl_src_obj = info->args[1]; // Object |
| RegLocation rl_src_offset = info->args[2]; // long low |
| rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3] |
| RegLocation rl_src_value = info->args[4]; // value to store |
| if (is_volatile || is_ordered) { |
| GenMemBarrier(kAnyStore); |
| } |
| RegLocation rl_object = LoadValue(rl_src_obj, kRefReg); |
| RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); |
| RegLocation rl_value; |
| if (is_long) { |
| rl_value = LoadValueWide(rl_src_value, kCoreReg); |
| if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64 |
| || cu_->instruction_set == kArm64) { |
| StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k64); |
| } else { |
| RegStorage rl_temp_offset = AllocTemp(); |
| OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg); |
| StoreBaseDisp(rl_temp_offset, 0, rl_value.reg, k64, kNotVolatile); |
| FreeTemp(rl_temp_offset); |
| } |
| } else { |
| rl_value = LoadValue(rl_src_value, LocToRegClass(rl_src_value)); |
| if (rl_value.ref) { |
| StoreRefIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0); |
| } else { |
| StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k32); |
| } |
| } |
| |
| // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard. |
| FreeTemp(rl_offset.reg); |
| |
| if (is_volatile) { |
| // Prevent reordering with a subsequent volatile load. |
| // May also be needed to address store atomicity issues. |
| GenMemBarrier(kAnyAny); |
| } |
| if (is_object) { |
| MarkGCCard(0, rl_value.reg, rl_object.reg); |
| } |
| return true; |
| } |
| |
| void Mir2Lir::GenInvoke(CallInfo* info) { |
| DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr); |
| if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file) |
| ->GenIntrinsic(this, info)) { |
| return; |
| } |
| GenInvokeNoInline(info); |
| } |
| |
| void Mir2Lir::GenInvokeNoInline(CallInfo* info) { |
| int call_state = 0; |
| LIR* null_ck; |
| LIR** p_null_ck = NULL; |
| NextCallInsn next_call_insn; |
| FlushAllRegs(); /* Everything to home location */ |
| // Explicit register usage |
| LockCallTemps(); |
| |
| const MirMethodLoweringInfo& method_info = mir_graph_->GetMethodLoweringInfo(info->mir); |
| cu_->compiler_driver->ProcessedInvoke(method_info.GetInvokeType(), method_info.StatsFlags()); |
| InvokeType original_type = static_cast<InvokeType>(method_info.GetInvokeType()); |
| info->type = method_info.GetSharpType(); |
| bool fast_path = method_info.FastPath(); |
| bool skip_this; |
| if (info->type == kInterface) { |
| next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck; |
| skip_this = fast_path; |
| } else if (info->type == kDirect) { |
| if (fast_path) { |
| p_null_ck = &null_ck; |
| } |
| next_call_insn = fast_path ? GetNextSDCallInsn() : NextDirectCallInsnSP; |
| skip_this = false; |
| } else if (info->type == kStatic) { |
| next_call_insn = fast_path ? GetNextSDCallInsn() : NextStaticCallInsnSP; |
| skip_this = false; |
| } else if (info->type == kSuper) { |
| DCHECK(!fast_path); // Fast path is a direct call. |
| next_call_insn = NextSuperCallInsnSP; |
| skip_this = false; |
| } else { |
| DCHECK_EQ(info->type, kVirtual); |
| next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP; |
| skip_this = fast_path; |
| } |
| MethodReference target_method = method_info.GetTargetMethod(); |
| call_state = GenDalvikArgs(info, call_state, p_null_ck, |
| next_call_insn, target_method, method_info.VTableIndex(), |
| method_info.DirectCode(), method_info.DirectMethod(), |
| original_type, skip_this); |
| // Finish up any of the call sequence not interleaved in arg loading |
| while (call_state >= 0) { |
| call_state = next_call_insn(cu_, info, call_state, target_method, method_info.VTableIndex(), |
| method_info.DirectCode(), method_info.DirectMethod(), original_type); |
| } |
| LIR* call_insn = GenCallInsn(method_info); |
| MarkSafepointPC(call_insn); |
| |
| FreeCallTemps(); |
| if (info->result.location != kLocInvalid) { |
| // We have a following MOVE_RESULT - do it now. |
| if (info->result.wide) { |
| RegLocation ret_loc = GetReturnWide(LocToRegClass(info->result)); |
| StoreValueWide(info->result, ret_loc); |
| } else { |
| RegLocation ret_loc = GetReturn(LocToRegClass(info->result)); |
| StoreValue(info->result, ret_loc); |
| } |
| } |
| } |
| |
| } // namespace art |