Create separate Android.mk for main build targets
The runtime, compiler, dex2oat, and oatdump now are in seperate trees
to prevent dependency creep. They can now be individually built
without rebuilding the rest of the art projects. dalvikvm and jdwpspy
were already this way. Builds in the art directory should behave as
before, building everything including tests.
Change-Id: Ic6b1151e5ed0f823c3dd301afd2b13eb2d8feb81
diff --git a/compiler/dex/quick/mips/call_mips.cc b/compiler/dex/quick/mips/call_mips.cc
new file mode 100644
index 0000000..eb0302e
--- /dev/null
+++ b/compiler/dex/quick/mips/call_mips.cc
@@ -0,0 +1,392 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* This file contains codegen for the Mips ISA */
+
+#include "codegen_mips.h"
+#include "dex/quick/mir_to_lir-inl.h"
+#include "mips_lir.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+
+namespace art {
+
+void MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
+ SpecialCaseHandler special_case)
+{
+ // TODO
+}
+
+/*
+ * The lack of pc-relative loads on Mips presents somewhat of a challenge
+ * for our PIC switch table strategy. To materialize the current location
+ * we'll do a dummy JAL and reference our tables using r_RA as the
+ * base register. Note that r_RA will be used both as the base to
+ * locate the switch table data and as the reference base for the switch
+ * target offsets stored in the table. We'll use a special pseudo-instruction
+ * to represent the jal and trigger the construction of the
+ * switch table offsets (which will happen after final assembly and all
+ * labels are fixed).
+ *
+ * The test loop will look something like:
+ *
+ * ori rEnd, r_ZERO, #table_size ; size in bytes
+ * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA
+ * nop ; opportunistically fill
+ * BaseLabel:
+ * addiu rBase, r_RA, <table> - <BaseLabel> ; table relative to BaseLabel
+ addu rEnd, rEnd, rBase ; end of table
+ * lw r_val, [rSP, v_reg_off] ; Test Value
+ * loop:
+ * beq rBase, rEnd, done
+ * lw r_key, 0(rBase)
+ * addu rBase, 8
+ * bne r_val, r_key, loop
+ * lw r_disp, -4(rBase)
+ * addu r_RA, r_disp
+ * jr r_RA
+ * done:
+ *
+ */
+void MipsMir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset,
+ RegLocation rl_src)
+{
+ const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
+ if (cu_->verbose) {
+ DumpSparseSwitchTable(table);
+ }
+ // Add the table to the list - we'll process it later
+ SwitchTable *tab_rec =
+ static_cast<SwitchTable*>(arena_->NewMem(sizeof(SwitchTable), true,
+ ArenaAllocator::kAllocData));
+ tab_rec->table = table;
+ tab_rec->vaddr = current_dalvik_offset_;
+ int elements = table[1];
+ tab_rec->targets =
+ static_cast<LIR**>(arena_->NewMem(elements * sizeof(LIR*), true, ArenaAllocator::kAllocLIR));
+ switch_tables_.Insert(tab_rec);
+
+ // The table is composed of 8-byte key/disp pairs
+ int byte_size = elements * 8;
+
+ int size_hi = byte_size >> 16;
+ int size_lo = byte_size & 0xffff;
+
+ int rEnd = AllocTemp();
+ if (size_hi) {
+ NewLIR2(kMipsLui, rEnd, size_hi);
+ }
+ // Must prevent code motion for the curr pc pair
+ GenBarrier(); // Scheduling barrier
+ NewLIR0(kMipsCurrPC); // Really a jal to .+8
+ // Now, fill the branch delay slot
+ if (size_hi) {
+ NewLIR3(kMipsOri, rEnd, rEnd, size_lo);
+ } else {
+ NewLIR3(kMipsOri, rEnd, r_ZERO, size_lo);
+ }
+ GenBarrier(); // Scheduling barrier
+
+ // Construct BaseLabel and set up table base register
+ LIR* base_label = NewLIR0(kPseudoTargetLabel);
+ // Remember base label so offsets can be computed later
+ tab_rec->anchor = base_label;
+ int rBase = AllocTemp();
+ NewLIR4(kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(base_label),
+ reinterpret_cast<uintptr_t>(tab_rec));
+ OpRegRegReg(kOpAdd, rEnd, rEnd, rBase);
+
+ // Grab switch test value
+ rl_src = LoadValue(rl_src, kCoreReg);
+
+ // Test loop
+ int r_key = AllocTemp();
+ LIR* loop_label = NewLIR0(kPseudoTargetLabel);
+ LIR* exit_branch = OpCmpBranch(kCondEq, rBase, rEnd, NULL);
+ LoadWordDisp(rBase, 0, r_key);
+ OpRegImm(kOpAdd, rBase, 8);
+ OpCmpBranch(kCondNe, rl_src.low_reg, r_key, loop_label);
+ int r_disp = AllocTemp();
+ LoadWordDisp(rBase, -4, r_disp);
+ OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp);
+ OpReg(kOpBx, r_RA);
+
+ // Loop exit
+ LIR* exit_label = NewLIR0(kPseudoTargetLabel);
+ exit_branch->target = exit_label;
+}
+
+/*
+ * Code pattern will look something like:
+ *
+ * lw r_val
+ * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA
+ * nop ; opportunistically fill
+ * [subiu r_val, bias] ; Remove bias if low_val != 0
+ * bound check -> done
+ * lw r_disp, [r_RA, r_val]
+ * addu r_RA, r_disp
+ * jr r_RA
+ * done:
+ */
+void MipsMir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset,
+ RegLocation rl_src)
+{
+ const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
+ if (cu_->verbose) {
+ DumpPackedSwitchTable(table);
+ }
+ // Add the table to the list - we'll process it later
+ SwitchTable *tab_rec =
+ static_cast<SwitchTable*>(arena_->NewMem(sizeof(SwitchTable), true,
+ ArenaAllocator::kAllocData));
+ tab_rec->table = table;
+ tab_rec->vaddr = current_dalvik_offset_;
+ int size = table[1];
+ tab_rec->targets = static_cast<LIR**>(arena_->NewMem(size * sizeof(LIR*), true,
+ ArenaAllocator::kAllocLIR));
+ switch_tables_.Insert(tab_rec);
+
+ // Get the switch value
+ rl_src = LoadValue(rl_src, kCoreReg);
+
+ // Prepare the bias. If too big, handle 1st stage here
+ int low_key = s4FromSwitchData(&table[2]);
+ bool large_bias = false;
+ int r_key;
+ if (low_key == 0) {
+ r_key = rl_src.low_reg;
+ } else if ((low_key & 0xffff) != low_key) {
+ r_key = AllocTemp();
+ LoadConstant(r_key, low_key);
+ large_bias = true;
+ } else {
+ r_key = AllocTemp();
+ }
+
+ // Must prevent code motion for the curr pc pair
+ GenBarrier();
+ NewLIR0(kMipsCurrPC); // Really a jal to .+8
+ // Now, fill the branch delay slot with bias strip
+ if (low_key == 0) {
+ NewLIR0(kMipsNop);
+ } else {
+ if (large_bias) {
+ OpRegRegReg(kOpSub, r_key, rl_src.low_reg, r_key);
+ } else {
+ OpRegRegImm(kOpSub, r_key, rl_src.low_reg, low_key);
+ }
+ }
+ GenBarrier(); // Scheduling barrier
+
+ // Construct BaseLabel and set up table base register
+ LIR* base_label = NewLIR0(kPseudoTargetLabel);
+ // Remember base label so offsets can be computed later
+ tab_rec->anchor = base_label;
+
+ // Bounds check - if < 0 or >= size continue following switch
+ LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL);
+
+ // Materialize the table base pointer
+ int rBase = AllocTemp();
+ NewLIR4(kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(base_label),
+ reinterpret_cast<uintptr_t>(tab_rec));
+
+ // Load the displacement from the switch table
+ int r_disp = AllocTemp();
+ LoadBaseIndexed(rBase, r_key, r_disp, 2, kWord);
+
+ // Add to r_AP and go
+ OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp);
+ OpReg(kOpBx, r_RA);
+
+ /* branch_over target here */
+ LIR* target = NewLIR0(kPseudoTargetLabel);
+ branch_over->target = target;
+}
+
+/*
+ * Array data table format:
+ * ushort ident = 0x0300 magic value
+ * ushort width width of each element in the table
+ * uint size number of elements in the table
+ * ubyte data[size*width] table of data values (may contain a single-byte
+ * padding at the end)
+ *
+ * Total size is 4+(width * size + 1)/2 16-bit code units.
+ */
+void MipsMir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src)
+{
+ const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
+ // Add the table to the list - we'll process it later
+ FillArrayData *tab_rec =
+ reinterpret_cast<FillArrayData*>(arena_->NewMem(sizeof(FillArrayData), true,
+ ArenaAllocator::kAllocData));
+ tab_rec->table = table;
+ tab_rec->vaddr = current_dalvik_offset_;
+ uint16_t width = tab_rec->table[1];
+ uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
+ tab_rec->size = (size * width) + 8;
+
+ fill_array_data_.Insert(tab_rec);
+
+ // Making a call - use explicit registers
+ FlushAllRegs(); /* Everything to home location */
+ LockCallTemps();
+ LoadValueDirectFixed(rl_src, rMIPS_ARG0);
+
+ // Must prevent code motion for the curr pc pair
+ GenBarrier();
+ NewLIR0(kMipsCurrPC); // Really a jal to .+8
+ // Now, fill the branch delay slot with the helper load
+ int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode));
+ GenBarrier(); // Scheduling barrier
+
+ // Construct BaseLabel and set up table base register
+ LIR* base_label = NewLIR0(kPseudoTargetLabel);
+
+ // Materialize a pointer to the fill data image
+ NewLIR4(kMipsDelta, rMIPS_ARG1, 0, reinterpret_cast<uintptr_t>(base_label),
+ reinterpret_cast<uintptr_t>(tab_rec));
+
+ // And go...
+ ClobberCalleeSave();
+ LIR* call_inst = OpReg(kOpBlx, r_tgt); // ( array*, fill_data* )
+ MarkSafepointPC(call_inst);
+}
+
+/*
+ * TODO: implement fast path to short-circuit thin-lock case
+ */
+void MipsMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src)
+{
+ FlushAllRegs();
+ LoadValueDirectFixed(rl_src, rMIPS_ARG0); // Get obj
+ LockCallTemps(); // Prepare for explicit register usage
+ GenNullCheck(rl_src.s_reg_low, rMIPS_ARG0, opt_flags);
+ // Go expensive route - artLockObjectFromCode(self, obj);
+ int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pLockObjectFromCode));
+ ClobberCalleeSave();
+ LIR* call_inst = OpReg(kOpBlx, r_tgt);
+ MarkSafepointPC(call_inst);
+}
+
+/*
+ * TODO: implement fast path to short-circuit thin-lock case
+ */
+void MipsMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src)
+{
+ FlushAllRegs();
+ LoadValueDirectFixed(rl_src, rMIPS_ARG0); // Get obj
+ LockCallTemps(); // Prepare for explicit register usage
+ GenNullCheck(rl_src.s_reg_low, rMIPS_ARG0, opt_flags);
+ // Go expensive route - UnlockObjectFromCode(obj);
+ int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pUnlockObjectFromCode));
+ ClobberCalleeSave();
+ LIR* call_inst = OpReg(kOpBlx, r_tgt);
+ MarkSafepointPC(call_inst);
+}
+
+void MipsMir2Lir::GenMoveException(RegLocation rl_dest)
+{
+ int ex_offset = Thread::ExceptionOffset().Int32Value();
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ int reset_reg = AllocTemp();
+ LoadWordDisp(rMIPS_SELF, ex_offset, rl_result.low_reg);
+ LoadConstant(reset_reg, 0);
+ StoreWordDisp(rMIPS_SELF, ex_offset, reset_reg);
+ FreeTemp(reset_reg);
+ StoreValue(rl_dest, rl_result);
+}
+
+/*
+ * Mark garbage collection card. Skip if the value we're storing is null.
+ */
+void MipsMir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg)
+{
+ int reg_card_base = AllocTemp();
+ int reg_card_no = AllocTemp();
+ LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
+ LoadWordDisp(rMIPS_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base);
+ OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
+ StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0,
+ kUnsignedByte);
+ LIR* target = NewLIR0(kPseudoTargetLabel);
+ branch_over->target = target;
+ FreeTemp(reg_card_base);
+ FreeTemp(reg_card_no);
+}
+void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method)
+{
+ int spill_count = num_core_spills_ + num_fp_spills_;
+ /*
+ * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live. Let the register
+ * allocation mechanism know so it doesn't try to use any of them when
+ * expanding the frame or flushing. This leaves the utility
+ * code with a single temp: r12. This should be enough.
+ */
+ LockTemp(rMIPS_ARG0);
+ LockTemp(rMIPS_ARG1);
+ LockTemp(rMIPS_ARG2);
+ LockTemp(rMIPS_ARG3);
+
+ /*
+ * We can safely skip the stack overflow check if we're
+ * a leaf *and* our frame size < fudge factor.
+ */
+ bool skip_overflow_check = (mir_graph_->MethodIsLeaf() &&
+ (static_cast<size_t>(frame_size_) < Thread::kStackOverflowReservedBytes));
+ NewLIR0(kPseudoMethodEntry);
+ int check_reg = AllocTemp();
+ int new_sp = AllocTemp();
+ if (!skip_overflow_check) {
+ /* Load stack limit */
+ LoadWordDisp(rMIPS_SELF, Thread::StackEndOffset().Int32Value(), check_reg);
+ }
+ /* Spill core callee saves */
+ SpillCoreRegs();
+ /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
+ DCHECK_EQ(num_fp_spills_, 0);
+ if (!skip_overflow_check) {
+ OpRegRegImm(kOpSub, new_sp, rMIPS_SP, frame_size_ - (spill_count * 4));
+ GenRegRegCheck(kCondCc, new_sp, check_reg, kThrowStackOverflow);
+ OpRegCopy(rMIPS_SP, new_sp); // Establish stack
+ } else {
+ OpRegImm(kOpSub, rMIPS_SP, frame_size_ - (spill_count * 4));
+ }
+
+ FlushIns(ArgLocs, rl_method);
+
+ FreeTemp(rMIPS_ARG0);
+ FreeTemp(rMIPS_ARG1);
+ FreeTemp(rMIPS_ARG2);
+ FreeTemp(rMIPS_ARG3);
+}
+
+void MipsMir2Lir::GenExitSequence()
+{
+ /*
+ * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
+ * allocated by the register utilities as temps.
+ */
+ LockTemp(rMIPS_RET0);
+ LockTemp(rMIPS_RET1);
+
+ NewLIR0(kPseudoMethodExit);
+ UnSpillCoreRegs();
+ OpReg(kOpBx, r_RA);
+}
+
+} // namespace art