Add concurrent reference processing.

Concurrent reference processing currently works by going into native
code from java.lang.ref.Reference.get(). From there, we have a fast
path if the references aren't being processed which returns the
referent without needing to access any locks. In the slow path we
block until reference processing is complete. It may be possible to
improve the slow path if the referent is blackened.

TODO: Investigate doing the fast path in java code by using racy reads
of a static volatile boolean. This will work as long as there are no
suspend points inbetween the boolean read and referent read.

Bug: 14381653

Change-Id: I1546b55be4691fe4ff4aa6d857b234cce7187d87
diff --git a/runtime/gc/reference_processor.cc b/runtime/gc/reference_processor.cc
new file mode 100644
index 0000000..ef9e1d4
--- /dev/null
+++ b/runtime/gc/reference_processor.cc
@@ -0,0 +1,222 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "reference_processor.h"
+
+#include "mirror/object-inl.h"
+#include "mirror/reference-inl.h"
+#include "reflection.h"
+#include "ScopedLocalRef.h"
+#include "scoped_thread_state_change.h"
+#include "well_known_classes.h"
+
+namespace art {
+namespace gc {
+
+ReferenceProcessor::ReferenceProcessor()
+    : process_references_args_(nullptr, nullptr, nullptr), slow_path_enabled_(false),
+      preserving_references_(false), lock_("reference processor lock"),
+      condition_("reference processor condition", lock_) {
+}
+
+void ReferenceProcessor::EnableSlowPath() {
+  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
+  slow_path_enabled_ = true;
+}
+
+void ReferenceProcessor::DisableSlowPath(Thread* self) {
+  slow_path_enabled_ = false;
+  // Set to null so that GetReferent knows to not attempt to use the callback for seeing if
+  // referents are marked.
+  process_references_args_.is_marked_callback_ = nullptr;
+  condition_.Broadcast(self);
+}
+
+mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) {
+  mirror::Object* const referent = reference->GetReferent();
+  if (LIKELY(!slow_path_enabled_)) {
+    return referent;
+  }
+  // Another fast path, the referent is cleared, we can just return null since there is no scenario
+  // where it becomes non-null.
+  if (referent == nullptr) {
+    return nullptr;
+  }
+  MutexLock mu(self, lock_);
+  while (slow_path_enabled_) {
+    // Try to see if the referent is already marked by using the is_marked_callback. We can return
+    // it to the mutator as long as the GC is not preserving references. If the GC is
+    // preserving references, the mutator could take a white field and move it somewhere else
+    // in the heap causing corruption since this field would get swept.
+    IsMarkedCallback* const is_marked_callback = process_references_args_.is_marked_callback_;
+    if (!preserving_references_ && is_marked_callback != nullptr) {
+      mirror::Object* const referent = reference->GetReferent();
+      mirror::Object* const obj = is_marked_callback(referent, process_references_args_.arg_);
+      // If it's null it means not marked, but it could become marked if the referent is reachable
+      // by finalizer referents. So we can not return in this case and must block.
+      if (obj != nullptr) {
+        return obj;
+      }
+    }
+    condition_.Wait(self);
+  }
+  return reference->GetReferent();
+}
+
+mirror::Object* ReferenceProcessor::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) {
+  auto* const args = reinterpret_cast<ProcessReferencesArgs*>(arg);
+  // TODO: Not preserve all soft references.
+  return args->mark_callback_(obj, args->arg_);
+}
+
+void ReferenceProcessor::StartPreservingReferences(Thread* self) {
+  MutexLock mu(self, lock_);
+  preserving_references_ = true;
+}
+
+void ReferenceProcessor::StopPreservingReferences(Thread* self) {
+  MutexLock mu(self, lock_);
+  preserving_references_ = false;
+  // We are done preserving references, some people who are blocked may see a marked referent.
+  condition_.Broadcast(self);
+}
+
+// Process reference class instances and schedule finalizations.
+void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings,
+                                           bool clear_soft_references,
+                                           IsMarkedCallback* is_marked_callback,
+                                           MarkObjectCallback* mark_object_callback,
+                                           ProcessMarkStackCallback* process_mark_stack_callback,
+                                           void* arg) {
+  Thread* self = Thread::Current();
+  {
+    MutexLock mu(self, lock_);
+    process_references_args_.is_marked_callback_ = is_marked_callback;
+    process_references_args_.mark_callback_ = mark_object_callback;
+    process_references_args_.arg_ = arg;
+  }
+  if (concurrent) {
+    MutexLock mu(self, lock_);
+    CHECK(slow_path_enabled_) << "Slow path must be enabled for concurrent reference processing";
+    timings->StartSplit("ProcessReferences");
+  } else {
+    timings->StartSplit("(Paused)ProcessReferences");
+  }
+  // Unless required to clear soft references with white references, preserve some white referents.
+  if (!clear_soft_references) {
+    TimingLogger::ScopedSplit split(concurrent ? "PreserveSomeSoftReferences" :
+        "(Paused)PreserveSomeSoftReferences", timings);
+    if (concurrent) {
+      StartPreservingReferences(self);
+    }
+    // References with a marked referent are removed from the list.
+    soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
+                                                     &process_references_args_);
+
+    process_mark_stack_callback(arg);
+    if (concurrent) {
+      StopPreservingReferences(self);
+    }
+  }
+  // Clear all remaining soft and weak references with white referents.
+  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
+  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
+  {
+    TimingLogger::ScopedSplit split(concurrent ? "EnqueueFinalizerReferences" :
+        "(Paused)EnqueueFinalizerReferences", timings);
+    if (concurrent) {
+      StartPreservingReferences(self);
+    }
+    // Preserve all white objects with finalize methods and schedule them for finalization.
+    finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback,
+                                                          mark_object_callback, arg);
+    process_mark_stack_callback(arg);
+    if (concurrent) {
+      StopPreservingReferences(self);
+    }
+  }
+  // Clear all finalizer referent reachable soft and weak references with white referents.
+  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
+  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
+  // Clear all phantom references with white referents.
+  phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
+  // At this point all reference queues other than the cleared references should be empty.
+  DCHECK(soft_reference_queue_.IsEmpty());
+  DCHECK(weak_reference_queue_.IsEmpty());
+  DCHECK(finalizer_reference_queue_.IsEmpty());
+  DCHECK(phantom_reference_queue_.IsEmpty());
+  if (concurrent) {
+    MutexLock mu(self, lock_);
+    // Done processing, disable the slow path and broadcast to the waiters.
+    DisableSlowPath(self);
+  }
+  timings->EndSplit();
+}
+
+// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
+// marked, put it on the appropriate list in the heap for later processing.
+void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
+                                                IsMarkedCallback is_marked_callback, void* arg) {
+  // klass can be the class of the old object if the visitor already updated the class of ref.
+  DCHECK(klass->IsReferenceClass());
+  mirror::Object* referent = ref->GetReferent();
+  if (referent != nullptr) {
+    mirror::Object* forward_address = is_marked_callback(referent, arg);
+    // Null means that the object is not currently marked.
+    if (forward_address == nullptr) {
+      Thread* self = Thread::Current();
+      // TODO: Remove these locks, and use atomic stacks for storing references?
+      // We need to check that the references haven't already been enqueued since we can end up
+      // scanning the same reference multiple times due to dirty cards.
+      if (klass->IsSoftReferenceClass()) {
+        soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
+      } else if (klass->IsWeakReferenceClass()) {
+        weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
+      } else if (klass->IsFinalizerReferenceClass()) {
+        finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
+      } else if (klass->IsPhantomReferenceClass()) {
+        phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
+      } else {
+        LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
+                   << klass->GetAccessFlags();
+      }
+    } else if (referent != forward_address) {
+      // Referent is already marked and we need to update it.
+      ref->SetReferent<false>(forward_address);
+    }
+  }
+}
+
+void ReferenceProcessor::EnqueueClearedReferences() {
+  Thread* self = Thread::Current();
+  Locks::mutator_lock_->AssertNotHeld(self);
+  if (!cleared_references_.IsEmpty()) {
+    // When a runtime isn't started there are no reference queues to care about so ignore.
+    if (LIKELY(Runtime::Current()->IsStarted())) {
+      ScopedObjectAccess soa(self);
+      ScopedLocalRef<jobject> arg(self->GetJniEnv(),
+                                  soa.AddLocalReference<jobject>(cleared_references_.GetList()));
+      jvalue args[1];
+      args[0].l = arg.get();
+      InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
+    }
+    cleared_references_.Clear();
+  }
+}
+
+}  // namespace gc
+}  // namespace art
+