blob: 8d3d2d6a3d2e404ba2d280590031eaaad47008e4 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "unstarted_runtime.h"
#include <ctype.h>
#include <errno.h>
#include <stdlib.h>
#include <cmath>
#include <initializer_list>
#include <limits>
#include <locale>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "art_method-inl.h"
#include "base/casts.h"
#include "base/enums.h"
#include "base/hash_map.h"
#include "base/macros.h"
#include "base/quasi_atomic.h"
#include "base/zip_archive.h"
#include "class_linker.h"
#include "common_throws.h"
#include "dex/descriptors_names.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "gc/reference_processor.h"
#include "handle_scope-inl.h"
#include "hidden_api.h"
#include "interpreter/interpreter_common.h"
#include "jvalue-inl.h"
#include "mirror/array-alloc-inl.h"
#include "mirror/array-inl.h"
#include "mirror/class-alloc-inl.h"
#include "mirror/class.h"
#include "mirror/executable-inl.h"
#include "mirror/field.h"
#include "mirror/method.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-alloc-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-alloc-inl.h"
#include "mirror/string-inl.h"
#include "nativehelper/scoped_local_ref.h"
#include "nth_caller_visitor.h"
#include "reflection.h"
#include "thread-inl.h"
#include "transaction.h"
#include "unstarted_runtime_list.h"
#include "well_known_classes-inl.h"
namespace art {
namespace interpreter {
using android::base::StringAppendV;
using android::base::StringPrintf;
static void AbortTransactionOrFail(Thread* self, const char* fmt, ...)
__attribute__((__format__(__printf__, 2, 3)))
REQUIRES_SHARED(Locks::mutator_lock_);
static void AbortTransactionOrFail(Thread* self, const char* fmt, ...) {
va_list args;
if (Runtime::Current()->IsActiveTransaction()) {
va_start(args, fmt);
AbortTransactionV(self, fmt, args);
va_end(args);
} else {
va_start(args, fmt);
std::string msg;
StringAppendV(&msg, fmt, args);
va_end(args);
LOG(FATAL) << "Trying to abort, but not in transaction mode: " << msg;
UNREACHABLE();
}
}
// Restricted support for character upper case / lower case. Only support ASCII, where
// it's easy. Abort the transaction otherwise.
static void CharacterLowerUpper(Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset,
bool to_lower_case) REQUIRES_SHARED(Locks::mutator_lock_) {
uint32_t int_value = static_cast<uint32_t>(shadow_frame->GetVReg(arg_offset));
// Only ASCII (7-bit).
if (!isascii(int_value)) {
AbortTransactionOrFail(self,
"Only support ASCII characters for toLowerCase/toUpperCase: %u",
int_value);
return;
}
std::locale c_locale("C");
char char_value = static_cast<char>(int_value);
if (to_lower_case) {
result->SetI(std::tolower(char_value, c_locale));
} else {
result->SetI(std::toupper(char_value, c_locale));
}
}
void UnstartedRuntime::UnstartedCharacterToLowerCase(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
CharacterLowerUpper(self, shadow_frame, result, arg_offset, true);
}
void UnstartedRuntime::UnstartedCharacterToUpperCase(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
CharacterLowerUpper(self, shadow_frame, result, arg_offset, false);
}
// Helper function to deal with class loading in an unstarted runtime.
static void UnstartedRuntimeFindClass(Thread* self,
Handle<mirror::String> className,
Handle<mirror::ClassLoader> class_loader,
JValue* result,
bool initialize_class)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(className != nullptr);
std::string descriptor(DotToDescriptor(className->ToModifiedUtf8().c_str()));
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::Class> found = class_linker->FindClass(self, descriptor.c_str(), class_loader);
if (found != nullptr && !found->CheckIsVisibleWithTargetSdk(self)) {
CHECK(self->IsExceptionPending());
return;
}
if (found != nullptr && initialize_class) {
StackHandleScope<1> hs(self);
HandleWrapperObjPtr<mirror::Class> h_class = hs.NewHandleWrapper(&found);
if (!class_linker->EnsureInitialized(self, h_class, true, true)) {
CHECK(self->IsExceptionPending());
return;
}
}
result->SetL(found);
}
// Common helper for class-loading cutouts in an unstarted runtime. We call Runtime methods that
// rely on Java code to wrap errors in the correct exception class (i.e., NoClassDefFoundError into
// ClassNotFoundException), so need to do the same. The only exception is if the exception is
// actually the transaction abort exception. This must not be wrapped, as it signals an
// initialization abort.
static void CheckExceptionGenerateClassNotFound(Thread* self)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (self->IsExceptionPending()) {
Runtime* runtime = Runtime::Current();
DCHECK_EQ(runtime->IsTransactionAborted(),
self->GetException()->GetClass()->DescriptorEquals(
Transaction::kAbortExceptionDescriptor))
<< self->GetException()->GetClass()->PrettyDescriptor();
if (runtime->IsActiveTransaction()) {
// The boot class path at run time may contain additional dex files with
// the required class definition(s). We cannot throw a normal exception at
// compile time because a class initializer could catch it and successfully
// initialize a class differently than when executing at run time.
// If we're not aborting the transaction yet, abort now. b/183691501
if (!runtime->IsTransactionAborted()) {
AbortTransactionF(self, "ClassNotFoundException");
}
} else {
// If not in a transaction, it cannot be the transaction abort exception. Wrap it.
DCHECK(!runtime->IsTransactionAborted());
self->ThrowNewWrappedException("Ljava/lang/ClassNotFoundException;",
"ClassNotFoundException");
}
}
}
static ObjPtr<mirror::String> GetClassName(Thread* self,
ShadowFrame* shadow_frame,
size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* param = shadow_frame->GetVRegReference(arg_offset);
if (param == nullptr) {
AbortTransactionOrFail(self, "Null-pointer in Class.forName.");
return nullptr;
}
return param->AsString();
}
static std::function<hiddenapi::AccessContext()> GetHiddenapiAccessContextFunction(
ShadowFrame* frame) {
return [=]() REQUIRES_SHARED(Locks::mutator_lock_) {
return hiddenapi::AccessContext(frame->GetMethod()->GetDeclaringClass());
};
}
template<typename T>
static ALWAYS_INLINE bool ShouldDenyAccessToMember(T* member, ShadowFrame* frame)
REQUIRES_SHARED(Locks::mutator_lock_) {
// All uses in this file are from reflection
constexpr hiddenapi::AccessMethod kAccessMethod = hiddenapi::AccessMethod::kReflection;
return hiddenapi::ShouldDenyAccessToMember(member,
GetHiddenapiAccessContextFunction(frame),
kAccessMethod);
}
void UnstartedRuntime::UnstartedClassForNameCommon(Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset,
bool long_form) {
ObjPtr<mirror::String> class_name = GetClassName(self, shadow_frame, arg_offset);
if (class_name == nullptr) {
return;
}
bool initialize_class;
ObjPtr<mirror::ClassLoader> class_loader;
if (long_form) {
initialize_class = shadow_frame->GetVReg(arg_offset + 1) != 0;
class_loader =
ObjPtr<mirror::ClassLoader>::DownCast(shadow_frame->GetVRegReference(arg_offset + 2));
} else {
initialize_class = true;
// TODO: This is really only correct for the boot classpath, and for robustness we should
// check the caller.
class_loader = nullptr;
}
if (class_loader != nullptr && !ClassLinker::IsBootClassLoader(class_loader)) {
AbortTransactionOrFail(self,
"Only the boot classloader is supported: %s",
mirror::Object::PrettyTypeOf(class_loader).c_str());
return;
}
StackHandleScope<1> hs(self);
Handle<mirror::String> h_class_name(hs.NewHandle(class_name));
UnstartedRuntimeFindClass(self,
h_class_name,
ScopedNullHandle<mirror::ClassLoader>(),
result,
initialize_class);
CheckExceptionGenerateClassNotFound(self);
}
void UnstartedRuntime::UnstartedClassForName(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedClassForNameCommon(self, shadow_frame, result, arg_offset, /*long_form=*/ false);
}
void UnstartedRuntime::UnstartedClassForNameLong(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedClassForNameCommon(self, shadow_frame, result, arg_offset, /*long_form=*/ true);
}
void UnstartedRuntime::UnstartedClassGetPrimitiveClass(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
ObjPtr<mirror::String> class_name = GetClassName(self, shadow_frame, arg_offset);
ObjPtr<mirror::Class> klass = mirror::Class::GetPrimitiveClass(class_name);
if (UNLIKELY(klass == nullptr)) {
DCHECK(self->IsExceptionPending());
AbortTransactionOrFail(self,
"Class.getPrimitiveClass() failed: %s",
self->GetException()->GetDetailMessage()->ToModifiedUtf8().c_str());
return;
}
result->SetL(klass);
}
void UnstartedRuntime::UnstartedClassClassForName(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedClassForNameCommon(self, shadow_frame, result, arg_offset, /*long_form=*/ true);
}
void UnstartedRuntime::UnstartedClassNewInstance(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
StackHandleScope<2> hs(self); // Class, constructor, object.
mirror::Object* param = shadow_frame->GetVRegReference(arg_offset);
if (param == nullptr) {
AbortTransactionOrFail(self, "Null-pointer in Class.newInstance.");
return;
}
Handle<mirror::Class> h_klass(hs.NewHandle(param->AsClass()));
// Check that it's not null.
if (h_klass == nullptr) {
AbortTransactionOrFail(self, "Class reference is null for newInstance");
return;
}
// If we're in a transaction, class must not be finalizable (it or a superclass has a finalizer).
if (Runtime::Current()->IsActiveTransaction()) {
if (h_klass->IsFinalizable()) {
AbortTransactionF(self, "Class for newInstance is finalizable: '%s'",
h_klass->PrettyClass().c_str());
return;
}
}
// There are two situations in which we'll abort this run.
// 1) If the class isn't yet initialized and initialization fails.
// 2) If we can't find the default constructor. We'll postpone the exception to runtime.
// Note that 2) could likely be handled here, but for safety abort the transaction.
bool ok = false;
auto* cl = Runtime::Current()->GetClassLinker();
if (cl->EnsureInitialized(self, h_klass, true, true)) {
ArtMethod* cons = h_klass->FindConstructor("()V", cl->GetImagePointerSize());
if (cons != nullptr && ShouldDenyAccessToMember(cons, shadow_frame)) {
cons = nullptr;
}
if (cons != nullptr) {
Handle<mirror::Object> h_obj(hs.NewHandle(h_klass->AllocObject(self)));
CHECK(h_obj != nullptr); // We don't expect OOM at compile-time.
EnterInterpreterFromInvoke(self, cons, h_obj.Get(), nullptr, nullptr);
if (!self->IsExceptionPending()) {
result->SetL(h_obj.Get());
ok = true;
}
} else {
self->ThrowNewExceptionF("Ljava/lang/InternalError;",
"Could not find default constructor for '%s'",
h_klass->PrettyClass().c_str());
}
}
if (!ok) {
AbortTransactionOrFail(self, "Failed in Class.newInstance for '%s' with %s",
h_klass->PrettyClass().c_str(),
mirror::Object::PrettyTypeOf(self->GetException()).c_str());
}
}
void UnstartedRuntime::UnstartedClassGetDeclaredField(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Special managed code cut-out to allow field lookup in a un-started runtime that'd fail
// going the reflective Dex way.
ObjPtr<mirror::Class> klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
ObjPtr<mirror::String> name2 = shadow_frame->GetVRegReference(arg_offset + 1)->AsString();
ArtField* found = nullptr;
for (ArtField& field : klass->GetIFields()) {
if (name2->Equals(field.GetName())) {
found = &field;
break;
}
}
if (found == nullptr) {
for (ArtField& field : klass->GetSFields()) {
if (name2->Equals(field.GetName())) {
found = &field;
break;
}
}
}
if (found != nullptr && ShouldDenyAccessToMember(found, shadow_frame)) {
found = nullptr;
}
if (found == nullptr) {
AbortTransactionOrFail(self, "Failed to find field in Class.getDeclaredField in un-started "
" runtime. name=%s class=%s", name2->ToModifiedUtf8().c_str(),
klass->PrettyDescriptor().c_str());
return;
}
ObjPtr<mirror::Field> field = mirror::Field::CreateFromArtField(self, found, true);
result->SetL(field);
}
void UnstartedRuntime::UnstartedClassGetDeclaredFields(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Special managed code cut-out to allow field lookup in a un-started runtime that'd fail
// going the reflective Dex way.
ObjPtr<mirror::Class> klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
auto object_array = klass->GetDeclaredFields(self,
/*public_only=*/ false,
/*force_resolve=*/ true);
if (object_array != nullptr) {
result->SetL(object_array);
}
}
void UnstartedRuntime::UnstartedClassGetPublicDeclaredFields(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
ObjPtr<mirror::Class> klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
auto object_array = klass->GetDeclaredFields(self,
/*public_only=*/ true,
/*force_resolve=*/ true);
if (object_array != nullptr) {
result->SetL(object_array);
}
}
// This is required for Enum(Set) code, as that uses reflection to inspect enum classes.
void UnstartedRuntime::UnstartedClassGetDeclaredMethod(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Special managed code cut-out to allow method lookup in a un-started runtime.
ObjPtr<mirror::Class> klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
if (klass == nullptr) {
ThrowNullPointerExceptionForMethodAccess(shadow_frame->GetMethod(), InvokeType::kVirtual);
return;
}
ObjPtr<mirror::String> name = shadow_frame->GetVRegReference(arg_offset + 1)->AsString();
ObjPtr<mirror::ObjectArray<mirror::Class>> args =
shadow_frame->GetVRegReference(arg_offset + 2)->AsObjectArray<mirror::Class>();
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
auto fn_hiddenapi_access_context = GetHiddenapiAccessContextFunction(shadow_frame);
ObjPtr<mirror::Method> method = (pointer_size == PointerSize::k64)
? mirror::Class::GetDeclaredMethodInternal<PointerSize::k64>(
self, klass, name, args, fn_hiddenapi_access_context)
: mirror::Class::GetDeclaredMethodInternal<PointerSize::k32>(
self, klass, name, args, fn_hiddenapi_access_context);
if (method != nullptr && ShouldDenyAccessToMember(method->GetArtMethod(), shadow_frame)) {
method = nullptr;
}
result->SetL(method);
}
// Special managed code cut-out to allow constructor lookup in a un-started runtime.
void UnstartedRuntime::UnstartedClassGetDeclaredConstructor(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
ObjPtr<mirror::Class> klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
if (klass == nullptr) {
ThrowNullPointerExceptionForMethodAccess(shadow_frame->GetMethod(), InvokeType::kVirtual);
return;
}
ObjPtr<mirror::ObjectArray<mirror::Class>> args =
shadow_frame->GetVRegReference(arg_offset + 1)->AsObjectArray<mirror::Class>();
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
ObjPtr<mirror::Constructor> constructor = (pointer_size == PointerSize::k64)
? mirror::Class::GetDeclaredConstructorInternal<PointerSize::k64>(self, klass, args)
: mirror::Class::GetDeclaredConstructorInternal<PointerSize::k32>(self, klass, args);
if (constructor != nullptr &&
ShouldDenyAccessToMember(constructor->GetArtMethod(), shadow_frame)) {
constructor = nullptr;
}
result->SetL(constructor);
}
void UnstartedRuntime::UnstartedClassGetDeclaringClass(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(hs.NewHandle(
reinterpret_cast<mirror::Class*>(shadow_frame->GetVRegReference(arg_offset))));
if (klass->IsProxyClass() || klass->GetDexCache() == nullptr) {
result->SetL(nullptr);
return;
}
// Return null for anonymous classes.
JValue is_anon_result;
UnstartedClassIsAnonymousClass(self, shadow_frame, &is_anon_result, arg_offset);
if (is_anon_result.GetZ() != 0) {
result->SetL(nullptr);
return;
}
result->SetL(annotations::GetDeclaringClass(klass));
}
void UnstartedRuntime::UnstartedClassGetEnclosingClass(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(hs.NewHandle(shadow_frame->GetVRegReference(arg_offset)->AsClass()));
if (klass->IsProxyClass() || klass->GetDexCache() == nullptr) {
result->SetL(nullptr);
}
result->SetL(annotations::GetEnclosingClass(klass));
}
void UnstartedRuntime::UnstartedClassGetInnerClassFlags(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(hs.NewHandle(
reinterpret_cast<mirror::Class*>(shadow_frame->GetVRegReference(arg_offset))));
const int32_t default_value = shadow_frame->GetVReg(arg_offset + 1);
result->SetI(mirror::Class::GetInnerClassFlags(klass, default_value));
}
void UnstartedRuntime::UnstartedClassGetSignatureAnnotation(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(hs.NewHandle(
reinterpret_cast<mirror::Class*>(shadow_frame->GetVRegReference(arg_offset))));
if (klass->IsProxyClass() || klass->GetDexCache() == nullptr) {
result->SetL(nullptr);
return;
}
result->SetL(annotations::GetSignatureAnnotationForClass(klass));
}
void UnstartedRuntime::UnstartedClassIsAnonymousClass(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(hs.NewHandle(
reinterpret_cast<mirror::Class*>(shadow_frame->GetVRegReference(arg_offset))));
if (klass->IsProxyClass() || klass->GetDexCache() == nullptr) {
result->SetZ(false);
return;
}
ObjPtr<mirror::String> class_name = nullptr;
if (!annotations::GetInnerClass(klass, &class_name)) {
result->SetZ(false);
return;
}
result->SetZ(class_name == nullptr);
}
static MemMap FindAndExtractEntry(const std::string& bcp_jar_file,
int jar_fd,
const char* entry_name,
size_t* size,
std::string* error_msg) {
CHECK(size != nullptr);
std::unique_ptr<ZipArchive> zip_archive;
if (jar_fd >= 0) {
zip_archive.reset(ZipArchive::OpenFromOwnedFd(jar_fd, bcp_jar_file.c_str(), error_msg));
} else {
zip_archive.reset(ZipArchive::Open(bcp_jar_file.c_str(), error_msg));
}
if (zip_archive == nullptr) {
return MemMap::Invalid();
}
std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(entry_name, error_msg));
if (zip_entry == nullptr) {
return MemMap::Invalid();
}
MemMap tmp_map = zip_entry->ExtractToMemMap(bcp_jar_file.c_str(), entry_name, error_msg);
if (!tmp_map.IsValid()) {
return MemMap::Invalid();
}
// OK, from here everything seems fine.
*size = zip_entry->GetUncompressedLength();
return tmp_map;
}
static void GetResourceAsStream(Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* resource_obj = shadow_frame->GetVRegReference(arg_offset + 1);
if (resource_obj == nullptr) {
AbortTransactionOrFail(self, "null name for getResourceAsStream");
return;
}
CHECK(resource_obj->IsString());
ObjPtr<mirror::String> resource_name = resource_obj->AsString();
std::string resource_name_str = resource_name->ToModifiedUtf8();
if (resource_name_str.empty() || resource_name_str == "/") {
AbortTransactionOrFail(self,
"Unsupported name %s for getResourceAsStream",
resource_name_str.c_str());
return;
}
const char* resource_cstr = resource_name_str.c_str();
if (resource_cstr[0] == '/') {
resource_cstr++;
}
Runtime* runtime = Runtime::Current();
const std::vector<std::string>& boot_class_path = Runtime::Current()->GetBootClassPath();
if (boot_class_path.empty()) {
AbortTransactionOrFail(self, "Boot classpath not set");
return;
}
const std::vector<int>& boot_class_path_fds = Runtime::Current()->GetBootClassPathFds();
DCHECK(boot_class_path_fds.empty() || boot_class_path_fds.size() == boot_class_path.size());
MemMap mem_map;
size_t map_size;
std::string last_error_msg; // Only store the last message (we could concatenate).
bool has_bcp_fds = !boot_class_path_fds.empty();
for (size_t i = 0; i < boot_class_path.size(); ++i) {
const std::string& jar_file = boot_class_path[i];
const int jar_fd = has_bcp_fds ? boot_class_path_fds[i] : -1;
mem_map = FindAndExtractEntry(jar_file, jar_fd, resource_cstr, &map_size, &last_error_msg);
if (mem_map.IsValid()) {
break;
}
}
if (!mem_map.IsValid()) {
// Didn't find it. There's a good chance this will be the same at runtime, but still
// conservatively abort the transaction here.
AbortTransactionOrFail(self,
"Could not find resource %s. Last error was %s.",
resource_name_str.c_str(),
last_error_msg.c_str());
return;
}
StackHandleScope<3> hs(self);
// Create byte array for content.
Handle<mirror::ByteArray> h_array(hs.NewHandle(mirror::ByteArray::Alloc(self, map_size)));
if (h_array == nullptr) {
AbortTransactionOrFail(self, "Could not find/create byte array class");
return;
}
// Copy in content.
memcpy(h_array->GetData(), mem_map.Begin(), map_size);
// Be proactive releasing memory.
mem_map.Reset();
// Create a ByteArrayInputStream.
Handle<mirror::Class> h_class(hs.NewHandle(
runtime->GetClassLinker()->FindClass(self,
"Ljava/io/ByteArrayInputStream;",
ScopedNullHandle<mirror::ClassLoader>())));
if (h_class == nullptr) {
AbortTransactionOrFail(self, "Could not find ByteArrayInputStream class");
return;
}
if (!runtime->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
AbortTransactionOrFail(self, "Could not initialize ByteArrayInputStream class");
return;
}
Handle<mirror::Object> h_obj(hs.NewHandle(h_class->AllocObject(self)));
if (h_obj == nullptr) {
AbortTransactionOrFail(self, "Could not allocate ByteArrayInputStream object");
return;
}
auto* cl = Runtime::Current()->GetClassLinker();
ArtMethod* constructor = h_class->FindConstructor("([B)V", cl->GetImagePointerSize());
if (constructor == nullptr) {
AbortTransactionOrFail(self, "Could not find ByteArrayInputStream constructor");
return;
}
uint32_t args[1];
args[0] = reinterpret_cast32<uint32_t>(h_array.Get());
EnterInterpreterFromInvoke(self, constructor, h_obj.Get(), args, nullptr);
if (self->IsExceptionPending()) {
AbortTransactionOrFail(self, "Could not run ByteArrayInputStream constructor");
return;
}
result->SetL(h_obj.Get());
}
void UnstartedRuntime::UnstartedClassLoaderGetResourceAsStream(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
{
mirror::Object* this_obj = shadow_frame->GetVRegReference(arg_offset);
CHECK(this_obj != nullptr);
CHECK(this_obj->IsClassLoader());
StackHandleScope<1> hs(self);
Handle<mirror::Class> this_classloader_class(hs.NewHandle(this_obj->GetClass()));
if (WellKnownClasses::java_lang_BootClassLoader != this_classloader_class.Get()) {
AbortTransactionOrFail(self,
"Unsupported classloader type %s for getResourceAsStream",
mirror::Class::PrettyClass(this_classloader_class.Get()).c_str());
return;
}
}
GetResourceAsStream(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedConstructorNewInstance0(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// This is a cutdown version of java_lang_reflect_Constructor.cc's implementation.
StackHandleScope<4> hs(self);
Handle<mirror::Constructor> m = hs.NewHandle(
reinterpret_cast<mirror::Constructor*>(shadow_frame->GetVRegReference(arg_offset)));
Handle<mirror::ObjectArray<mirror::Object>> args = hs.NewHandle(
reinterpret_cast<mirror::ObjectArray<mirror::Object>*>(
shadow_frame->GetVRegReference(arg_offset + 1)));
Handle<mirror::Class> c(hs.NewHandle(m->GetDeclaringClass()));
if (UNLIKELY(c->IsAbstract())) {
AbortTransactionOrFail(self, "Cannot handle abstract classes");
return;
}
// Verify that we can access the class.
if (!m->IsAccessible() && !c->IsPublic()) {
// Go 2 frames back, this method is always called from newInstance0, which is called from
// Constructor.newInstance(Object... args).
ObjPtr<mirror::Class> caller = GetCallingClass(self, 2);
// If caller is null, then we called from JNI, just avoid the check since JNI avoids most
// access checks anyways. TODO: Investigate if this the correct behavior.
if (caller != nullptr && !caller->CanAccess(c.Get())) {
AbortTransactionOrFail(self, "Cannot access class");
return;
}
}
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, c, true, true)) {
DCHECK(self->IsExceptionPending());
return;
}
if (c->IsClassClass()) {
AbortTransactionOrFail(self, "new Class() is not supported");
return;
}
// String constructor is replaced by a StringFactory method in InvokeMethod.
if (c->IsStringClass()) {
// We don't support strings.
AbortTransactionOrFail(self, "String construction is not supported");
return;
}
Handle<mirror::Object> receiver = hs.NewHandle(c->AllocObject(self));
if (receiver == nullptr) {
AbortTransactionOrFail(self, "Could not allocate");
return;
}
// It's easier to use reflection to make the call, than create the uint32_t array.
{
ScopedObjectAccessUnchecked soa(self);
ScopedLocalRef<jobject> method_ref(self->GetJniEnv(),
soa.AddLocalReference<jobject>(m.Get()));
ScopedLocalRef<jobject> object_ref(self->GetJniEnv(),
soa.AddLocalReference<jobject>(receiver.Get()));
ScopedLocalRef<jobject> args_ref(self->GetJniEnv(),
soa.AddLocalReference<jobject>(args.Get()));
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
if (pointer_size == PointerSize::k64) {
InvokeMethod<PointerSize::k64>(soa, method_ref.get(), object_ref.get(), args_ref.get(), 2);
} else {
InvokeMethod<PointerSize::k32>(soa, method_ref.get(), object_ref.get(), args_ref.get(), 2);
}
}
if (self->IsExceptionPending()) {
AbortTransactionOrFail(self, "Failed running constructor");
} else {
result->SetL(receiver.Get());
}
}
void UnstartedRuntime::UnstartedVmClassLoaderFindLoadedClass(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
ObjPtr<mirror::String> class_name = shadow_frame->GetVRegReference(arg_offset + 1)->AsString();
ObjPtr<mirror::ClassLoader> class_loader =
ObjPtr<mirror::ClassLoader>::DownCast(shadow_frame->GetVRegReference(arg_offset));
StackHandleScope<2> hs(self);
Handle<mirror::String> h_class_name(hs.NewHandle(class_name));
Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(class_loader));
UnstartedRuntimeFindClass(self,
h_class_name,
h_class_loader,
result,
/*initialize_class=*/ false);
// This might have an error pending. But semantics are to just return null.
if (self->IsExceptionPending()) {
Runtime* runtime = Runtime::Current();
DCHECK_EQ(runtime->IsTransactionAborted(),
self->GetException()->GetClass()->DescriptorEquals(
Transaction::kAbortExceptionDescriptor))
<< self->GetException()->GetClass()->PrettyDescriptor();
if (runtime->IsActiveTransaction()) {
// If we're not aborting the transaction yet, abort now. b/183691501
// See CheckExceptionGenerateClassNotFound() for more detailed explanation.
if (!runtime->IsTransactionAborted()) {
AbortTransactionF(self, "ClassNotFoundException");
}
} else {
// If not in a transaction, it cannot be the transaction abort exception. Clear it.
DCHECK(!runtime->IsTransactionAborted());
self->ClearException();
}
}
}
// Arraycopy emulation.
// Note: we can't use any fast copy functions, as they are not available under transaction.
template <typename T>
static void PrimitiveArrayCopy(Thread* self,
ObjPtr<mirror::Array> src_array,
int32_t src_pos,
ObjPtr<mirror::Array> dst_array,
int32_t dst_pos,
int32_t length)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (src_array->GetClass()->GetComponentType() != dst_array->GetClass()->GetComponentType()) {
AbortTransactionOrFail(self,
"Types mismatched in arraycopy: %s vs %s.",
mirror::Class::PrettyDescriptor(
src_array->GetClass()->GetComponentType()).c_str(),
mirror::Class::PrettyDescriptor(
dst_array->GetClass()->GetComponentType()).c_str());
return;
}
ObjPtr<mirror::PrimitiveArray<T>> src = ObjPtr<mirror::PrimitiveArray<T>>::DownCast(src_array);
ObjPtr<mirror::PrimitiveArray<T>> dst = ObjPtr<mirror::PrimitiveArray<T>>::DownCast(dst_array);
const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= length);
if (copy_forward) {
for (int32_t i = 0; i < length; ++i) {
dst->Set(dst_pos + i, src->Get(src_pos + i));
}
} else {
for (int32_t i = 1; i <= length; ++i) {
dst->Set(dst_pos + length - i, src->Get(src_pos + length - i));
}
}
}
void UnstartedRuntime::UnstartedSystemArraycopy(Thread* self,
ShadowFrame* shadow_frame,
[[maybe_unused]] JValue* result,
size_t arg_offset) {
// Special case array copying without initializing System.
jint src_pos = shadow_frame->GetVReg(arg_offset + 1);
jint dst_pos = shadow_frame->GetVReg(arg_offset + 3);
jint length = shadow_frame->GetVReg(arg_offset + 4);
mirror::Object* src_obj = shadow_frame->GetVRegReference(arg_offset);
mirror::Object* dst_obj = shadow_frame->GetVRegReference(arg_offset + 2);
// Null checking. For simplicity, abort transaction.
if (src_obj == nullptr) {
AbortTransactionOrFail(self, "src is null in arraycopy.");
return;
}
if (dst_obj == nullptr) {
AbortTransactionOrFail(self, "dst is null in arraycopy.");
return;
}
// Test for arrayness. Throw ArrayStoreException.
if (!src_obj->IsArrayInstance() || !dst_obj->IsArrayInstance()) {
self->ThrowNewException("Ljava/lang/ArrayStoreException;", "src or trg is not an array");
return;
}
ObjPtr<mirror::Array> src_array = src_obj->AsArray();
ObjPtr<mirror::Array> dst_array = dst_obj->AsArray();
// Bounds checking. Throw IndexOutOfBoundsException.
if (UNLIKELY(src_pos < 0) || UNLIKELY(dst_pos < 0) || UNLIKELY(length < 0) ||
UNLIKELY(src_pos > src_array->GetLength() - length) ||
UNLIKELY(dst_pos > dst_array->GetLength() - length)) {
self->ThrowNewExceptionF("Ljava/lang/IndexOutOfBoundsException;",
"src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d",
src_array->GetLength(), src_pos, dst_array->GetLength(), dst_pos,
length);
return;
}
if (Runtime::Current()->IsActiveTransaction() && !CheckWriteConstraint(self, dst_obj)) {
DCHECK(self->IsExceptionPending());
return;
}
// Type checking.
ObjPtr<mirror::Class> src_type = shadow_frame->GetVRegReference(arg_offset)->GetClass()->
GetComponentType();
if (!src_type->IsPrimitive()) {
// Check that the second type is not primitive.
ObjPtr<mirror::Class> trg_type = shadow_frame->GetVRegReference(arg_offset + 2)->GetClass()->
GetComponentType();
if (trg_type->IsPrimitiveInt()) {
AbortTransactionOrFail(self, "Type mismatch in arraycopy: %s vs %s",
mirror::Class::PrettyDescriptor(
src_array->GetClass()->GetComponentType()).c_str(),
mirror::Class::PrettyDescriptor(
dst_array->GetClass()->GetComponentType()).c_str());
return;
}
ObjPtr<mirror::ObjectArray<mirror::Object>> src = src_array->AsObjectArray<mirror::Object>();
ObjPtr<mirror::ObjectArray<mirror::Object>> dst = dst_array->AsObjectArray<mirror::Object>();
if (src == dst) {
// Can overlap, but not have type mismatches.
// We cannot use ObjectArray::MemMove here, as it doesn't support transactions.
const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= length);
if (copy_forward) {
for (int32_t i = 0; i < length; ++i) {
dst->Set(dst_pos + i, src->Get(src_pos + i));
}
} else {
for (int32_t i = 1; i <= length; ++i) {
dst->Set(dst_pos + length - i, src->Get(src_pos + length - i));
}
}
} else {
// We're being lazy here. Optimally this could be a memcpy (if component types are
// assignable), but the ObjectArray implementation doesn't support transactions. The
// checking version, however, does.
if (Runtime::Current()->IsActiveTransaction()) {
dst->AssignableCheckingMemcpy<true>(
dst_pos, src, src_pos, length, /* throw_exception= */ true);
} else {
dst->AssignableCheckingMemcpy<false>(
dst_pos, src, src_pos, length, /* throw_exception= */ true);
}
}
} else if (src_type->IsPrimitiveByte()) {
PrimitiveArrayCopy<uint8_t>(self, src_array, src_pos, dst_array, dst_pos, length);
} else if (src_type->IsPrimitiveChar()) {
PrimitiveArrayCopy<uint16_t>(self, src_array, src_pos, dst_array, dst_pos, length);
} else if (src_type->IsPrimitiveInt()) {
PrimitiveArrayCopy<int32_t>(self, src_array, src_pos, dst_array, dst_pos, length);
} else {
AbortTransactionOrFail(self, "Unimplemented System.arraycopy for type '%s'",
src_type->PrettyDescriptor().c_str());
}
}
void UnstartedRuntime::UnstartedSystemArraycopyByte(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Just forward.
UnstartedRuntime::UnstartedSystemArraycopy(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedSystemArraycopyChar(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Just forward.
UnstartedRuntime::UnstartedSystemArraycopy(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedSystemArraycopyInt(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Just forward.
UnstartedRuntime::UnstartedSystemArraycopy(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedSystemGetSecurityManager([[maybe_unused]] Thread* self,
[[maybe_unused]] ShadowFrame* shadow_frame,
JValue* result,
[[maybe_unused]] size_t arg_offset) {
result->SetL(nullptr);
}
static constexpr const char* kAndroidHardcodedSystemPropertiesFieldName = "STATIC_PROPERTIES";
static void GetSystemProperty(Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset,
bool is_default_version)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<4> hs(self);
Handle<mirror::String> h_key(
hs.NewHandle(reinterpret_cast<mirror::String*>(shadow_frame->GetVRegReference(arg_offset))));
if (h_key == nullptr) {
AbortTransactionOrFail(self, "getProperty key was null");
return;
}
// This is overall inefficient, but reflecting the values here is not great, either. So
// for simplicity, and with the assumption that the number of getProperty calls is not
// too great, just iterate each time.
// Get the storage class.
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Handle<mirror::Class> h_props_class(hs.NewHandle(
class_linker->FindClass(self,
"Ljava/lang/AndroidHardcodedSystemProperties;",
ScopedNullHandle<mirror::ClassLoader>())));
if (h_props_class == nullptr) {
AbortTransactionOrFail(self, "Could not find AndroidHardcodedSystemProperties");
return;
}
if (!class_linker->EnsureInitialized(self, h_props_class, true, true)) {
AbortTransactionOrFail(self, "Could not initialize AndroidHardcodedSystemProperties");
return;
}
// Get the storage array.
ArtField* static_properties =
h_props_class->FindDeclaredStaticField(kAndroidHardcodedSystemPropertiesFieldName,
"[[Ljava/lang/String;");
if (static_properties == nullptr) {
AbortTransactionOrFail(self,
"Could not find %s field",
kAndroidHardcodedSystemPropertiesFieldName);
return;
}
ObjPtr<mirror::Object> props = static_properties->GetObject(h_props_class.Get());
Handle<mirror::ObjectArray<mirror::ObjectArray<mirror::String>>> h_2string_array(hs.NewHandle(
props->AsObjectArray<mirror::ObjectArray<mirror::String>>()));
if (h_2string_array == nullptr) {
AbortTransactionOrFail(self, "Field %s is null", kAndroidHardcodedSystemPropertiesFieldName);
return;
}
// Iterate over it.
const int32_t prop_count = h_2string_array->GetLength();
// Use the third handle as mutable.
MutableHandle<mirror::ObjectArray<mirror::String>> h_string_array(
hs.NewHandle<mirror::ObjectArray<mirror::String>>(nullptr));
for (int32_t i = 0; i < prop_count; ++i) {
h_string_array.Assign(h_2string_array->Get(i));
if (h_string_array == nullptr ||
h_string_array->GetLength() != 2 ||
h_string_array->Get(0) == nullptr) {
AbortTransactionOrFail(self,
"Unexpected content of %s",
kAndroidHardcodedSystemPropertiesFieldName);
return;
}
if (h_key->Equals(h_string_array->Get(0))) {
// Found a value.
if (h_string_array->Get(1) == nullptr && is_default_version) {
// Null is being delegated to the default map, and then resolved to the given default value.
// As there's no default map, return the given value.
result->SetL(shadow_frame->GetVRegReference(arg_offset + 1));
} else {
result->SetL(h_string_array->Get(1));
}
return;
}
}
// Key is not supported.
AbortTransactionOrFail(self, "getProperty key %s not supported", h_key->ToModifiedUtf8().c_str());
}
void UnstartedRuntime::UnstartedSystemGetProperty(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
GetSystemProperty(self, shadow_frame, result, arg_offset, false);
}
void UnstartedRuntime::UnstartedSystemGetPropertyWithDefault(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
GetSystemProperty(self, shadow_frame, result, arg_offset, true);
}
static std::string GetImmediateCaller(ShadowFrame* shadow_frame)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (shadow_frame->GetLink() == nullptr) {
return "<no caller>";
}
return ArtMethod::PrettyMethod(shadow_frame->GetLink()->GetMethod());
}
static bool CheckCallers(ShadowFrame* shadow_frame,
std::initializer_list<std::string> allowed_call_stack)
REQUIRES_SHARED(Locks::mutator_lock_) {
for (const std::string& allowed_caller : allowed_call_stack) {
if (shadow_frame->GetLink() == nullptr) {
return false;
}
std::string found_caller = ArtMethod::PrettyMethod(shadow_frame->GetLink()->GetMethod());
if (allowed_caller != found_caller) {
return false;
}
shadow_frame = shadow_frame->GetLink();
}
return true;
}
static ObjPtr<mirror::Object> CreateInstanceOf(Thread* self, const char* class_descriptor)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Find the requested class.
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::Class> klass =
class_linker->FindClass(self, class_descriptor, ScopedNullHandle<mirror::ClassLoader>());
if (klass == nullptr) {
AbortTransactionOrFail(self, "Could not load class %s", class_descriptor);
return nullptr;
}
StackHandleScope<2> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(klass));
Handle<mirror::Object> h_obj(hs.NewHandle(h_class->AllocObject(self)));
if (h_obj != nullptr) {
ArtMethod* init_method = h_class->FindConstructor("()V", class_linker->GetImagePointerSize());
if (init_method == nullptr) {
AbortTransactionOrFail(self, "Could not find <init> for %s", class_descriptor);
return nullptr;
} else {
JValue invoke_result;
EnterInterpreterFromInvoke(self, init_method, h_obj.Get(), nullptr, nullptr);
if (!self->IsExceptionPending()) {
return h_obj.Get();
}
AbortTransactionOrFail(self, "Could not run <init> for %s", class_descriptor);
}
}
AbortTransactionOrFail(self, "Could not allocate instance of %s", class_descriptor);
return nullptr;
}
void UnstartedRuntime::UnstartedThreadLocalGet(Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
[[maybe_unused]] size_t arg_offset) {
if (CheckCallers(shadow_frame, { "jdk.internal.math.FloatingDecimal$BinaryToASCIIBuffer "
"jdk.internal.math.FloatingDecimal.getBinaryToASCIIBuffer()" })) {
result->SetL(CreateInstanceOf(self, "Ljdk/internal/math/FloatingDecimal$BinaryToASCIIBuffer;"));
} else {
AbortTransactionOrFail(self,
"ThreadLocal.get() does not support %s",
GetImmediateCaller(shadow_frame).c_str());
}
}
void UnstartedRuntime::UnstartedThreadCurrentThread(Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
[[maybe_unused]] size_t arg_offset) {
if (CheckCallers(shadow_frame,
{ "void java.lang.Thread.<init>(java.lang.ThreadGroup, java.lang.Runnable, "
"java.lang.String, long, java.security.AccessControlContext, boolean)",
"void java.lang.Thread.<init>(java.lang.ThreadGroup, java.lang.Runnable, "
"java.lang.String, long)",
"void java.lang.Thread.<init>()",
"void java.util.logging.LogManager$Cleaner.<init>("
"java.util.logging.LogManager)" })) {
// Allow list LogManager$Cleaner, which is an unstarted Thread (for a shutdown hook). The
// Thread constructor only asks for the current thread to set up defaults and add the
// thread as unstarted to the ThreadGroup. A faked-up main thread peer is good enough for
// these purposes.
Runtime::Current()->InitThreadGroups(self);
ObjPtr<mirror::Object> main_peer = self->CreateCompileTimePeer(
"main", /*as_daemon=*/ false, Runtime::Current()->GetMainThreadGroup());
if (main_peer == nullptr) {
AbortTransactionOrFail(self, "Failed allocating peer");
return;
}
result->SetL(main_peer);
} else {
AbortTransactionOrFail(self,
"Thread.currentThread() does not support %s",
GetImmediateCaller(shadow_frame).c_str());
}
}
void UnstartedRuntime::UnstartedThreadGetNativeState(Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
[[maybe_unused]] size_t arg_offset) {
if (CheckCallers(shadow_frame,
{ "java.lang.Thread$State java.lang.Thread.getState()",
"java.lang.ThreadGroup java.lang.Thread.getThreadGroup()",
"void java.lang.Thread.<init>(java.lang.ThreadGroup, java.lang.Runnable, "
"java.lang.String, long, java.security.AccessControlContext, boolean)",
"void java.lang.Thread.<init>(java.lang.ThreadGroup, java.lang.Runnable, "
"java.lang.String, long)",
"void java.lang.Thread.<init>()",
"void java.util.logging.LogManager$Cleaner.<init>("
"java.util.logging.LogManager)" })) {
// Allow list reading the state of the "main" thread when creating another (unstarted) thread
// for LogManager. Report the thread as "new" (it really only counts that it isn't terminated).
constexpr int32_t kJavaRunnable = 1;
result->SetI(kJavaRunnable);
} else {
AbortTransactionOrFail(self,
"Thread.getNativeState() does not support %s",
GetImmediateCaller(shadow_frame).c_str());
}
}
void UnstartedRuntime::UnstartedMathCeil([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
result->SetD(ceil(shadow_frame->GetVRegDouble(arg_offset)));
}
void UnstartedRuntime::UnstartedMathFloor([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
result->SetD(floor(shadow_frame->GetVRegDouble(arg_offset)));
}
void UnstartedRuntime::UnstartedMathSin([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
result->SetD(sin(shadow_frame->GetVRegDouble(arg_offset)));
}
void UnstartedRuntime::UnstartedMathCos([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
result->SetD(cos(shadow_frame->GetVRegDouble(arg_offset)));
}
void UnstartedRuntime::UnstartedMathPow([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
result->SetD(pow(shadow_frame->GetVRegDouble(arg_offset),
shadow_frame->GetVRegDouble(arg_offset + 2)));
}
void UnstartedRuntime::UnstartedMathTan([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
result->SetD(tan(shadow_frame->GetVRegDouble(arg_offset)));
}
void UnstartedRuntime::UnstartedObjectHashCode([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset);
result->SetI(obj->IdentityHashCode());
}
void UnstartedRuntime::UnstartedDoubleDoubleToRawLongBits([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
double in = shadow_frame->GetVRegDouble(arg_offset);
result->SetJ(bit_cast<int64_t, double>(in));
}
static void UnstartedMemoryPeek(
Primitive::Type type, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
int64_t address = shadow_frame->GetVRegLong(arg_offset);
// TODO: Check that this is in the heap somewhere. Otherwise we will segfault instead of
// aborting the transaction.
switch (type) {
case Primitive::kPrimByte: {
result->SetB(*reinterpret_cast<int8_t*>(static_cast<intptr_t>(address)));
return;
}
case Primitive::kPrimShort: {
using unaligned_short __attribute__((__aligned__(1))) = int16_t;
result->SetS(*reinterpret_cast<unaligned_short*>(static_cast<intptr_t>(address)));
return;
}
case Primitive::kPrimInt: {
using unaligned_int __attribute__((__aligned__(1))) = int32_t;
result->SetI(*reinterpret_cast<unaligned_int*>(static_cast<intptr_t>(address)));
return;
}
case Primitive::kPrimLong: {
using unaligned_long __attribute__((__aligned__(1))) = int64_t;
result->SetJ(*reinterpret_cast<unaligned_long*>(static_cast<intptr_t>(address)));
return;
}
case Primitive::kPrimBoolean:
case Primitive::kPrimChar:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
case Primitive::kPrimVoid:
case Primitive::kPrimNot:
LOG(FATAL) << "Not in the Memory API: " << type;
UNREACHABLE();
}
LOG(FATAL) << "Should not reach here";
UNREACHABLE();
}
void UnstartedRuntime::UnstartedMemoryPeekByte([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
UnstartedMemoryPeek(Primitive::kPrimByte, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedMemoryPeekShort([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
UnstartedMemoryPeek(Primitive::kPrimShort, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedMemoryPeekInt([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
UnstartedMemoryPeek(Primitive::kPrimInt, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedMemoryPeekLong([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset) {
UnstartedMemoryPeek(Primitive::kPrimLong, shadow_frame, result, arg_offset);
}
static void UnstartedMemoryPeekArray(
Primitive::Type type, Thread* self, ShadowFrame* shadow_frame, size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
int64_t address_long = shadow_frame->GetVRegLong(arg_offset);
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 2);
if (obj == nullptr) {
Runtime::Current()->AbortTransactionAndThrowAbortError(self, "Null pointer in peekArray");
return;
}
ObjPtr<mirror::Array> array = obj->AsArray();
int offset = shadow_frame->GetVReg(arg_offset + 3);
int count = shadow_frame->GetVReg(arg_offset + 4);
if (offset < 0 || offset + count > array->GetLength()) {
std::string error_msg(StringPrintf("Array out of bounds in peekArray: %d/%d vs %d",
offset, count, array->GetLength()));
Runtime::Current()->AbortTransactionAndThrowAbortError(self, error_msg);
return;
}
switch (type) {
case Primitive::kPrimByte: {
int8_t* address = reinterpret_cast<int8_t*>(static_cast<intptr_t>(address_long));
ObjPtr<mirror::ByteArray> byte_array = array->AsByteArray();
for (int32_t i = 0; i < count; ++i, ++address) {
byte_array->SetWithoutChecks<true>(i + offset, *address);
}
return;
}
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
LOG(FATAL) << "Type unimplemented for Memory Array API, should not reach here: " << type;
UNREACHABLE();
case Primitive::kPrimBoolean:
case Primitive::kPrimChar:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
case Primitive::kPrimVoid:
case Primitive::kPrimNot:
LOG(FATAL) << "Not in the Memory API: " << type;
UNREACHABLE();
}
LOG(FATAL) << "Should not reach here";
UNREACHABLE();
}
void UnstartedRuntime::UnstartedMemoryPeekByteArray(Thread* self,
ShadowFrame* shadow_frame,
[[maybe_unused]] JValue* result,
size_t arg_offset) {
UnstartedMemoryPeekArray(Primitive::kPrimByte, self, shadow_frame, arg_offset);
}
// This allows reading the new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringGetCharsNoCheck(Thread* self,
ShadowFrame* shadow_frame,
[[maybe_unused]] JValue* result,
size_t arg_offset) {
jint start = shadow_frame->GetVReg(arg_offset + 1);
jint end = shadow_frame->GetVReg(arg_offset + 2);
jint index = shadow_frame->GetVReg(arg_offset + 4);
ObjPtr<mirror::String> string = shadow_frame->GetVRegReference(arg_offset)->AsString();
if (string == nullptr) {
AbortTransactionOrFail(self, "String.getCharsNoCheck with null object");
return;
}
DCHECK_GE(start, 0);
DCHECK_LE(start, end);
DCHECK_LE(end, string->GetLength());
StackHandleScope<1> hs(self);
Handle<mirror::CharArray> h_char_array(
hs.NewHandle(shadow_frame->GetVRegReference(arg_offset + 3)->AsCharArray()));
DCHECK_GE(index, 0);
DCHECK_LE(index, h_char_array->GetLength());
DCHECK_LE(end - start, h_char_array->GetLength() - index);
string->GetChars(start, end, h_char_array, index);
}
// This allows reading chars from the new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringCharAt(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
jint index = shadow_frame->GetVReg(arg_offset + 1);
ObjPtr<mirror::String> string = shadow_frame->GetVRegReference(arg_offset)->AsString();
if (string == nullptr) {
AbortTransactionOrFail(self, "String.charAt with null object");
return;
}
result->SetC(string->CharAt(index));
}
// This allows creating String objects with replaced characters during compilation.
// String.doReplace(char, char) is called from String.replace(char, char) when there is a match.
void UnstartedRuntime::UnstartedStringDoReplace(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
jchar old_c = shadow_frame->GetVReg(arg_offset + 1);
jchar new_c = shadow_frame->GetVReg(arg_offset + 2);
StackHandleScope<1> hs(self);
Handle<mirror::String> string =
hs.NewHandle(shadow_frame->GetVRegReference(arg_offset)->AsString());
if (string == nullptr) {
AbortTransactionOrFail(self, "String.replaceWithMatch with null object");
return;
}
result->SetL(mirror::String::DoReplace(self, string, old_c, new_c));
}
// This allows creating the new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringFactoryNewStringFromBytes(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
jint high = shadow_frame->GetVReg(arg_offset + 1);
jint offset = shadow_frame->GetVReg(arg_offset + 2);
jint byte_count = shadow_frame->GetVReg(arg_offset + 3);
DCHECK_GE(byte_count, 0);
StackHandleScope<1> hs(self);
Handle<mirror::ByteArray> h_byte_array(
hs.NewHandle(shadow_frame->GetVRegReference(arg_offset)->AsByteArray()));
Runtime* runtime = Runtime::Current();
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
result->SetL(
mirror::String::AllocFromByteArray(self, byte_count, h_byte_array, offset, high, allocator));
}
// This allows creating the new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringFactoryNewStringFromChars(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
jint offset = shadow_frame->GetVReg(arg_offset);
jint char_count = shadow_frame->GetVReg(arg_offset + 1);
DCHECK_GE(char_count, 0);
StackHandleScope<1> hs(self);
Handle<mirror::CharArray> h_char_array(
hs.NewHandle(shadow_frame->GetVRegReference(arg_offset + 2)->AsCharArray()));
Runtime* runtime = Runtime::Current();
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
result->SetL(
mirror::String::AllocFromCharArray(self, char_count, h_char_array, offset, allocator));
}
// This allows creating the new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringFactoryNewStringFromString(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
ObjPtr<mirror::String> to_copy = shadow_frame->GetVRegReference(arg_offset)->AsString();
if (to_copy == nullptr) {
AbortTransactionOrFail(self, "StringFactory.newStringFromString with null object");
return;
}
StackHandleScope<1> hs(self);
Handle<mirror::String> h_string(hs.NewHandle(to_copy));
Runtime* runtime = Runtime::Current();
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
result->SetL(
mirror::String::AllocFromString(self, h_string->GetLength(), h_string, 0, allocator));
}
void UnstartedRuntime::UnstartedStringFastSubstring(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
jint start = shadow_frame->GetVReg(arg_offset + 1);
jint length = shadow_frame->GetVReg(arg_offset + 2);
DCHECK_GE(start, 0);
DCHECK_GE(length, 0);
StackHandleScope<1> hs(self);
Handle<mirror::String> h_string(
hs.NewHandle(shadow_frame->GetVRegReference(arg_offset)->AsString()));
DCHECK_LE(start, h_string->GetLength());
DCHECK_LE(start + length, h_string->GetLength());
Runtime* runtime = Runtime::Current();
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
result->SetL(mirror::String::AllocFromString(self, length, h_string, start, allocator));
}
// This allows getting the char array for new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringToCharArray(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
Handle<mirror::String> string =
hs.NewHandle(shadow_frame->GetVRegReference(arg_offset)->AsString());
if (string == nullptr) {
AbortTransactionOrFail(self, "String.charAt with null object");
return;
}
result->SetL(mirror::String::ToCharArray(string, self));
}
// This allows statically initializing ConcurrentHashMap and SynchronousQueue.
void UnstartedRuntime::UnstartedReferenceGetReferent(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
const ObjPtr<mirror::Reference> ref = ObjPtr<mirror::Reference>::DownCast(
shadow_frame->GetVRegReference(arg_offset));
if (ref == nullptr) {
AbortTransactionOrFail(self, "Reference.getReferent() with null object");
return;
}
const ObjPtr<mirror::Object> referent =
Runtime::Current()->GetHeap()->GetReferenceProcessor()->GetReferent(self, ref);
result->SetL(referent);
}
void UnstartedRuntime::UnstartedReferenceRefersTo(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Use the naive implementation that may block and needlessly extend the lifetime
// of the referenced object.
const ObjPtr<mirror::Reference> ref = ObjPtr<mirror::Reference>::DownCast(
shadow_frame->GetVRegReference(arg_offset));
if (ref == nullptr) {
AbortTransactionOrFail(self, "Reference.refersTo() with null object");
return;
}
const ObjPtr<mirror::Object> referent =
Runtime::Current()->GetHeap()->GetReferenceProcessor()->GetReferent(self, ref);
const ObjPtr<mirror::Object> o = shadow_frame->GetVRegReference(arg_offset + 1);
result->SetZ(o == referent);
}
// This allows statically initializing ConcurrentHashMap and SynchronousQueue. We use a somewhat
// conservative upper bound. We restrict the callers to SynchronousQueue and ConcurrentHashMap,
// where we can predict the behavior (somewhat).
// Note: this is required (instead of lazy initialization) as these classes are used in the static
// initialization of other classes, so will *use* the value.
void UnstartedRuntime::UnstartedRuntimeAvailableProcessors(Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
[[maybe_unused]] size_t arg_offset) {
if (CheckCallers(shadow_frame, { "void java.util.concurrent.SynchronousQueue.<clinit>()" })) {
// SynchronousQueue really only separates between single- and multiprocessor case. Return
// 8 as a conservative upper approximation.
result->SetI(8);
} else if (CheckCallers(shadow_frame,
{ "void java.util.concurrent.ConcurrentHashMap.<clinit>()" })) {
// ConcurrentHashMap uses it for striding. 8 still seems an OK general value, as it's likely
// a good upper bound.
// TODO: Consider resetting in the zygote?
result->SetI(8);
} else {
// Not supported.
AbortTransactionOrFail(self, "Accessing availableProcessors not allowed");
}
}
// This allows accessing ConcurrentHashMap/SynchronousQueue.
void UnstartedRuntime::UnstartedUnsafeCompareAndSwapLong(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedJdkUnsafeCompareAndSwapLong(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedUnsafeCompareAndSwapObject(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedJdkUnsafeCompareAndSwapObject(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedUnsafeGetObjectVolatile(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
UnstartedJdkUnsafeGetObjectVolatile(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedUnsafePutObjectVolatile(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
UnstartedJdkUnsafePutObjectVolatile(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedUnsafePutOrderedObject(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
UnstartedJdkUnsafePutOrderedObject(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedJdkUnsafeCompareAndSwapLong(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Argument 0 is the Unsafe instance, skip.
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 1);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
int64_t offset = shadow_frame->GetVRegLong(arg_offset + 2);
int64_t expectedValue = shadow_frame->GetVRegLong(arg_offset + 4);
int64_t newValue = shadow_frame->GetVRegLong(arg_offset + 6);
bool success;
// Check whether we're in a transaction, call accordingly.
if (Runtime::Current()->IsActiveTransaction()) {
if (!CheckWriteConstraint(self, obj)) {
DCHECK(self->IsExceptionPending());
return;
}
success = obj->CasFieldStrongSequentiallyConsistent64<true>(MemberOffset(offset),
expectedValue,
newValue);
} else {
success = obj->CasFieldStrongSequentiallyConsistent64<false>(MemberOffset(offset),
expectedValue,
newValue);
}
result->SetZ(success ? 1 : 0);
}
void UnstartedRuntime::UnstartedJdkUnsafeCompareAndSetLong(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedJdkUnsafeCompareAndSwapLong(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedJdkUnsafeCompareAndSwapObject(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Argument 0 is the Unsafe instance, skip.
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 1);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
int64_t offset = shadow_frame->GetVRegLong(arg_offset + 2);
mirror::Object* expected_value = shadow_frame->GetVRegReference(arg_offset + 4);
mirror::Object* new_value = shadow_frame->GetVRegReference(arg_offset + 5);
// Must use non transactional mode.
if (gUseReadBarrier) {
// Need to make sure the reference stored in the field is a to-space one before attempting the
// CAS or the CAS could fail incorrectly.
mirror::HeapReference<mirror::Object>* field_addr =
reinterpret_cast<mirror::HeapReference<mirror::Object>*>(
reinterpret_cast<uint8_t*>(obj) + static_cast<size_t>(offset));
ReadBarrier::Barrier<
mirror::Object,
/* kIsVolatile= */ false,
kWithReadBarrier,
/* kAlwaysUpdateField= */ true>(
obj,
MemberOffset(offset),
field_addr);
}
bool success;
// Check whether we're in a transaction, call accordingly.
if (Runtime::Current()->IsActiveTransaction()) {
if (!CheckWriteConstraint(self, obj) || !CheckWriteValueConstraint(self, new_value)) {
DCHECK(self->IsExceptionPending());
return;
}
success = obj->CasFieldObject<true>(MemberOffset(offset),
expected_value,
new_value,
CASMode::kStrong,
std::memory_order_seq_cst);
} else {
success = obj->CasFieldObject<false>(MemberOffset(offset),
expected_value,
new_value,
CASMode::kStrong,
std::memory_order_seq_cst);
}
result->SetZ(success ? 1 : 0);
}
void UnstartedRuntime::UnstartedJdkUnsafeCompareAndSetObject(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedJdkUnsafeCompareAndSwapObject(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedJdkUnsafeGetObjectVolatile(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Argument 0 is the Unsafe instance, skip.
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 1);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
int64_t offset = shadow_frame->GetVRegLong(arg_offset + 2);
ObjPtr<mirror::Object> value = obj->GetFieldObjectVolatile<mirror::Object>(MemberOffset(offset));
result->SetL(value);
}
void UnstartedRuntime::UnstartedJdkUnsafePutObjectVolatile(Thread* self,
ShadowFrame* shadow_frame,
[[maybe_unused]] JValue* result,
size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Argument 0 is the Unsafe instance, skip.
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 1);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
int64_t offset = shadow_frame->GetVRegLong(arg_offset + 2);
mirror::Object* value = shadow_frame->GetVRegReference(arg_offset + 4);
if (Runtime::Current()->IsActiveTransaction()) {
if (!CheckWriteConstraint(self, obj) || !CheckWriteValueConstraint(self, value)) {
DCHECK(self->IsExceptionPending());
return;
}
obj->SetFieldObjectVolatile<true>(MemberOffset(offset), value);
} else {
obj->SetFieldObjectVolatile<false>(MemberOffset(offset), value);
}
}
void UnstartedRuntime::UnstartedJdkUnsafePutOrderedObject(Thread* self,
ShadowFrame* shadow_frame,
[[maybe_unused]] JValue* result,
size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Argument 0 is the Unsafe instance, skip.
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 1);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
int64_t offset = shadow_frame->GetVRegLong(arg_offset + 2);
mirror::Object* new_value = shadow_frame->GetVRegReference(arg_offset + 4);
std::atomic_thread_fence(std::memory_order_release);
if (Runtime::Current()->IsActiveTransaction()) {
if (!CheckWriteConstraint(self, obj) || !CheckWriteValueConstraint(self, new_value)) {
DCHECK(self->IsExceptionPending());
return;
}
obj->SetFieldObject<true>(MemberOffset(offset), new_value);
} else {
obj->SetFieldObject<false>(MemberOffset(offset), new_value);
}
}
// A cutout for Integer.parseInt(String). Note: this code is conservative and will bail instead
// of correctly handling the corner cases.
void UnstartedRuntime::UnstartedIntegerParseInt(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot parse null string, retry at runtime.");
return;
}
std::string string_value = obj->AsString()->ToModifiedUtf8();
if (string_value.empty()) {
AbortTransactionOrFail(self, "Cannot parse empty string, retry at runtime.");
return;
}
const char* c_str = string_value.c_str();
char *end;
// Can we set errno to 0? Is this always a variable, and not a macro?
// Worst case, we'll incorrectly fail a transaction. Seems OK.
int64_t l = strtol(c_str, &end, 10);
if ((errno == ERANGE && l == LONG_MAX) || l > std::numeric_limits<int32_t>::max() ||
(errno == ERANGE && l == LONG_MIN) || l < std::numeric_limits<int32_t>::min()) {
AbortTransactionOrFail(self, "Cannot parse string %s, retry at runtime.", c_str);
return;
}
if (l == 0) {
// Check whether the string wasn't exactly zero.
if (string_value != "0") {
AbortTransactionOrFail(self, "Cannot parse string %s, retry at runtime.", c_str);
return;
}
} else if (*end != '\0') {
AbortTransactionOrFail(self, "Cannot parse string %s, retry at runtime.", c_str);
return;
}
result->SetI(static_cast<int32_t>(l));
}
// A cutout for Long.parseLong.
//
// Note: for now use code equivalent to Integer.parseInt, as the full range may not be supported
// well.
void UnstartedRuntime::UnstartedLongParseLong(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot parse null string, retry at runtime.");
return;
}
std::string string_value = obj->AsString()->ToModifiedUtf8();
if (string_value.empty()) {
AbortTransactionOrFail(self, "Cannot parse empty string, retry at runtime.");
return;
}
const char* c_str = string_value.c_str();
char *end;
// Can we set errno to 0? Is this always a variable, and not a macro?
// Worst case, we'll incorrectly fail a transaction. Seems OK.
int64_t l = strtol(c_str, &end, 10);
// Note: comparing against int32_t min/max is intentional here.
if ((errno == ERANGE && l == LONG_MAX) || l > std::numeric_limits<int32_t>::max() ||
(errno == ERANGE && l == LONG_MIN) || l < std::numeric_limits<int32_t>::min()) {
AbortTransactionOrFail(self, "Cannot parse string %s, retry at runtime.", c_str);
return;
}
if (l == 0) {
// Check whether the string wasn't exactly zero.
if (string_value != "0") {
AbortTransactionOrFail(self, "Cannot parse string %s, retry at runtime.", c_str);
return;
}
} else if (*end != '\0') {
AbortTransactionOrFail(self, "Cannot parse string %s, retry at runtime.", c_str);
return;
}
result->SetJ(l);
}
void UnstartedRuntime::UnstartedMethodInvoke(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
JNIEnvExt* env = self->GetJniEnv();
ScopedObjectAccessUnchecked soa(self);
ObjPtr<mirror::Object> java_method_obj = shadow_frame->GetVRegReference(arg_offset);
ScopedLocalRef<jobject> java_method(env,
java_method_obj == nullptr ? nullptr : env->AddLocalReference<jobject>(java_method_obj));
ObjPtr<mirror::Object> java_receiver_obj = shadow_frame->GetVRegReference(arg_offset + 1);
ScopedLocalRef<jobject> java_receiver(env,
java_receiver_obj == nullptr ? nullptr : env->AddLocalReference<jobject>(java_receiver_obj));
ObjPtr<mirror::Object> java_args_obj = shadow_frame->GetVRegReference(arg_offset + 2);
ScopedLocalRef<jobject> java_args(env,
java_args_obj == nullptr ? nullptr : env->AddLocalReference<jobject>(java_args_obj));
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
ScopedLocalRef<jobject> result_jobj(env,
(pointer_size == PointerSize::k64)
? InvokeMethod<PointerSize::k64>(soa,
java_method.get(),
java_receiver.get(),
java_args.get())
: InvokeMethod<PointerSize::k32>(soa,
java_method.get(),
java_receiver.get(),
java_args.get()));
result->SetL(self->DecodeJObject(result_jobj.get()));
// Conservatively flag all exceptions as transaction aborts. This way we don't need to unwrap
// InvocationTargetExceptions.
if (self->IsExceptionPending()) {
AbortTransactionOrFail(self, "Failed Method.invoke");
}
}
void UnstartedRuntime::UnstartedSystemIdentityHashCode([[maybe_unused]] Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset);
result->SetI((obj != nullptr) ? obj->IdentityHashCode() : 0);
}
// Checks whether the runtime is s64-bit. This is needed for the clinit of
// java.lang.invoke.VarHandle clinit. The clinit determines sets of
// available VarHandle accessors and these differ based on machine
// word size.
void UnstartedRuntime::UnstartedJNIVMRuntimeIs64Bit([[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
jboolean is64bit = (pointer_size == PointerSize::k64) ? JNI_TRUE : JNI_FALSE;
result->SetZ(is64bit);
}
void UnstartedRuntime::UnstartedJNIVMRuntimeNewUnpaddedArray(
Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
int32_t length = args[1];
DCHECK_GE(length, 0);
ObjPtr<mirror::Object> element_class = reinterpret_cast32<mirror::Object*>(args[0])->AsClass();
if (element_class == nullptr) {
AbortTransactionOrFail(self, "VMRuntime.newUnpaddedArray with null element_class.");
return;
}
Runtime* runtime = Runtime::Current();
ObjPtr<mirror::Class> array_class =
runtime->GetClassLinker()->FindArrayClass(self, element_class->AsClass());
DCHECK(array_class != nullptr);
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
result->SetL(mirror::Array::Alloc</*kIsInstrumented=*/ true, /*kFillUsable=*/ true>(
self, array_class, length, array_class->GetComponentSizeShift(), allocator));
}
void UnstartedRuntime::UnstartedJNIVMStackGetCallingClassLoader(
[[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
result->SetL(nullptr);
}
void UnstartedRuntime::UnstartedJNIVMStackGetStackClass2(Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
NthCallerVisitor visitor(self, 3);
visitor.WalkStack();
if (visitor.caller != nullptr) {
result->SetL(visitor.caller->GetDeclaringClass());
}
}
void UnstartedRuntime::UnstartedJNIMathLog([[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
JValue value;
value.SetJ((static_cast<uint64_t>(args[1]) << 32) | args[0]);
result->SetD(log(value.GetD()));
}
void UnstartedRuntime::UnstartedJNIMathExp([[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
JValue value;
value.SetJ((static_cast<uint64_t>(args[1]) << 32) | args[0]);
result->SetD(exp(value.GetD()));
}
void UnstartedRuntime::UnstartedJNIAtomicLongVMSupportsCS8(
[[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
result->SetZ(QuasiAtomic::LongAtomicsUseMutexes(Runtime::Current()->GetInstructionSet())
? 0
: 1);
}
void UnstartedRuntime::UnstartedJNIClassGetNameNative(Thread* self,
[[maybe_unused]] ArtMethod* method,
mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
StackHandleScope<1> hs(self);
result->SetL(mirror::Class::ComputeName(hs.NewHandle(receiver->AsClass())));
}
void UnstartedRuntime::UnstartedJNIDoubleLongBitsToDouble([[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
uint64_t long_input = args[0] | (static_cast<uint64_t>(args[1]) << 32);
result->SetD(bit_cast<double>(long_input));
}
void UnstartedRuntime::UnstartedJNIFloatFloatToRawIntBits([[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
result->SetI(args[0]);
}
void UnstartedRuntime::UnstartedJNIFloatIntBitsToFloat([[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
result->SetI(args[0]);
}
void UnstartedRuntime::UnstartedJNIObjectInternalClone(Thread* self,
[[maybe_unused]] ArtMethod* method,
mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
StackHandleScope<1> hs(self);
Handle<mirror::Object> h_receiver = hs.NewHandle(receiver);
result->SetL(mirror::Object::Clone(h_receiver, self));
}
void UnstartedRuntime::UnstartedJNIObjectNotifyAll(Thread* self,
[[maybe_unused]] ArtMethod* method,
mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
[[maybe_unused]] JValue* result) {
receiver->NotifyAll(self);
}
void UnstartedRuntime::UnstartedJNIStringCompareTo(Thread* self,
[[maybe_unused]] ArtMethod* method,
mirror::Object* receiver,
uint32_t* args,
JValue* result) {
ObjPtr<mirror::Object> rhs = reinterpret_cast32<mirror::Object*>(args[0]);
if (rhs == nullptr) {
AbortTransactionOrFail(self, "String.compareTo with null object.");
return;
}
result->SetI(receiver->AsString()->CompareTo(rhs->AsString()));
}
void UnstartedRuntime::UnstartedJNIStringFillBytesLatin1(Thread* self,
[[maybe_unused]] ArtMethod* method,
mirror::Object* receiver,
uint32_t* args,
[[maybe_unused]] JValue*) {
StackHandleScope<2> hs(self);
Handle<mirror::String> h_receiver(hs.NewHandle(
reinterpret_cast<mirror::String*>(receiver)->AsString()));
Handle<mirror::ByteArray> h_buffer(hs.NewHandle(
reinterpret_cast<mirror::ByteArray*>(args[0])->AsByteArray()));
int32_t index = static_cast<int32_t>(args[1]);
h_receiver->FillBytesLatin1(h_buffer, index);
}
void UnstartedRuntime::UnstartedJNIStringFillBytesUTF16(Thread* self,
[[maybe_unused]] ArtMethod* method,
mirror::Object* receiver,
uint32_t* args,
[[maybe_unused]] JValue*) {
StackHandleScope<2> hs(self);
Handle<mirror::String> h_receiver(hs.NewHandle(
reinterpret_cast<mirror::String*>(receiver)->AsString()));
Handle<mirror::ByteArray> h_buffer(hs.NewHandle(
reinterpret_cast<mirror::ByteArray*>(args[0])->AsByteArray()));
int32_t index = static_cast<int32_t>(args[1]);
h_receiver->FillBytesUTF16(h_buffer, index);
}
void UnstartedRuntime::UnstartedJNIStringIntern([[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
result->SetL(receiver->AsString()->Intern());
}
void UnstartedRuntime::UnstartedJNIArrayCreateMultiArray(Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
StackHandleScope<2> hs(self);
auto h_class(hs.NewHandle(reinterpret_cast<mirror::Class*>(args[0])->AsClass()));
auto h_dimensions(hs.NewHandle(reinterpret_cast<mirror::IntArray*>(args[1])->AsIntArray()));
result->SetL(mirror::Array::CreateMultiArray(self, h_class, h_dimensions));
}
void UnstartedRuntime::UnstartedJNIArrayCreateObjectArray(Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
int32_t length = static_cast<int32_t>(args[1]);
if (length < 0) {
ThrowNegativeArraySizeException(length);
return;
}
ObjPtr<mirror::Class> element_class = reinterpret_cast<mirror::Class*>(args[0])->AsClass();
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
ObjPtr<mirror::Class> array_class = class_linker->FindArrayClass(self, element_class);
if (UNLIKELY(array_class == nullptr)) {
CHECK(self->IsExceptionPending());
return;
}
DCHECK(array_class->IsObjectArrayClass());
ObjPtr<mirror::Array> new_array = mirror::ObjectArray<mirror::Object>::Alloc(
self, array_class, length, runtime->GetHeap()->GetCurrentAllocator());
result->SetL(new_array);
}
void UnstartedRuntime::UnstartedJNIThrowableNativeFillInStackTrace(
Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
ScopedObjectAccessUnchecked soa(self);
ScopedLocalRef<jobject> stack_trace(self->GetJniEnv(), self->CreateInternalStackTrace(soa));
result->SetL(soa.Decode<mirror::Object>(stack_trace.get()));
}
void UnstartedRuntime::UnstartedJNIUnsafeCompareAndSwapInt(
Thread* self,
ArtMethod* method,
mirror::Object* receiver,
uint32_t* args,
JValue* result) {
UnstartedJNIJdkUnsafeCompareAndSwapInt(self, method, receiver, args, result);
}
void UnstartedRuntime::UnstartedJNIUnsafeGetIntVolatile(Thread* self,
ArtMethod* method,
mirror::Object* receiver,
uint32_t* args,
JValue* result) {
UnstartedJNIJdkUnsafeGetIntVolatile(self, method, receiver, args, result);
}
void UnstartedRuntime::UnstartedJNIUnsafePutObject(Thread* self,
ArtMethod* method,
mirror::Object* receiver,
uint32_t* args,
JValue* result) {
UnstartedJNIJdkUnsafePutObject(self, method, receiver, args, result);
}
void UnstartedRuntime::UnstartedJNIUnsafeGetArrayBaseOffsetForComponentType(
Thread* self,
ArtMethod* method,
mirror::Object* receiver,
uint32_t* args,
JValue* result) {
UnstartedJNIJdkUnsafeGetArrayBaseOffsetForComponentType(self, method, receiver, args, result);
}
void UnstartedRuntime::UnstartedJNIUnsafeGetArrayIndexScaleForComponentType(
Thread* self,
ArtMethod* method,
mirror::Object* receiver,
uint32_t* args,
JValue* result) {
UnstartedJNIJdkUnsafeGetArrayIndexScaleForComponentType(self, method, receiver, args, result);
}
void UnstartedRuntime::UnstartedJNIJdkUnsafeAddressSize([[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
result->SetI(sizeof(void*));
}
void UnstartedRuntime::UnstartedJNIJdkUnsafeCompareAndSwapInt(
Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
ObjPtr<mirror::Object> obj = reinterpret_cast32<mirror::Object*>(args[0]);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
jlong offset = (static_cast<uint64_t>(args[2]) << 32) | args[1];
jint expectedValue = args[3];
jint newValue = args[4];
bool success;
if (Runtime::Current()->IsActiveTransaction()) {
if (!CheckWriteConstraint(self, obj)) {
DCHECK(self->IsExceptionPending());
return;
}
success = obj->CasField32<true>(MemberOffset(offset),
expectedValue,
newValue,
CASMode::kStrong,
std::memory_order_seq_cst);
} else {
success = obj->CasField32<false>(MemberOffset(offset),
expectedValue,
newValue,
CASMode::kStrong,
std::memory_order_seq_cst);
}
result->SetZ(success ? JNI_TRUE : JNI_FALSE);
}
void UnstartedRuntime::UnstartedJNIJdkUnsafeCompareAndSetInt(
Thread* self,
ArtMethod* method,
mirror::Object* receiver,
uint32_t* args,
JValue* result) {
UnstartedJNIJdkUnsafeCompareAndSwapInt(self, method, receiver, args, result);
}
void UnstartedRuntime::UnstartedJNIJdkUnsafeGetIntVolatile(
Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
ObjPtr<mirror::Object> obj = reinterpret_cast32<mirror::Object*>(args[0]);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Unsafe.compareAndSwapIntVolatile with null object.");
return;
}
jlong offset = (static_cast<uint64_t>(args[2]) << 32) | args[1];
result->SetI(obj->GetField32Volatile(MemberOffset(offset)));
}
void UnstartedRuntime::UnstartedJNIJdkUnsafePutObject(Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
[[maybe_unused]] JValue* result) {
ObjPtr<mirror::Object> obj = reinterpret_cast32<mirror::Object*>(args[0]);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Unsafe.putObject with null object.");
return;
}
jlong offset = (static_cast<uint64_t>(args[2]) << 32) | args[1];
ObjPtr<mirror::Object> new_value = reinterpret_cast32<mirror::Object*>(args[3]);
if (Runtime::Current()->IsActiveTransaction()) {
if (!CheckWriteConstraint(self, obj) || !CheckWriteValueConstraint(self, new_value)) {
DCHECK(self->IsExceptionPending());
return;
}
obj->SetFieldObject<true>(MemberOffset(offset), new_value);
} else {
obj->SetFieldObject<false>(MemberOffset(offset), new_value);
}
}
void UnstartedRuntime::UnstartedJNIJdkUnsafeGetArrayBaseOffsetForComponentType(
Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
ObjPtr<mirror::Object> component = reinterpret_cast32<mirror::Object*>(args[0]);
if (component == nullptr) {
AbortTransactionOrFail(self, "Unsafe.getArrayBaseOffsetForComponentType with null component.");
return;
}
Primitive::Type primitive_type = component->AsClass()->GetPrimitiveType();
result->SetI(mirror::Array::DataOffset(Primitive::ComponentSize(primitive_type)).Int32Value());
}
void UnstartedRuntime::UnstartedJNIJdkUnsafeGetArrayIndexScaleForComponentType(
Thread* self,
[[maybe_unused]] ArtMethod* method,
[[maybe_unused]] mirror::Object* receiver,
uint32_t* args,
JValue* result) {
ObjPtr<mirror::Object> component = reinterpret_cast32<mirror::Object*>(args[0]);
if (component == nullptr) {
AbortTransactionOrFail(self, "Unsafe.getArrayIndexScaleForComponentType with null component.");
return;
}
Primitive::Type primitive_type = component->AsClass()->GetPrimitiveType();
result->SetI(Primitive::ComponentSize(primitive_type));
}
void UnstartedRuntime::UnstartedJNIFieldGetArtField([[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
ObjPtr<mirror::Field> field = ObjPtr<mirror::Field>::DownCast(receiver);
ArtField* art_field = field->GetArtField();
result->SetJ(reinterpret_cast<int64_t>(art_field));
}
void UnstartedRuntime::UnstartedJNIFieldGetNameInternal([[maybe_unused]] Thread* self,
[[maybe_unused]] ArtMethod* method,
mirror::Object* receiver,
[[maybe_unused]] uint32_t* args,
JValue* result) {
ObjPtr<mirror::Field> field = ObjPtr<mirror::Field>::DownCast(receiver);
ArtField* art_field = field->GetArtField();
result->SetL(art_field->ResolveNameString());
}
using InvokeHandler = void(*)(Thread* self,
ShadowFrame* shadow_frame,
JValue* result,
size_t arg_size);
using JNIHandler = void(*)(Thread* self,
ArtMethod* method,
mirror::Object* receiver,
uint32_t* args,
JValue* result);
// NOLINTNEXTLINE
#define ONE_PLUS(ShortNameIgnored, DescriptorIgnored, NameIgnored, SignatureIgnored) 1 +
static constexpr size_t kInvokeHandlersSize = UNSTARTED_RUNTIME_DIRECT_LIST(ONE_PLUS) 0;
static constexpr size_t kJniHandlersSize = UNSTARTED_RUNTIME_JNI_LIST(ONE_PLUS) 0;
#undef ONE_PLUS
// The actual value of `kMinLoadFactor` is irrelevant because the HashMap<>s below
// are never resized, but we still need to pass a reasonable value to the constructor.
static constexpr double kMinLoadFactor = 0.5;
static constexpr double kMaxLoadFactor = 0.7;
constexpr size_t BufferSize(size_t size) {
// Note: ceil() is not suitable for constexpr, so cast to size_t and adjust by 1 if needed.
const size_t estimate = static_cast<size_t>(size / kMaxLoadFactor);
return static_cast<size_t>(estimate * kMaxLoadFactor) == size ? estimate : estimate + 1u;
}
static constexpr size_t kInvokeHandlersBufferSize = BufferSize(kInvokeHandlersSize);
static_assert(
static_cast<size_t>(kInvokeHandlersBufferSize * kMaxLoadFactor) == kInvokeHandlersSize);
static constexpr size_t kJniHandlersBufferSize = BufferSize(kJniHandlersSize);
static_assert(static_cast<size_t>(kJniHandlersBufferSize * kMaxLoadFactor) == kJniHandlersSize);
static bool tables_initialized_ = false;
static std::pair<ArtMethod*, InvokeHandler> kInvokeHandlersBuffer[kInvokeHandlersBufferSize];
static HashMap<ArtMethod*, InvokeHandler> invoke_handlers_(
kMinLoadFactor, kMaxLoadFactor, kInvokeHandlersBuffer, kInvokeHandlersBufferSize);
static std::pair<ArtMethod*, JNIHandler> kJniHandlersBuffer[kJniHandlersBufferSize];
static HashMap<ArtMethod*, JNIHandler> jni_handlers_(
kMinLoadFactor, kMaxLoadFactor, kJniHandlersBuffer, kJniHandlersBufferSize);
static ArtMethod* FindMethod(Thread* self,
ClassLinker* class_linker,
const char* descriptor,
std::string_view name,
std::string_view signature) REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, descriptor);
DCHECK(klass != nullptr) << descriptor;
ArtMethod* method = klass->FindClassMethod(name, signature, class_linker->GetImagePointerSize());
DCHECK(method != nullptr) << descriptor << "." << name << signature;
return method;
}
void UnstartedRuntime::InitializeInvokeHandlers(Thread* self) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
#define UNSTARTED_DIRECT(ShortName, Descriptor, Name, Signature) \
{ \
ArtMethod* method = FindMethod(self, class_linker, Descriptor, Name, Signature); \
invoke_handlers_.insert(std::make_pair(method, & UnstartedRuntime::Unstarted ## ShortName)); \
}
UNSTARTED_RUNTIME_DIRECT_LIST(UNSTARTED_DIRECT)
#undef UNSTARTED_DIRECT
DCHECK_EQ(invoke_handlers_.NumBuckets(), kInvokeHandlersBufferSize);
}
void UnstartedRuntime::InitializeJNIHandlers(Thread* self) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
#define UNSTARTED_JNI(ShortName, Descriptor, Name, Signature) \
{ \
ArtMethod* method = FindMethod(self, class_linker, Descriptor, Name, Signature); \
jni_handlers_.insert(std::make_pair(method, & UnstartedRuntime::UnstartedJNI ## ShortName)); \
}
UNSTARTED_RUNTIME_JNI_LIST(UNSTARTED_JNI)
#undef UNSTARTED_JNI
DCHECK_EQ(jni_handlers_.NumBuckets(), kJniHandlersBufferSize);
}
void UnstartedRuntime::Initialize() {
CHECK(!tables_initialized_);
ScopedObjectAccess soa(Thread::Current());
InitializeInvokeHandlers(soa.Self());
InitializeJNIHandlers(soa.Self());
tables_initialized_ = true;
}
void UnstartedRuntime::Reinitialize() {
CHECK(tables_initialized_);
// Note: HashSet::clear() abandons the pre-allocated storage which we need to keep.
while (!invoke_handlers_.empty()) {
invoke_handlers_.erase(invoke_handlers_.begin());
}
while (!jni_handlers_.empty()) {
jni_handlers_.erase(jni_handlers_.begin());
}
tables_initialized_ = false;
Initialize();
}
void UnstartedRuntime::Invoke(Thread* self, const CodeItemDataAccessor& accessor,
ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// In a runtime that's not started we intercept certain methods to avoid complicated dependency
// problems in core libraries.
CHECK(tables_initialized_);
const auto& iter = invoke_handlers_.find(shadow_frame->GetMethod());
if (iter != invoke_handlers_.end()) {
// Note: When we special case the method, we do not ensure initialization.
// This has been the behavior since implementation of this feature.
// Clear out the result in case it's not zeroed out.
result->SetL(nullptr);
// Push the shadow frame. This is so the failing method can be seen in abort dumps.
self->PushShadowFrame(shadow_frame);
(*iter->second)(self, shadow_frame, result, arg_offset);
self->PopShadowFrame();
} else {
if (!EnsureInitialized(self, shadow_frame)) {
return;
}
// Not special, continue with regular interpreter execution.
ArtInterpreterToInterpreterBridge(self, accessor, shadow_frame, result);
}
}
// Hand select a number of methods to be run in a not yet started runtime without using JNI.
void UnstartedRuntime::Jni(Thread* self, ArtMethod* method, mirror::Object* receiver,
uint32_t* args, JValue* result) {
const auto& iter = jni_handlers_.find(method);
if (iter != jni_handlers_.end()) {
// Clear out the result in case it's not zeroed out.
result->SetL(nullptr);
(*iter->second)(self, method, receiver, args, result);
} else if (Runtime::Current()->IsActiveTransaction()) {
AbortTransactionF(self, "Attempt to invoke native method in non-started runtime: %s",
ArtMethod::PrettyMethod(method).c_str());
} else {
LOG(FATAL) << "Calling native method " << ArtMethod::PrettyMethod(method) << " in an unstarted "
"non-transactional runtime";
}
}
} // namespace interpreter
} // namespace art