| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "heap.h" |
| |
| #include <limits> |
| #include "android-base/thread_annotations.h" |
| #if defined(__BIONIC__) || defined(__GLIBC__) |
| #include <malloc.h> // For mallinfo() |
| #endif |
| #include <memory> |
| #include <random> |
| #include <unistd.h> |
| #include <sys/types.h> |
| #include <vector> |
| |
| #include "android-base/stringprintf.h" |
| |
| #include "allocation_listener.h" |
| #include "art_field-inl.h" |
| #include "backtrace_helper.h" |
| #include "base/allocator.h" |
| #include "base/arena_allocator.h" |
| #include "base/dumpable.h" |
| #include "base/file_utils.h" |
| #include "base/histogram-inl.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/memory_tool.h" |
| #include "base/mutex.h" |
| #include "base/os.h" |
| #include "base/stl_util.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "base/utils.h" |
| #include "class_root-inl.h" |
| #include "common_throws.h" |
| #include "debugger.h" |
| #include "dex/dex_file-inl.h" |
| #include "entrypoints/quick/quick_alloc_entrypoints.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/accounting/heap_bitmap-inl.h" |
| #include "gc/accounting/mod_union_table-inl.h" |
| #include "gc/accounting/read_barrier_table.h" |
| #include "gc/accounting/remembered_set.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/collector/concurrent_copying.h" |
| #include "gc/collector/mark_compact.h" |
| #include "gc/collector/mark_sweep.h" |
| #include "gc/collector/partial_mark_sweep.h" |
| #include "gc/collector/semi_space.h" |
| #include "gc/collector/sticky_mark_sweep.h" |
| #include "gc/racing_check.h" |
| #include "gc/reference_processor.h" |
| #include "gc/scoped_gc_critical_section.h" |
| #include "gc/space/bump_pointer_space.h" |
| #include "gc/space/dlmalloc_space-inl.h" |
| #include "gc/space/image_space.h" |
| #include "gc/space/large_object_space.h" |
| #include "gc/space/region_space.h" |
| #include "gc/space/rosalloc_space-inl.h" |
| #include "gc/space/space-inl.h" |
| #include "gc/space/zygote_space.h" |
| #include "gc/task_processor.h" |
| #include "gc/verification.h" |
| #include "gc_pause_listener.h" |
| #include "gc_root.h" |
| #include "handle_scope-inl.h" |
| #include "heap-inl.h" |
| #include "heap-visit-objects-inl.h" |
| #include "image.h" |
| #include "intern_table.h" |
| #include "jit/jit.h" |
| #include "jit/jit_code_cache.h" |
| #include "jni/java_vm_ext.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/executable-inl.h" |
| #include "mirror/field.h" |
| #include "mirror/method_handle_impl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object-refvisitor-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/reference-inl.h" |
| #include "mirror/var_handle.h" |
| #include "nativehelper/scoped_local_ref.h" |
| #include "obj_ptr-inl.h" |
| #ifdef ART_TARGET_ANDROID |
| #include "perfetto/heap_profile.h" |
| #endif |
| #include "reflection.h" |
| #include "runtime.h" |
| #include "javaheapprof/javaheapsampler.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread-inl.h" |
| #include "thread_list.h" |
| #include "verify_object-inl.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| |
| #ifdef ART_TARGET_ANDROID |
| namespace { |
| |
| // Enable the heap sampler Callback function used by Perfetto. |
| void EnableHeapSamplerCallback(void* enable_ptr, |
| const AHeapProfileEnableCallbackInfo* enable_info_ptr) { |
| HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(enable_ptr); |
| // Set the ART profiler sampling interval to the value from Perfetto. |
| uint64_t interval = AHeapProfileEnableCallbackInfo_getSamplingInterval(enable_info_ptr); |
| if (interval > 0) { |
| sampler_self->SetSamplingInterval(interval); |
| } |
| // Else default is 4K sampling interval. However, default case shouldn't happen for Perfetto API. |
| // AHeapProfileEnableCallbackInfo_getSamplingInterval should always give the requested |
| // (non-negative) sampling interval. It is a uint64_t and gets checked for != 0 |
| // Do not call heap as a temp here, it will build but test run will silently fail. |
| // Heap is not fully constructed yet in some cases. |
| sampler_self->EnableHeapSampler(); |
| } |
| |
| // Disable the heap sampler Callback function used by Perfetto. |
| void DisableHeapSamplerCallback(void* disable_ptr, |
| [[maybe_unused]] const AHeapProfileDisableCallbackInfo* info_ptr) { |
| HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(disable_ptr); |
| sampler_self->DisableHeapSampler(); |
| } |
| |
| } // namespace |
| #endif |
| |
| namespace gc { |
| |
| DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition); |
| |
| // Minimum amount of remaining bytes before a concurrent GC is triggered. |
| static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB; |
| static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB; |
| // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more |
| // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator |
| // threads (lower pauses, use less memory bandwidth). |
| static double GetStickyGcThroughputAdjustment(bool use_generational_cc) { |
| return use_generational_cc ? 0.5 : 1.0; |
| } |
| // Whether or not we compact the zygote in PreZygoteFork. |
| static constexpr bool kCompactZygote = kMovingCollector; |
| // How many reserve entries are at the end of the allocation stack, these are only needed if the |
| // allocation stack overflows. |
| static constexpr size_t kAllocationStackReserveSize = 1024; |
| // Default mark stack size in bytes. |
| static const size_t kDefaultMarkStackSize = 64 * KB; |
| // Define space name. |
| static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"}; |
| static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"}; |
| static const char* kMemMapSpaceName[2] = {"main space", "main space 1"}; |
| static const char* kNonMovingSpaceName = "non moving space"; |
| static const char* kZygoteSpaceName = "zygote space"; |
| static constexpr bool kGCALotMode = false; |
| // GC alot mode uses a small allocation stack to stress test a lot of GC. |
| static constexpr size_t kGcAlotAllocationStackSize = 4 * KB / |
| sizeof(mirror::HeapReference<mirror::Object>); |
| // Verify objet has a small allocation stack size since searching the allocation stack is slow. |
| static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB / |
| sizeof(mirror::HeapReference<mirror::Object>); |
| static constexpr size_t kDefaultAllocationStackSize = 8 * MB / |
| sizeof(mirror::HeapReference<mirror::Object>); |
| |
| // After a GC (due to allocation failure) we should retrieve at least this |
| // fraction of the current max heap size. Otherwise throw OOME. |
| static constexpr double kMinFreeHeapAfterGcForAlloc = 0.01; |
| |
| // For deterministic compilation, we need the heap to be at a well-known address. |
| static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000; |
| // Dump the rosalloc stats on SIGQUIT. |
| static constexpr bool kDumpRosAllocStatsOnSigQuit = false; |
| |
| static const char* kRegionSpaceName = "main space (region space)"; |
| |
| // If true, we log all GCs in the both the foreground and background. Used for debugging. |
| static constexpr bool kLogAllGCs = false; |
| |
| // Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave |
| // allocate with relaxed ergonomics for that long. |
| static constexpr size_t kPostForkMaxHeapDurationMS = 2000; |
| |
| #if defined(__LP64__) || !defined(ADDRESS_SANITIZER) |
| // 300 MB (0x12c00000) - (default non-moving space capacity). |
| uint8_t* const Heap::kPreferredAllocSpaceBegin = |
| reinterpret_cast<uint8_t*>(300 * MB - kDefaultNonMovingSpaceCapacity); |
| #else |
| #ifdef __ANDROID__ |
| // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000. |
| uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000); |
| #else |
| // For 32-bit host, use 0x40000000 because asan uses most of the space below this. |
| uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000); |
| #endif |
| #endif |
| |
| // Log GC on regular (but fairly large) intervals during GC stress mode. |
| // It is expected that the other runtime options will be used to reduce the usual logging. |
| // This allows us to make the logging much less verbose while still reporting some |
| // progress (biased towards expensive GCs), and while still reporting pathological cases. |
| static constexpr int64_t kGcStressModeGcLogSampleFrequencyNs = MsToNs(10000); |
| |
| static inline bool CareAboutPauseTimes() { |
| return Runtime::Current()->InJankPerceptibleProcessState(); |
| } |
| |
| static void VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace*>& image_spaces) { |
| uint32_t boot_image_size = 0u; |
| for (size_t i = 0u, num_spaces = image_spaces.size(); i != num_spaces; ) { |
| const ImageHeader& image_header = image_spaces[i]->GetImageHeader(); |
| uint32_t reservation_size = image_header.GetImageReservationSize(); |
| uint32_t image_count = image_header.GetImageSpaceCount(); |
| |
| CHECK_NE(image_count, 0u); |
| CHECK_LE(image_count, num_spaces - i); |
| CHECK_NE(reservation_size, 0u); |
| for (size_t j = 1u; j != image_count; ++j) { |
| CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetComponentCount(), 0u); |
| CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetImageReservationSize(), 0u); |
| } |
| |
| // Check the start of the heap. |
| CHECK_EQ(image_spaces[0]->Begin() + boot_image_size, image_spaces[i]->Begin()); |
| // Check contiguous layout of images and oat files. |
| const uint8_t* current_heap = image_spaces[i]->Begin(); |
| const uint8_t* current_oat = image_spaces[i]->GetImageHeader().GetOatFileBegin(); |
| for (size_t j = 0u; j != image_count; ++j) { |
| const ImageHeader& current_header = image_spaces[i + j]->GetImageHeader(); |
| CHECK_EQ(current_heap, image_spaces[i + j]->Begin()); |
| CHECK_EQ(current_oat, current_header.GetOatFileBegin()); |
| current_heap += RoundUp(current_header.GetImageSize(), kPageSize); |
| CHECK_GT(current_header.GetOatFileEnd(), current_header.GetOatFileBegin()); |
| current_oat = current_header.GetOatFileEnd(); |
| } |
| // Check that oat files start at the end of images. |
| CHECK_EQ(current_heap, image_spaces[i]->GetImageHeader().GetOatFileBegin()); |
| // Check that the reservation size equals the size of images and oat files. |
| CHECK_EQ(reservation_size, static_cast<size_t>(current_oat - image_spaces[i]->Begin())); |
| |
| boot_image_size += reservation_size; |
| i += image_count; |
| } |
| } |
| |
| Heap::Heap(size_t initial_size, |
| size_t growth_limit, |
| size_t min_free, |
| size_t max_free, |
| double target_utilization, |
| double foreground_heap_growth_multiplier, |
| size_t stop_for_native_allocs, |
| size_t capacity, |
| size_t non_moving_space_capacity, |
| const std::vector<std::string>& boot_class_path, |
| const std::vector<std::string>& boot_class_path_locations, |
| const std::vector<int>& boot_class_path_fds, |
| const std::vector<int>& boot_class_path_image_fds, |
| const std::vector<int>& boot_class_path_vdex_fds, |
| const std::vector<int>& boot_class_path_oat_fds, |
| const std::vector<std::string>& image_file_names, |
| const InstructionSet image_instruction_set, |
| CollectorType foreground_collector_type, |
| CollectorType background_collector_type, |
| space::LargeObjectSpaceType large_object_space_type, |
| size_t large_object_threshold, |
| size_t parallel_gc_threads, |
| size_t conc_gc_threads, |
| bool low_memory_mode, |
| size_t long_pause_log_threshold, |
| size_t long_gc_log_threshold, |
| bool ignore_target_footprint, |
| bool always_log_explicit_gcs, |
| bool use_tlab, |
| bool verify_pre_gc_heap, |
| bool verify_pre_sweeping_heap, |
| bool verify_post_gc_heap, |
| bool verify_pre_gc_rosalloc, |
| bool verify_pre_sweeping_rosalloc, |
| bool verify_post_gc_rosalloc, |
| bool gc_stress_mode, |
| bool measure_gc_performance, |
| bool use_homogeneous_space_compaction_for_oom, |
| bool use_generational_cc, |
| uint64_t min_interval_homogeneous_space_compaction_by_oom, |
| bool dump_region_info_before_gc, |
| bool dump_region_info_after_gc) |
| : non_moving_space_(nullptr), |
| rosalloc_space_(nullptr), |
| dlmalloc_space_(nullptr), |
| main_space_(nullptr), |
| collector_type_(kCollectorTypeNone), |
| foreground_collector_type_(foreground_collector_type), |
| background_collector_type_(background_collector_type), |
| desired_collector_type_(foreground_collector_type_), |
| pending_task_lock_(nullptr), |
| parallel_gc_threads_(parallel_gc_threads), |
| conc_gc_threads_(conc_gc_threads), |
| low_memory_mode_(low_memory_mode), |
| long_pause_log_threshold_(long_pause_log_threshold), |
| long_gc_log_threshold_(long_gc_log_threshold), |
| process_cpu_start_time_ns_(ProcessCpuNanoTime()), |
| pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_), |
| post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_), |
| pre_gc_weighted_allocated_bytes_(0.0), |
| post_gc_weighted_allocated_bytes_(0.0), |
| ignore_target_footprint_(ignore_target_footprint), |
| always_log_explicit_gcs_(always_log_explicit_gcs), |
| zygote_creation_lock_("zygote creation lock", kZygoteCreationLock), |
| zygote_space_(nullptr), |
| large_object_threshold_(large_object_threshold), |
| disable_thread_flip_count_(0), |
| thread_flip_running_(false), |
| collector_type_running_(kCollectorTypeNone), |
| last_gc_cause_(kGcCauseNone), |
| thread_running_gc_(nullptr), |
| last_gc_type_(collector::kGcTypeNone), |
| next_gc_type_(collector::kGcTypePartial), |
| capacity_(capacity), |
| growth_limit_(growth_limit), |
| initial_heap_size_(initial_size), |
| target_footprint_(initial_size), |
| // Using kPostMonitorLock as a lock at kDefaultMutexLevel is acquired after |
| // this one. |
| process_state_update_lock_("process state update lock", kPostMonitorLock), |
| min_foreground_target_footprint_(0), |
| min_foreground_concurrent_start_bytes_(0), |
| concurrent_start_bytes_(std::numeric_limits<size_t>::max()), |
| total_bytes_freed_ever_(0), |
| total_objects_freed_ever_(0), |
| num_bytes_allocated_(0), |
| native_bytes_registered_(0), |
| old_native_bytes_allocated_(0), |
| native_objects_notified_(0), |
| num_bytes_freed_revoke_(0), |
| num_bytes_alive_after_gc_(0), |
| verify_missing_card_marks_(false), |
| verify_system_weaks_(false), |
| verify_pre_gc_heap_(verify_pre_gc_heap), |
| verify_pre_sweeping_heap_(verify_pre_sweeping_heap), |
| verify_post_gc_heap_(verify_post_gc_heap), |
| verify_mod_union_table_(false), |
| verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc), |
| verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc), |
| verify_post_gc_rosalloc_(verify_post_gc_rosalloc), |
| gc_stress_mode_(gc_stress_mode), |
| /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This |
| * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap |
| * verification is enabled, we limit the size of allocation stacks to speed up their |
| * searching. |
| */ |
| max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize |
| : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize : |
| kDefaultAllocationStackSize), |
| current_allocator_(kAllocatorTypeDlMalloc), |
| current_non_moving_allocator_(kAllocatorTypeNonMoving), |
| bump_pointer_space_(nullptr), |
| temp_space_(nullptr), |
| region_space_(nullptr), |
| min_free_(min_free), |
| max_free_(max_free), |
| target_utilization_(target_utilization), |
| foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier), |
| stop_for_native_allocs_(stop_for_native_allocs), |
| total_wait_time_(0), |
| verify_object_mode_(kVerifyObjectModeDisabled), |
| disable_moving_gc_count_(0), |
| semi_space_collector_(nullptr), |
| active_concurrent_copying_collector_(nullptr), |
| young_concurrent_copying_collector_(nullptr), |
| concurrent_copying_collector_(nullptr), |
| is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()), |
| use_tlab_(use_tlab), |
| main_space_backup_(nullptr), |
| min_interval_homogeneous_space_compaction_by_oom_( |
| min_interval_homogeneous_space_compaction_by_oom), |
| last_time_homogeneous_space_compaction_by_oom_(NanoTime()), |
| gcs_completed_(0u), |
| max_gc_requested_(0u), |
| pending_collector_transition_(nullptr), |
| pending_heap_trim_(nullptr), |
| use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom), |
| use_generational_cc_(use_generational_cc), |
| running_collection_is_blocking_(false), |
| blocking_gc_count_(0U), |
| blocking_gc_time_(0U), |
| last_update_time_gc_count_rate_histograms_( // Round down by the window duration. |
| (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration), |
| gc_count_last_window_(0U), |
| blocking_gc_count_last_window_(0U), |
| gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount), |
| blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U, |
| kGcCountRateMaxBucketCount), |
| alloc_tracking_enabled_(false), |
| alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth), |
| backtrace_lock_(nullptr), |
| seen_backtrace_count_(0u), |
| unique_backtrace_count_(0u), |
| gc_disabled_for_shutdown_(false), |
| dump_region_info_before_gc_(dump_region_info_before_gc), |
| dump_region_info_after_gc_(dump_region_info_after_gc), |
| boot_image_spaces_(), |
| boot_images_start_address_(0u), |
| boot_images_size_(0u), |
| pre_oome_gc_count_(0u) { |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Heap() entering"; |
| } |
| |
| LOG(INFO) << "Using " << foreground_collector_type_ << " GC."; |
| if (!gUseUserfaultfd) { |
| // This ensures that userfaultfd syscall is done before any seccomp filter is installed. |
| // TODO(b/266731037): Remove this when we no longer need to collect metric on userfaultfd |
| // support. |
| auto [uffd_supported, minor_fault_supported] = collector::MarkCompact::GetUffdAndMinorFault(); |
| // The check is just to ensure that compiler doesn't eliminate the function call above. |
| // Userfaultfd support is certain to be there if its minor-fault feature is supported. |
| CHECK_IMPLIES(minor_fault_supported, uffd_supported); |
| } |
| |
| if (gUseReadBarrier) { |
| CHECK_EQ(foreground_collector_type_, kCollectorTypeCC); |
| CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground); |
| } else if (background_collector_type_ != gc::kCollectorTypeHomogeneousSpaceCompact) { |
| CHECK_EQ(IsMovingGc(foreground_collector_type_), IsMovingGc(background_collector_type_)) |
| << "Changing from " << foreground_collector_type_ << " to " |
| << background_collector_type_ << " (or visa versa) is not supported."; |
| } |
| verification_.reset(new Verification(this)); |
| CHECK_GE(large_object_threshold, kMinLargeObjectThreshold); |
| ScopedTrace trace(__FUNCTION__); |
| Runtime* const runtime = Runtime::Current(); |
| // If we aren't the zygote, switch to the default non zygote allocator. This may update the |
| // entrypoints. |
| const bool is_zygote = runtime->IsZygote(); |
| if (!is_zygote) { |
| // Background compaction is currently not supported for command line runs. |
| if (background_collector_type_ != foreground_collector_type_) { |
| VLOG(heap) << "Disabling background compaction for non zygote"; |
| background_collector_type_ = foreground_collector_type_; |
| } |
| } |
| ChangeCollector(desired_collector_type_); |
| live_bitmap_.reset(new accounting::HeapBitmap(this)); |
| mark_bitmap_.reset(new accounting::HeapBitmap(this)); |
| |
| // We don't have hspace compaction enabled with CC. |
| if (foreground_collector_type_ == kCollectorTypeCC |
| || foreground_collector_type_ == kCollectorTypeCMC) { |
| use_homogeneous_space_compaction_for_oom_ = false; |
| } |
| bool support_homogeneous_space_compaction = |
| background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact || |
| use_homogeneous_space_compaction_for_oom_; |
| // We may use the same space the main space for the non moving space if we don't need to compact |
| // from the main space. |
| // This is not the case if we support homogeneous compaction or have a moving background |
| // collector type. |
| bool separate_non_moving_space = is_zygote || |
| support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) || |
| IsMovingGc(background_collector_type_); |
| |
| // Requested begin for the alloc space, to follow the mapped image and oat files |
| uint8_t* request_begin = nullptr; |
| // Calculate the extra space required after the boot image, see allocations below. |
| size_t heap_reservation_size = 0u; |
| if (separate_non_moving_space) { |
| heap_reservation_size = non_moving_space_capacity; |
| } else if (foreground_collector_type_ != kCollectorTypeCC && is_zygote) { |
| heap_reservation_size = capacity_; |
| } |
| heap_reservation_size = RoundUp(heap_reservation_size, kPageSize); |
| // Load image space(s). |
| std::vector<std::unique_ptr<space::ImageSpace>> boot_image_spaces; |
| MemMap heap_reservation; |
| if (space::ImageSpace::LoadBootImage(boot_class_path, |
| boot_class_path_locations, |
| boot_class_path_fds, |
| boot_class_path_image_fds, |
| boot_class_path_vdex_fds, |
| boot_class_path_oat_fds, |
| image_file_names, |
| image_instruction_set, |
| runtime->ShouldRelocate(), |
| /*executable=*/ !runtime->IsAotCompiler(), |
| heap_reservation_size, |
| runtime->AllowInMemoryCompilation(), |
| &boot_image_spaces, |
| &heap_reservation)) { |
| DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u); |
| DCHECK(!boot_image_spaces.empty()); |
| request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd(); |
| DCHECK_IMPLIES(heap_reservation.IsValid(), request_begin == heap_reservation.Begin()) |
| << "request_begin=" << static_cast<const void*>(request_begin) |
| << " heap_reservation.Begin()=" << static_cast<const void*>(heap_reservation.Begin()); |
| for (std::unique_ptr<space::ImageSpace>& space : boot_image_spaces) { |
| boot_image_spaces_.push_back(space.get()); |
| AddSpace(space.release()); |
| } |
| boot_images_start_address_ = PointerToLowMemUInt32(boot_image_spaces_.front()->Begin()); |
| uint32_t boot_images_end = |
| PointerToLowMemUInt32(boot_image_spaces_.back()->GetImageHeader().GetOatFileEnd()); |
| boot_images_size_ = boot_images_end - boot_images_start_address_; |
| if (kIsDebugBuild) { |
| VerifyBootImagesContiguity(boot_image_spaces_); |
| } |
| } else { |
| if (foreground_collector_type_ == kCollectorTypeCC) { |
| // Need to use a low address so that we can allocate a contiguous 2 * Xmx space |
| // when there's no image (dex2oat for target). |
| request_begin = kPreferredAllocSpaceBegin; |
| } |
| // Gross hack to make dex2oat deterministic. |
| if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) { |
| // Currently only enabled for MS collector since that is what the deterministic dex2oat uses. |
| // b/26849108 |
| request_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT); |
| } |
| } |
| |
| /* |
| requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |
| +- nonmoving space (non_moving_space_capacity)+- |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |
| +-????????????????????????????????????????????+- |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |
| +-main alloc space / bump space 1 (capacity_) +- |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |
| +-????????????????????????????????????????????+- |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |
| +-main alloc space2 / bump space 2 (capacity_)+- |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |
| */ |
| |
| MemMap main_mem_map_1; |
| MemMap main_mem_map_2; |
| |
| std::string error_str; |
| MemMap non_moving_space_mem_map; |
| if (separate_non_moving_space) { |
| ScopedTrace trace2("Create separate non moving space"); |
| // If we are the zygote, the non moving space becomes the zygote space when we run |
| // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't |
| // rename the mem map later. |
| const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName; |
| // Reserve the non moving mem map before the other two since it needs to be at a specific |
| // address. |
| DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty()); |
| if (heap_reservation.IsValid()) { |
| non_moving_space_mem_map = heap_reservation.RemapAtEnd( |
| heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str); |
| } else { |
| non_moving_space_mem_map = MapAnonymousPreferredAddress( |
| space_name, request_begin, non_moving_space_capacity, &error_str); |
| } |
| CHECK(non_moving_space_mem_map.IsValid()) << error_str; |
| DCHECK(!heap_reservation.IsValid()); |
| // Try to reserve virtual memory at a lower address if we have a separate non moving space. |
| request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity; |
| } |
| // Attempt to create 2 mem maps at or after the requested begin. |
| if (foreground_collector_type_ != kCollectorTypeCC) { |
| ScopedTrace trace2("Create main mem map"); |
| if (separate_non_moving_space || !is_zygote) { |
| main_mem_map_1 = MapAnonymousPreferredAddress( |
| kMemMapSpaceName[0], request_begin, capacity_, &error_str); |
| } else { |
| // If no separate non-moving space and we are the zygote, the main space must come right after |
| // the image space to avoid a gap. This is required since we want the zygote space to be |
| // adjacent to the image space. |
| DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty()); |
| main_mem_map_1 = MemMap::MapAnonymous( |
| kMemMapSpaceName[0], |
| request_begin, |
| capacity_, |
| PROT_READ | PROT_WRITE, |
| /* low_4gb= */ true, |
| /* reuse= */ false, |
| heap_reservation.IsValid() ? &heap_reservation : nullptr, |
| &error_str); |
| } |
| CHECK(main_mem_map_1.IsValid()) << error_str; |
| DCHECK(!heap_reservation.IsValid()); |
| } |
| if (support_homogeneous_space_compaction || |
| background_collector_type_ == kCollectorTypeSS || |
| foreground_collector_type_ == kCollectorTypeSS) { |
| ScopedTrace trace2("Create main mem map 2"); |
| main_mem_map_2 = MapAnonymousPreferredAddress( |
| kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str); |
| CHECK(main_mem_map_2.IsValid()) << error_str; |
| } |
| |
| // Create the non moving space first so that bitmaps don't take up the address range. |
| if (separate_non_moving_space) { |
| ScopedTrace trace2("Add non moving space"); |
| // Non moving space is always dlmalloc since we currently don't have support for multiple |
| // active rosalloc spaces. |
| const size_t size = non_moving_space_mem_map.Size(); |
| const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin(); |
| non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map), |
| "zygote / non moving space", |
| kDefaultStartingSize, |
| initial_size, |
| size, |
| size, |
| /* can_move_objects= */ false); |
| CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space " |
| << non_moving_space_mem_map_begin; |
| non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity()); |
| AddSpace(non_moving_space_); |
| } |
| // Create other spaces based on whether or not we have a moving GC. |
| if (foreground_collector_type_ == kCollectorTypeCC) { |
| CHECK(separate_non_moving_space); |
| // Reserve twice the capacity, to allow evacuating every region for explicit GCs. |
| MemMap region_space_mem_map = |
| space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin); |
| CHECK(region_space_mem_map.IsValid()) << "No region space mem map"; |
| region_space_ = space::RegionSpace::Create( |
| kRegionSpaceName, std::move(region_space_mem_map), use_generational_cc_); |
| AddSpace(region_space_); |
| } else if (IsMovingGc(foreground_collector_type_)) { |
| // Create bump pointer spaces. |
| // We only to create the bump pointer if the foreground collector is a compacting GC. |
| // TODO: Place bump-pointer spaces somewhere to minimize size of card table. |
| bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1", |
| std::move(main_mem_map_1)); |
| CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space"; |
| AddSpace(bump_pointer_space_); |
| // For Concurrent Mark-compact GC we don't need the temp space to be in |
| // lower 4GB. So its temp space will be created by the GC itself. |
| if (foreground_collector_type_ != kCollectorTypeCMC) { |
| temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2", |
| std::move(main_mem_map_2)); |
| CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space"; |
| AddSpace(temp_space_); |
| } |
| CHECK(separate_non_moving_space); |
| } else { |
| CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_); |
| CHECK(main_space_ != nullptr); |
| AddSpace(main_space_); |
| if (!separate_non_moving_space) { |
| non_moving_space_ = main_space_; |
| CHECK(!non_moving_space_->CanMoveObjects()); |
| } |
| if (main_mem_map_2.IsValid()) { |
| const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1]; |
| main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2), |
| initial_size, |
| growth_limit_, |
| capacity_, |
| name, |
| /* can_move_objects= */ true)); |
| CHECK(main_space_backup_.get() != nullptr); |
| // Add the space so its accounted for in the heap_begin and heap_end. |
| AddSpace(main_space_backup_.get()); |
| } |
| } |
| CHECK(non_moving_space_ != nullptr); |
| CHECK(!non_moving_space_->CanMoveObjects()); |
| // Allocate the large object space. |
| if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) { |
| large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_); |
| CHECK(large_object_space_ != nullptr) << "Failed to create large object space"; |
| } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) { |
| large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space"); |
| CHECK(large_object_space_ != nullptr) << "Failed to create large object space"; |
| } else { |
| // Disable the large object space by making the cutoff excessively large. |
| large_object_threshold_ = std::numeric_limits<size_t>::max(); |
| large_object_space_ = nullptr; |
| } |
| if (large_object_space_ != nullptr) { |
| AddSpace(large_object_space_); |
| } |
| // Compute heap capacity. Continuous spaces are sorted in order of Begin(). |
| CHECK(!continuous_spaces_.empty()); |
| // Relies on the spaces being sorted. |
| uint8_t* heap_begin = continuous_spaces_.front()->Begin(); |
| uint8_t* heap_end = continuous_spaces_.back()->Limit(); |
| size_t heap_capacity = heap_end - heap_begin; |
| // Remove the main backup space since it slows down the GC to have unused extra spaces. |
| // TODO: Avoid needing to do this. |
| if (main_space_backup_.get() != nullptr) { |
| RemoveSpace(main_space_backup_.get()); |
| } |
| // Allocate the card table. |
| // We currently don't support dynamically resizing the card table. |
| // Since we don't know where in the low_4gb the app image will be located, make the card table |
| // cover the whole low_4gb. TODO: Extend the card table in AddSpace. |
| UNUSED(heap_capacity); |
| // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is |
| // reserved by the kernel. |
| static constexpr size_t kMinHeapAddress = 4 * KB; |
| card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress), |
| 4 * GB - kMinHeapAddress)); |
| CHECK(card_table_.get() != nullptr) << "Failed to create card table"; |
| if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) { |
| rb_table_.reset(new accounting::ReadBarrierTable()); |
| DCHECK(rb_table_->IsAllCleared()); |
| } |
| if (HasBootImageSpace()) { |
| // Don't add the image mod union table if we are running without an image, this can crash if |
| // we use the CardCache implementation. |
| for (space::ImageSpace* image_space : GetBootImageSpaces()) { |
| accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace( |
| "Image mod-union table", this, image_space); |
| CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table"; |
| AddModUnionTable(mod_union_table); |
| } |
| } |
| if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) { |
| accounting::RememberedSet* non_moving_space_rem_set = |
| new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_); |
| CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set"; |
| AddRememberedSet(non_moving_space_rem_set); |
| } |
| // TODO: Count objects in the image space here? |
| num_bytes_allocated_.store(0, std::memory_order_relaxed); |
| mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize, |
| kDefaultMarkStackSize)); |
| const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize; |
| allocation_stack_.reset(accounting::ObjectStack::Create( |
| "allocation stack", max_allocation_stack_size_, alloc_stack_capacity)); |
| live_stack_.reset(accounting::ObjectStack::Create( |
| "live stack", max_allocation_stack_size_, alloc_stack_capacity)); |
| // It's still too early to take a lock because there are no threads yet, but we can create locks |
| // now. We don't create it earlier to make it clear that you can't use locks during heap |
| // initialization. |
| gc_complete_lock_ = new Mutex("GC complete lock"); |
| gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable", |
| *gc_complete_lock_)); |
| |
| thread_flip_lock_ = new Mutex("GC thread flip lock"); |
| thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable", |
| *thread_flip_lock_)); |
| task_processor_.reset(new TaskProcessor()); |
| reference_processor_.reset(new ReferenceProcessor()); |
| pending_task_lock_ = new Mutex("Pending task lock"); |
| if (ignore_target_footprint_) { |
| SetIdealFootprint(std::numeric_limits<size_t>::max()); |
| concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); |
| } |
| CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U); |
| // Create our garbage collectors. |
| for (size_t i = 0; i < 2; ++i) { |
| const bool concurrent = i != 0; |
| if ((MayUseCollector(kCollectorTypeCMS) && concurrent) || |
| (MayUseCollector(kCollectorTypeMS) && !concurrent)) { |
| garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent)); |
| garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent)); |
| garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent)); |
| } |
| } |
| if (kMovingCollector) { |
| if (MayUseCollector(kCollectorTypeSS) || |
| MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) || |
| use_homogeneous_space_compaction_for_oom_) { |
| semi_space_collector_ = new collector::SemiSpace(this); |
| garbage_collectors_.push_back(semi_space_collector_); |
| } |
| if (MayUseCollector(kCollectorTypeCMC)) { |
| mark_compact_ = new collector::MarkCompact(this); |
| garbage_collectors_.push_back(mark_compact_); |
| } |
| if (MayUseCollector(kCollectorTypeCC)) { |
| concurrent_copying_collector_ = new collector::ConcurrentCopying(this, |
| /*young_gen=*/false, |
| use_generational_cc_, |
| "", |
| measure_gc_performance); |
| if (use_generational_cc_) { |
| young_concurrent_copying_collector_ = new collector::ConcurrentCopying( |
| this, |
| /*young_gen=*/true, |
| use_generational_cc_, |
| "young", |
| measure_gc_performance); |
| } |
| active_concurrent_copying_collector_.store(concurrent_copying_collector_, |
| std::memory_order_relaxed); |
| DCHECK(region_space_ != nullptr); |
| concurrent_copying_collector_->SetRegionSpace(region_space_); |
| if (use_generational_cc_) { |
| young_concurrent_copying_collector_->SetRegionSpace(region_space_); |
| // At this point, non-moving space should be created. |
| DCHECK(non_moving_space_ != nullptr); |
| concurrent_copying_collector_->CreateInterRegionRefBitmaps(); |
| } |
| garbage_collectors_.push_back(concurrent_copying_collector_); |
| if (use_generational_cc_) { |
| garbage_collectors_.push_back(young_concurrent_copying_collector_); |
| } |
| } |
| } |
| if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr && |
| (is_zygote || separate_non_moving_space)) { |
| // Check that there's no gap between the image space and the non moving space so that the |
| // immune region won't break (eg. due to a large object allocated in the gap). This is only |
| // required when we're the zygote. |
| // Space with smallest Begin(). |
| space::ImageSpace* first_space = nullptr; |
| for (space::ImageSpace* space : boot_image_spaces_) { |
| if (first_space == nullptr || space->Begin() < first_space->Begin()) { |
| first_space = space; |
| } |
| } |
| bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap()); |
| if (!no_gap) { |
| PrintFileToLog("/proc/self/maps", LogSeverity::ERROR); |
| MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true); |
| LOG(FATAL) << "There's a gap between the image space and the non-moving space"; |
| } |
| } |
| // Perfetto Java Heap Profiler Support. |
| if (runtime->IsPerfettoJavaHeapStackProfEnabled()) { |
| // Perfetto Plugin is loaded and enabled, initialize the Java Heap Profiler. |
| InitPerfettoJavaHeapProf(); |
| } else { |
| // Disable the Java Heap Profiler. |
| GetHeapSampler().DisableHeapSampler(); |
| } |
| |
| instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation(); |
| if (gc_stress_mode_) { |
| backtrace_lock_ = new Mutex("GC complete lock"); |
| } |
| if (is_running_on_memory_tool_ || gc_stress_mode_) { |
| instrumentation->InstrumentQuickAllocEntryPoints(); |
| } |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Heap() exiting"; |
| } |
| } |
| |
| MemMap Heap::MapAnonymousPreferredAddress(const char* name, |
| uint8_t* request_begin, |
| size_t capacity, |
| std::string* out_error_str) { |
| while (true) { |
| MemMap map = MemMap::MapAnonymous(name, |
| request_begin, |
| capacity, |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/ true, |
| /*reuse=*/ false, |
| /*reservation=*/ nullptr, |
| out_error_str); |
| if (map.IsValid() || request_begin == nullptr) { |
| return map; |
| } |
| // Retry a second time with no specified request begin. |
| request_begin = nullptr; |
| } |
| } |
| |
| bool Heap::MayUseCollector(CollectorType type) const { |
| return foreground_collector_type_ == type || background_collector_type_ == type; |
| } |
| |
| space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map, |
| size_t initial_size, |
| size_t growth_limit, |
| size_t capacity, |
| const char* name, |
| bool can_move_objects) { |
| space::MallocSpace* malloc_space = nullptr; |
| if (kUseRosAlloc) { |
| // Create rosalloc space. |
| malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map), |
| name, |
| kDefaultStartingSize, |
| initial_size, |
| growth_limit, |
| capacity, |
| low_memory_mode_, |
| can_move_objects); |
| } else { |
| malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map), |
| name, |
| kDefaultStartingSize, |
| initial_size, |
| growth_limit, |
| capacity, |
| can_move_objects); |
| } |
| if (collector::SemiSpace::kUseRememberedSet) { |
| accounting::RememberedSet* rem_set = |
| new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space); |
| CHECK(rem_set != nullptr) << "Failed to create main space remembered set"; |
| AddRememberedSet(rem_set); |
| } |
| CHECK(malloc_space != nullptr) << "Failed to create " << name; |
| malloc_space->SetFootprintLimit(malloc_space->Capacity()); |
| return malloc_space; |
| } |
| |
| void Heap::CreateMainMallocSpace(MemMap&& mem_map, |
| size_t initial_size, |
| size_t growth_limit, |
| size_t capacity) { |
| // Is background compaction is enabled? |
| bool can_move_objects = IsMovingGc(background_collector_type_) != |
| IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_; |
| // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will |
| // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact |
| // from the main space to the zygote space. If background compaction is enabled, always pass in |
| // that we can move objets. |
| if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) { |
| // After the zygote we want this to be false if we don't have background compaction enabled so |
| // that getting primitive array elements is faster. |
| can_move_objects = !HasZygoteSpace(); |
| } |
| if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) { |
| RemoveRememberedSet(main_space_); |
| } |
| const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0]; |
| main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map), |
| initial_size, |
| growth_limit, |
| capacity, name, |
| can_move_objects); |
| SetSpaceAsDefault(main_space_); |
| VLOG(heap) << "Created main space " << main_space_; |
| } |
| |
| void Heap::ChangeAllocator(AllocatorType allocator) { |
| if (current_allocator_ != allocator) { |
| // These two allocators are only used internally and don't have any entrypoints. |
| CHECK_NE(allocator, kAllocatorTypeLOS); |
| CHECK_NE(allocator, kAllocatorTypeNonMoving); |
| current_allocator_ = allocator; |
| MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); |
| SetQuickAllocEntryPointsAllocator(current_allocator_); |
| Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints(); |
| } |
| } |
| |
| bool Heap::IsCompilingBoot() const { |
| if (!Runtime::Current()->IsAotCompiler()) { |
| return false; |
| } |
| ScopedObjectAccess soa(Thread::Current()); |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsImageSpace() || space->IsZygoteSpace()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void Heap::IncrementDisableMovingGC(Thread* self) { |
| // Need to do this holding the lock to prevent races where the GC is about to run / running when |
| // we attempt to disable it. |
| ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete); |
| MutexLock mu(self, *gc_complete_lock_); |
| ++disable_moving_gc_count_; |
| if (IsMovingGc(collector_type_running_)) { |
| WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self); |
| } |
| } |
| |
| void Heap::DecrementDisableMovingGC(Thread* self) { |
| MutexLock mu(self, *gc_complete_lock_); |
| CHECK_GT(disable_moving_gc_count_, 0U); |
| --disable_moving_gc_count_; |
| } |
| |
| void Heap::IncrementDisableThreadFlip(Thread* self) { |
| // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead. |
| bool is_nested = self->GetDisableThreadFlipCount() > 0; |
| self->IncrementDisableThreadFlipCount(); |
| if (is_nested) { |
| // If this is a nested JNI critical section enter, we don't need to wait or increment the global |
| // counter. The global counter is incremented only once for a thread for the outermost enter. |
| return; |
| } |
| ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcThreadFlip); |
| MutexLock mu(self, *thread_flip_lock_); |
| thread_flip_cond_->CheckSafeToWait(self); |
| bool has_waited = false; |
| uint64_t wait_start = 0; |
| if (thread_flip_running_) { |
| wait_start = NanoTime(); |
| ScopedTrace trace("IncrementDisableThreadFlip"); |
| while (thread_flip_running_) { |
| has_waited = true; |
| thread_flip_cond_->Wait(self); |
| } |
| } |
| ++disable_thread_flip_count_; |
| if (has_waited) { |
| uint64_t wait_time = NanoTime() - wait_start; |
| total_wait_time_ += wait_time; |
| if (wait_time > long_pause_log_threshold_) { |
| LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time); |
| } |
| } |
| } |
| |
| void Heap::EnsureObjectUserfaulted(ObjPtr<mirror::Object> obj) { |
| if (gUseUserfaultfd) { |
| // Use volatile to ensure that compiler loads from memory to trigger userfaults, if required. |
| const uint8_t* start = reinterpret_cast<uint8_t*>(obj.Ptr()); |
| const uint8_t* end = AlignUp(start + obj->SizeOf(), kPageSize); |
| // The first page is already touched by SizeOf(). |
| start += kPageSize; |
| while (start < end) { |
| ForceRead(start); |
| start += kPageSize; |
| } |
| } |
| } |
| |
| void Heap::DecrementDisableThreadFlip(Thread* self) { |
| // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up |
| // the GC waiting before doing a thread flip. |
| self->DecrementDisableThreadFlipCount(); |
| bool is_outermost = self->GetDisableThreadFlipCount() == 0; |
| if (!is_outermost) { |
| // If this is not an outermost JNI critical exit, we don't need to decrement the global counter. |
| // The global counter is decremented only once for a thread for the outermost exit. |
| return; |
| } |
| MutexLock mu(self, *thread_flip_lock_); |
| CHECK_GT(disable_thread_flip_count_, 0U); |
| --disable_thread_flip_count_; |
| if (disable_thread_flip_count_ == 0) { |
| // Potentially notify the GC thread blocking to begin a thread flip. |
| thread_flip_cond_->Broadcast(self); |
| } |
| } |
| |
| void Heap::ThreadFlipBegin(Thread* self) { |
| // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_ |
| // > 0, block. Otherwise, go ahead. |
| ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcThreadFlip); |
| MutexLock mu(self, *thread_flip_lock_); |
| thread_flip_cond_->CheckSafeToWait(self); |
| bool has_waited = false; |
| uint64_t wait_start = NanoTime(); |
| CHECK(!thread_flip_running_); |
| // Set this to true before waiting so that frequent JNI critical enter/exits won't starve |
| // GC. This like a writer preference of a reader-writer lock. |
| thread_flip_running_ = true; |
| while (disable_thread_flip_count_ > 0) { |
| has_waited = true; |
| thread_flip_cond_->Wait(self); |
| } |
| if (has_waited) { |
| uint64_t wait_time = NanoTime() - wait_start; |
| total_wait_time_ += wait_time; |
| if (wait_time > long_pause_log_threshold_) { |
| LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time); |
| } |
| } |
| } |
| |
| void Heap::ThreadFlipEnd(Thread* self) { |
| // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators |
| // waiting before doing a JNI critical. |
| MutexLock mu(self, *thread_flip_lock_); |
| CHECK(thread_flip_running_); |
| thread_flip_running_ = false; |
| // Potentially notify mutator threads blocking to enter a JNI critical section. |
| thread_flip_cond_->Broadcast(self); |
| } |
| |
| void Heap::GrowHeapOnJankPerceptibleSwitch() { |
| MutexLock mu(Thread::Current(), process_state_update_lock_); |
| size_t orig_target_footprint = target_footprint_.load(std::memory_order_relaxed); |
| if (orig_target_footprint < min_foreground_target_footprint_) { |
| target_footprint_.compare_exchange_strong(orig_target_footprint, |
| min_foreground_target_footprint_, |
| std::memory_order_relaxed); |
| } |
| if (IsGcConcurrent() && concurrent_start_bytes_ < min_foreground_concurrent_start_bytes_) { |
| concurrent_start_bytes_ = min_foreground_concurrent_start_bytes_; |
| } |
| } |
| |
| void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) { |
| if (old_process_state != new_process_state) { |
| const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible; |
| if (jank_perceptible) { |
| // Transition back to foreground right away to prevent jank. |
| RequestCollectorTransition(foreground_collector_type_, 0); |
| GrowHeapOnJankPerceptibleSwitch(); |
| } else { |
| // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have |
| // special handling which does a homogenous space compaction once but then doesn't transition |
| // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't |
| // transition the collector. |
| RequestCollectorTransition(background_collector_type_, 0); |
| } |
| } |
| } |
| |
| void Heap::CreateThreadPool(size_t num_threads) { |
| if (num_threads == 0) { |
| num_threads = std::max(parallel_gc_threads_, conc_gc_threads_); |
| } |
| if (num_threads != 0) { |
| thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads)); |
| } |
| } |
| |
| void Heap::WaitForWorkersToBeCreated() { |
| DCHECK(!Runtime::Current()->IsShuttingDown(Thread::Current())) |
| << "Cannot create new threads during runtime shutdown"; |
| if (thread_pool_ != nullptr) { |
| thread_pool_->WaitForWorkersToBeCreated(); |
| } |
| } |
| |
| void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) { |
| space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_; |
| space::ContinuousSpace* space2 = non_moving_space_; |
| // TODO: Generalize this to n bitmaps? |
| CHECK(space1 != nullptr); |
| CHECK(space2 != nullptr); |
| MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(), |
| (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr), |
| stack); |
| } |
| |
| void Heap::DeleteThreadPool() { |
| thread_pool_.reset(nullptr); |
| } |
| |
| void Heap::AddSpace(space::Space* space) { |
| CHECK(space != nullptr); |
| WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| if (space->IsContinuousSpace()) { |
| DCHECK(!space->IsDiscontinuousSpace()); |
| space::ContinuousSpace* continuous_space = space->AsContinuousSpace(); |
| // Continuous spaces don't necessarily have bitmaps. |
| accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap(); |
| accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap(); |
| // The region space bitmap is not added since VisitObjects visits the region space objects with |
| // special handling. |
| if (live_bitmap != nullptr && !space->IsRegionSpace()) { |
| CHECK(mark_bitmap != nullptr); |
| live_bitmap_->AddContinuousSpaceBitmap(live_bitmap); |
| mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap); |
| } |
| continuous_spaces_.push_back(continuous_space); |
| // Ensure that spaces remain sorted in increasing order of start address. |
| std::sort(continuous_spaces_.begin(), continuous_spaces_.end(), |
| [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) { |
| return a->Begin() < b->Begin(); |
| }); |
| } else { |
| CHECK(space->IsDiscontinuousSpace()); |
| space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace(); |
| live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap()); |
| mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap()); |
| discontinuous_spaces_.push_back(discontinuous_space); |
| } |
| if (space->IsAllocSpace()) { |
| alloc_spaces_.push_back(space->AsAllocSpace()); |
| } |
| } |
| |
| void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) { |
| WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| if (continuous_space->IsDlMallocSpace()) { |
| dlmalloc_space_ = continuous_space->AsDlMallocSpace(); |
| } else if (continuous_space->IsRosAllocSpace()) { |
| rosalloc_space_ = continuous_space->AsRosAllocSpace(); |
| } |
| } |
| |
| void Heap::RemoveSpace(space::Space* space) { |
| DCHECK(space != nullptr); |
| WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| if (space->IsContinuousSpace()) { |
| DCHECK(!space->IsDiscontinuousSpace()); |
| space::ContinuousSpace* continuous_space = space->AsContinuousSpace(); |
| // Continuous spaces don't necessarily have bitmaps. |
| accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap(); |
| accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap(); |
| if (live_bitmap != nullptr && !space->IsRegionSpace()) { |
| DCHECK(mark_bitmap != nullptr); |
| live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap); |
| mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap); |
| } |
| auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space); |
| DCHECK(it != continuous_spaces_.end()); |
| continuous_spaces_.erase(it); |
| } else { |
| DCHECK(space->IsDiscontinuousSpace()); |
| space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace(); |
| live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap()); |
| mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap()); |
| auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(), |
| discontinuous_space); |
| DCHECK(it != discontinuous_spaces_.end()); |
| discontinuous_spaces_.erase(it); |
| } |
| if (space->IsAllocSpace()) { |
| auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace()); |
| DCHECK(it != alloc_spaces_.end()); |
| alloc_spaces_.erase(it); |
| } |
| } |
| |
| double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns, |
| uint64_t current_process_cpu_time) const { |
| uint64_t bytes_allocated = GetBytesAllocated(); |
| double weight = current_process_cpu_time - gc_last_process_cpu_time_ns; |
| return weight * bytes_allocated; |
| } |
| |
| void Heap::CalculatePreGcWeightedAllocatedBytes() { |
| uint64_t current_process_cpu_time = ProcessCpuNanoTime(); |
| pre_gc_weighted_allocated_bytes_ += |
| CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time); |
| pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time; |
| } |
| |
| void Heap::CalculatePostGcWeightedAllocatedBytes() { |
| uint64_t current_process_cpu_time = ProcessCpuNanoTime(); |
| post_gc_weighted_allocated_bytes_ += |
| CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time); |
| post_gc_last_process_cpu_time_ns_ = current_process_cpu_time; |
| } |
| |
| uint64_t Heap::GetTotalGcCpuTime() { |
| uint64_t sum = 0; |
| for (auto* collector : garbage_collectors_) { |
| sum += collector->GetTotalCpuTime(); |
| } |
| return sum; |
| } |
| |
| void Heap::DumpGcPerformanceInfo(std::ostream& os) { |
| // Dump cumulative timings. |
| os << "Dumping cumulative Gc timings\n"; |
| uint64_t total_duration = 0; |
| // Dump cumulative loggers for each GC type. |
| uint64_t total_paused_time = 0; |
| for (auto* collector : garbage_collectors_) { |
| total_duration += collector->GetCumulativeTimings().GetTotalNs(); |
| total_paused_time += collector->GetTotalPausedTimeNs(); |
| collector->DumpPerformanceInfo(os); |
| } |
| if (total_duration != 0) { |
| const double total_seconds = total_duration / 1.0e9; |
| const double total_cpu_seconds = GetTotalGcCpuTime() / 1.0e9; |
| os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n"; |
| os << "Mean GC size throughput: " |
| << PrettySize(GetBytesFreedEver() / total_seconds) << "/s" |
| << " per cpu-time: " |
| << PrettySize(GetBytesFreedEver() / total_cpu_seconds) << "/s\n"; |
| os << "Mean GC object throughput: " |
| << (GetObjectsFreedEver() / total_seconds) << " objects/s\n"; |
| } |
| uint64_t total_objects_allocated = GetObjectsAllocatedEver(); |
| os << "Total number of allocations " << total_objects_allocated << "\n"; |
| os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n"; |
| os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n"; |
| os << "Free memory " << PrettySize(GetFreeMemory()) << "\n"; |
| os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n"; |
| os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n"; |
| os << "Total memory " << PrettySize(GetTotalMemory()) << "\n"; |
| os << "Max memory " << PrettySize(GetMaxMemory()) << "\n"; |
| if (HasZygoteSpace()) { |
| os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n"; |
| } |
| os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n"; |
| os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n"; |
| os << "Total GC count: " << GetGcCount() << "\n"; |
| os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n"; |
| os << "Total blocking GC count: " << GetBlockingGcCount() << "\n"; |
| os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n"; |
| os << "Total pre-OOME GC count: " << GetPreOomeGcCount() << "\n"; |
| { |
| MutexLock mu(Thread::Current(), *gc_complete_lock_); |
| if (gc_count_rate_histogram_.SampleSize() > 0U) { |
| os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: "; |
| gc_count_rate_histogram_.DumpBins(os); |
| os << "\n"; |
| } |
| if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) { |
| os << "Histogram of blocking GC count per " |
| << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: "; |
| blocking_gc_count_rate_histogram_.DumpBins(os); |
| os << "\n"; |
| } |
| } |
| |
| if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) { |
| rosalloc_space_->DumpStats(os); |
| } |
| |
| os << "Native bytes total: " << GetNativeBytes() |
| << " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n"; |
| |
| os << "Total native bytes at last GC: " |
| << old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n"; |
| |
| BaseMutex::DumpAll(os); |
| } |
| |
| void Heap::ResetGcPerformanceInfo() { |
| for (auto* collector : garbage_collectors_) { |
| collector->ResetMeasurements(); |
| } |
| |
| process_cpu_start_time_ns_ = ProcessCpuNanoTime(); |
| |
| pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_; |
| pre_gc_weighted_allocated_bytes_ = 0u; |
| |
| post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_; |
| post_gc_weighted_allocated_bytes_ = 0u; |
| |
| total_bytes_freed_ever_.store(0); |
| total_objects_freed_ever_.store(0); |
| total_wait_time_ = 0; |
| blocking_gc_count_ = 0; |
| blocking_gc_time_ = 0; |
| pre_oome_gc_count_.store(0, std::memory_order_relaxed); |
| gc_count_last_window_ = 0; |
| blocking_gc_count_last_window_ = 0; |
| last_update_time_gc_count_rate_histograms_ = // Round down by the window duration. |
| (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration; |
| { |
| MutexLock mu(Thread::Current(), *gc_complete_lock_); |
| gc_count_rate_histogram_.Reset(); |
| blocking_gc_count_rate_histogram_.Reset(); |
| } |
| } |
| |
| uint64_t Heap::GetGcCount() const { |
| uint64_t gc_count = 0U; |
| for (auto* collector : garbage_collectors_) { |
| gc_count += collector->GetCumulativeTimings().GetIterations(); |
| } |
| return gc_count; |
| } |
| |
| uint64_t Heap::GetGcTime() const { |
| uint64_t gc_time = 0U; |
| for (auto* collector : garbage_collectors_) { |
| gc_time += collector->GetCumulativeTimings().GetTotalNs(); |
| } |
| return gc_time; |
| } |
| |
| uint64_t Heap::GetBlockingGcCount() const { |
| return blocking_gc_count_; |
| } |
| |
| uint64_t Heap::GetBlockingGcTime() const { |
| return blocking_gc_time_; |
| } |
| |
| void Heap::DumpGcCountRateHistogram(std::ostream& os) const { |
| MutexLock mu(Thread::Current(), *gc_complete_lock_); |
| if (gc_count_rate_histogram_.SampleSize() > 0U) { |
| gc_count_rate_histogram_.DumpBins(os); |
| } |
| } |
| |
| void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const { |
| MutexLock mu(Thread::Current(), *gc_complete_lock_); |
| if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) { |
| blocking_gc_count_rate_histogram_.DumpBins(os); |
| } |
| } |
| |
| uint64_t Heap::GetPreOomeGcCount() const { |
| return pre_oome_gc_count_.load(std::memory_order_relaxed); |
| } |
| |
| ALWAYS_INLINE |
| static inline AllocationListener* GetAndOverwriteAllocationListener( |
| Atomic<AllocationListener*>* storage, AllocationListener* new_value) { |
| return storage->exchange(new_value); |
| } |
| |
| Heap::~Heap() { |
| VLOG(heap) << "Starting ~Heap()"; |
| STLDeleteElements(&garbage_collectors_); |
| // If we don't reset then the mark stack complains in its destructor. |
| allocation_stack_->Reset(); |
| allocation_records_.reset(); |
| live_stack_->Reset(); |
| STLDeleteValues(&mod_union_tables_); |
| STLDeleteValues(&remembered_sets_); |
| STLDeleteElements(&continuous_spaces_); |
| STLDeleteElements(&discontinuous_spaces_); |
| delete gc_complete_lock_; |
| delete thread_flip_lock_; |
| delete pending_task_lock_; |
| delete backtrace_lock_; |
| uint64_t unique_count = unique_backtrace_count_.load(); |
| uint64_t seen_count = seen_backtrace_count_.load(); |
| if (unique_count != 0 || seen_count != 0) { |
| LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count); |
| } |
| VLOG(heap) << "Finished ~Heap()"; |
| } |
| |
| |
| space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const { |
| for (const auto& space : continuous_spaces_) { |
| if (space->Contains(addr)) { |
| return space; |
| } |
| } |
| return nullptr; |
| } |
| |
| space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj, |
| bool fail_ok) const { |
| space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr()); |
| if (space != nullptr) { |
| return space; |
| } |
| if (!fail_ok) { |
| LOG(FATAL) << "object " << obj << " not inside any spaces!"; |
| } |
| return nullptr; |
| } |
| |
| space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj, |
| bool fail_ok) const { |
| for (const auto& space : discontinuous_spaces_) { |
| if (space->Contains(obj.Ptr())) { |
| return space; |
| } |
| } |
| if (!fail_ok) { |
| LOG(FATAL) << "object " << obj << " not inside any spaces!"; |
| } |
| return nullptr; |
| } |
| |
| space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const { |
| space::Space* result = FindContinuousSpaceFromObject(obj, true); |
| if (result != nullptr) { |
| return result; |
| } |
| return FindDiscontinuousSpaceFromObject(obj, fail_ok); |
| } |
| |
| space::Space* Heap::FindSpaceFromAddress(const void* addr) const { |
| for (const auto& space : continuous_spaces_) { |
| if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) { |
| return space; |
| } |
| } |
| for (const auto& space : discontinuous_spaces_) { |
| if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) { |
| return space; |
| } |
| } |
| return nullptr; |
| } |
| |
| std::string Heap::DumpSpaceNameFromAddress(const void* addr) const { |
| space::Space* space = FindSpaceFromAddress(addr); |
| return (space != nullptr) ? space->GetName() : "no space"; |
| } |
| |
| void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) { |
| // If we're in a stack overflow, do not create a new exception. It would require running the |
| // constructor, which will of course still be in a stack overflow. |
| if (self->IsHandlingStackOverflow()) { |
| self->SetException( |
| Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()); |
| return; |
| } |
| // Allow plugins to intercept out of memory errors. |
| Runtime::Current()->OutOfMemoryErrorHook(); |
| |
| std::ostringstream oss; |
| size_t total_bytes_free = GetFreeMemory(); |
| oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free |
| << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM," |
| << " target footprint " << target_footprint_.load(std::memory_order_relaxed) |
| << ", growth limit " |
| << growth_limit_; |
| // If the allocation failed due to fragmentation, print out the largest continuous allocation. |
| if (total_bytes_free >= byte_count) { |
| space::AllocSpace* space = nullptr; |
| if (allocator_type == kAllocatorTypeNonMoving) { |
| space = non_moving_space_; |
| } else if (allocator_type == kAllocatorTypeRosAlloc || |
| allocator_type == kAllocatorTypeDlMalloc) { |
| space = main_space_; |
| } else if (allocator_type == kAllocatorTypeBumpPointer || |
| allocator_type == kAllocatorTypeTLAB) { |
| space = bump_pointer_space_; |
| } else if (allocator_type == kAllocatorTypeRegion || |
| allocator_type == kAllocatorTypeRegionTLAB) { |
| space = region_space_; |
| } |
| |
| // There is no fragmentation info to log for large-object space. |
| if (allocator_type != kAllocatorTypeLOS) { |
| CHECK(space != nullptr) << "allocator_type:" << allocator_type |
| << " byte_count:" << byte_count |
| << " total_bytes_free:" << total_bytes_free; |
| // LogFragmentationAllocFailure returns true if byte_count is greater than |
| // the largest free contiguous chunk in the space. Return value false |
| // means that we are throwing OOME because the amount of free heap after |
| // GC is less than kMinFreeHeapAfterGcForAlloc in proportion of the heap-size. |
| // Log an appropriate message in that case. |
| if (!space->LogFragmentationAllocFailure(oss, byte_count)) { |
| oss << "; giving up on allocation because <" |
| << kMinFreeHeapAfterGcForAlloc * 100 |
| << "% of heap free after GC."; |
| } |
| } |
| } |
| self->ThrowOutOfMemoryError(oss.str().c_str()); |
| } |
| |
| void Heap::DoPendingCollectorTransition() { |
| CollectorType desired_collector_type = desired_collector_type_; |
| |
| if (collector_type_ == kCollectorTypeCC || collector_type_ == kCollectorTypeCMC) { |
| // App's allocations (since last GC) more than the threshold then do TransitionGC |
| // when the app was in background. If not then don't do TransitionGC. |
| // num_bytes_allocated_since_gc should always be positive even if initially |
| // num_bytes_alive_after_gc_ is coming from Zygote. This gives positive or zero value. |
| size_t num_bytes_allocated_since_gc = |
| UnsignedDifference(GetBytesAllocated(), num_bytes_alive_after_gc_); |
| if (num_bytes_allocated_since_gc < |
| (UnsignedDifference(target_footprint_.load(std::memory_order_relaxed), |
| num_bytes_alive_after_gc_)/4) |
| && !kStressCollectorTransition |
| && !IsLowMemoryMode()) { |
| return; |
| } |
| } |
| |
| // Launch homogeneous space compaction if it is desired. |
| if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) { |
| if (!CareAboutPauseTimes()) { |
| PerformHomogeneousSpaceCompact(); |
| } else { |
| VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state"; |
| } |
| } else if (desired_collector_type == kCollectorTypeCCBackground || |
| desired_collector_type == kCollectorTypeCMC) { |
| if (!CareAboutPauseTimes()) { |
| // Invoke full compaction. |
| CollectGarbageInternal(collector::kGcTypeFull, |
| kGcCauseCollectorTransition, |
| /*clear_soft_references=*/false, GetCurrentGcNum() + 1); |
| } else { |
| VLOG(gc) << "background compaction ignored due to jank perceptible process state"; |
| } |
| } else { |
| CHECK_EQ(desired_collector_type, collector_type_) << "Unsupported collector transition"; |
| } |
| } |
| |
| void Heap::Trim(Thread* self) { |
| Runtime* const runtime = Runtime::Current(); |
| if (!CareAboutPauseTimes()) { |
| // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care |
| // about pauses. |
| ScopedTrace trace("Deflating monitors"); |
| // Avoid race conditions on the lock word for CC. |
| ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim); |
| ScopedSuspendAll ssa(__FUNCTION__); |
| uint64_t start_time = NanoTime(); |
| size_t count = runtime->GetMonitorList()->DeflateMonitors(); |
| VLOG(heap) << "Deflating " << count << " monitors took " |
| << PrettyDuration(NanoTime() - start_time); |
| } |
| TrimIndirectReferenceTables(self); |
| TrimSpaces(self); |
| // Trim arenas that may have been used by JIT or verifier. |
| runtime->GetArenaPool()->TrimMaps(); |
| } |
| |
| class TrimIndirectReferenceTableClosure : public Closure { |
| public: |
| explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) { |
| } |
| void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS { |
| thread->GetJniEnv()->TrimLocals(); |
| // If thread is a running mutator, then act on behalf of the trim thread. |
| // See the code in ThreadList::RunCheckpoint. |
| barrier_->Pass(Thread::Current()); |
| } |
| |
| private: |
| Barrier* const barrier_; |
| }; |
| |
| void Heap::TrimIndirectReferenceTables(Thread* self) { |
| ScopedObjectAccess soa(self); |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| JavaVMExt* vm = soa.Vm(); |
| // Trim globals indirect reference table. |
| vm->TrimGlobals(); |
| // Trim locals indirect reference tables. |
| // TODO: May also want to look for entirely empty pages maintained by SmallIrtAllocator. |
| Barrier barrier(0); |
| TrimIndirectReferenceTableClosure closure(&barrier); |
| ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun); |
| size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure); |
| if (barrier_count != 0) { |
| barrier.Increment(self, barrier_count); |
| } |
| } |
| |
| void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) { |
| // Need to do this before acquiring the locks since we don't want to get suspended while |
| // holding any locks. |
| ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete); |
| MutexLock mu(self, *gc_complete_lock_); |
| // Ensure there is only one GC at a time. |
| WaitForGcToCompleteLocked(cause, self); |
| collector_type_running_ = collector_type; |
| last_gc_cause_ = cause; |
| thread_running_gc_ = self; |
| } |
| |
| void Heap::TrimSpaces(Thread* self) { |
| // Pretend we are doing a GC to prevent background compaction from deleting the space we are |
| // trimming. |
| StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim); |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| const uint64_t start_ns = NanoTime(); |
| // Trim the managed spaces. |
| uint64_t total_alloc_space_allocated = 0; |
| uint64_t total_alloc_space_size = 0; |
| uint64_t managed_reclaimed = 0; |
| { |
| ScopedObjectAccess soa(self); |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsMallocSpace()) { |
| gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); |
| if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) { |
| // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock |
| // for a long period of time. |
| managed_reclaimed += malloc_space->Trim(); |
| } |
| total_alloc_space_size += malloc_space->Size(); |
| } |
| } |
| } |
| total_alloc_space_allocated = GetBytesAllocated(); |
| if (large_object_space_ != nullptr) { |
| total_alloc_space_allocated -= large_object_space_->GetBytesAllocated(); |
| } |
| if (bump_pointer_space_ != nullptr) { |
| total_alloc_space_allocated -= bump_pointer_space_->Size(); |
| } |
| if (region_space_ != nullptr) { |
| total_alloc_space_allocated -= region_space_->GetBytesAllocated(); |
| } |
| const float managed_utilization = static_cast<float>(total_alloc_space_allocated) / |
| static_cast<float>(total_alloc_space_size); |
| uint64_t gc_heap_end_ns = NanoTime(); |
| // We never move things in the native heap, so we can finish the GC at this point. |
| FinishGC(self, collector::kGcTypeNone); |
| |
| VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns) |
| << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of " |
| << static_cast<int>(100 * managed_utilization) << "%."; |
| } |
| |
| bool Heap::IsValidObjectAddress(const void* addr) const { |
| if (addr == nullptr) { |
| return true; |
| } |
| return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr; |
| } |
| |
| bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const { |
| return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr; |
| } |
| |
| bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj, |
| bool search_allocation_stack, |
| bool search_live_stack, |
| bool sorted) { |
| if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) { |
| return false; |
| } |
| if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) { |
| mirror::Class* klass = obj->GetClass<kVerifyNone>(); |
| if (obj == klass) { |
| // This case happens for java.lang.Class. |
| return true; |
| } |
| return VerifyClassClass(klass) && IsLiveObjectLocked(klass); |
| } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) { |
| // If we are in the allocated region of the temp space, then we are probably live (e.g. during |
| // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained. |
| return temp_space_->Contains(obj.Ptr()); |
| } |
| if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) { |
| return true; |
| } |
| space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true); |
| space::DiscontinuousSpace* d_space = nullptr; |
| if (c_space != nullptr) { |
| if (c_space->GetLiveBitmap()->Test(obj.Ptr())) { |
| return true; |
| } |
| } else { |
| d_space = FindDiscontinuousSpaceFromObject(obj, true); |
| if (d_space != nullptr) { |
| if (d_space->GetLiveBitmap()->Test(obj.Ptr())) { |
| return true; |
| } |
| } |
| } |
| // This is covering the allocation/live stack swapping that is done without mutators suspended. |
| for (size_t i = 0; i < (sorted ? 1 : 5); ++i) { |
| if (i > 0) { |
| NanoSleep(MsToNs(10)); |
| } |
| if (search_allocation_stack) { |
| if (sorted) { |
| if (allocation_stack_->ContainsSorted(obj.Ptr())) { |
| return true; |
| } |
| } else if (allocation_stack_->Contains(obj.Ptr())) { |
| return true; |
| } |
| } |
| |
| if (search_live_stack) { |
| if (sorted) { |
| if (live_stack_->ContainsSorted(obj.Ptr())) { |
| return true; |
| } |
| } else if (live_stack_->Contains(obj.Ptr())) { |
| return true; |
| } |
| } |
| } |
| // We need to check the bitmaps again since there is a race where we mark something as live and |
| // then clear the stack containing it. |
| if (c_space != nullptr) { |
| if (c_space->GetLiveBitmap()->Test(obj.Ptr())) { |
| return true; |
| } |
| } else { |
| d_space = FindDiscontinuousSpaceFromObject(obj, true); |
| if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| std::string Heap::DumpSpaces() const { |
| std::ostringstream oss; |
| DumpSpaces(oss); |
| return oss.str(); |
| } |
| |
| void Heap::DumpSpaces(std::ostream& stream) const { |
| for (const auto& space : continuous_spaces_) { |
| accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); |
| accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); |
| stream << space << " " << *space << "\n"; |
| if (live_bitmap != nullptr) { |
| stream << live_bitmap << " " << *live_bitmap << "\n"; |
| } |
| if (mark_bitmap != nullptr) { |
| stream << mark_bitmap << " " << *mark_bitmap << "\n"; |
| } |
| } |
| for (const auto& space : discontinuous_spaces_) { |
| stream << space << " " << *space << "\n"; |
| } |
| } |
| |
| void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) { |
| if (verify_object_mode_ == kVerifyObjectModeDisabled) { |
| return; |
| } |
| |
| // Ignore early dawn of the universe verifications. |
| if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) { |
| return; |
| } |
| CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned"; |
| mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset()); |
| CHECK(c != nullptr) << "Null class in object " << obj; |
| CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj; |
| CHECK(VerifyClassClass(c)); |
| |
| if (verify_object_mode_ > kVerifyObjectModeFast) { |
| // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock. |
| CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces(); |
| } |
| } |
| |
| void Heap::VerifyHeap() { |
| ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| auto visitor = [&](mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS { |
| VerifyObjectBody(obj); |
| }; |
| // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already |
| // NO_THREAD_SAFETY_ANALYSIS. |
| auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS { |
| GetLiveBitmap()->Visit(visitor); |
| }; |
| no_thread_safety_analysis(); |
| } |
| |
| void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) { |
| // Use signed comparison since freed bytes can be negative when background compaction foreground |
| // transitions occurs. This is typically due to objects moving from a bump pointer space to a |
| // free list backed space, which may increase memory footprint due to padding and binning. |
| RACING_DCHECK_LE(freed_bytes, |
| static_cast<int64_t>(num_bytes_allocated_.load(std::memory_order_relaxed))); |
| // Note: This relies on 2s complement for handling negative freed_bytes. |
| num_bytes_allocated_.fetch_sub(static_cast<ssize_t>(freed_bytes), std::memory_order_relaxed); |
| if (Runtime::Current()->HasStatsEnabled()) { |
| RuntimeStats* thread_stats = Thread::Current()->GetStats(); |
| thread_stats->freed_objects += freed_objects; |
| thread_stats->freed_bytes += freed_bytes; |
| // TODO: Do this concurrently. |
| RuntimeStats* global_stats = Runtime::Current()->GetStats(); |
| global_stats->freed_objects += freed_objects; |
| global_stats->freed_bytes += freed_bytes; |
| } |
| } |
| |
| void Heap::RecordFreeRevoke() { |
| // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the |
| // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers. |
| // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_ |
| // all the way to zero exactly as the remainder will be subtracted at the next GC. |
| size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed); |
| CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed), |
| bytes_freed) << "num_bytes_freed_revoke_ underflow"; |
| CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed), |
| bytes_freed) << "num_bytes_allocated_ underflow"; |
| GetCurrentGcIteration()->SetFreedRevoke(bytes_freed); |
| } |
| |
| space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const { |
| if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) { |
| return rosalloc_space_; |
| } |
| for (const auto& space : continuous_spaces_) { |
| if (space->AsContinuousSpace()->IsRosAllocSpace()) { |
| if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) { |
| return space->AsContinuousSpace()->AsRosAllocSpace(); |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) { |
| instrumentation::Instrumentation* const instrumentation = |
| Runtime::Current()->GetInstrumentation(); |
| return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented(); |
| } |
| |
| mirror::Object* Heap::AllocateInternalWithGc(Thread* self, |
| AllocatorType allocator, |
| bool instrumented, |
| size_t alloc_size, |
| size_t* bytes_allocated, |
| size_t* usable_size, |
| size_t* bytes_tl_bulk_allocated, |
| ObjPtr<mirror::Class>* klass) { |
| bool was_default_allocator = allocator == GetCurrentAllocator(); |
| // Make sure there is no pending exception since we may need to throw an OOME. |
| self->AssertNoPendingException(); |
| DCHECK(klass != nullptr); |
| |
| StackHandleScope<1> hs(self); |
| HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(klass)); |
| |
| auto send_object_pre_alloc = |
| [&]() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) { |
| if (UNLIKELY(instrumented)) { |
| AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst); |
| if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) { |
| l->PreObjectAllocated(self, h_klass, &alloc_size); |
| } |
| } |
| }; |
| #define PERFORM_SUSPENDING_OPERATION(op) \ |
| [&]() REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { \ |
| ScopedAllowThreadSuspension ats; \ |
| auto res = (op); \ |
| send_object_pre_alloc(); \ |
| return res; \ |
| }() |
| |
| // The allocation failed. If the GC is running, block until it completes, and then retry the |
| // allocation. |
| collector::GcType last_gc = |
| PERFORM_SUSPENDING_OPERATION(WaitForGcToComplete(kGcCauseForAlloc, self)); |
| // If we were the default allocator but the allocator changed while we were suspended, |
| // abort the allocation. |
| if ((was_default_allocator && allocator != GetCurrentAllocator()) || |
| (!instrumented && EntrypointsInstrumented())) { |
| return nullptr; |
| } |
| uint32_t starting_gc_num = GetCurrentGcNum(); |
| if (last_gc != collector::kGcTypeNone) { |
| // A GC was in progress and we blocked, retry allocation now that memory has been freed. |
| mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, |
| usable_size, bytes_tl_bulk_allocated); |
| if (ptr != nullptr) { |
| return ptr; |
| } |
| } |
| |
| auto have_reclaimed_enough = [&]() { |
| size_t curr_bytes_allocated = GetBytesAllocated(); |
| double curr_free_heap = |
| static_cast<double>(growth_limit_ - curr_bytes_allocated) / growth_limit_; |
| return curr_free_heap >= kMinFreeHeapAfterGcForAlloc; |
| }; |
| // We perform one GC as per the next_gc_type_ (chosen in GrowForUtilization), |
| // if it's not already tried. If that doesn't succeed then go for the most |
| // exhaustive option. Perform a full-heap collection including clearing |
| // SoftReferences. In case of ConcurrentCopying, it will also ensure that |
| // all regions are evacuated. If allocation doesn't succeed even after that |
| // then there is no hope, so we throw OOME. |
| collector::GcType tried_type = next_gc_type_; |
| if (last_gc < tried_type) { |
| const bool gc_ran = PERFORM_SUSPENDING_OPERATION( |
| CollectGarbageInternal(tried_type, kGcCauseForAlloc, false, starting_gc_num + 1) |
| != collector::kGcTypeNone); |
| |
| if ((was_default_allocator && allocator != GetCurrentAllocator()) || |
| (!instrumented && EntrypointsInstrumented())) { |
| return nullptr; |
| } |
| if (gc_ran && have_reclaimed_enough()) { |
| mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, |
| alloc_size, bytes_allocated, |
| usable_size, bytes_tl_bulk_allocated); |
| if (ptr != nullptr) { |
| return ptr; |
| } |
| } |
| } |
| // Most allocations should have succeeded by now, so the heap is really full, really fragmented, |
| // or the requested size is really big. Do another GC, collecting SoftReferences this time. The |
| // VM spec requires that all SoftReferences have been collected and cleared before throwing |
| // OOME. |
| VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) |
| << " allocation"; |
| // TODO: Run finalization, but this may cause more allocations to occur. |
| // We don't need a WaitForGcToComplete here either. |
| // TODO: Should check whether another thread already just ran a GC with soft |
| // references. |
| DCHECK(!gc_plan_.empty()); |
| pre_oome_gc_count_.fetch_add(1, std::memory_order_relaxed); |
| PERFORM_SUSPENDING_OPERATION( |
| CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true, GC_NUM_ANY)); |
| if ((was_default_allocator && allocator != GetCurrentAllocator()) || |
| (!instrumented && EntrypointsInstrumented())) { |
| return nullptr; |
| } |
| mirror::Object* ptr = nullptr; |
| if (have_reclaimed_enough()) { |
| ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, |
| usable_size, bytes_tl_bulk_allocated); |
| } |
| |
| if (ptr == nullptr) { |
| const uint64_t current_time = NanoTime(); |
| switch (allocator) { |
| case kAllocatorTypeRosAlloc: |
| // Fall-through. |
| case kAllocatorTypeDlMalloc: { |
| if (use_homogeneous_space_compaction_for_oom_ && |
| current_time - last_time_homogeneous_space_compaction_by_oom_ > |
| min_interval_homogeneous_space_compaction_by_oom_) { |
| last_time_homogeneous_space_compaction_by_oom_ = current_time; |
| HomogeneousSpaceCompactResult result = |
| PERFORM_SUSPENDING_OPERATION(PerformHomogeneousSpaceCompact()); |
| // Thread suspension could have occurred. |
| if ((was_default_allocator && allocator != GetCurrentAllocator()) || |
| (!instrumented && EntrypointsInstrumented())) { |
| return nullptr; |
| } |
| switch (result) { |
| case HomogeneousSpaceCompactResult::kSuccess: |
| // If the allocation succeeded, we delayed an oom. |
| ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, |
| usable_size, bytes_tl_bulk_allocated); |
| if (ptr != nullptr) { |
| count_delayed_oom_++; |
| } |
| break; |
| case HomogeneousSpaceCompactResult::kErrorReject: |
| // Reject due to disabled moving GC. |
| break; |
| case HomogeneousSpaceCompactResult::kErrorVMShuttingDown: |
| // Throw OOM by default. |
| break; |
| default: { |
| UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: " |
| << static_cast<size_t>(result); |
| UNREACHABLE(); |
| } |
| } |
| // Always print that we ran homogeneous space compation since this can cause jank. |
| VLOG(heap) << "Ran heap homogeneous space compaction, " |
| << " requested defragmentation " |
| << count_requested_homogeneous_space_compaction_.load() |
| << " performed defragmentation " |
| << count_performed_homogeneous_space_compaction_.load() |
| << " ignored homogeneous space compaction " |
| << count_ignored_homogeneous_space_compaction_.load() |
| << " delayed count = " |
| << count_delayed_oom_.load(); |
| } |
| break; |
| } |
| default: { |
| // Do nothing for others allocators. |
| } |
| } |
| } |
| #undef PERFORM_SUSPENDING_OPERATION |
| // If the allocation hasn't succeeded by this point, throw an OOM error. |
| if (ptr == nullptr) { |
| ScopedAllowThreadSuspension ats; |
| ThrowOutOfMemoryError(self, alloc_size, allocator); |
| } |
| return ptr; |
| } |
| |
| void Heap::SetTargetHeapUtilization(float target) { |
| DCHECK_GT(target, 0.1f); // asserted in Java code |
| DCHECK_LT(target, 1.0f); |
| target_utilization_ = target; |
| } |
| |
| size_t Heap::GetObjectsAllocated() const { |
| Thread* const self = Thread::Current(); |
| ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGetObjectsAllocated); |
| // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells |
| // us to suspend while we are doing SuspendAll. b/35232978 |
| gc::ScopedGCCriticalSection gcs(Thread::Current(), |
| gc::kGcCauseGetObjectsAllocated, |
| gc::kCollectorTypeGetObjectsAllocated); |
| // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll. |
| ScopedSuspendAll ssa(__FUNCTION__); |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| size_t total = 0; |
| for (space::AllocSpace* space : alloc_spaces_) { |
| total += space->GetObjectsAllocated(); |
| } |
| return total; |
| } |
| |
| uint64_t Heap::GetObjectsAllocatedEver() const { |
| uint64_t total = GetObjectsFreedEver(); |
| // If we are detached, we can't use GetObjectsAllocated since we can't change thread states. |
| if (Thread::Current() != nullptr) { |
| total += GetObjectsAllocated(); |
| } |
| return total; |
| } |
| |
| uint64_t Heap::GetBytesAllocatedEver() const { |
| // Force the returned value to be monotonically increasing, in the sense that if this is called |
| // at A and B, such that A happens-before B, then the call at B returns a value no smaller than |
| // that at A. This is not otherwise guaranteed, since num_bytes_allocated_ is decremented first, |
| // and total_bytes_freed_ever_ is incremented later. |
| static std::atomic<uint64_t> max_bytes_so_far(0); |
| uint64_t so_far = max_bytes_so_far.load(std::memory_order_relaxed); |
| uint64_t current_bytes = GetBytesFreedEver(std::memory_order_acquire); |
| current_bytes += GetBytesAllocated(); |
| do { |
| if (current_bytes <= so_far) { |
| return so_far; |
| } |
| } while (!max_bytes_so_far.compare_exchange_weak(so_far /* updated */, |
| current_bytes, std::memory_order_relaxed)); |
| return current_bytes; |
| } |
| |
| // Check whether the given object is an instance of the given class. |
| static bool MatchesClass(mirror::Object* obj, |
| Handle<mirror::Class> h_class, |
| bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) { |
| mirror::Class* instance_class = obj->GetClass(); |
| CHECK(instance_class != nullptr); |
| ObjPtr<mirror::Class> klass = h_class.Get(); |
| if (use_is_assignable_from) { |
| return klass != nullptr && klass->IsAssignableFrom(instance_class); |
| } |
| return instance_class == klass; |
| } |
| |
| void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes, |
| bool use_is_assignable_from, |
| uint64_t* counts) { |
| auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| for (size_t i = 0; i < classes.size(); ++i) { |
| if (MatchesClass(obj, classes[i], use_is_assignable_from)) { |
| ++counts[i]; |
| } |
| } |
| }; |
| VisitObjects(instance_counter); |
| } |
| |
| void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) { |
| // Even if we waited for a GC we still need to do another GC since weaks allocated during the |
| // last GC will not have necessarily been cleared. |
| CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references, GC_NUM_ANY); |
| } |
| |
| bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const { |
| return main_space_backup_.get() != nullptr && main_space_ != nullptr && |
| foreground_collector_type_ == kCollectorTypeCMS; |
| } |
| |
| HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() { |
| Thread* self = Thread::Current(); |
| // Inc requested homogeneous space compaction. |
| count_requested_homogeneous_space_compaction_++; |
| // Store performed homogeneous space compaction at a new request arrival. |
| ScopedThreadStateChange tsc(self, ThreadState::kWaitingPerformingGc); |
| Locks::mutator_lock_->AssertNotHeld(self); |
| { |
| ScopedThreadStateChange tsc2(self, ThreadState::kWaitingForGcToComplete); |
| MutexLock mu(self, *gc_complete_lock_); |
| // Ensure there is only one GC at a time. |
| WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self); |
| // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable |
| // count is non zero. |
| // If the collector type changed to something which doesn't benefit from homogeneous space |
| // compaction, exit. |
| if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) || |
| !main_space_->CanMoveObjects()) { |
| return kErrorReject; |
| } |
| if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) { |
| return kErrorUnsupported; |
| } |
| collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact; |
| } |
| if (Runtime::Current()->IsShuttingDown(self)) { |
| // Don't allow heap transitions to happen if the runtime is shutting down since these can |
| // cause objects to get finalized. |
| FinishGC(self, collector::kGcTypeNone); |
| return HomogeneousSpaceCompactResult::kErrorVMShuttingDown; |
| } |
| collector::GarbageCollector* collector; |
| { |
| ScopedSuspendAll ssa(__FUNCTION__); |
| uint64_t start_time = NanoTime(); |
| // Launch compaction. |
| space::MallocSpace* to_space = main_space_backup_.release(); |
| space::MallocSpace* from_space = main_space_; |
| to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE); |
| const uint64_t space_size_before_compaction = from_space->Size(); |
| AddSpace(to_space); |
| // Make sure that we will have enough room to copy. |
| CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit()); |
| collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact); |
| const uint64_t space_size_after_compaction = to_space->Size(); |
| main_space_ = to_space; |
| main_space_backup_.reset(from_space); |
| RemoveSpace(from_space); |
| SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space. |
| // Update performed homogeneous space compaction count. |
| count_performed_homogeneous_space_compaction_++; |
| // Print statics log and resume all threads. |
| uint64_t duration = NanoTime() - start_time; |
| VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: " |
| << PrettySize(space_size_before_compaction) << " -> " |
| << PrettySize(space_size_after_compaction) << " compact-ratio: " |
| << std::fixed << static_cast<double>(space_size_after_compaction) / |
| static_cast<double>(space_size_before_compaction); |
| } |
| // Finish GC. |
| // Get the references we need to enqueue. |
| SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self); |
| GrowForUtilization(semi_space_collector_); |
| LogGC(kGcCauseHomogeneousSpaceCompact, collector); |
| FinishGC(self, collector::kGcTypeFull); |
| // Enqueue any references after losing the GC locks. |
| clear->Run(self); |
| clear->Finalize(); |
| { |
| ScopedObjectAccess soa(self); |
| soa.Vm()->UnloadNativeLibraries(); |
| } |
| return HomogeneousSpaceCompactResult::kSuccess; |
| } |
| |
| void Heap::SetDefaultConcurrentStartBytes() { |
| MutexLock mu(Thread::Current(), *gc_complete_lock_); |
| if (collector_type_running_ != kCollectorTypeNone) { |
| // If a collector is already running, just let it set concurrent_start_bytes_ . |
| return; |
| } |
| SetDefaultConcurrentStartBytesLocked(); |
| } |
| |
| void Heap::SetDefaultConcurrentStartBytesLocked() { |
| if (IsGcConcurrent()) { |
| size_t target_footprint = target_footprint_.load(std::memory_order_relaxed); |
| size_t reserve_bytes = target_footprint / 4; |
| reserve_bytes = std::min(reserve_bytes, kMaxConcurrentRemainingBytes); |
| reserve_bytes = std::max(reserve_bytes, kMinConcurrentRemainingBytes); |
| concurrent_start_bytes_ = UnsignedDifference(target_footprint, reserve_bytes); |
| } else { |
| concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); |
| } |
| } |
| |
| void Heap::ChangeCollector(CollectorType collector_type) { |
| // TODO: Only do this with all mutators suspended to avoid races. |
| if (collector_type != collector_type_) { |
| collector_type_ = collector_type; |
| gc_plan_.clear(); |
| switch (collector_type_) { |
| case kCollectorTypeCC: { |
| if (use_generational_cc_) { |
| gc_plan_.push_back(collector::kGcTypeSticky); |
| } |
| gc_plan_.push_back(collector::kGcTypeFull); |
| if (use_tlab_) { |
| ChangeAllocator(kAllocatorTypeRegionTLAB); |
| } else { |
| ChangeAllocator(kAllocatorTypeRegion); |
| } |
| break; |
| } |
| case kCollectorTypeCMC: { |
| gc_plan_.push_back(collector::kGcTypeFull); |
| if (use_tlab_) { |
| ChangeAllocator(kAllocatorTypeTLAB); |
| } else { |
| ChangeAllocator(kAllocatorTypeBumpPointer); |
| } |
| break; |
| } |
| case kCollectorTypeSS: { |
| gc_plan_.push_back(collector::kGcTypeFull); |
| if (use_tlab_) { |
| ChangeAllocator(kAllocatorTypeTLAB); |
| } else { |
| ChangeAllocator(kAllocatorTypeBumpPointer); |
| } |
| break; |
| } |
| case kCollectorTypeMS: { |
| gc_plan_.push_back(collector::kGcTypeSticky); |
| gc_plan_.push_back(collector::kGcTypePartial); |
| gc_plan_.push_back(collector::kGcTypeFull); |
| ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc); |
| break; |
| } |
| case kCollectorTypeCMS: { |
| gc_plan_.push_back(collector::kGcTypeSticky); |
| gc_plan_.push_back(collector::kGcTypePartial); |
| gc_plan_.push_back(collector::kGcTypeFull); |
| ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc); |
| break; |
| } |
| default: { |
| UNIMPLEMENTED(FATAL); |
| UNREACHABLE(); |
| } |
| } |
| SetDefaultConcurrentStartBytesLocked(); |
| } |
| } |
| |
| // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size. |
| class ZygoteCompactingCollector final : public collector::SemiSpace { |
| public: |
| ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool) |
| : SemiSpace(heap, "zygote collector"), |
| bin_live_bitmap_(nullptr), |
| bin_mark_bitmap_(nullptr), |
| is_running_on_memory_tool_(is_running_on_memory_tool) {} |
| |
| void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { |
| bin_live_bitmap_ = space->GetLiveBitmap(); |
| bin_mark_bitmap_ = space->GetMarkBitmap(); |
| uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin()); |
| WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| // Note: This requires traversing the space in increasing order of object addresses. |
| auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj); |
| size_t bin_size = object_addr - prev; |
| // Add the bin consisting of the end of the previous object to the start of the current object. |
| AddBin(bin_size, prev); |
| prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment); |
| }; |
| bin_live_bitmap_->Walk(visitor); |
| // Add the last bin which spans after the last object to the end of the space. |
| AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev); |
| } |
| |
| private: |
| // Maps from bin sizes to locations. |
| std::multimap<size_t, uintptr_t> bins_; |
| // Live bitmap of the space which contains the bins. |
| accounting::ContinuousSpaceBitmap* bin_live_bitmap_; |
| // Mark bitmap of the space which contains the bins. |
| accounting::ContinuousSpaceBitmap* bin_mark_bitmap_; |
| const bool is_running_on_memory_tool_; |
| |
| void AddBin(size_t size, uintptr_t position) { |
| if (is_running_on_memory_tool_) { |
| MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size); |
| } |
| if (size != 0) { |
| bins_.insert(std::make_pair(size, position)); |
| } |
| } |
| |
| bool ShouldSweepSpace([[maybe_unused]] space::ContinuousSpace* space) const override { |
| // Don't sweep any spaces since we probably blasted the internal accounting of the free list |
| // allocator. |
| return false; |
| } |
| |
| mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override |
| REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) { |
| size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>(); |
| size_t alloc_size = RoundUp(obj_size, kObjectAlignment); |
| mirror::Object* forward_address; |
| // Find the smallest bin which we can move obj in. |
| auto it = bins_.lower_bound(alloc_size); |
| if (it == bins_.end()) { |
| // No available space in the bins, place it in the target space instead (grows the zygote |
| // space). |
| size_t bytes_allocated, unused_bytes_tl_bulk_allocated; |
| forward_address = to_space_->Alloc( |
| self_, alloc_size, &bytes_allocated, nullptr, &unused_bytes_tl_bulk_allocated); |
| if (to_space_live_bitmap_ != nullptr) { |
| to_space_live_bitmap_->Set(forward_address); |
| } else { |
| GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address); |
| GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address); |
| } |
| } else { |
| size_t size = it->first; |
| uintptr_t pos = it->second; |
| bins_.erase(it); // Erase the old bin which we replace with the new smaller bin. |
| forward_address = reinterpret_cast<mirror::Object*>(pos); |
| // Set the live and mark bits so that sweeping system weaks works properly. |
| bin_live_bitmap_->Set(forward_address); |
| bin_mark_bitmap_->Set(forward_address); |
| DCHECK_GE(size, alloc_size); |
| // Add a new bin with the remaining space. |
| AddBin(size - alloc_size, pos + alloc_size); |
| } |
| // Copy the object over to its new location. |
| // Historical note: We did not use `alloc_size` to avoid a Valgrind error. |
| memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size); |
| if (kUseBakerReadBarrier) { |
| obj->AssertReadBarrierState(); |
| forward_address->AssertReadBarrierState(); |
| } |
| return forward_address; |
| } |
| }; |
| |
| void Heap::UnBindBitmaps() { |
| TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings()); |
| for (const auto& space : GetContinuousSpaces()) { |
| if (space->IsContinuousMemMapAllocSpace()) { |
| space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); |
| if (alloc_space->GetLiveBitmap() != nullptr && alloc_space->HasBoundBitmaps()) { |
| alloc_space->UnBindBitmaps(); |
| } |
| } |
| } |
| } |
| |
| void Heap::IncrementFreedEver() { |
| // Counters are updated only by us, but may be read concurrently. |
| // The updates should become visible after the corresponding live object info. |
| total_objects_freed_ever_.store(total_objects_freed_ever_.load(std::memory_order_relaxed) |
| + GetCurrentGcIteration()->GetFreedObjects() |
| + GetCurrentGcIteration()->GetFreedLargeObjects(), |
| std::memory_order_release); |
| total_bytes_freed_ever_.store(total_bytes_freed_ever_.load(std::memory_order_relaxed) |
| + GetCurrentGcIteration()->GetFreedBytes() |
| + GetCurrentGcIteration()->GetFreedLargeObjectBytes(), |
| std::memory_order_release); |
| } |
| |
| #pragma clang diagnostic push |
| #if !ART_USE_FUTEXES |
| // Frame gets too large, perhaps due to Bionic pthread_mutex_lock size. We don't care. |
| # pragma clang diagnostic ignored "-Wframe-larger-than=" |
| #endif |
| // This has a large frame, but shouldn't be run anywhere near the stack limit. |
| // FIXME: BUT it did exceed... http://b/197647048 |
| # pragma clang diagnostic ignored "-Wframe-larger-than=" |
| void Heap::PreZygoteFork() { |
| if (!HasZygoteSpace()) { |
| // We still want to GC in case there is some unreachable non moving objects that could cause a |
| // suboptimal bin packing when we compact the zygote space. |
| CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false, GC_NUM_ANY); |
| // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since |
| // the trim process may require locking the mutator lock. |
| non_moving_space_->Trim(); |
| } |
| // We need to close userfaultfd fd for app/webview zygotes to avoid getattr |
| // (stat) on the fd during fork. |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, zygote_creation_lock_); |
| // Try to see if we have any Zygote spaces. |
| if (HasZygoteSpace()) { |
| return; |
| } |
| Runtime* runtime = Runtime::Current(); |
| runtime->GetInternTable()->AddNewTable(); |
| runtime->GetClassLinker()->MoveClassTableToPreZygote(); |
| runtime->SetupLinearAllocForPostZygoteFork(self); |
| VLOG(heap) << "Starting PreZygoteFork"; |
| // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote |
| // there. |
| non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); |
| const bool same_space = non_moving_space_ == main_space_; |
| if (kCompactZygote) { |
| // Temporarily disable rosalloc verification because the zygote |
| // compaction will mess up the rosalloc internal metadata. |
| ScopedDisableRosAllocVerification disable_rosalloc_verif(this); |
| ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_); |
| zygote_collector.BuildBins(non_moving_space_); |
| // Create a new bump pointer space which we will compact into. |
| space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(), |
| non_moving_space_->Limit()); |
| // Compact the bump pointer space to a new zygote bump pointer space. |
| bool reset_main_space = false; |
| if (IsMovingGc(collector_type_)) { |
| if (collector_type_ == kCollectorTypeCC) { |
| zygote_collector.SetFromSpace(region_space_); |
| } else { |
| zygote_collector.SetFromSpace(bump_pointer_space_); |
| } |
| } else { |
| CHECK(main_space_ != nullptr); |
| CHECK_NE(main_space_, non_moving_space_) |
| << "Does not make sense to compact within the same space"; |
| // Copy from the main space. |
| zygote_collector.SetFromSpace(main_space_); |
| reset_main_space = true; |
| } |
| zygote_collector.SetToSpace(&target_space); |
| zygote_collector.SetSwapSemiSpaces(false); |
| zygote_collector.Run(kGcCauseCollectorTransition, false); |
| if (reset_main_space) { |
| main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); |
| madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED); |
| MemMap mem_map = main_space_->ReleaseMemMap(); |
| RemoveSpace(main_space_); |
| space::Space* old_main_space = main_space_; |
| CreateMainMallocSpace(std::move(mem_map), |
| kDefaultInitialSize, |
| std::min(mem_map.Size(), growth_limit_), |
| mem_map.Size()); |
| delete old_main_space; |
| AddSpace(main_space_); |
| } else { |
| if (collector_type_ == kCollectorTypeCC) { |
| region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); |
| // Evacuated everything out of the region space, clear the mark bitmap. |
| region_space_->GetMarkBitmap()->Clear(); |
| } else { |
| bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); |
| } |
| } |
| if (temp_space_ != nullptr) { |
| CHECK(temp_space_->IsEmpty()); |
| } |
| IncrementFreedEver(); |
| // Update the end and write out image. |
| non_moving_space_->SetEnd(target_space.End()); |
| non_moving_space_->SetLimit(target_space.Limit()); |
| VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes"; |
| } |
| // Change the collector to the post zygote one. |
| ChangeCollector(foreground_collector_type_); |
| // Save the old space so that we can remove it after we complete creating the zygote space. |
| space::MallocSpace* old_alloc_space = non_moving_space_; |
| // Turn the current alloc space into a zygote space and obtain the new alloc space composed of |
| // the remaining available space. |
| // Remove the old space before creating the zygote space since creating the zygote space sets |
| // the old alloc space's bitmaps to null. |
| RemoveSpace(old_alloc_space); |
| if (collector::SemiSpace::kUseRememberedSet) { |
| // Consistency bound check. |
| FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace(); |
| // Remove the remembered set for the now zygote space (the old |
| // non-moving space). Note now that we have compacted objects into |
| // the zygote space, the data in the remembered set is no longer |
| // needed. The zygote space will instead have a mod-union table |
| // from this point on. |
| RemoveRememberedSet(old_alloc_space); |
| } |
| // Remaining space becomes the new non moving space. |
| zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_, |
| &non_moving_space_); |
| CHECK(!non_moving_space_->CanMoveObjects()); |
| if (same_space) { |
| main_space_ = non_moving_space_; |
| SetSpaceAsDefault(main_space_); |
| } |
| delete old_alloc_space; |
| CHECK(HasZygoteSpace()) << "Failed creating zygote space"; |
| AddSpace(zygote_space_); |
| non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity()); |
| AddSpace(non_moving_space_); |
| constexpr bool set_mark_bit = kUseBakerReadBarrier |
| && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects; |
| if (set_mark_bit) { |
| // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is |
| // safe since we mark all of the objects that may reference non immune objects as gray. |
| zygote_space_->SetMarkBitInLiveObjects(); |
| } |
| |
| // Create the zygote space mod union table. |
| accounting::ModUnionTable* mod_union_table = |
| new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_); |
| CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table"; |
| |
| if (collector_type_ != kCollectorTypeCC && collector_type_ != kCollectorTypeCMC) { |
| // Set all the cards in the mod-union table since we don't know which objects contain references |
| // to large objects. |
| mod_union_table->SetCards(); |
| } else { |
| // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There |
| // may be dirty cards from the zygote compaction or reference processing. These cards are not |
| // necessary to have marked since the zygote space may not refer to any objects not in the |
| // zygote or image spaces at this point. |
| mod_union_table->ProcessCards(); |
| mod_union_table->ClearTable(); |
| |
| // For CC and CMC we never collect zygote large objects. This means we do not need to set the |
| // cards for the zygote mod-union table and we can also clear all of the existing image |
| // mod-union tables. The existing mod-union tables are only for image spaces and may only |
| // reference zygote and image objects. |
| for (auto& pair : mod_union_tables_) { |
| CHECK(pair.first->IsImageSpace()); |
| CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage()); |
| accounting::ModUnionTable* table = pair.second; |
| table->ClearTable(); |
| } |
| } |
| AddModUnionTable(mod_union_table); |
| large_object_space_->SetAllLargeObjectsAsZygoteObjects(self, set_mark_bit); |
| if (collector::SemiSpace::kUseRememberedSet) { |
| // Add a new remembered set for the post-zygote non-moving space. |
| accounting::RememberedSet* post_zygote_non_moving_space_rem_set = |
| new accounting::RememberedSet("Post-zygote non-moving space remembered set", this, |
| non_moving_space_); |
| CHECK(post_zygote_non_moving_space_rem_set != nullptr) |
| << "Failed to create post-zygote non-moving space remembered set"; |
| AddRememberedSet(post_zygote_non_moving_space_rem_set); |
| } |
| } |
| #pragma clang diagnostic pop |
| |
| void Heap::FlushAllocStack() { |
| MarkAllocStackAsLive(allocation_stack_.get()); |
| allocation_stack_->Reset(); |
| } |
| |
| void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1, |
| accounting::ContinuousSpaceBitmap* bitmap2, |
| accounting::LargeObjectBitmap* large_objects, |
| accounting::ObjectStack* stack) { |
| DCHECK(bitmap1 != nullptr); |
| DCHECK(bitmap2 != nullptr); |
| const auto* limit = stack->End(); |
| for (auto* it = stack->Begin(); it != limit; ++it) { |
| const mirror::Object* obj = it->AsMirrorPtr(); |
| if (!kUseThreadLocalAllocationStack || obj != nullptr) { |
| if (bitmap1->HasAddress(obj)) { |
| bitmap1->Set(obj); |
| } else if (bitmap2->HasAddress(obj)) { |
| bitmap2->Set(obj); |
| } else { |
| DCHECK(large_objects != nullptr); |
| large_objects->Set(obj); |
| } |
| } |
| } |
| } |
| |
| void Heap::SwapSemiSpaces() { |
| CHECK(bump_pointer_space_ != nullptr); |
| CHECK(temp_space_ != nullptr); |
| std::swap(bump_pointer_space_, temp_space_); |
| } |
| |
| collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space, |
| space::ContinuousMemMapAllocSpace* source_space, |
| GcCause gc_cause) { |
| CHECK(kMovingCollector); |
| if (target_space != source_space) { |
| // Don't swap spaces since this isn't a typical semi space collection. |
| semi_space_collector_->SetSwapSemiSpaces(false); |
| semi_space_collector_->SetFromSpace(source_space); |
| semi_space_collector_->SetToSpace(target_space); |
| semi_space_collector_->Run(gc_cause, false); |
| return semi_space_collector_; |
| } |
| LOG(FATAL) << "Unsupported"; |
| UNREACHABLE(); |
| } |
| |
| void Heap::TraceHeapSize(size_t heap_size) { |
| ATraceIntegerValue("Heap size (KB)", heap_size / KB); |
| } |
| |
| #if defined(__GLIBC__) |
| # define IF_GLIBC(x) x |
| #else |
| # define IF_GLIBC(x) |
| #endif |
| |
| size_t Heap::GetNativeBytes() { |
| size_t malloc_bytes; |
| #if defined(__BIONIC__) || defined(__GLIBC__) |
| IF_GLIBC(size_t mmapped_bytes;) |
| struct mallinfo mi = mallinfo(); |
| // In spite of the documentation, the jemalloc version of this call seems to do what we want, |
| // and it is thread-safe. |
| if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) { |
| // Shouldn't happen, but glibc declares uordblks as int. |
| // Avoiding sign extension gets us correct behavior for another 2 GB. |
| malloc_bytes = (unsigned int)mi.uordblks; |
| IF_GLIBC(mmapped_bytes = (unsigned int)mi.hblkhd;) |
| } else { |
| malloc_bytes = mi.uordblks; |
| IF_GLIBC(mmapped_bytes = mi.hblkhd;) |
| } |
| // From the spec, it appeared mmapped_bytes <= malloc_bytes. Reality was sometimes |
| // dramatically different. (b/119580449 was an early bug.) If so, we try to fudge it. |
| // However, malloc implementations seem to interpret hblkhd differently, namely as |
| // mapped blocks backing the entire heap (e.g. jemalloc) vs. large objects directly |
| // allocated via mmap (e.g. glibc). Thus we now only do this for glibc, where it |
| // previously helped, and which appears to use a reading of the spec compatible |
| // with our adjustment. |
| #if defined(__GLIBC__) |
| if (mmapped_bytes > malloc_bytes) { |
| malloc_bytes = mmapped_bytes; |
| } |
| #endif // GLIBC |
| #else // Neither Bionic nor Glibc |
| // We should hit this case only in contexts in which GC triggering is not critical. Effectively |
| // disable GC triggering based on malloc(). |
| malloc_bytes = 1000; |
| #endif |
| return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed); |
| // An alternative would be to get RSS from /proc/self/statm. Empirically, that's no |
| // more expensive, and it would allow us to count memory allocated by means other than malloc. |
| // However it would change as pages are unmapped and remapped due to memory pressure, among |
| // other things. It seems risky to trigger GCs as a result of such changes. |
| } |
| |
| static inline bool GCNumberLt(uint32_t gc_num1, uint32_t gc_num2) { |
| // unsigned comparison, assuming a non-huge difference, but dealing correctly with wrapping. |
| uint32_t difference = gc_num2 - gc_num1; |
| bool completed_more_than_requested = difference > 0x80000000; |
| return difference > 0 && !completed_more_than_requested; |
| } |
| |
| |
| collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, |
| GcCause gc_cause, |
| bool clear_soft_references, |
| uint32_t requested_gc_num) { |
| Thread* self = Thread::Current(); |
| Runtime* runtime = Runtime::Current(); |
| // If the heap can't run the GC, silently fail and return that no GC was run. |
| switch (gc_type) { |
| case collector::kGcTypePartial: { |
| if (!HasZygoteSpace()) { |
| // Do not increment gcs_completed_ . We should retry with kGcTypeFull. |
| return collector::kGcTypeNone; |
| } |
| break; |
| } |
| default: { |
| // Other GC types don't have any special cases which makes them not runnable. The main case |
| // here is full GC. |
| } |
| } |
| ScopedThreadStateChange tsc(self, ThreadState::kWaitingPerformingGc); |
| Locks::mutator_lock_->AssertNotHeld(self); |
| if (self->IsHandlingStackOverflow()) { |
| // If we are throwing a stack overflow error we probably don't have enough remaining stack |
| // space to run the GC. |
| // Count this as a GC in case someone is waiting for it to complete. |
| gcs_completed_.fetch_add(1, std::memory_order_release); |
| return collector::kGcTypeNone; |
| } |
| bool compacting_gc; |
| { |
| gc_complete_lock_->AssertNotHeld(self); |
| ScopedThreadStateChange tsc2(self, ThreadState::kWaitingForGcToComplete); |
| MutexLock mu(self, *gc_complete_lock_); |
| // Ensure there is only one GC at a time. |
| WaitForGcToCompleteLocked(gc_cause, self); |
| if (requested_gc_num != GC_NUM_ANY && !GCNumberLt(GetCurrentGcNum(), requested_gc_num)) { |
| // The appropriate GC was already triggered elsewhere. |
| return collector::kGcTypeNone; |
| } |
| compacting_gc = IsMovingGc(collector_type_); |
| // GC can be disabled if someone has a used GetPrimitiveArrayCritical. |
| if (compacting_gc && disable_moving_gc_count_ != 0) { |
| LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_; |
| // Again count this as a GC. |
| gcs_completed_.fetch_add(1, std::memory_order_release); |
| return collector::kGcTypeNone; |
| } |
| if (gc_disabled_for_shutdown_) { |
| gcs_completed_.fetch_add(1, std::memory_order_release); |
| return collector::kGcTypeNone; |
| } |
| collector_type_running_ = collector_type_; |
| last_gc_cause_ = gc_cause; |
| } |
| if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) { |
| ++runtime->GetStats()->gc_for_alloc_count; |
| ++self->GetStats()->gc_for_alloc_count; |
| } |
| const size_t bytes_allocated_before_gc = GetBytesAllocated(); |
| |
| DCHECK_LT(gc_type, collector::kGcTypeMax); |
| DCHECK_NE(gc_type, collector::kGcTypeNone); |
| |
| collector::GarbageCollector* collector = nullptr; |
| // TODO: Clean this up. |
| if (compacting_gc) { |
| DCHECK(current_allocator_ == kAllocatorTypeBumpPointer || |
| current_allocator_ == kAllocatorTypeTLAB || |
| current_allocator_ == kAllocatorTypeRegion || |
| current_allocator_ == kAllocatorTypeRegionTLAB); |
| switch (collector_type_) { |
| case kCollectorTypeSS: |
| semi_space_collector_->SetFromSpace(bump_pointer_space_); |
| semi_space_collector_->SetToSpace(temp_space_); |
| semi_space_collector_->SetSwapSemiSpaces(true); |
| collector = semi_space_collector_; |
| break; |
| case kCollectorTypeCMC: |
| collector = mark_compact_; |
| break; |
| case kCollectorTypeCC: |
| collector::ConcurrentCopying* active_cc_collector; |
| if (use_generational_cc_) { |
| // TODO: Other threads must do the flip checkpoint before they start poking at |
| // active_concurrent_copying_collector_. So we should not concurrency here. |
| active_cc_collector = (gc_type == collector::kGcTypeSticky) ? |
| young_concurrent_copying_collector_ : concurrent_copying_collector_; |
| active_concurrent_copying_collector_.store(active_cc_collector, |
| std::memory_order_relaxed); |
| DCHECK(active_cc_collector->RegionSpace() == region_space_); |
| collector = active_cc_collector; |
| } else { |
| collector = active_concurrent_copying_collector_.load(std::memory_order_relaxed); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_); |
| } |
| // temp_space_ will be null for kCollectorTypeCMC. |
| if (temp_space_ != nullptr |
| && collector != active_concurrent_copying_collector_.load(std::memory_order_relaxed)) { |
| temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); |
| if (kIsDebugBuild) { |
| // Try to read each page of the memory map in case mprotect didn't work properly b/19894268. |
| temp_space_->GetMemMap()->TryReadable(); |
| } |
| CHECK(temp_space_->IsEmpty()); |
| } |
| } else if (current_allocator_ == kAllocatorTypeRosAlloc || |
| current_allocator_ == kAllocatorTypeDlMalloc) { |
| collector = FindCollectorByGcType(gc_type); |
| } else { |
| LOG(FATAL) << "Invalid current allocator " << current_allocator_; |
| } |
| |
| CHECK(collector != nullptr) |
| << "Could not find garbage collector with collector_type=" |
| << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type; |
| collector->Run(gc_cause, clear_soft_references || runtime->IsZygote()); |
| IncrementFreedEver(); |
| RequestTrim(self); |
| // Collect cleared references. |
| SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self); |
| // Grow the heap so that we know when to perform the next GC. |
| GrowForUtilization(collector, bytes_allocated_before_gc); |
| old_native_bytes_allocated_.store(GetNativeBytes()); |
| LogGC(gc_cause, collector); |
| FinishGC(self, gc_type); |
| // Actually enqueue all cleared references. Do this after the GC has officially finished since |
| // otherwise we can deadlock. |
| clear->Run(self); |
| clear->Finalize(); |
| // Inform DDMS that a GC completed. |
| Dbg::GcDidFinish(); |
| |
| // Unload native libraries for class unloading. We do this after calling FinishGC to prevent |
| // deadlocks in case the JNI_OnUnload function does allocations. |
| { |
| ScopedObjectAccess soa(self); |
| soa.Vm()->UnloadNativeLibraries(); |
| } |
| return gc_type; |
| } |
| |
| void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) { |
| const size_t duration = GetCurrentGcIteration()->GetDurationNs(); |
| const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes(); |
| // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC |
| // (mutator time blocked >= long_pause_log_threshold_). |
| bool log_gc = kLogAllGCs || (gc_cause == kGcCauseExplicit && always_log_explicit_gcs_); |
| if (!log_gc && CareAboutPauseTimes()) { |
| // GC for alloc pauses the allocating thread, so consider it as a pause. |
| log_gc = duration > long_gc_log_threshold_ || |
| (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_); |
| for (uint64_t pause : pause_times) { |
| log_gc = log_gc || pause >= long_pause_log_threshold_; |
| } |
| } |
| bool is_sampled = false; |
| if (UNLIKELY(gc_stress_mode_)) { |
| static std::atomic_int64_t accumulated_duration_ns = 0; |
| accumulated_duration_ns += duration; |
| if (accumulated_duration_ns >= kGcStressModeGcLogSampleFrequencyNs) { |
| accumulated_duration_ns -= kGcStressModeGcLogSampleFrequencyNs; |
| log_gc = true; |
| is_sampled = true; |
| } |
| } |
| if (log_gc) { |
| const size_t percent_free = GetPercentFree(); |
| const size_t current_heap_size = GetBytesAllocated(); |
| const size_t total_memory = GetTotalMemory(); |
| std::ostringstream pause_string; |
| for (size_t i = 0; i < pause_times.size(); ++i) { |
| pause_string << PrettyDuration((pause_times[i] / 1000) * 1000) |
| << ((i != pause_times.size() - 1) ? "," : ""); |
| } |
| LOG(INFO) << gc_cause << " " << collector->GetName() |
| << (is_sampled ? " (sampled)" : "") |
| << " GC freed " << current_gc_iteration_.GetFreedObjects() << "(" |
| << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, " |
| << current_gc_iteration_.GetFreedLargeObjects() << "(" |
| << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, " |
| << percent_free << "% free, " << PrettySize(current_heap_size) << "/" |
| << PrettySize(total_memory) << ", " << "paused " << pause_string.str() |
| << " total " << PrettyDuration((duration / 1000) * 1000); |
| VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings()); |
| } |
| } |
| |
| void Heap::FinishGC(Thread* self, collector::GcType gc_type) { |
| MutexLock mu(self, *gc_complete_lock_); |
| collector_type_running_ = kCollectorTypeNone; |
| if (gc_type != collector::kGcTypeNone) { |
| last_gc_type_ = gc_type; |
| |
| // Update stats. |
| ++gc_count_last_window_; |
| if (running_collection_is_blocking_) { |
| // If the currently running collection was a blocking one, |
| // increment the counters and reset the flag. |
| ++blocking_gc_count_; |
| blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs(); |
| ++blocking_gc_count_last_window_; |
| } |
| // Update the gc count rate histograms if due. |
| UpdateGcCountRateHistograms(); |
| } |
| // Reset. |
| running_collection_is_blocking_ = false; |
| thread_running_gc_ = nullptr; |
| if (gc_type != collector::kGcTypeNone) { |
| gcs_completed_.fetch_add(1, std::memory_order_release); |
| } |
| // Wake anyone who may have been waiting for the GC to complete. |
| gc_complete_cond_->Broadcast(self); |
| } |
| |
| void Heap::UpdateGcCountRateHistograms() { |
| // Invariant: if the time since the last update includes more than |
| // one windows, all the GC runs (if > 0) must have happened in first |
| // window because otherwise the update must have already taken place |
| // at an earlier GC run. So, we report the non-first windows with |
| // zero counts to the histograms. |
| DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U); |
| uint64_t now = NanoTime(); |
| DCHECK_GE(now, last_update_time_gc_count_rate_histograms_); |
| uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_; |
| uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration; |
| |
| // The computed number of windows can be incoherently high if NanoTime() is not monotonic. |
| // Setting a limit on its maximum value reduces the impact on CPU time in such cases. |
| if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) { |
| LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from " |
| << num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows; |
| num_of_windows = kGcCountRateHistogramMaxNumMissedWindows; |
| } |
| |
| if (time_since_last_update >= kGcCountRateHistogramWindowDuration) { |
| // Record the first window. |
| gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run. |
| blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ? |
| blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_); |
| // Record the other windows (with zero counts). |
| for (uint64_t i = 0; i < num_of_windows - 1; ++i) { |
| gc_count_rate_histogram_.AddValue(0); |
| blocking_gc_count_rate_histogram_.AddValue(0); |
| } |
| // Update the last update time and reset the counters. |
| last_update_time_gc_count_rate_histograms_ = |
| (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration; |
| gc_count_last_window_ = 1; // Include the current run. |
| blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0; |
| } |
| DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U); |
| } |
| |
| class RootMatchesObjectVisitor : public SingleRootVisitor { |
| public: |
| explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { } |
| |
| void VisitRoot(mirror::Object* root, const RootInfo& info) |
| override REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (root == obj_) { |
| LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString(); |
| } |
| } |
| |
| private: |
| const mirror::Object* const obj_; |
| }; |
| |
| |
| class ScanVisitor { |
| public: |
| void operator()(const mirror::Object* obj) const { |
| LOG(ERROR) << "Would have rescanned object " << obj; |
| } |
| }; |
| |
| // Verify a reference from an object. |
| class VerifyReferenceVisitor : public SingleRootVisitor { |
| public: |
| VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) { |
| CHECK_EQ(self_, Thread::Current()); |
| } |
| |
| void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (verify_referent_) { |
| VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset()); |
| } |
| } |
| |
| void operator()(ObjPtr<mirror::Object> obj, |
| MemberOffset offset, |
| [[maybe_unused]] bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset); |
| } |
| |
| bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS { |
| return heap_->IsLiveObjectLocked(obj, true, false, true); |
| } |
| |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| const_cast<VerifyReferenceVisitor*>(this)->VisitRoot( |
| root->AsMirrorPtr(), RootInfo(kRootVMInternal)); |
| } |
| |
| void VisitRoot(mirror::Object* root, const RootInfo& root_info) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (root == nullptr) { |
| LOG(ERROR) << "Root is null with info " << root_info.GetType(); |
| } else if (!VerifyReference(nullptr, root, MemberOffset(0))) { |
| LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root) |
| << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType(); |
| } |
| } |
| |
| private: |
| // TODO: Fix the no thread safety analysis. |
| // Returns false on failure. |
| bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| if (ref == nullptr || IsLive(ref)) { |
| // Verify that the reference is live. |
| return true; |
| } |
| CHECK_EQ(self_, Thread::Current()); // fail_count_ is private to the calling thread. |
| *fail_count_ += 1; |
| if (*fail_count_ == 1) { |
| // Only print message for the first failure to prevent spam. |
| LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!"; |
| } |
| if (obj != nullptr) { |
| // Only do this part for non roots. |
| accounting::CardTable* card_table = heap_->GetCardTable(); |
| accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get(); |
| accounting::ObjectStack* live_stack = heap_->live_stack_.get(); |
| uint8_t* card_addr = card_table->CardFromAddr(obj); |
| LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset " |
| << offset << "\n card value = " << static_cast<int>(*card_addr); |
| if (heap_->IsValidObjectAddress(obj->GetClass())) { |
| LOG(ERROR) << "Obj type " << obj->PrettyTypeOf(); |
| } else { |
| LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address"; |
| } |
| |
| // Attempt to find the class inside of the recently freed objects. |
| space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true); |
| if (ref_space != nullptr && ref_space->IsMallocSpace()) { |
| space::MallocSpace* space = ref_space->AsMallocSpace(); |
| mirror::Class* ref_class = space->FindRecentFreedObject(ref); |
| if (ref_class != nullptr) { |
| LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class " |
| << ref_class->PrettyClass(); |
| } else { |
| LOG(ERROR) << "Reference " << ref << " not found as a recently freed object"; |
| } |
| } |
| |
| if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) && |
| ref->GetClass()->IsClass()) { |
| LOG(ERROR) << "Ref type " << ref->PrettyTypeOf(); |
| } else { |
| LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass() |
| << ") is not a valid heap address"; |
| } |
| |
| card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj)); |
| void* cover_begin = card_table->AddrFromCard(card_addr); |
| void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) + |
| accounting::CardTable::kCardSize); |
| LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin |
| << "-" << cover_end; |
| accounting::ContinuousSpaceBitmap* bitmap = |
| heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj); |
| |
| if (bitmap == nullptr) { |
| LOG(ERROR) << "Object " << obj << " has no bitmap"; |
| if (!VerifyClassClass(obj->GetClass())) { |
| LOG(ERROR) << "Object " << obj << " failed class verification!"; |
| } |
| } else { |
| // Print out how the object is live. |
| if (bitmap->Test(obj)) { |
| LOG(ERROR) << "Object " << obj << " found in live bitmap"; |
| } |
| if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) { |
| LOG(ERROR) << "Object " << obj << " found in allocation stack"; |
| } |
| if (live_stack->Contains(const_cast<mirror::Object*>(obj))) { |
| LOG(ERROR) << "Object " << obj << " found in live stack"; |
| } |
| if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) { |
| LOG(ERROR) << "Ref " << ref << " found in allocation stack"; |
| } |
| if (live_stack->Contains(const_cast<mirror::Object*>(ref))) { |
| LOG(ERROR) << "Ref " << ref << " found in live stack"; |
| } |
| // Attempt to see if the card table missed the reference. |
| ScanVisitor scan_visitor; |
| uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr)); |
| card_table->Scan<false>(bitmap, byte_cover_begin, |
| byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor); |
| } |
| |
| // Search to see if any of the roots reference our object. |
| RootMatchesObjectVisitor visitor1(obj); |
| Runtime::Current()->VisitRoots(&visitor1); |
| // Search to see if any of the roots reference our reference. |
| RootMatchesObjectVisitor visitor2(ref); |
| Runtime::Current()->VisitRoots(&visitor2); |
| } |
| return false; |
| } |
| |
| Thread* const self_; |
| Heap* const heap_; |
| size_t* const fail_count_; |
| const bool verify_referent_; |
| }; |
| |
| // Verify all references within an object, for use with HeapBitmap::Visit. |
| class VerifyObjectVisitor { |
| public: |
| VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent) |
| : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {} |
| |
| void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Note: we are verifying the references in obj but not obj itself, this is because obj must |
| // be live or else how did we find it in the live bitmap? |
| VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_); |
| // The class doesn't count as a reference but we should verify it anyways. |
| obj->VisitReferences(visitor, visitor); |
| } |
| |
| void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) { |
| ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_); |
| Runtime::Current()->VisitRoots(&visitor); |
| } |
| |
| uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) { |
| CHECK_EQ(self_, Thread::Current()); |
| return *fail_count_; |
| } |
| |
| private: |
| Thread* const self_; |
| Heap* const heap_; |
| size_t* const fail_count_; |
| const bool verify_referent_; |
| }; |
| |
| void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) { |
| // Slow path, the allocation stack push back must have already failed. |
| DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr())); |
| do { |
| // TODO: Add handle VerifyObject. |
| StackHandleScope<1> hs(self); |
| HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj)); |
| // Push our object into the reserve region of the allocation stack. This is only required due |
| // to heap verification requiring that roots are live (either in the live bitmap or in the |
| // allocation stack). |
| CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr())); |
| CollectGarbageInternal(collector::kGcTypeSticky, |
| kGcCauseForAlloc, |
| false, |
| GetCurrentGcNum() + 1); |
| } while (!allocation_stack_->AtomicPushBack(obj->Ptr())); |
| } |
| |
| void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, |
| ObjPtr<mirror::Object>* obj) { |
| // Slow path, the allocation stack push back must have already failed. |
| DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr())); |
| StackReference<mirror::Object>* start_address; |
| StackReference<mirror::Object>* end_address; |
| while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address, |
| &end_address)) { |
| // TODO: Add handle VerifyObject. |
| StackHandleScope<1> hs(self); |
| HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj)); |
| // Push our object into the reserve region of the allocaiton stack. This is only required due |
| // to heap verification requiring that roots are live (either in the live bitmap or in the |
| // allocation stack). |
| CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr())); |
| // Push into the reserve allocation stack. |
| CollectGarbageInternal(collector::kGcTypeSticky, |
| kGcCauseForAlloc, |
| false, |
| GetCurrentGcNum() + 1); |
| } |
| self->SetThreadLocalAllocationStack(start_address, end_address); |
| // Retry on the new thread-local allocation stack. |
| CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed. |
| } |
| |
| // Must do this with mutators suspended since we are directly accessing the allocation stacks. |
| size_t Heap::VerifyHeapReferences(bool verify_referents) { |
| Thread* self = Thread::Current(); |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| // Lets sort our allocation stacks so that we can efficiently binary search them. |
| allocation_stack_->Sort(); |
| live_stack_->Sort(); |
| // Since we sorted the allocation stack content, need to revoke all |
| // thread-local allocation stacks. |
| RevokeAllThreadLocalAllocationStacks(self); |
| size_t fail_count = 0; |
| VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents); |
| // Verify objects in the allocation stack since these will be objects which were: |
| // 1. Allocated prior to the GC (pre GC verification). |
| // 2. Allocated during the GC (pre sweep GC verification). |
| // We don't want to verify the objects in the live stack since they themselves may be |
| // pointing to dead objects if they are not reachable. |
| VisitObjectsPaused(visitor); |
| // Verify the roots: |
| visitor.VerifyRoots(); |
| if (visitor.GetFailureCount() > 0) { |
| // Dump mod-union tables. |
| for (const auto& table_pair : mod_union_tables_) { |
| accounting::ModUnionTable* mod_union_table = table_pair.second; |
| mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": "); |
| } |
| // Dump remembered sets. |
| for (const auto& table_pair : remembered_sets_) { |
| accounting::RememberedSet* remembered_set = table_pair.second; |
| remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": "); |
| } |
| DumpSpaces(LOG_STREAM(ERROR)); |
| } |
| return visitor.GetFailureCount(); |
| } |
| |
| class VerifyReferenceCardVisitor { |
| public: |
| VerifyReferenceCardVisitor(Heap* heap, bool* failed) |
| REQUIRES_SHARED(Locks::mutator_lock_, |
| Locks::heap_bitmap_lock_) |
| : heap_(heap), failed_(failed) { |
| } |
| |
| // There is no card marks for native roots on a class. |
| void VisitRootIfNonNull( |
| [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {} |
| void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {} |
| |
| // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for |
| // annotalysis on visitors. |
| void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset); |
| // Filter out class references since changing an object's class does not mark the card as dirty. |
| // Also handles large objects, since the only reference they hold is a class reference. |
| if (ref != nullptr && !ref->IsClass()) { |
| accounting::CardTable* card_table = heap_->GetCardTable(); |
| // If the object is not dirty and it is referencing something in the live stack other than |
| // class, then it must be on a dirty card. |
| if (!card_table->AddrIsInCardTable(obj)) { |
| LOG(ERROR) << "Object " << obj << " is not in the address range of the card table"; |
| *failed_ = true; |
| } else if (!card_table->IsDirty(obj)) { |
| // TODO: Check mod-union tables. |
| // Card should be either kCardDirty if it got re-dirtied after we aged it, or |
| // kCardDirty - 1 if it didnt get touched since we aged it. |
| accounting::ObjectStack* live_stack = heap_->live_stack_.get(); |
| if (live_stack->ContainsSorted(ref)) { |
| if (live_stack->ContainsSorted(obj)) { |
| LOG(ERROR) << "Object " << obj << " found in live stack"; |
| } |
| if (heap_->GetLiveBitmap()->Test(obj)) { |
| LOG(ERROR) << "Object " << obj << " found in live bitmap"; |
| } |
| LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj) |
| << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref) |
| << " in live stack"; |
| |
| // Print which field of the object is dead. |
| if (!obj->IsObjectArray()) { |
| ObjPtr<mirror::Class> klass = is_static ? obj->AsClass() : obj->GetClass(); |
| CHECK(klass != nullptr); |
| for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) { |
| if (field.GetOffset().Int32Value() == offset.Int32Value()) { |
| LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is " |
| << field.PrettyField(); |
| break; |
| } |
| } |
| } else { |
| ObjPtr<mirror::ObjectArray<mirror::Object>> object_array = |
| obj->AsObjectArray<mirror::Object>(); |
| for (int32_t i = 0; i < object_array->GetLength(); ++i) { |
| if (object_array->Get(i) == ref) { |
| LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref"; |
| } |
| } |
| } |
| |
| *failed_ = true; |
| } |
| } |
| } |
| } |
| |
| private: |
| Heap* const heap_; |
| bool* const failed_; |
| }; |
| |
| class VerifyLiveStackReferences { |
| public: |
| explicit VerifyLiveStackReferences(Heap* heap) |
| : heap_(heap), |
| failed_(false) {} |
| |
| void operator()(mirror::Object* obj) const |
| REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_)); |
| obj->VisitReferences(visitor, VoidFunctor()); |
| } |
| |
| bool Failed() const { |
| return failed_; |
| } |
| |
| private: |
| Heap* const heap_; |
| bool failed_; |
| }; |
| |
| bool Heap::VerifyMissingCardMarks() { |
| Thread* self = Thread::Current(); |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| // We need to sort the live stack since we binary search it. |
| live_stack_->Sort(); |
| // Since we sorted the allocation stack content, need to revoke all |
| // thread-local allocation stacks. |
| RevokeAllThreadLocalAllocationStacks(self); |
| VerifyLiveStackReferences visitor(this); |
| GetLiveBitmap()->Visit(visitor); |
| // We can verify objects in the live stack since none of these should reference dead objects. |
| for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) { |
| if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) { |
| visitor(it->AsMirrorPtr()); |
| } |
| } |
| return !visitor.Failed(); |
| } |
| |
| void Heap::SwapStacks() { |
| if (kUseThreadLocalAllocationStack) { |
| live_stack_->AssertAllZero(); |
| } |
| allocation_stack_.swap(live_stack_); |
| } |
| |
| void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) { |
| // This must be called only during the pause. |
| DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self)); |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| MutexLock mu2(self, *Locks::thread_list_lock_); |
| std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); |
| for (Thread* t : thread_list) { |
| t->RevokeThreadLocalAllocationStack(); |
| } |
| } |
| |
| void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) { |
| if (kIsDebugBuild) { |
| if (rosalloc_space_ != nullptr) { |
| rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread); |
| } |
| if (bump_pointer_space_ != nullptr) { |
| bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread); |
| } |
| } |
| } |
| |
| void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() { |
| if (kIsDebugBuild) { |
| if (bump_pointer_space_ != nullptr) { |
| bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked(); |
| } |
| } |
| } |
| |
| accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) { |
| auto it = mod_union_tables_.find(space); |
| if (it == mod_union_tables_.end()) { |
| return nullptr; |
| } |
| return it->second; |
| } |
| |
| accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) { |
| auto it = remembered_sets_.find(space); |
| if (it == remembered_sets_.end()) { |
| return nullptr; |
| } |
| return it->second; |
| } |
| |
| void Heap::ProcessCards(TimingLogger* timings, |
| bool use_rem_sets, |
| bool process_alloc_space_cards, |
| bool clear_alloc_space_cards) { |
| TimingLogger::ScopedTiming t(__FUNCTION__, timings); |
| // Clear cards and keep track of cards cleared in the mod-union table. |
| for (const auto& space : continuous_spaces_) { |
| accounting::ModUnionTable* table = FindModUnionTableFromSpace(space); |
| accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space); |
| if (table != nullptr) { |
| const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" : |
| "ImageModUnionClearCards"; |
| TimingLogger::ScopedTiming t2(name, timings); |
| table->ProcessCards(); |
| } else if (use_rem_sets && rem_set != nullptr) { |
| DCHECK(collector::SemiSpace::kUseRememberedSet) << static_cast<int>(collector_type_); |
| TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings); |
| rem_set->ClearCards(); |
| } else if (process_alloc_space_cards) { |
| TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings); |
| if (clear_alloc_space_cards) { |
| uint8_t* end = space->End(); |
| if (space->IsImageSpace()) { |
| // Image space end is the end of the mirror objects, it is not necessarily page or card |
| // aligned. Align up so that the check in ClearCardRange does not fail. |
| end = AlignUp(end, accounting::CardTable::kCardSize); |
| } |
| card_table_->ClearCardRange(space->Begin(), end); |
| } else { |
| // No mod union table for the AllocSpace. Age the cards so that the GC knows that these |
| // cards were dirty before the GC started. |
| // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread) |
| // -> clean(cleaning thread). |
| // The races are we either end up with: Aged card, unaged card. Since we have the |
| // checkpoint roots and then we scan / update mod union tables after. We will always |
| // scan either card. If we end up with the non aged card, we scan it it in the pause. |
| card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), |
| VoidFunctor()); |
| } |
| } |
| } |
| } |
| |
| struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor { |
| mirror::Object* MarkObject(mirror::Object* obj) override { |
| return obj; |
| } |
| void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) override { |
| } |
| }; |
| |
| void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) { |
| Thread* const self = Thread::Current(); |
| TimingLogger* const timings = current_gc_iteration_.GetTimings(); |
| TimingLogger::ScopedTiming t(__FUNCTION__, timings); |
| if (verify_pre_gc_heap_) { |
| TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings); |
| size_t failures = VerifyHeapReferences(); |
| if (failures > 0) { |
| LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures |
| << " failures"; |
| } |
| } |
| // Check that all objects which reference things in the live stack are on dirty cards. |
| if (verify_missing_card_marks_) { |
| TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings); |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| SwapStacks(); |
| // Sort the live stack so that we can quickly binary search it later. |
| CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName() |
| << " missing card mark verification failed\n" << DumpSpaces(); |
| SwapStacks(); |
| } |
| if (verify_mod_union_table_) { |
| TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings); |
| ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_); |
| for (const auto& table_pair : mod_union_tables_) { |
| accounting::ModUnionTable* mod_union_table = table_pair.second; |
| IdentityMarkHeapReferenceVisitor visitor; |
| mod_union_table->UpdateAndMarkReferences(&visitor); |
| mod_union_table->Verify(); |
| } |
| } |
| } |
| |
| void Heap::PreGcVerification(collector::GarbageCollector* gc) { |
| if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) { |
| collector::GarbageCollector::ScopedPause pause(gc, false); |
| PreGcVerificationPaused(gc); |
| } |
| } |
| |
| void Heap::PrePauseRosAllocVerification([[maybe_unused]] collector::GarbageCollector* gc) { |
| // TODO: Add a new runtime option for this? |
| if (verify_pre_gc_rosalloc_) { |
| RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification"); |
| } |
| } |
| |
| void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) { |
| Thread* const self = Thread::Current(); |
| TimingLogger* const timings = current_gc_iteration_.GetTimings(); |
| TimingLogger::ScopedTiming t(__FUNCTION__, timings); |
| // Called before sweeping occurs since we want to make sure we are not going so reclaim any |
| // reachable objects. |
| if (verify_pre_sweeping_heap_) { |
| TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings); |
| CHECK_NE(self->GetState(), ThreadState::kRunnable); |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| // Swapping bound bitmaps does nothing. |
| gc->SwapBitmaps(); |
| } |
| // Pass in false since concurrent reference processing can mean that the reference referents |
| // may point to dead objects at the point which PreSweepingGcVerification is called. |
| size_t failures = VerifyHeapReferences(false); |
| if (failures > 0) { |
| LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures |
| << " failures"; |
| } |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| gc->SwapBitmaps(); |
| } |
| } |
| if (verify_pre_sweeping_rosalloc_) { |
| RosAllocVerification(timings, "PreSweepingRosAllocVerification"); |
| } |
| } |
| |
| void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) { |
| // Only pause if we have to do some verification. |
| Thread* const self = Thread::Current(); |
| TimingLogger* const timings = GetCurrentGcIteration()->GetTimings(); |
| TimingLogger::ScopedTiming t(__FUNCTION__, timings); |
| if (verify_system_weaks_) { |
| ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_); |
| collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc); |
| mark_sweep->VerifySystemWeaks(); |
| } |
| if (verify_post_gc_rosalloc_) { |
| RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification"); |
| } |
| if (verify_post_gc_heap_) { |
| TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings); |
| size_t failures = VerifyHeapReferences(); |
| if (failures > 0) { |
| LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures |
| << " failures"; |
| } |
| } |
| } |
| |
| void Heap::PostGcVerification(collector::GarbageCollector* gc) { |
| if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) { |
| collector::GarbageCollector::ScopedPause pause(gc, false); |
| PostGcVerificationPaused(gc); |
| } |
| } |
| |
| void Heap::RosAllocVerification(TimingLogger* timings, const char* name) { |
| TimingLogger::ScopedTiming t(name, timings); |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsRosAllocSpace()) { |
| VLOG(heap) << name << " : " << space->GetName(); |
| space->AsRosAllocSpace()->Verify(); |
| } |
| } |
| } |
| |
| collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) { |
| ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete); |
| MutexLock mu(self, *gc_complete_lock_); |
| return WaitForGcToCompleteLocked(cause, self); |
| } |
| |
| collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) { |
| gc_complete_cond_->CheckSafeToWait(self); |
| collector::GcType last_gc_type = collector::kGcTypeNone; |
| GcCause last_gc_cause = kGcCauseNone; |
| uint64_t wait_start = NanoTime(); |
| while (collector_type_running_ != kCollectorTypeNone) { |
| if (self != task_processor_->GetRunningThread()) { |
| // The current thread is about to wait for a currently running |
| // collection to finish. If the waiting thread is not the heap |
| // task daemon thread, the currently running collection is |
| // considered as a blocking GC. |
| running_collection_is_blocking_ = true; |
| VLOG(gc) << "Waiting for a blocking GC " << cause; |
| } |
| SCOPED_TRACE << "GC: Wait For Completion " << cause; |
| // We must wait, change thread state then sleep on gc_complete_cond_; |
| gc_complete_cond_->Wait(self); |
| last_gc_type = last_gc_type_; |
| last_gc_cause = last_gc_cause_; |
| } |
| uint64_t wait_time = NanoTime() - wait_start; |
| total_wait_time_ += wait_time; |
| if (wait_time > long_pause_log_threshold_) { |
| LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for " |
| << PrettyDuration(wait_time); |
| } |
| if (self != task_processor_->GetRunningThread()) { |
| // The current thread is about to run a collection. If the thread |
| // is not the heap task daemon thread, it's considered as a |
| // blocking GC (i.e., blocking itself). |
| running_collection_is_blocking_ = true; |
| // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these, |
| // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too. |
| if (cause == kGcCauseForAlloc || |
| cause == kGcCauseDisableMovingGc) { |
| VLOG(gc) << "Starting a blocking GC " << cause; |
| } |
| } |
| return last_gc_type; |
| } |
| |
| void Heap::DumpForSigQuit(std::ostream& os) { |
| os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/" |
| << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n"; |
| { |
| os << "Image spaces:\n"; |
| ScopedObjectAccess soa(Thread::Current()); |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsImageSpace()) { |
| os << space->GetName() << "\n"; |
| } |
| } |
| } |
| DumpGcPerformanceInfo(os); |
| } |
| |
| size_t Heap::GetPercentFree() { |
| return static_cast<size_t>(100.0f * static_cast<float>( |
| GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed)); |
| } |
| |
| void Heap::SetIdealFootprint(size_t target_footprint) { |
| if (target_footprint > GetMaxMemory()) { |
| VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to " |
| << PrettySize(GetMaxMemory()); |
| target_footprint = GetMaxMemory(); |
| } |
| target_footprint_.store(target_footprint, std::memory_order_relaxed); |
| } |
| |
| bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const { |
| if (kMovingCollector) { |
| space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true); |
| if (space != nullptr) { |
| // TODO: Check large object? |
| return space->CanMoveObjects(); |
| } |
| } |
| return false; |
| } |
| |
| collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) { |
| for (auto* collector : garbage_collectors_) { |
| if (collector->GetCollectorType() == collector_type_ && |
| collector->GetGcType() == gc_type) { |
| return collector; |
| } |
| } |
| return nullptr; |
| } |
| |
| double Heap::HeapGrowthMultiplier() const { |
| // If we don't care about pause times we are background, so return 1.0. |
| if (!CareAboutPauseTimes()) { |
| return 1.0; |
| } |
| return foreground_heap_growth_multiplier_; |
| } |
| |
| void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran, |
| size_t bytes_allocated_before_gc) { |
| // We're running in the thread that set collector_type_running_ to something other than none, |
| // thus ensuring that there is only one of us running. Thus |
| // collector_type_running_ != kCollectorTypeNone, but that's a little tricky to turn into a |
| // DCHECK. |
| |
| // We know what our utilization is at this moment. |
| // This doesn't actually resize any memory. It just lets the heap grow more when necessary. |
| const size_t bytes_allocated = GetBytesAllocated(); |
| // Trace the new heap size after the GC is finished. |
| TraceHeapSize(bytes_allocated); |
| uint64_t target_size, grow_bytes; |
| collector::GcType gc_type = collector_ran->GetGcType(); |
| MutexLock mu(Thread::Current(), process_state_update_lock_); |
| // Use the multiplier to grow more for foreground. |
| const double multiplier = HeapGrowthMultiplier(); |
| if (gc_type != collector::kGcTypeSticky) { |
| // Grow the heap for non sticky GC. |
| uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0); |
| DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated |
| << " target_utilization_=" << target_utilization_; |
| grow_bytes = std::min(delta, static_cast<uint64_t>(max_free_)); |
| grow_bytes = std::max(grow_bytes, static_cast<uint64_t>(min_free_)); |
| target_size = bytes_allocated + static_cast<uint64_t>(grow_bytes * multiplier); |
| next_gc_type_ = collector::kGcTypeSticky; |
| } else { |
| collector::GcType non_sticky_gc_type = NonStickyGcType(); |
| // Find what the next non sticky collector will be. |
| collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type); |
| if (use_generational_cc_) { |
| if (non_sticky_collector == nullptr) { |
| non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial); |
| } |
| CHECK(non_sticky_collector != nullptr); |
| } |
| double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_cc_); |
| |
| // If the throughput of the current sticky GC >= throughput of the non sticky collector, then |
| // do another sticky collection next. |
| // We also check that the bytes allocated aren't over the target_footprint, or |
| // concurrent_start_bytes in case of concurrent GCs, in order to prevent a |
| // pathological case where dead objects which aren't reclaimed by sticky could get accumulated |
| // if the sticky GC throughput always remained >= the full/partial throughput. |
| size_t target_footprint = target_footprint_.load(std::memory_order_relaxed); |
| if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >= |
| non_sticky_collector->GetEstimatedMeanThroughput() && |
| non_sticky_collector->NumberOfIterations() > 0 && |
| bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) { |
| next_gc_type_ = collector::kGcTypeSticky; |
| } else { |
| next_gc_type_ = non_sticky_gc_type; |
| } |
| // If we have freed enough memory, shrink the heap back down. |
| const size_t adjusted_max_free = static_cast<size_t>(max_free_ * multiplier); |
| if (bytes_allocated + adjusted_max_free < target_footprint) { |
| target_size = bytes_allocated + adjusted_max_free; |
| grow_bytes = max_free_; |
| } else { |
| target_size = std::max(bytes_allocated, target_footprint); |
| // The same whether jank perceptible or not; just avoid the adjustment. |
| grow_bytes = 0; |
| } |
| } |
| CHECK_LE(target_size, std::numeric_limits<size_t>::max()); |
| if (!ignore_target_footprint_) { |
| SetIdealFootprint(target_size); |
| // Store target size (computed with foreground heap growth multiplier) for updating |
| // target_footprint_ when process state switches to foreground. |
| // target_size = 0 ensures that target_footprint_ is not updated on |
| // process-state switch. |
| min_foreground_target_footprint_ = |
| (multiplier <= 1.0 && grow_bytes > 0) |
| ? std::min( |
| bytes_allocated + static_cast<size_t>(grow_bytes * foreground_heap_growth_multiplier_), |
| GetMaxMemory()) |
| : 0; |
| |
| if (IsGcConcurrent()) { |
| const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() + |
| current_gc_iteration_.GetFreedLargeObjectBytes() + |
| current_gc_iteration_.GetFreedRevokeBytes(); |
| // Records the number of bytes allocated at the time of GC finish,excluding the number of |
| // bytes allocated during GC. |
| num_bytes_alive_after_gc_ = UnsignedDifference(bytes_allocated_before_gc, freed_bytes); |
| // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out |
| // how many bytes were allocated during the GC we need to add freed_bytes back on. |
| // Almost always bytes_allocated + freed_bytes >= bytes_allocated_before_gc. |
| const size_t bytes_allocated_during_gc = |
| UnsignedDifference(bytes_allocated + freed_bytes, bytes_allocated_before_gc); |
| // Calculate when to perform the next ConcurrentGC. |
| // Estimate how many remaining bytes we will have when we need to start the next GC. |
| size_t remaining_bytes = bytes_allocated_during_gc; |
| remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes); |
| remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes); |
| size_t target_footprint = target_footprint_.load(std::memory_order_relaxed); |
| if (UNLIKELY(remaining_bytes > target_footprint)) { |
| // A never going to happen situation that from the estimated allocation rate we will exceed |
| // the applications entire footprint with the given estimated allocation rate. Schedule |
| // another GC nearly straight away. |
| remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint); |
| } |
| DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory()); |
| // Start a concurrent GC when we get close to the estimated remaining bytes. When the |
| // allocation rate is very high, remaining_bytes could tell us that we should start a GC |
| // right away. |
| concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated); |
| // Store concurrent_start_bytes_ (computed with foreground heap growth multiplier) for update |
| // itself when process state switches to foreground. |
| min_foreground_concurrent_start_bytes_ = |
| min_foreground_target_footprint_ != 0 |
| ? std::max(min_foreground_target_footprint_ - remaining_bytes, bytes_allocated) |
| : 0; |
| } |
| } |
| } |
| |
| void Heap::ClampGrowthLimit() { |
| // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap. |
| ScopedObjectAccess soa(Thread::Current()); |
| WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_); |
| capacity_ = growth_limit_; |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsMallocSpace()) { |
| gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); |
| malloc_space->ClampGrowthLimit(); |
| } |
| } |
| if (collector_type_ == kCollectorTypeCC) { |
| DCHECK(region_space_ != nullptr); |
| // Twice the capacity as CC needs extra space for evacuating objects. |
| region_space_->ClampGrowthLimit(2 * capacity_); |
| } |
| // This space isn't added for performance reasons. |
| if (main_space_backup_.get() != nullptr) { |
| main_space_backup_->ClampGrowthLimit(); |
| } |
| } |
| |
| void Heap::ClearGrowthLimit() { |
| if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_ |
| && growth_limit_ < capacity_) { |
| target_footprint_.store(capacity_, std::memory_order_relaxed); |
| SetDefaultConcurrentStartBytes(); |
| } |
| growth_limit_ = capacity_; |
| ScopedObjectAccess soa(Thread::Current()); |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsMallocSpace()) { |
| gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); |
| malloc_space->ClearGrowthLimit(); |
| malloc_space->SetFootprintLimit(malloc_space->Capacity()); |
| } |
| } |
| // This space isn't added for performance reasons. |
| if (main_space_backup_.get() != nullptr) { |
| main_space_backup_->ClearGrowthLimit(); |
| main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity()); |
| } |
| } |
| |
| void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) { |
| ScopedObjectAccess soa(self); |
| StackHandleScope<1u> hs(self); |
| // Use handle wrapper to update the `*object` if the object gets moved. |
| HandleWrapperObjPtr<mirror::Object> h_object = hs.NewHandleWrapper(object); |
| WellKnownClasses::java_lang_ref_FinalizerReference_add->InvokeStatic<'V', 'L'>( |
| self, h_object.Get()); |
| } |
| |
| void Heap::RequestConcurrentGCAndSaveObject(Thread* self, |
| bool force_full, |
| uint32_t observed_gc_num, |
| ObjPtr<mirror::Object>* obj) { |
| StackHandleScope<1> hs(self); |
| HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj)); |
| RequestConcurrentGC(self, kGcCauseBackground, force_full, observed_gc_num); |
| } |
| |
| class Heap::ConcurrentGCTask : public HeapTask { |
| public: |
| ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full, uint32_t gc_num) |
| : HeapTask(target_time), cause_(cause), force_full_(force_full), my_gc_num_(gc_num) {} |
| void Run(Thread* self) override { |
| Runtime* runtime = Runtime::Current(); |
| gc::Heap* heap = runtime->GetHeap(); |
| DCHECK(GCNumberLt(my_gc_num_, heap->GetCurrentGcNum() + 2)); // <= current_gc_num + 1 |
| heap->ConcurrentGC(self, cause_, force_full_, my_gc_num_); |
| CHECK_IMPLIES(GCNumberLt(heap->GetCurrentGcNum(), my_gc_num_), runtime->IsShuttingDown(self)); |
| } |
| |
| private: |
| const GcCause cause_; |
| const bool force_full_; // If true, force full (or partial) collection. |
| const uint32_t my_gc_num_; // Sequence number of requested GC. |
| }; |
| |
| static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) { |
| Runtime* runtime = Runtime::Current(); |
| return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) && |
| !self->IsHandlingStackOverflow(); |
| } |
| |
| bool Heap::RequestConcurrentGC(Thread* self, |
| GcCause cause, |
| bool force_full, |
| uint32_t observed_gc_num) { |
| uint32_t max_gc_requested = max_gc_requested_.load(std::memory_order_relaxed); |
| if (!GCNumberLt(observed_gc_num, max_gc_requested)) { |
| // observed_gc_num >= max_gc_requested: Nobody beat us to requesting the next gc. |
| if (CanAddHeapTask(self)) { |
| // Since observed_gc_num >= max_gc_requested, this increases max_gc_requested_, if successful. |
| if (max_gc_requested_.CompareAndSetStrongRelaxed(max_gc_requested, observed_gc_num + 1)) { |
| task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away. |
| cause, |
| force_full, |
| observed_gc_num + 1)); |
| } |
| DCHECK(GCNumberLt(observed_gc_num, max_gc_requested_.load(std::memory_order_relaxed))); |
| // If we increased max_gc_requested_, then we added a task that will eventually cause |
| // gcs_completed_ to be incremented (to at least observed_gc_num + 1). |
| // If the CAS failed, somebody else did. |
| return true; |
| } |
| return false; |
| } |
| return true; // Vacuously. |
| } |
| |
| void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num) { |
| if (!Runtime::Current()->IsShuttingDown(self)) { |
| // Wait for any GCs currently running to finish. If this incremented GC number, we're done. |
| WaitForGcToComplete(cause, self); |
| if (GCNumberLt(GetCurrentGcNum(), requested_gc_num)) { |
| collector::GcType next_gc_type = next_gc_type_; |
| // If forcing full and next gc type is sticky, override with a non-sticky type. |
| if (force_full && next_gc_type == collector::kGcTypeSticky) { |
| next_gc_type = NonStickyGcType(); |
| } |
| // If we can't run the GC type we wanted to run, find the next appropriate one and try |
| // that instead. E.g. can't do partial, so do full instead. |
| // We must ensure that we run something that ends up incrementing gcs_completed_. |
| // In the kGcTypePartial case, the initial CollectGarbageInternal call may not have that |
| // effect, but the subsequent KGcTypeFull call will. |
| if (CollectGarbageInternal(next_gc_type, cause, false, requested_gc_num) |
| == collector::kGcTypeNone) { |
| for (collector::GcType gc_type : gc_plan_) { |
| if (!GCNumberLt(GetCurrentGcNum(), requested_gc_num)) { |
| // Somebody did it for us. |
| break; |
| } |
| // Attempt to run the collector, if we succeed, we are done. |
| if (gc_type > next_gc_type && |
| CollectGarbageInternal(gc_type, cause, false, requested_gc_num) |
| != collector::kGcTypeNone) { |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| class Heap::CollectorTransitionTask : public HeapTask { |
| public: |
| explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {} |
| |
| void Run(Thread* self) override { |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| heap->DoPendingCollectorTransition(); |
| heap->ClearPendingCollectorTransition(self); |
| } |
| }; |
| |
| void Heap::ClearPendingCollectorTransition(Thread* self) { |
| MutexLock mu(self, *pending_task_lock_); |
| pending_collector_transition_ = nullptr; |
| } |
| |
| void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) { |
| Thread* self = Thread::Current(); |
| desired_collector_type_ = desired_collector_type; |
| if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) { |
| return; |
| } |
| if (collector_type_ == kCollectorTypeCC) { |
| // For CC, we invoke a full compaction when going to the background, but the collector type |
| // doesn't change. |
| DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground); |
| } |
| DCHECK_NE(collector_type_, kCollectorTypeCCBackground); |
| CollectorTransitionTask* added_task = nullptr; |
| const uint64_t target_time = NanoTime() + delta_time; |
| { |
| MutexLock mu(self, *pending_task_lock_); |
| // If we have an existing collector transition, update the target time to be the new target. |
| if (pending_collector_transition_ != nullptr) { |
| task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time); |
| return; |
| } |
| added_task = new CollectorTransitionTask(target_time); |
| pending_collector_transition_ = added_task; |
| } |
| task_processor_->AddTask(self, added_task); |
| } |
| |
| class Heap::HeapTrimTask : public HeapTask { |
| public: |
| explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { } |
| void Run(Thread* self) override { |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| heap->Trim(self); |
| heap->ClearPendingTrim(self); |
| } |
| }; |
| |
| void Heap::ClearPendingTrim(Thread* self) { |
| MutexLock mu(self, *pending_task_lock_); |
| pending_heap_trim_ = nullptr; |
| } |
| |
| void Heap::RequestTrim(Thread* self) { |
| if (!CanAddHeapTask(self)) { |
| return; |
| } |
| // GC completed and now we must decide whether to request a heap trim (advising pages back to the |
| // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans |
| // a space it will hold its lock and can become a cause of jank. |
| // Note, the large object space self trims and the Zygote space was trimmed and unchanging since |
| // forking. |
| |
| // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap |
| // because that only marks object heads, so a large array looks like lots of empty space. We |
| // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional |
| // to utilization (which is probably inversely proportional to how much benefit we can expect). |
| // We could try mincore(2) but that's only a measure of how many pages we haven't given away, |
| // not how much use we're making of those pages. |
| HeapTrimTask* added_task = nullptr; |
| { |
| MutexLock mu(self, *pending_task_lock_); |
| if (pending_heap_trim_ != nullptr) { |
| // Already have a heap trim request in task processor, ignore this request. |
| return; |
| } |
| added_task = new HeapTrimTask(kHeapTrimWait); |
| pending_heap_trim_ = added_task; |
| } |
| task_processor_->AddTask(self, added_task); |
| } |
| |
| void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) { |
| size_t previous_num_bytes_freed_revoke = |
| num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed); |
| // Check the updated value is less than the number of bytes allocated. There is a risk of |
| // execution being suspended between the increment above and the CHECK below, leading to |
| // the use of previous_num_bytes_freed_revoke in the comparison. |
| CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed), |
| previous_num_bytes_freed_revoke + freed_bytes_revoke); |
| } |
| |
| void Heap::RevokeThreadLocalBuffers(Thread* thread) { |
| if (rosalloc_space_ != nullptr) { |
| size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread); |
| if (freed_bytes_revoke > 0U) { |
| IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke); |
| } |
| } |
| if (bump_pointer_space_ != nullptr) { |
| CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U); |
| } |
| if (region_space_ != nullptr) { |
| CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U); |
| } |
| } |
| |
| void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) { |
| if (rosalloc_space_ != nullptr) { |
| size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread); |
| if (freed_bytes_revoke > 0U) { |
| IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke); |
| } |
| } |
| } |
| |
| void Heap::RevokeAllThreadLocalBuffers() { |
| if (rosalloc_space_ != nullptr) { |
| size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers(); |
| if (freed_bytes_revoke > 0U) { |
| IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke); |
| } |
| } |
| if (bump_pointer_space_ != nullptr) { |
| CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U); |
| } |
| if (region_space_ != nullptr) { |
| CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U); |
| } |
| } |
| |
| // For GC triggering purposes, we count old (pre-last-GC) and new native allocations as |
| // different fractions of Java allocations. |
| // For now, we essentially do not count old native allocations at all, so that we can preserve the |
| // existing behavior of not limiting native heap size. If we seriously considered it, we would |
| // have to adjust collection thresholds when we encounter large amounts of old native memory, |
| // and handle native out-of-memory situations. |
| |
| static constexpr size_t kOldNativeDiscountFactor = 65536; // Approximately infinite for now. |
| static constexpr size_t kNewNativeDiscountFactor = 2; |
| |
| // If weighted java + native memory use exceeds our target by kStopForNativeFactor, and |
| // newly allocated memory exceeds stop_for_native_allocs_, we wait for GC to complete to avoid |
| // running out of memory. |
| static constexpr float kStopForNativeFactor = 4.0; |
| |
| // Return the ratio of the weighted native + java allocated bytes to its target value. |
| // A return value > 1.0 means we should collect. Significantly larger values mean we're falling |
| // behind. |
| inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) { |
| // Collection check for native allocation. Does not enforce Java heap bounds. |
| // With adj_start_bytes defined below, effectively checks |
| // <java bytes allocd> + c1*<old native allocd> + c2*<new native allocd) >= adj_start_bytes, |
| // where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above. |
| size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed); |
| if (old_native_bytes > current_native_bytes) { |
| // Net decrease; skip the check, but update old value. |
| // It's OK to lose an update if two stores race. |
| old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed); |
| return 0.0; |
| } else { |
| size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes); |
| size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor |
| + old_native_bytes / kOldNativeDiscountFactor; |
| size_t add_bytes_allowed = static_cast<size_t>( |
| NativeAllocationGcWatermark() * HeapGrowthMultiplier()); |
| size_t java_gc_start_bytes = is_gc_concurrent |
| ? concurrent_start_bytes_ |
| : target_footprint_.load(std::memory_order_relaxed); |
| size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes, |
| add_bytes_allowed / kNewNativeDiscountFactor); |
| return static_cast<float>(GetBytesAllocated() + weighted_native_bytes) |
| / static_cast<float>(adj_start_bytes); |
| } |
| } |
| |
| inline void Heap::CheckGCForNative(Thread* self) { |
| bool is_gc_concurrent = IsGcConcurrent(); |
| uint32_t starting_gc_num = GetCurrentGcNum(); |
| size_t current_native_bytes = GetNativeBytes(); |
| float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent); |
| if (UNLIKELY(gc_urgency >= 1.0)) { |
| if (is_gc_concurrent) { |
| bool requested = |
| RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true, starting_gc_num); |
| if (requested && gc_urgency > kStopForNativeFactor |
| && current_native_bytes > stop_for_native_allocs_) { |
| // We're in danger of running out of memory due to rampant native allocation. |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency; |
| } |
| // Count how many times we do this, so we can warn if this becomes excessive. |
| // Stop after a while, out of excessive caution. |
| static constexpr int kGcWaitIters = 20; |
| for (int i = 1; i <= kGcWaitIters; ++i) { |
| if (!GCNumberLt(GetCurrentGcNum(), max_gc_requested_.load(std::memory_order_relaxed)) |
| || WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) { |
| break; |
| } |
| CHECK(GCNumberLt(starting_gc_num, max_gc_requested_.load(std::memory_order_relaxed))); |
| if (i % 10 == 0) { |
| LOG(WARNING) << "Slept " << i << " times in native allocation, waiting for GC"; |
| } |
| static constexpr int kGcWaitSleepMicros = 2000; |
| usleep(kGcWaitSleepMicros); // Encourage our requested GC to start. |
| } |
| } |
| } else { |
| CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false, starting_gc_num + 1); |
| } |
| } |
| } |
| |
| // About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect. |
| void Heap::NotifyNativeAllocations(JNIEnv* env) { |
| native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed); |
| CheckGCForNative(Thread::ForEnv(env)); |
| } |
| |
| // Register a native allocation with an explicit size. |
| // This should only be done for large allocations of non-malloc memory, which we wouldn't |
| // otherwise see. |
| void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) { |
| // Cautiously check for a wrapped negative bytes argument. |
| DCHECK(sizeof(size_t) < 8 || bytes < (std::numeric_limits<size_t>::max() / 2)); |
| native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed); |
| uint32_t objects_notified = |
| native_objects_notified_.fetch_add(1, std::memory_order_relaxed); |
| if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1 |
| || bytes > kCheckImmediatelyThreshold) { |
| CheckGCForNative(Thread::ForEnv(env)); |
| } |
| // Heap profiler treats this as a Java allocation with a null object. |
| JHPCheckNonTlabSampleAllocation(Thread::Current(), nullptr, bytes); |
| } |
| |
| void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) { |
| size_t allocated; |
| size_t new_freed_bytes; |
| do { |
| allocated = native_bytes_registered_.load(std::memory_order_relaxed); |
| new_freed_bytes = std::min(allocated, bytes); |
| // We should not be registering more free than allocated bytes. |
| // But correctly keep going in non-debug builds. |
| DCHECK_EQ(new_freed_bytes, bytes); |
| } while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated, |
| allocated - new_freed_bytes)); |
| } |
| |
| size_t Heap::GetTotalMemory() const { |
| return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated()); |
| } |
| |
| void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) { |
| DCHECK(mod_union_table != nullptr); |
| mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table); |
| } |
| |
| void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) { |
| // Compare rounded sizes since the allocation may have been retried after rounding the size. |
| // See b/37885600 |
| CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) || |
| (c->IsVariableSize() || |
| RoundUp(c->GetObjectSize(), kObjectAlignment) == |
| RoundUp(byte_count, kObjectAlignment))) |
| << "ClassFlags=" << c->GetClassFlags() |
| << " IsClassClass=" << c->IsClassClass() |
| << " byte_count=" << byte_count |
| << " IsVariableSize=" << c->IsVariableSize() |
| << " ObjectSize=" << c->GetObjectSize() |
| << " sizeof(Class)=" << sizeof(mirror::Class) |
| << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass"); |
| CHECK_GE(byte_count, sizeof(mirror::Object)); |
| } |
| |
| void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) { |
| CHECK(remembered_set != nullptr); |
| space::Space* space = remembered_set->GetSpace(); |
| CHECK(space != nullptr); |
| CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space; |
| remembered_sets_.Put(space, remembered_set); |
| CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space; |
| } |
| |
| void Heap::RemoveRememberedSet(space::Space* space) { |
| CHECK(space != nullptr); |
| auto it = remembered_sets_.find(space); |
| CHECK(it != remembered_sets_.end()); |
| delete it->second; |
| remembered_sets_.erase(it); |
| CHECK(remembered_sets_.find(space) == remembered_sets_.end()); |
| } |
| |
| void Heap::ClearMarkedObjects() { |
| // Clear all of the spaces' mark bitmaps. |
| for (const auto& space : GetContinuousSpaces()) { |
| if (space->GetLiveBitmap() != nullptr && !space->HasBoundBitmaps()) { |
| space->GetMarkBitmap()->Clear(); |
| } |
| } |
| // Clear the marked objects in the discontinous space object sets. |
| for (const auto& space : GetDiscontinuousSpaces()) { |
| space->GetMarkBitmap()->Clear(); |
| } |
| } |
| |
| void Heap::SetAllocationRecords(AllocRecordObjectMap* records) { |
| allocation_records_.reset(records); |
| } |
| |
| void Heap::VisitAllocationRecords(RootVisitor* visitor) const { |
| if (IsAllocTrackingEnabled()) { |
| MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); |
| if (IsAllocTrackingEnabled()) { |
| GetAllocationRecords()->VisitRoots(visitor); |
| } |
| } |
| } |
| |
| void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const { |
| if (IsAllocTrackingEnabled()) { |
| MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); |
| if (IsAllocTrackingEnabled()) { |
| GetAllocationRecords()->SweepAllocationRecords(visitor); |
| } |
| } |
| } |
| |
| void Heap::AllowNewAllocationRecords() const { |
| CHECK(!gUseReadBarrier); |
| MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); |
| AllocRecordObjectMap* allocation_records = GetAllocationRecords(); |
| if (allocation_records != nullptr) { |
| allocation_records->AllowNewAllocationRecords(); |
| } |
| } |
| |
| void Heap::DisallowNewAllocationRecords() const { |
| CHECK(!gUseReadBarrier); |
| MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); |
| AllocRecordObjectMap* allocation_records = GetAllocationRecords(); |
| if (allocation_records != nullptr) { |
| allocation_records->DisallowNewAllocationRecords(); |
| } |
| } |
| |
| void Heap::BroadcastForNewAllocationRecords() const { |
| // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may |
| // be set to false while some threads are waiting for system weak access in |
| // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554. |
| MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); |
| AllocRecordObjectMap* allocation_records = GetAllocationRecords(); |
| if (allocation_records != nullptr) { |
| allocation_records->BroadcastForNewAllocationRecords(); |
| } |
| } |
| |
| // Perfetto Java Heap Profiler Support. |
| |
| // Perfetto initialization. |
| void Heap::InitPerfettoJavaHeapProf() { |
| // Initialize Perfetto Heap info and Heap id. |
| uint32_t heap_id = 1; // Initialize to 1, to be overwritten by Perfetto heap id. |
| #ifdef ART_TARGET_ANDROID |
| // Register the heap and create the heapid. |
| // Use a Perfetto heap name = "com.android.art" for the Java Heap Profiler. |
| AHeapInfo* info = AHeapInfo_create("com.android.art"); |
| // Set the Enable Callback, there is no callback data ("nullptr"). |
| AHeapInfo_setEnabledCallback(info, &EnableHeapSamplerCallback, &heap_sampler_); |
| // Set the Disable Callback. |
| AHeapInfo_setDisabledCallback(info, &DisableHeapSamplerCallback, &heap_sampler_); |
| heap_id = AHeapProfile_registerHeap(info); |
| // Do not enable the Java Heap Profiler in this case, wait for Perfetto to enable it through |
| // the callback function. |
| #else |
| // This is the host case, enable the Java Heap Profiler for host testing. |
| // Perfetto API is currently not available on host. |
| heap_sampler_.EnableHeapSampler(); |
| #endif |
| heap_sampler_.SetHeapID(heap_id); |
| VLOG(heap) << "Java Heap Profiler Initialized"; |
| } |
| |
| // Check if the Java Heap Profiler is enabled and initialized. |
| int Heap::CheckPerfettoJHPEnabled() { |
| return GetHeapSampler().IsEnabled(); |
| } |
| |
| void Heap::JHPCheckNonTlabSampleAllocation(Thread* self, mirror::Object* obj, size_t alloc_size) { |
| bool take_sample = false; |
| size_t bytes_until_sample = 0; |
| HeapSampler& prof_heap_sampler = GetHeapSampler(); |
| if (prof_heap_sampler.IsEnabled()) { |
| // An allocation occurred, sample it, even if non-Tlab. |
| // In case take_sample is already set from the previous GetSampleOffset |
| // because we tried the Tlab allocation first, we will not use this value. |
| // A new value is generated below. Also bytes_until_sample will be updated. |
| // Note that we are not using the return value from the GetSampleOffset in |
| // the NonTlab case here. |
| prof_heap_sampler.GetSampleOffset(alloc_size, |
| self->GetTlabPosOffset(), |
| &take_sample, |
| &bytes_until_sample); |
| prof_heap_sampler.SetBytesUntilSample(bytes_until_sample); |
| if (take_sample) { |
| prof_heap_sampler.ReportSample(obj, alloc_size); |
| } |
| VLOG(heap) << "JHP:NonTlab Non-moving or Large Allocation or RegisterNativeAllocation"; |
| } |
| } |
| |
| size_t Heap::JHPCalculateNextTlabSize(Thread* self, |
| size_t jhp_def_tlab_size, |
| size_t alloc_size, |
| bool* take_sample, |
| size_t* bytes_until_sample) { |
| size_t next_tlab_size = jhp_def_tlab_size; |
| if (CheckPerfettoJHPEnabled()) { |
| size_t next_sample_point = |
| GetHeapSampler().GetSampleOffset(alloc_size, |
| self->GetTlabPosOffset(), |
| take_sample, |
| bytes_until_sample); |
| next_tlab_size = std::min(next_sample_point, jhp_def_tlab_size); |
| } |
| return next_tlab_size; |
| } |
| |
| void Heap::AdjustSampleOffset(size_t adjustment) { |
| GetHeapSampler().AdjustSampleOffset(adjustment); |
| } |
| |
| void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) { |
| DCHECK(gc_stress_mode_); |
| auto* const runtime = Runtime::Current(); |
| if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) { |
| // Check if we should GC. |
| bool new_backtrace = false; |
| { |
| static constexpr size_t kMaxFrames = 16u; |
| MutexLock mu(self, *backtrace_lock_); |
| FixedSizeBacktrace<kMaxFrames> backtrace; |
| backtrace.Collect(/* skip_count= */ 2); |
| uint64_t hash = backtrace.Hash(); |
| new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end(); |
| if (new_backtrace) { |
| seen_backtraces_.insert(hash); |
| } |
| } |
| if (new_backtrace) { |
| StackHandleScope<1> hs(self); |
| auto h = hs.NewHandleWrapper(obj); |
| CollectGarbage(/* clear_soft_references= */ false); |
| unique_backtrace_count_.fetch_add(1); |
| } else { |
| seen_backtrace_count_.fetch_add(1); |
| } |
| } |
| } |
| |
| void Heap::DisableGCForShutdown() { |
| MutexLock mu(Thread::Current(), *gc_complete_lock_); |
| gc_disabled_for_shutdown_ = true; |
| } |
| |
| bool Heap::IsGCDisabledForShutdown() const { |
| MutexLock mu(Thread::Current(), *gc_complete_lock_); |
| return gc_disabled_for_shutdown_; |
| } |
| |
| bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const { |
| DCHECK_EQ(IsBootImageAddress(obj.Ptr()), |
| any_of(boot_image_spaces_.begin(), |
| boot_image_spaces_.end(), |
| [obj](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return space->HasAddress(obj.Ptr()); |
| })); |
| return IsBootImageAddress(obj.Ptr()); |
| } |
| |
| bool Heap::IsInBootImageOatFile(const void* p) const { |
| DCHECK_EQ(IsBootImageAddress(p), |
| any_of(boot_image_spaces_.begin(), |
| boot_image_spaces_.end(), |
| [p](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return space->GetOatFile()->Contains(p); |
| })); |
| return IsBootImageAddress(p); |
| } |
| |
| void Heap::SetAllocationListener(AllocationListener* l) { |
| AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l); |
| |
| if (old == nullptr) { |
| Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints(); |
| } |
| } |
| |
| void Heap::RemoveAllocationListener() { |
| AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr); |
| |
| if (old != nullptr) { |
| Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints(); |
| } |
| } |
| |
| void Heap::SetGcPauseListener(GcPauseListener* l) { |
| gc_pause_listener_.store(l, std::memory_order_relaxed); |
| } |
| |
| void Heap::RemoveGcPauseListener() { |
| gc_pause_listener_.store(nullptr, std::memory_order_relaxed); |
| } |
| |
| mirror::Object* Heap::AllocWithNewTLAB(Thread* self, |
| AllocatorType allocator_type, |
| size_t alloc_size, |
| bool grow, |
| size_t* bytes_allocated, |
| size_t* usable_size, |
| size_t* bytes_tl_bulk_allocated) { |
| mirror::Object* ret = nullptr; |
| bool take_sample = false; |
| size_t bytes_until_sample = 0; |
| |
| if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) { |
| DCHECK_GT(alloc_size, self->TlabSize()); |
| // There is enough space if we grow the TLAB. Lets do that. This increases the |
| // TLAB bytes. |
| const size_t min_expand_size = alloc_size - self->TlabSize(); |
| size_t next_tlab_size = JHPCalculateNextTlabSize(self, |
| kPartialTlabSize, |
| alloc_size, |
| &take_sample, |
| &bytes_until_sample); |
| const size_t expand_bytes = std::max( |
| min_expand_size, |
| std::min(self->TlabRemainingCapacity() - self->TlabSize(), next_tlab_size)); |
| if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) { |
| return nullptr; |
| } |
| *bytes_tl_bulk_allocated = expand_bytes; |
| self->ExpandTlab(expand_bytes); |
| DCHECK_LE(alloc_size, self->TlabSize()); |
| } else if (allocator_type == kAllocatorTypeTLAB) { |
| DCHECK(bump_pointer_space_ != nullptr); |
| // Try to allocate a page-aligned TLAB (not necessary though). |
| // TODO: for large allocations, which are rare, maybe we should allocate |
| // that object and return. There is no need to revoke the current TLAB, |
| // particularly if it's mostly unutilized. |
| size_t def_pr_tlab_size = RoundDown(alloc_size + kDefaultTLABSize, kPageSize) - alloc_size; |
| size_t next_tlab_size = JHPCalculateNextTlabSize(self, |
| def_pr_tlab_size, |
| alloc_size, |
| &take_sample, |
| &bytes_until_sample); |
| const size_t new_tlab_size = alloc_size + next_tlab_size; |
| if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) { |
| return nullptr; |
| } |
| // Try allocating a new thread local buffer, if the allocation fails the space must be |
| // full so return null. |
| if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) { |
| return nullptr; |
| } |
| *bytes_tl_bulk_allocated = new_tlab_size; |
| if (CheckPerfettoJHPEnabled()) { |
| VLOG(heap) << "JHP:kAllocatorTypeTLAB, New Tlab bytes allocated= " << new_tlab_size; |
| } |
| } else { |
| DCHECK(allocator_type == kAllocatorTypeRegionTLAB); |
| DCHECK(region_space_ != nullptr); |
| if (space::RegionSpace::kRegionSize >= alloc_size) { |
| // Non-large. Check OOME for a tlab. |
| if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, |
| space::RegionSpace::kRegionSize, |
| grow))) { |
| size_t def_pr_tlab_size = kUsePartialTlabs |
| ? kPartialTlabSize |
| : gc::space::RegionSpace::kRegionSize; |
| size_t next_pr_tlab_size = JHPCalculateNextTlabSize(self, |
| def_pr_tlab_size, |
| alloc_size, |
| &take_sample, |
| &bytes_until_sample); |
| const size_t new_tlab_size = kUsePartialTlabs |
| ? std::max(alloc_size, next_pr_tlab_size) |
| : next_pr_tlab_size; |
| // Try to allocate a tlab. |
| if (!region_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) { |
| // Failed to allocate a tlab. Try non-tlab. |
| ret = region_space_->AllocNonvirtual<false>(alloc_size, |
| bytes_allocated, |
| usable_size, |
| bytes_tl_bulk_allocated); |
| JHPCheckNonTlabSampleAllocation(self, ret, alloc_size); |
| return ret; |
| } |
| // Fall-through to using the TLAB below. |
| } else { |
| // Check OOME for a non-tlab allocation. |
| if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) { |
| ret = region_space_->AllocNonvirtual<false>(alloc_size, |
| bytes_allocated, |
| usable_size, |
| bytes_tl_bulk_allocated); |
| JHPCheckNonTlabSampleAllocation(self, ret, alloc_size); |
| return ret; |
| } |
| // Neither tlab or non-tlab works. Give up. |
| return nullptr; |
| } |
| } else { |
| // Large. Check OOME. |
| if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) { |
| ret = region_space_->AllocNonvirtual<false>(alloc_size, |
| bytes_allocated, |
| usable_size, |
| bytes_tl_bulk_allocated); |
| JHPCheckNonTlabSampleAllocation(self, ret, alloc_size); |
| return ret; |
| } |
| return nullptr; |
| } |
| } |
| // Refilled TLAB, return. |
| ret = self->AllocTlab(alloc_size); |
| DCHECK(ret != nullptr); |
| *bytes_allocated = alloc_size; |
| *usable_size = alloc_size; |
| |
| // JavaHeapProfiler: Send the thread information about this allocation in case a sample is |
| // requested. |
| // This is the fallthrough from both the if and else if above cases => Cases that use TLAB. |
| if (CheckPerfettoJHPEnabled()) { |
| if (take_sample) { |
| GetHeapSampler().ReportSample(ret, alloc_size); |
| // Update the bytes_until_sample now that the allocation is already done. |
| GetHeapSampler().SetBytesUntilSample(bytes_until_sample); |
| } |
| VLOG(heap) << "JHP:Fallthrough Tlab allocation"; |
| } |
| |
| return ret; |
| } |
| |
| const Verification* Heap::GetVerification() const { |
| return verification_.get(); |
| } |
| |
| void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) { |
| VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to " |
| << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation"; |
| } |
| |
| // Run a gc if we haven't run one since initial_gc_num. This forces processes to |
| // reclaim memory allocated during startup, even if they don't do much |
| // allocation post startup. If the process is actively allocating and triggering |
| // GCs, or has moved to the background and hence forced a GC, this does nothing. |
| class Heap::TriggerPostForkCCGcTask : public HeapTask { |
| public: |
| explicit TriggerPostForkCCGcTask(uint64_t target_time, uint32_t initial_gc_num) : |
| HeapTask(target_time), initial_gc_num_(initial_gc_num) {} |
| void Run(Thread* self) override { |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| if (heap->GetCurrentGcNum() == initial_gc_num_) { |
| if (kLogAllGCs) { |
| LOG(INFO) << "Forcing GC for allocation-inactive process"; |
| } |
| heap->RequestConcurrentGC(self, kGcCauseBackground, false, initial_gc_num_); |
| } |
| } |
| private: |
| uint32_t initial_gc_num_; |
| }; |
| |
| // Reduce target footprint, if no GC has occurred since initial_gc_num. |
| // If a GC already occurred, it will have done this for us. |
| class Heap::ReduceTargetFootprintTask : public HeapTask { |
| public: |
| explicit ReduceTargetFootprintTask(uint64_t target_time, size_t new_target_sz, |
| uint32_t initial_gc_num) : |
| HeapTask(target_time), new_target_sz_(new_target_sz), initial_gc_num_(initial_gc_num) {} |
| void Run(Thread* self) override { |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| MutexLock mu(self, *(heap->gc_complete_lock_)); |
| if (heap->GetCurrentGcNum() == initial_gc_num_ |
| && heap->collector_type_running_ == kCollectorTypeNone) { |
| size_t target_footprint = heap->target_footprint_.load(std::memory_order_relaxed); |
| if (target_footprint > new_target_sz_) { |
| if (heap->target_footprint_.CompareAndSetStrongRelaxed(target_footprint, new_target_sz_)) { |
| heap->SetDefaultConcurrentStartBytesLocked(); |
| } |
| } |
| } |
| } |
| private: |
| size_t new_target_sz_; |
| uint32_t initial_gc_num_; |
| }; |
| |
| // Return a pseudo-random integer between 0 and 19999, using the uid as a seed. We want this to |
| // be deterministic for a given process, but to vary randomly across processes. Empirically, the |
| // uids for processes for which this matters are distinct. |
| static uint32_t GetPseudoRandomFromUid() { |
| std::default_random_engine rng(getuid()); |
| std::uniform_int_distribution<int> dist(0, 19999); |
| return dist(rng); |
| } |
| |
| void Heap::PostForkChildAction(Thread* self) { |
| uint32_t starting_gc_num = GetCurrentGcNum(); |
| uint64_t last_adj_time = NanoTime(); |
| next_gc_type_ = NonStickyGcType(); // Always start with a full gc. |
| |
| LOG(INFO) << "Using " << foreground_collector_type_ << " GC."; |
| if (gUseUserfaultfd) { |
| DCHECK_NE(mark_compact_, nullptr); |
| mark_compact_->CreateUserfaultfd(/*post_fork*/true); |
| } |
| |
| // Temporarily increase target_footprint_ and concurrent_start_bytes_ to |
| // max values to avoid GC during app launch. |
| // Set target_footprint_ to the largest allowed value. |
| SetIdealFootprint(growth_limit_); |
| SetDefaultConcurrentStartBytes(); |
| |
| // Shrink heap after kPostForkMaxHeapDurationMS, to force a memory hog process to GC. |
| // This remains high enough that many processes will continue without a GC. |
| if (initial_heap_size_ < growth_limit_) { |
| size_t first_shrink_size = std::max(growth_limit_ / 4, initial_heap_size_); |
| last_adj_time += MsToNs(kPostForkMaxHeapDurationMS); |
| GetTaskProcessor()->AddTask( |
| self, new ReduceTargetFootprintTask(last_adj_time, first_shrink_size, starting_gc_num)); |
| // Shrink to a small value after a substantial time period. This will typically force a |
| // GC if none has occurred yet. Has no effect if there was a GC before this anyway, which |
| // is commonly the case, e.g. because of a process transition. |
| if (initial_heap_size_ < first_shrink_size) { |
| last_adj_time += MsToNs(4 * kPostForkMaxHeapDurationMS); |
| GetTaskProcessor()->AddTask( |
| self, |
| new ReduceTargetFootprintTask(last_adj_time, initial_heap_size_, starting_gc_num)); |
| } |
| } |
| // Schedule a GC after a substantial period of time. This will become a no-op if another GC is |
| // scheduled in the interim. If not, we want to avoid holding onto start-up garbage. |
| uint64_t post_fork_gc_time = last_adj_time |
| + MsToNs(4 * kPostForkMaxHeapDurationMS + GetPseudoRandomFromUid()); |
| GetTaskProcessor()->AddTask(self, |
| new TriggerPostForkCCGcTask(post_fork_gc_time, starting_gc_num)); |
| } |
| |
| void Heap::VisitReflectiveTargets(ReflectiveValueVisitor *visit) { |
| VisitObjectsPaused([&visit](mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS { |
| art::ObjPtr<mirror::Class> klass(ref->GetClass()); |
| // All these classes are in the BootstrapClassLoader. |
| if (!klass->IsBootStrapClassLoaded()) { |
| return; |
| } |
| if (GetClassRoot<mirror::Method>()->IsAssignableFrom(klass) || |
| GetClassRoot<mirror::Constructor>()->IsAssignableFrom(klass)) { |
| down_cast<mirror::Executable*>(ref)->VisitTarget(visit); |
| } else if (art::GetClassRoot<art::mirror::Field>() == klass) { |
| down_cast<mirror::Field*>(ref)->VisitTarget(visit); |
| } else if (art::GetClassRoot<art::mirror::MethodHandle>()->IsAssignableFrom(klass)) { |
| down_cast<mirror::MethodHandle*>(ref)->VisitTarget(visit); |
| } else if (art::GetClassRoot<art::mirror::StaticFieldVarHandle>()->IsAssignableFrom(klass)) { |
| down_cast<mirror::StaticFieldVarHandle*>(ref)->VisitTarget(visit); |
| } else if (art::GetClassRoot<art::mirror::FieldVarHandle>()->IsAssignableFrom(klass)) { |
| down_cast<mirror::FieldVarHandle*>(ref)->VisitTarget(visit); |
| } else if (art::GetClassRoot<art::mirror::DexCache>()->IsAssignableFrom(klass)) { |
| down_cast<mirror::DexCache*>(ref)->VisitReflectiveTargets(visit); |
| } |
| }); |
| } |
| |
| bool Heap::AddHeapTask(gc::HeapTask* task) { |
| Thread* const self = Thread::Current(); |
| if (!CanAddHeapTask(self)) { |
| return false; |
| } |
| GetTaskProcessor()->AddTask(self, task); |
| return true; |
| } |
| |
| } // namespace gc |
| } // namespace art |