blob: b76d74ae79e438f954254b129f141ad201260271 [file] [log] [blame]
/* Copyright (C) 2016 The Android Open Source Project
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This file implements interfaces from the file jvmti.h. This implementation
* is licensed under the same terms as the file jvmti.h. The
* copyright and license information for the file jvmti.h follows.
*
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "ti_redefine.h"
#include <limits>
#include "android-base/stringprintf.h"
#include "art_jvmti.h"
#include "base/array_slice.h"
#include "base/logging.h"
#include "dex_file.h"
#include "dex_file_types.h"
#include "events-inl.h"
#include "gc/allocation_listener.h"
#include "gc/heap.h"
#include "instrumentation.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "jni_env_ext-inl.h"
#include "jvmti_allocator.h"
#include "mirror/class.h"
#include "mirror/class_ext.h"
#include "mirror/object.h"
#include "object_lock.h"
#include "runtime.h"
#include "ScopedLocalRef.h"
#include "ti_class_loader.h"
#include "transform.h"
namespace openjdkjvmti {
using android::base::StringPrintf;
// This visitor walks thread stacks and allocates and sets up the obsolete methods. It also does
// some basic sanity checks that the obsolete method is sane.
class ObsoleteMethodStackVisitor : public art::StackVisitor {
protected:
ObsoleteMethodStackVisitor(
art::Thread* thread,
art::LinearAlloc* allocator,
const std::unordered_set<art::ArtMethod*>& obsoleted_methods,
/*out*/std::unordered_map<art::ArtMethod*, art::ArtMethod*>* obsolete_maps)
: StackVisitor(thread,
/*context*/nullptr,
StackVisitor::StackWalkKind::kIncludeInlinedFrames),
allocator_(allocator),
obsoleted_methods_(obsoleted_methods),
obsolete_maps_(obsolete_maps),
is_runtime_frame_(false) {
}
~ObsoleteMethodStackVisitor() OVERRIDE {}
public:
// Returns true if we successfully installed obsolete methods on this thread, filling
// obsolete_maps_ with the translations if needed. Returns false and fills error_msg if we fail.
// The stack is cleaned up when we fail.
static void UpdateObsoleteFrames(
art::Thread* thread,
art::LinearAlloc* allocator,
const std::unordered_set<art::ArtMethod*>& obsoleted_methods,
/*out*/std::unordered_map<art::ArtMethod*, art::ArtMethod*>* obsolete_maps)
REQUIRES(art::Locks::mutator_lock_) {
ObsoleteMethodStackVisitor visitor(thread,
allocator,
obsoleted_methods,
obsolete_maps);
visitor.WalkStack();
}
bool VisitFrame() OVERRIDE REQUIRES(art::Locks::mutator_lock_) {
art::ArtMethod* old_method = GetMethod();
// TODO REMOVE once either current_method doesn't stick around through suspend points or deopt
// works through runtime methods.
bool prev_was_runtime_frame_ = is_runtime_frame_;
is_runtime_frame_ = old_method->IsRuntimeMethod();
if (obsoleted_methods_.find(old_method) != obsoleted_methods_.end()) {
// The check below works since when we deoptimize we set shadow frames for all frames until a
// native/runtime transition and for those set the return PC to a function that will complete
// the deoptimization. This does leave us with the unfortunate side-effect that frames just
// below runtime frames cannot be deoptimized at the moment.
// TODO REMOVE once either current_method doesn't stick around through suspend points or deopt
// works through runtime methods.
// TODO b/33616143
if (!IsShadowFrame() && prev_was_runtime_frame_) {
LOG(FATAL) << "Deoptimization failed due to runtime method in stack. See b/33616143";
}
// We cannot ensure that the right dex file is used in inlined frames so we don't support
// redefining them.
DCHECK(!IsInInlinedFrame()) << "Inlined frames are not supported when using redefinition";
// TODO We should really support intrinsic obsolete methods.
// TODO We should really support redefining intrinsics.
// We don't support intrinsics so check for them here.
DCHECK(!old_method->IsIntrinsic());
art::ArtMethod* new_obsolete_method = nullptr;
auto obsolete_method_pair = obsolete_maps_->find(old_method);
if (obsolete_method_pair == obsolete_maps_->end()) {
// Create a new Obsolete Method and put it in the list.
art::Runtime* runtime = art::Runtime::Current();
art::ClassLinker* cl = runtime->GetClassLinker();
auto ptr_size = cl->GetImagePointerSize();
const size_t method_size = art::ArtMethod::Size(ptr_size);
auto* method_storage = allocator_->Alloc(GetThread(), method_size);
CHECK(method_storage != nullptr) << "Unable to allocate storage for obsolete version of '"
<< old_method->PrettyMethod() << "'";
new_obsolete_method = new (method_storage) art::ArtMethod();
new_obsolete_method->CopyFrom(old_method, ptr_size);
DCHECK_EQ(new_obsolete_method->GetDeclaringClass(), old_method->GetDeclaringClass());
new_obsolete_method->SetIsObsolete();
obsolete_maps_->insert({old_method, new_obsolete_method});
// Update JIT Data structures to point to the new method.
art::jit::Jit* jit = art::Runtime::Current()->GetJit();
if (jit != nullptr) {
// Notify the JIT we are making this obsolete method. It will update the jit's internal
// structures to keep track of the new obsolete method.
jit->GetCodeCache()->MoveObsoleteMethod(old_method, new_obsolete_method);
}
} else {
new_obsolete_method = obsolete_method_pair->second;
}
DCHECK(new_obsolete_method != nullptr);
SetMethod(new_obsolete_method);
}
return true;
}
private:
// The linear allocator we should use to make new methods.
art::LinearAlloc* allocator_;
// The set of all methods which could be obsoleted.
const std::unordered_set<art::ArtMethod*>& obsoleted_methods_;
// A map from the original to the newly allocated obsolete method for frames on this thread. The
// values in this map must be added to the obsolete_methods_ (and obsolete_dex_caches_) fields of
// the redefined classes ClassExt by the caller.
std::unordered_map<art::ArtMethod*, art::ArtMethod*>* obsolete_maps_;
// TODO REMOVE once either current_method doesn't stick around through suspend points or deopt
// works through runtime methods.
bool is_runtime_frame_;
};
jvmtiError Redefiner::IsModifiableClass(jvmtiEnv* env ATTRIBUTE_UNUSED,
jclass klass,
jboolean* is_redefinable) {
// TODO Check for the appropriate feature flags once we have enabled them.
art::Thread* self = art::Thread::Current();
art::ScopedObjectAccess soa(self);
art::StackHandleScope<1> hs(self);
art::ObjPtr<art::mirror::Object> obj(self->DecodeJObject(klass));
if (obj.IsNull()) {
return ERR(INVALID_CLASS);
}
art::Handle<art::mirror::Class> h_klass(hs.NewHandle(obj->AsClass()));
std::string err_unused;
*is_redefinable =
Redefiner::GetClassRedefinitionError(h_klass, &err_unused) == OK ? JNI_TRUE : JNI_FALSE;
return OK;
}
jvmtiError Redefiner::GetClassRedefinitionError(art::Handle<art::mirror::Class> klass,
/*out*/std::string* error_msg) {
if (klass->IsPrimitive()) {
*error_msg = "Modification of primitive classes is not supported";
return ERR(UNMODIFIABLE_CLASS);
} else if (klass->IsInterface()) {
*error_msg = "Modification of Interface classes is currently not supported";
return ERR(UNMODIFIABLE_CLASS);
} else if (klass->IsArrayClass()) {
*error_msg = "Modification of Array classes is not supported";
return ERR(UNMODIFIABLE_CLASS);
} else if (klass->IsProxyClass()) {
*error_msg = "Modification of proxy classes is not supported";
return ERR(UNMODIFIABLE_CLASS);
}
// TODO We should check if the class has non-obsoletable methods on the stack
LOG(WARNING) << "presence of non-obsoletable methods on stacks is not currently checked";
return OK;
}
// Moves dex data to an anonymous, read-only mmap'd region.
std::unique_ptr<art::MemMap> Redefiner::MoveDataToMemMap(const std::string& original_location,
jint data_len,
const unsigned char* dex_data,
std::string* error_msg) {
std::unique_ptr<art::MemMap> map(art::MemMap::MapAnonymous(
StringPrintf("%s-transformed", original_location.c_str()).c_str(),
nullptr,
data_len,
PROT_READ|PROT_WRITE,
/*low_4gb*/false,
/*reuse*/false,
error_msg));
if (map == nullptr) {
return map;
}
memcpy(map->Begin(), dex_data, data_len);
// Make the dex files mmap read only. This matches how other DexFiles are mmaped and prevents
// programs from corrupting it.
map->Protect(PROT_READ);
return map;
}
Redefiner::ClassRedefinition::ClassRedefinition(
Redefiner* driver,
jclass klass,
const art::DexFile* redefined_dex_file,
const char* class_sig,
art::ArraySlice<const unsigned char> orig_dex_file) :
driver_(driver),
klass_(klass),
dex_file_(redefined_dex_file),
class_sig_(class_sig),
original_dex_file_(orig_dex_file) {
GetMirrorClass()->MonitorEnter(driver_->self_);
}
Redefiner::ClassRedefinition::~ClassRedefinition() {
if (driver_ != nullptr) {
GetMirrorClass()->MonitorExit(driver_->self_);
}
}
jvmtiError Redefiner::RedefineClasses(ArtJvmTiEnv* env,
art::Runtime* runtime,
art::Thread* self,
jint class_count,
const jvmtiClassDefinition* definitions,
/*out*/std::string* error_msg) {
if (env == nullptr) {
*error_msg = "env was null!";
return ERR(INVALID_ENVIRONMENT);
} else if (class_count < 0) {
*error_msg = "class_count was less then 0";
return ERR(ILLEGAL_ARGUMENT);
} else if (class_count == 0) {
// We don't actually need to do anything. Just return OK.
return OK;
} else if (definitions == nullptr) {
*error_msg = "null definitions!";
return ERR(NULL_POINTER);
}
std::vector<ArtClassDefinition> def_vector;
def_vector.reserve(class_count);
for (jint i = 0; i < class_count; i++) {
// We make a copy of the class_bytes to pass into the retransformation.
// This makes cleanup easier (since we unambiguously own the bytes) and also is useful since we
// will need to keep the original bytes around unaltered for subsequent RetransformClasses calls
// to get the passed in bytes.
// TODO Implement saving the original bytes.
unsigned char* class_bytes_copy = nullptr;
jvmtiError res = env->Allocate(definitions[i].class_byte_count, &class_bytes_copy);
if (res != OK) {
return res;
}
memcpy(class_bytes_copy, definitions[i].class_bytes, definitions[i].class_byte_count);
ArtClassDefinition def;
def.dex_len = definitions[i].class_byte_count;
def.dex_data = MakeJvmtiUniquePtr(env, class_bytes_copy);
// We are definitely modified.
def.SetModified();
def.original_dex_file = art::ArraySlice<const unsigned char>(definitions[i].class_bytes,
definitions[i].class_byte_count);
res = Transformer::FillInTransformationData(env, definitions[i].klass, &def);
if (res != OK) {
return res;
}
def_vector.push_back(std::move(def));
}
// Call all the transformation events.
jvmtiError res = Transformer::RetransformClassesDirect(env,
self,
&def_vector);
if (res != OK) {
// Something went wrong with transformation!
return res;
}
return RedefineClassesDirect(env, runtime, self, def_vector, error_msg);
}
jvmtiError Redefiner::RedefineClassesDirect(ArtJvmTiEnv* env,
art::Runtime* runtime,
art::Thread* self,
const std::vector<ArtClassDefinition>& definitions,
std::string* error_msg) {
DCHECK(env != nullptr);
if (definitions.size() == 0) {
// We don't actually need to do anything. Just return OK.
return OK;
}
// Stop JIT for the duration of this redefine since the JIT might concurrently compile a method we
// are going to redefine.
art::jit::ScopedJitSuspend suspend_jit;
// Get shared mutator lock so we can lock all the classes.
art::ScopedObjectAccess soa(self);
Redefiner r(runtime, self, error_msg);
for (const ArtClassDefinition& def : definitions) {
// Only try to transform classes that have been modified.
if (def.IsModified(self)) {
jvmtiError res = r.AddRedefinition(env, def);
if (res != OK) {
return res;
}
}
}
return r.Run();
}
jvmtiError Redefiner::AddRedefinition(ArtJvmTiEnv* env, const ArtClassDefinition& def) {
std::string original_dex_location;
jvmtiError ret = OK;
if ((ret = GetClassLocation(env, def.klass, &original_dex_location))) {
*error_msg_ = "Unable to get original dex file location!";
return ret;
}
char* generic_ptr_unused = nullptr;
char* signature_ptr = nullptr;
if ((ret = env->GetClassSignature(def.klass, &signature_ptr, &generic_ptr_unused)) != OK) {
*error_msg_ = "Unable to get class signature!";
return ret;
}
JvmtiUniquePtr generic_unique_ptr(MakeJvmtiUniquePtr(env, generic_ptr_unused));
JvmtiUniquePtr signature_unique_ptr(MakeJvmtiUniquePtr(env, signature_ptr));
std::unique_ptr<art::MemMap> map(MoveDataToMemMap(original_dex_location,
def.dex_len,
def.dex_data.get(),
error_msg_));
std::ostringstream os;
if (map.get() == nullptr) {
os << "Failed to create anonymous mmap for modified dex file of class " << def.name
<< "in dex file " << original_dex_location << " because: " << *error_msg_;
*error_msg_ = os.str();
return ERR(OUT_OF_MEMORY);
}
if (map->Size() < sizeof(art::DexFile::Header)) {
*error_msg_ = "Could not read dex file header because dex_data was too short";
return ERR(INVALID_CLASS_FORMAT);
}
uint32_t checksum = reinterpret_cast<const art::DexFile::Header*>(map->Begin())->checksum_;
std::unique_ptr<const art::DexFile> dex_file(art::DexFile::Open(map->GetName(),
checksum,
std::move(map),
/*verify*/true,
/*verify_checksum*/true,
error_msg_));
if (dex_file.get() == nullptr) {
os << "Unable to load modified dex file for " << def.name << ": " << *error_msg_;
*error_msg_ = os.str();
return ERR(INVALID_CLASS_FORMAT);
}
redefinitions_.push_back(
Redefiner::ClassRedefinition(this,
def.klass,
dex_file.release(),
signature_ptr,
def.original_dex_file));
return OK;
}
art::mirror::Class* Redefiner::ClassRedefinition::GetMirrorClass() {
return driver_->self_->DecodeJObject(klass_)->AsClass();
}
art::mirror::ClassLoader* Redefiner::ClassRedefinition::GetClassLoader() {
return GetMirrorClass()->GetClassLoader();
}
art::mirror::DexCache* Redefiner::ClassRedefinition::CreateNewDexCache(
art::Handle<art::mirror::ClassLoader> loader) {
return driver_->runtime_->GetClassLinker()->RegisterDexFile(*dex_file_, loader.Get());
}
void Redefiner::RecordFailure(jvmtiError result,
const std::string& class_sig,
const std::string& error_msg) {
*error_msg_ = StringPrintf("Unable to perform redefinition of '%s': %s",
class_sig.c_str(),
error_msg.c_str());
result_ = result;
}
art::mirror::ByteArray* Redefiner::ClassRedefinition::AllocateOrGetOriginalDexFileBytes() {
// If we have been specifically given a new set of bytes use that
if (original_dex_file_.size() != 0) {
return art::mirror::ByteArray::AllocateAndFill(
driver_->self_,
reinterpret_cast<const signed char*>(&original_dex_file_.At(0)),
original_dex_file_.size());
}
// See if we already have one set.
art::ObjPtr<art::mirror::ClassExt> ext(GetMirrorClass()->GetExtData());
if (!ext.IsNull()) {
art::ObjPtr<art::mirror::ByteArray> old_original_bytes(ext->GetOriginalDexFileBytes());
if (!old_original_bytes.IsNull()) {
// We do. Use it.
return old_original_bytes.Ptr();
}
}
// Copy the current dex_file
const art::DexFile& current_dex_file = GetMirrorClass()->GetDexFile();
// TODO Handle this or make it so it cannot happen.
if (current_dex_file.NumClassDefs() != 1) {
LOG(WARNING) << "Current dex file has more than one class in it. Calling RetransformClasses "
<< "on this class might fail if no transformations are applied to it!";
}
return art::mirror::ByteArray::AllocateAndFill(
driver_->self_,
reinterpret_cast<const signed char*>(current_dex_file.Begin()),
current_dex_file.Size());
}
struct CallbackCtx {
art::LinearAlloc* allocator;
std::unordered_map<art::ArtMethod*, art::ArtMethod*> obsolete_map;
std::unordered_set<art::ArtMethod*> obsolete_methods;
explicit CallbackCtx(art::LinearAlloc* alloc) : allocator(alloc) {}
};
void DoAllocateObsoleteMethodsCallback(art::Thread* t, void* vdata) NO_THREAD_SAFETY_ANALYSIS {
CallbackCtx* data = reinterpret_cast<CallbackCtx*>(vdata);
ObsoleteMethodStackVisitor::UpdateObsoleteFrames(t,
data->allocator,
data->obsolete_methods,
&data->obsolete_map);
}
// This creates any ArtMethod* structures needed for obsolete methods and ensures that the stack is
// updated so they will be run.
// TODO Rewrite so we can do this only once regardless of how many redefinitions there are.
void Redefiner::ClassRedefinition::FindAndAllocateObsoleteMethods(art::mirror::Class* art_klass) {
art::ScopedAssertNoThreadSuspension ns("No thread suspension during thread stack walking");
art::mirror::ClassExt* ext = art_klass->GetExtData();
CHECK(ext->GetObsoleteMethods() != nullptr);
CallbackCtx ctx(art_klass->GetClassLoader()->GetAllocator());
// Add all the declared methods to the map
for (auto& m : art_klass->GetDeclaredMethods(art::kRuntimePointerSize)) {
ctx.obsolete_methods.insert(&m);
// TODO Allow this or check in IsModifiableClass.
DCHECK(!m.IsIntrinsic());
}
{
art::MutexLock mu(driver_->self_, *art::Locks::thread_list_lock_);
art::ThreadList* list = art::Runtime::Current()->GetThreadList();
list->ForEach(DoAllocateObsoleteMethodsCallback, static_cast<void*>(&ctx));
}
FillObsoleteMethodMap(art_klass, ctx.obsolete_map);
}
// Fills the obsolete method map in the art_klass's extData. This is so obsolete methods are able to
// figure out their DexCaches.
void Redefiner::ClassRedefinition::FillObsoleteMethodMap(
art::mirror::Class* art_klass,
const std::unordered_map<art::ArtMethod*, art::ArtMethod*>& obsoletes) {
int32_t index = 0;
art::mirror::ClassExt* ext_data = art_klass->GetExtData();
art::mirror::PointerArray* obsolete_methods = ext_data->GetObsoleteMethods();
art::mirror::ObjectArray<art::mirror::DexCache>* obsolete_dex_caches =
ext_data->GetObsoleteDexCaches();
int32_t num_method_slots = obsolete_methods->GetLength();
// Find the first empty index.
for (; index < num_method_slots; index++) {
if (obsolete_methods->GetElementPtrSize<art::ArtMethod*>(
index, art::kRuntimePointerSize) == nullptr) {
break;
}
}
// Make sure we have enough space.
CHECK_GT(num_method_slots, static_cast<int32_t>(obsoletes.size() + index));
CHECK(obsolete_dex_caches->Get(index) == nullptr);
// Fill in the map.
for (auto& obs : obsoletes) {
obsolete_methods->SetElementPtrSize(index, obs.second, art::kRuntimePointerSize);
obsolete_dex_caches->Set(index, art_klass->GetDexCache());
index++;
}
}
// TODO It should be possible to only deoptimize the specific obsolete methods.
// TODO ReJitEverything can (sort of) fail. In certain cases it will skip deoptimizing some frames.
// If one of these frames is an obsolete method we have a problem. b/33616143
// TODO This shouldn't be necessary once we can ensure that the current method is not kept in
// registers across suspend points.
// TODO Pending b/33630159
void Redefiner::EnsureObsoleteMethodsAreDeoptimized() {
art::ScopedAssertNoThreadSuspension nts("Deoptimizing everything!");
art::instrumentation::Instrumentation* i = runtime_->GetInstrumentation();
i->ReJitEverything("libOpenJkdJvmti - Class Redefinition");
}
bool Redefiner::ClassRedefinition::CheckClass() {
// TODO Might just want to put it in a ObjPtr and NoSuspend assert.
art::StackHandleScope<1> hs(driver_->self_);
// Easy check that only 1 class def is present.
if (dex_file_->NumClassDefs() != 1) {
RecordFailure(ERR(ILLEGAL_ARGUMENT),
StringPrintf("Expected 1 class def in dex file but found %d",
dex_file_->NumClassDefs()));
return false;
}
// Get the ClassDef from the new DexFile.
// Since the dex file has only a single class def the index is always 0.
const art::DexFile::ClassDef& def = dex_file_->GetClassDef(0);
// Get the class as it is now.
art::Handle<art::mirror::Class> current_class(hs.NewHandle(GetMirrorClass()));
// Check the access flags didn't change.
if (def.GetJavaAccessFlags() != (current_class->GetAccessFlags() & art::kAccValidClassFlags)) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_CLASS_MODIFIERS_CHANGED),
"Cannot change modifiers of class by redefinition");
return false;
}
// Check class name.
// These should have been checked by the dexfile verifier on load.
DCHECK_NE(def.class_idx_, art::dex::TypeIndex::Invalid()) << "Invalid type index";
const char* descriptor = dex_file_->StringByTypeIdx(def.class_idx_);
DCHECK(descriptor != nullptr) << "Invalid dex file structure!";
if (!current_class->DescriptorEquals(descriptor)) {
std::string storage;
RecordFailure(ERR(NAMES_DONT_MATCH),
StringPrintf("expected file to contain class called '%s' but found '%s'!",
current_class->GetDescriptor(&storage),
descriptor));
return false;
}
if (current_class->IsObjectClass()) {
if (def.superclass_idx_ != art::dex::TypeIndex::Invalid()) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Superclass added!");
return false;
}
} else {
const char* super_descriptor = dex_file_->StringByTypeIdx(def.superclass_idx_);
DCHECK(descriptor != nullptr) << "Invalid dex file structure!";
if (!current_class->GetSuperClass()->DescriptorEquals(super_descriptor)) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Superclass changed");
return false;
}
}
const art::DexFile::TypeList* interfaces = dex_file_->GetInterfacesList(def);
if (interfaces == nullptr) {
if (current_class->NumDirectInterfaces() != 0) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Interfaces added");
return false;
}
} else {
DCHECK(!current_class->IsProxyClass());
const art::DexFile::TypeList* current_interfaces = current_class->GetInterfaceTypeList();
if (current_interfaces == nullptr || current_interfaces->Size() != interfaces->Size()) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Interfaces added or removed");
return false;
}
// The order of interfaces is (barely) meaningful so we error if it changes.
const art::DexFile& orig_dex_file = current_class->GetDexFile();
for (uint32_t i = 0; i < interfaces->Size(); i++) {
if (strcmp(
dex_file_->StringByTypeIdx(interfaces->GetTypeItem(i).type_idx_),
orig_dex_file.StringByTypeIdx(current_interfaces->GetTypeItem(i).type_idx_)) != 0) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED),
"Interfaces changed or re-ordered");
return false;
}
}
}
LOG(WARNING) << "No verification is done on annotations of redefined classes.";
LOG(WARNING) << "Bytecodes of redefinitions are not verified.";
return true;
}
// TODO Move this to use IsRedefinable when that function is made.
bool Redefiner::ClassRedefinition::CheckRedefinable() {
std::string err;
art::StackHandleScope<1> hs(driver_->self_);
art::Handle<art::mirror::Class> h_klass(hs.NewHandle(GetMirrorClass()));
jvmtiError res = Redefiner::GetClassRedefinitionError(h_klass, &err);
if (res != OK) {
RecordFailure(res, err);
return false;
} else {
return true;
}
}
bool Redefiner::ClassRedefinition::CheckRedefinitionIsValid() {
return CheckRedefinable() &&
CheckClass() &&
CheckSameFields() &&
CheckSameMethods();
}
// A wrapper that lets us hold onto the arbitrary sized data needed for redefinitions in a
// reasonably sane way. This adds no fields to the normal ObjectArray. By doing this we can avoid
// having to deal with the fact that we need to hold an arbitrary number of references live.
class RedefinitionDataHolder {
public:
enum DataSlot : int32_t {
kSlotSourceClassLoader = 0,
kSlotJavaDexFile = 1,
kSlotNewDexFileCookie = 2,
kSlotNewDexCache = 3,
kSlotMirrorClass = 4,
kSlotOrigDexFile = 5,
// Must be last one.
kNumSlots = 6,
};
// This needs to have a HandleScope passed in that is capable of creating a new Handle without
// overflowing. Only one handle will be created. This object has a lifetime identical to that of
// the passed in handle-scope.
RedefinitionDataHolder(art::StackHandleScope<1>* hs,
art::Runtime* runtime,
art::Thread* self,
int32_t num_redefinitions) REQUIRES_SHARED(art::Locks::mutator_lock_) :
arr_(
hs->NewHandle(
art::mirror::ObjectArray<art::mirror::Object>::Alloc(
self,
runtime->GetClassLinker()->GetClassRoot(art::ClassLinker::kObjectArrayClass),
num_redefinitions * kNumSlots))) {}
bool IsNull() const REQUIRES_SHARED(art::Locks::mutator_lock_) {
return arr_.IsNull();
}
// TODO Maybe make an iterable view type to simplify using this.
art::mirror::ClassLoader* GetSourceClassLoader(jint klass_index)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::ClassLoader*>(GetSlot(klass_index, kSlotSourceClassLoader));
}
art::mirror::Object* GetJavaDexFile(jint klass_index) REQUIRES_SHARED(art::Locks::mutator_lock_) {
return GetSlot(klass_index, kSlotJavaDexFile);
}
art::mirror::LongArray* GetNewDexFileCookie(jint klass_index)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::LongArray*>(GetSlot(klass_index, kSlotNewDexFileCookie));
}
art::mirror::DexCache* GetNewDexCache(jint klass_index)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::DexCache*>(GetSlot(klass_index, kSlotNewDexCache));
}
art::mirror::Class* GetMirrorClass(jint klass_index) REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::Class*>(GetSlot(klass_index, kSlotMirrorClass));
}
art::mirror::ByteArray* GetOriginalDexFileBytes(jint klass_index)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::ByteArray*>(GetSlot(klass_index, kSlotOrigDexFile));
}
void SetSourceClassLoader(jint klass_index, art::mirror::ClassLoader* loader)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotSourceClassLoader, loader);
}
void SetJavaDexFile(jint klass_index, art::mirror::Object* dexfile)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotJavaDexFile, dexfile);
}
void SetNewDexFileCookie(jint klass_index, art::mirror::LongArray* cookie)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotNewDexFileCookie, cookie);
}
void SetNewDexCache(jint klass_index, art::mirror::DexCache* cache)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotNewDexCache, cache);
}
void SetMirrorClass(jint klass_index, art::mirror::Class* klass)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotMirrorClass, klass);
}
void SetOriginalDexFileBytes(jint klass_index, art::mirror::ByteArray* bytes)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotOrigDexFile, bytes);
}
int32_t Length() REQUIRES_SHARED(art::Locks::mutator_lock_) {
return arr_->GetLength() / kNumSlots;
}
private:
art::Handle<art::mirror::ObjectArray<art::mirror::Object>> arr_;
art::mirror::Object* GetSlot(jint klass_index,
DataSlot slot) REQUIRES_SHARED(art::Locks::mutator_lock_) {
DCHECK_LT(klass_index, Length());
return arr_->Get((kNumSlots * klass_index) + slot);
}
void SetSlot(jint klass_index,
DataSlot slot,
art::ObjPtr<art::mirror::Object> obj) REQUIRES_SHARED(art::Locks::mutator_lock_) {
DCHECK(!art::Runtime::Current()->IsActiveTransaction());
DCHECK_LT(klass_index, Length());
arr_->Set<false>((kNumSlots * klass_index) + slot, obj);
}
DISALLOW_COPY_AND_ASSIGN(RedefinitionDataHolder);
};
bool Redefiner::ClassRedefinition::FinishRemainingAllocations(
int32_t klass_index, /*out*/RedefinitionDataHolder* holder) {
art::StackHandleScope<2> hs(driver_->self_);
holder->SetMirrorClass(klass_index, GetMirrorClass());
// This shouldn't allocate
art::Handle<art::mirror::ClassLoader> loader(hs.NewHandle(GetClassLoader()));
holder->SetSourceClassLoader(klass_index, loader.Get());
if (loader.Get() == nullptr) {
// TODO Better error msg.
RecordFailure(ERR(INTERNAL), "Unable to find class loader!");
return false;
}
art::Handle<art::mirror::Object> dex_file_obj(hs.NewHandle(
ClassLoaderHelper::FindSourceDexFileObject(driver_->self_, loader)));
holder->SetJavaDexFile(klass_index, dex_file_obj.Get());
if (dex_file_obj.Get() == nullptr) {
// TODO Better error msg.
RecordFailure(ERR(INTERNAL), "Unable to find class loader!");
return false;
}
holder->SetNewDexFileCookie(klass_index,
ClassLoaderHelper::AllocateNewDexFileCookie(driver_->self_,
dex_file_obj,
dex_file_.get()).Ptr());
if (holder->GetNewDexFileCookie(klass_index) == nullptr) {
driver_->self_->AssertPendingOOMException();
driver_->self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate dex file array for class loader");
return false;
}
holder->SetNewDexCache(klass_index, CreateNewDexCache(loader));
if (holder->GetNewDexCache(klass_index) == nullptr) {
driver_->self_->AssertPendingOOMException();
driver_->self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate DexCache");
return false;
}
// We won't always need to set this field.
holder->SetOriginalDexFileBytes(klass_index, AllocateOrGetOriginalDexFileBytes());
if (holder->GetOriginalDexFileBytes(klass_index) == nullptr) {
driver_->self_->AssertPendingOOMException();
driver_->self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate array for original dex file");
return false;
}
return true;
}
bool Redefiner::CheckAllRedefinitionAreValid() {
for (Redefiner::ClassRedefinition& redef : redefinitions_) {
if (!redef.CheckRedefinitionIsValid()) {
return false;
}
}
return true;
}
bool Redefiner::EnsureAllClassAllocationsFinished() {
for (Redefiner::ClassRedefinition& redef : redefinitions_) {
if (!redef.EnsureClassAllocationsFinished()) {
return false;
}
}
return true;
}
bool Redefiner::FinishAllRemainingAllocations(RedefinitionDataHolder& holder) {
int32_t cnt = 0;
for (Redefiner::ClassRedefinition& redef : redefinitions_) {
// Allocate the data this redefinition requires.
if (!redef.FinishRemainingAllocations(cnt, &holder)) {
return false;
}
cnt++;
}
return true;
}
void Redefiner::ClassRedefinition::ReleaseDexFile() {
dex_file_.release();
}
void Redefiner::ReleaseAllDexFiles() {
for (Redefiner::ClassRedefinition& redef : redefinitions_) {
redef.ReleaseDexFile();
}
}
jvmtiError Redefiner::Run() {
art::StackHandleScope<1> hs(self_);
// Allocate an array to hold onto all java temporary objects associated with this redefinition.
// We will let this be collected after the end of this function.
RedefinitionDataHolder holder(&hs, runtime_, self_, redefinitions_.size());
if (holder.IsNull()) {
self_->AssertPendingOOMException();
self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate storage for temporaries");
return result_;
}
// First we just allocate the ClassExt and its fields that we need. These can be updated
// atomically without any issues (since we allocate the map arrays as empty) so we don't bother
// doing a try loop. The other allocations we need to ensure that nothing has changed in the time
// between allocating them and pausing all threads before we can update them so we need to do a
// try loop.
if (!CheckAllRedefinitionAreValid() ||
!EnsureAllClassAllocationsFinished() ||
!FinishAllRemainingAllocations(holder)) {
// TODO Null out the ClassExt fields we allocated (if possible, might be racing with another
// redefineclass call which made it even bigger. Leak shouldn't be huge (2x array of size
// declared_methods_.length) but would be good to get rid of. All other allocations should be
// cleaned up by the GC eventually.
return result_;
}
// Disable GC and wait for it to be done if we are a moving GC. This is fine since we are done
// allocating so no deadlocks.
art::gc::Heap* heap = runtime_->GetHeap();
if (heap->IsGcConcurrentAndMoving()) {
// GC moving objects can cause deadlocks as we are deoptimizing the stack.
heap->IncrementDisableMovingGC(self_);
}
// Do transition to final suspension
// TODO We might want to give this its own suspended state!
// TODO This isn't right. We need to change state without any chance of suspend ideally!
self_->TransitionFromRunnableToSuspended(art::ThreadState::kNative);
runtime_->GetThreadList()->SuspendAll(
"Final installation of redefined Classes!", /*long_suspend*/true);
// TODO We need to invalidate all breakpoints in the redefined class with the debugger.
// TODO We need to deal with any instrumentation/debugger deoptimized_methods_.
// TODO We need to update all debugger MethodIDs so they note the method they point to is
// obsolete or implement some other well defined semantics.
// TODO We need to decide on & implement semantics for JNI jmethodids when we redefine methods.
int32_t cnt = 0;
for (Redefiner::ClassRedefinition& redef : redefinitions_) {
art::ScopedAssertNoThreadSuspension nts("Updating runtime objects for redefinition");
art::mirror::Class* klass = holder.GetMirrorClass(cnt);
ClassLoaderHelper::UpdateJavaDexFile(holder.GetJavaDexFile(cnt),
holder.GetNewDexFileCookie(cnt));
// TODO Rewrite so we don't do a stack walk for each and every class.
redef.FindAndAllocateObsoleteMethods(klass);
redef.UpdateClass(klass, holder.GetNewDexCache(cnt), holder.GetOriginalDexFileBytes(cnt));
cnt++;
}
// Ensure that obsolete methods are deoptimized. This is needed since optimized methods may have
// pointers to their ArtMethod's stashed in registers that they then use to attempt to hit the
// DexCache. (b/33630159)
// TODO This can fail (leave some methods optimized) near runtime methods (including
// quick-to-interpreter transition function).
// TODO We probably don't need this at all once we have a way to ensure that the
// current_art_method is never stashed in a (physical) register by the JIT and lost to the
// stack-walker.
EnsureObsoleteMethodsAreDeoptimized();
// TODO Verify the new Class.
// TODO Shrink the obsolete method maps if possible?
// TODO find appropriate class loader.
// TODO Put this into a scoped thing.
runtime_->GetThreadList()->ResumeAll();
// Get back shared mutator lock as expected for return.
self_->TransitionFromSuspendedToRunnable();
// TODO Do the dex_file release at a more reasonable place. This works but it muddles who really
// owns the DexFile and when ownership is transferred.
ReleaseAllDexFiles();
if (heap->IsGcConcurrentAndMoving()) {
heap->DecrementDisableMovingGC(self_);
}
return OK;
}
void Redefiner::ClassRedefinition::UpdateMethods(art::ObjPtr<art::mirror::Class> mclass,
art::ObjPtr<art::mirror::DexCache> new_dex_cache,
const art::DexFile::ClassDef& class_def) {
art::ClassLinker* linker = driver_->runtime_->GetClassLinker();
art::PointerSize image_pointer_size = linker->GetImagePointerSize();
const art::DexFile::TypeId& declaring_class_id = dex_file_->GetTypeId(class_def.class_idx_);
const art::DexFile& old_dex_file = mclass->GetDexFile();
// Update methods.
for (art::ArtMethod& method : mclass->GetMethods(image_pointer_size)) {
const art::DexFile::StringId* new_name_id = dex_file_->FindStringId(method.GetName());
art::dex::TypeIndex method_return_idx =
dex_file_->GetIndexForTypeId(*dex_file_->FindTypeId(method.GetReturnTypeDescriptor()));
const auto* old_type_list = method.GetParameterTypeList();
std::vector<art::dex::TypeIndex> new_type_list;
for (uint32_t i = 0; old_type_list != nullptr && i < old_type_list->Size(); i++) {
new_type_list.push_back(
dex_file_->GetIndexForTypeId(
*dex_file_->FindTypeId(
old_dex_file.GetTypeDescriptor(
old_dex_file.GetTypeId(
old_type_list->GetTypeItem(i).type_idx_)))));
}
const art::DexFile::ProtoId* proto_id = dex_file_->FindProtoId(method_return_idx,
new_type_list);
// TODO Return false, cleanup.
CHECK(proto_id != nullptr || old_type_list == nullptr);
const art::DexFile::MethodId* method_id = dex_file_->FindMethodId(declaring_class_id,
*new_name_id,
*proto_id);
// TODO Return false, cleanup.
CHECK(method_id != nullptr);
uint32_t dex_method_idx = dex_file_->GetIndexForMethodId(*method_id);
method.SetDexMethodIndex(dex_method_idx);
linker->SetEntryPointsToInterpreter(&method);
method.SetCodeItemOffset(dex_file_->FindCodeItemOffset(class_def, dex_method_idx));
method.SetDexCacheResolvedMethods(new_dex_cache->GetResolvedMethods(), image_pointer_size);
// Notify the jit that this method is redefined.
art::jit::Jit* jit = driver_->runtime_->GetJit();
if (jit != nullptr) {
jit->GetCodeCache()->NotifyMethodRedefined(&method);
}
}
}
void Redefiner::ClassRedefinition::UpdateFields(art::ObjPtr<art::mirror::Class> mclass) {
// TODO The IFields & SFields pointers should be combined like the methods_ arrays were.
for (auto fields_iter : {mclass->GetIFields(), mclass->GetSFields()}) {
for (art::ArtField& field : fields_iter) {
std::string declaring_class_name;
const art::DexFile::TypeId* new_declaring_id =
dex_file_->FindTypeId(field.GetDeclaringClass()->GetDescriptor(&declaring_class_name));
const art::DexFile::StringId* new_name_id = dex_file_->FindStringId(field.GetName());
const art::DexFile::TypeId* new_type_id = dex_file_->FindTypeId(field.GetTypeDescriptor());
// TODO Handle error, cleanup.
CHECK(new_name_id != nullptr && new_type_id != nullptr && new_declaring_id != nullptr);
const art::DexFile::FieldId* new_field_id =
dex_file_->FindFieldId(*new_declaring_id, *new_name_id, *new_type_id);
CHECK(new_field_id != nullptr);
// We only need to update the index since the other data in the ArtField cannot be updated.
field.SetDexFieldIndex(dex_file_->GetIndexForFieldId(*new_field_id));
}
}
}
// Performs updates to class that will allow us to verify it.
void Redefiner::ClassRedefinition::UpdateClass(
art::ObjPtr<art::mirror::Class> mclass,
art::ObjPtr<art::mirror::DexCache> new_dex_cache,
art::ObjPtr<art::mirror::ByteArray> original_dex_file) {
DCHECK_EQ(dex_file_->NumClassDefs(), 1u);
const art::DexFile::ClassDef& class_def = dex_file_->GetClassDef(0);
UpdateMethods(mclass, new_dex_cache, class_def);
UpdateFields(mclass);
// Update the class fields.
// Need to update class last since the ArtMethod gets its DexFile from the class (which is needed
// to call GetReturnTypeDescriptor and GetParameterTypeList above).
mclass->SetDexCache(new_dex_cache.Ptr());
mclass->SetDexClassDefIndex(dex_file_->GetIndexForClassDef(class_def));
mclass->SetDexTypeIndex(dex_file_->GetIndexForTypeId(*dex_file_->FindTypeId(class_sig_.c_str())));
art::ObjPtr<art::mirror::ClassExt> ext(mclass->GetExtData());
CHECK(!ext.IsNull());
ext->SetOriginalDexFileBytes(original_dex_file);
}
// This function does all (java) allocations we need to do for the Class being redefined.
// TODO Change this name maybe?
bool Redefiner::ClassRedefinition::EnsureClassAllocationsFinished() {
art::StackHandleScope<2> hs(driver_->self_);
art::Handle<art::mirror::Class> klass(hs.NewHandle(
driver_->self_->DecodeJObject(klass_)->AsClass()));
if (klass.Get() == nullptr) {
RecordFailure(ERR(INVALID_CLASS), "Unable to decode class argument!");
return false;
}
// Allocate the classExt
art::Handle<art::mirror::ClassExt> ext(hs.NewHandle(klass->EnsureExtDataPresent(driver_->self_)));
if (ext.Get() == nullptr) {
// No memory. Clear exception (it's not useful) and return error.
// TODO This doesn't need to be fatal. We could just not support obsolete methods after hitting
// this case.
driver_->self_->AssertPendingOOMException();
driver_->self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate ClassExt");
return false;
}
// Allocate the 2 arrays that make up the obsolete methods map. Since the contents of the arrays
// are only modified when all threads (other than the modifying one) are suspended we don't need
// to worry about missing the unsyncronized writes to the array. We do synchronize when setting it
// however, since that can happen at any time.
// TODO Clear these after we walk the stacks in order to free them in the (likely?) event there
// are no obsolete methods.
{
art::ObjectLock<art::mirror::ClassExt> lock(driver_->self_, ext);
if (!ext->ExtendObsoleteArrays(
driver_->self_, klass->GetDeclaredMethodsSlice(art::kRuntimePointerSize).size())) {
// OOM. Clear exception and return error.
driver_->self_->AssertPendingOOMException();
driver_->self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate/extend obsolete methods map");
return false;
}
}
return true;
}
} // namespace openjdkjvmti