blob: 195d7c1ec8751505bb8741591a05cfc7cda433c2 [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "calling_convention_riscv64.h"
#include <android-base/logging.h>
#include "arch/instruction_set.h"
#include "arch/riscv64/jni_frame_riscv64.h"
#include "utils/riscv64/managed_register_riscv64.h"
namespace art HIDDEN {
namespace riscv64 {
static constexpr ManagedRegister kXArgumentRegisters[] = {
Riscv64ManagedRegister::FromXRegister(A0),
Riscv64ManagedRegister::FromXRegister(A1),
Riscv64ManagedRegister::FromXRegister(A2),
Riscv64ManagedRegister::FromXRegister(A3),
Riscv64ManagedRegister::FromXRegister(A4),
Riscv64ManagedRegister::FromXRegister(A5),
Riscv64ManagedRegister::FromXRegister(A6),
Riscv64ManagedRegister::FromXRegister(A7),
};
static_assert(kMaxIntLikeArgumentRegisters == arraysize(kXArgumentRegisters));
static const FRegister kFArgumentRegisters[] = {
FA0, FA1, FA2, FA3, FA4, FA5, FA6, FA7
};
static_assert(kMaxFloatOrDoubleArgumentRegisters == arraysize(kFArgumentRegisters));
static constexpr ManagedRegister kCalleeSaveRegisters[] = {
// Core registers.
Riscv64ManagedRegister::FromXRegister(S0),
// ART thread register (TR = S1) is not saved on the stack.
Riscv64ManagedRegister::FromXRegister(S2),
Riscv64ManagedRegister::FromXRegister(S3),
Riscv64ManagedRegister::FromXRegister(S4),
Riscv64ManagedRegister::FromXRegister(S5),
Riscv64ManagedRegister::FromXRegister(S6),
Riscv64ManagedRegister::FromXRegister(S7),
Riscv64ManagedRegister::FromXRegister(S8),
Riscv64ManagedRegister::FromXRegister(S9),
Riscv64ManagedRegister::FromXRegister(S10),
Riscv64ManagedRegister::FromXRegister(S11),
Riscv64ManagedRegister::FromXRegister(RA),
// Hard float registers.
Riscv64ManagedRegister::FromFRegister(FS0),
Riscv64ManagedRegister::FromFRegister(FS1),
Riscv64ManagedRegister::FromFRegister(FS2),
Riscv64ManagedRegister::FromFRegister(FS3),
Riscv64ManagedRegister::FromFRegister(FS4),
Riscv64ManagedRegister::FromFRegister(FS5),
Riscv64ManagedRegister::FromFRegister(FS6),
Riscv64ManagedRegister::FromFRegister(FS7),
Riscv64ManagedRegister::FromFRegister(FS8),
Riscv64ManagedRegister::FromFRegister(FS9),
Riscv64ManagedRegister::FromFRegister(FS10),
Riscv64ManagedRegister::FromFRegister(FS11),
};
template <size_t size>
static constexpr uint32_t CalculateCoreCalleeSpillMask(
const ManagedRegister (&callee_saves)[size]) {
uint32_t result = 0u;
for (auto&& r : callee_saves) {
if (r.AsRiscv64().IsXRegister()) {
result |= (1u << r.AsRiscv64().AsXRegister());
}
}
return result;
}
template <size_t size>
static constexpr uint32_t CalculateFpCalleeSpillMask(const ManagedRegister (&callee_saves)[size]) {
uint32_t result = 0u;
for (auto&& r : callee_saves) {
if (r.AsRiscv64().IsFRegister()) {
result |= (1u << r.AsRiscv64().AsFRegister());
}
}
return result;
}
static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(kCalleeSaveRegisters);
static constexpr uint32_t kFpCalleeSpillMask = CalculateFpCalleeSpillMask(kCalleeSaveRegisters);
static constexpr ManagedRegister kNativeCalleeSaveRegisters[] = {
// Core registers.
Riscv64ManagedRegister::FromXRegister(S0),
Riscv64ManagedRegister::FromXRegister(S1),
Riscv64ManagedRegister::FromXRegister(S2),
Riscv64ManagedRegister::FromXRegister(S3),
Riscv64ManagedRegister::FromXRegister(S4),
Riscv64ManagedRegister::FromXRegister(S5),
Riscv64ManagedRegister::FromXRegister(S6),
Riscv64ManagedRegister::FromXRegister(S7),
Riscv64ManagedRegister::FromXRegister(S8),
Riscv64ManagedRegister::FromXRegister(S9),
Riscv64ManagedRegister::FromXRegister(S10),
Riscv64ManagedRegister::FromXRegister(S11),
Riscv64ManagedRegister::FromXRegister(RA),
// Hard float registers.
Riscv64ManagedRegister::FromFRegister(FS0),
Riscv64ManagedRegister::FromFRegister(FS1),
Riscv64ManagedRegister::FromFRegister(FS2),
Riscv64ManagedRegister::FromFRegister(FS3),
Riscv64ManagedRegister::FromFRegister(FS4),
Riscv64ManagedRegister::FromFRegister(FS5),
Riscv64ManagedRegister::FromFRegister(FS6),
Riscv64ManagedRegister::FromFRegister(FS7),
Riscv64ManagedRegister::FromFRegister(FS8),
Riscv64ManagedRegister::FromFRegister(FS9),
Riscv64ManagedRegister::FromFRegister(FS10),
Riscv64ManagedRegister::FromFRegister(FS11),
};
static constexpr uint32_t kNativeCoreCalleeSpillMask =
CalculateCoreCalleeSpillMask(kNativeCalleeSaveRegisters);
static constexpr uint32_t kNativeFpCalleeSpillMask =
CalculateFpCalleeSpillMask(kNativeCalleeSaveRegisters);
static ManagedRegister ReturnRegisterForShorty(const char* shorty) {
if (shorty[0] == 'F' || shorty[0] == 'D') {
return Riscv64ManagedRegister::FromFRegister(FA0);
} else if (shorty[0] == 'V') {
return Riscv64ManagedRegister::NoRegister();
} else {
// All other return types use A0. Note that there is no managed type wide enough to use A1/FA1.
return Riscv64ManagedRegister::FromXRegister(A0);
}
}
// Managed runtime calling convention
ManagedRegister Riscv64ManagedRuntimeCallingConvention::ReturnRegister() const {
return ReturnRegisterForShorty(GetShorty());
}
ManagedRegister Riscv64ManagedRuntimeCallingConvention::MethodRegister() {
return Riscv64ManagedRegister::FromXRegister(A0);
}
ManagedRegister Riscv64ManagedRuntimeCallingConvention::ArgumentRegisterForMethodExitHook() {
DCHECK(!Riscv64ManagedRegister::FromXRegister(A4).Overlaps(ReturnRegister().AsRiscv64()));
return Riscv64ManagedRegister::FromXRegister(A4);
}
bool Riscv64ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
// Note: The managed ABI does not pass FP args in general purpose registers.
// This differs from the native ABI which does that after using all FP arg registers.
if (IsCurrentParamAFloatOrDouble()) {
return itr_float_and_doubles_ < kMaxFloatOrDoubleArgumentRegisters;
} else {
size_t non_fp_arg_number = itr_args_ - itr_float_and_doubles_;
return /* method */ 1u + non_fp_arg_number < kMaxIntLikeArgumentRegisters;
}
}
bool Riscv64ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
return !IsCurrentParamInRegister();
}
ManagedRegister Riscv64ManagedRuntimeCallingConvention::CurrentParamRegister() {
DCHECK(IsCurrentParamInRegister());
if (IsCurrentParamAFloatOrDouble()) {
return Riscv64ManagedRegister::FromFRegister(kFArgumentRegisters[itr_float_and_doubles_]);
} else {
size_t non_fp_arg_number = itr_args_ - itr_float_and_doubles_;
return kXArgumentRegisters[/* method */ 1u + non_fp_arg_number];
}
}
FrameOffset Riscv64ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
return FrameOffset(displacement_.Int32Value() + // displacement
kFramePointerSize + // Method ref
(itr_slots_ * sizeof(uint32_t))); // offset into in args
}
// JNI calling convention
Riscv64JniCallingConvention::Riscv64JniCallingConvention(bool is_static,
bool is_synchronized,
bool is_fast_native,
bool is_critical_native,
const char* shorty)
: JniCallingConvention(is_static,
is_synchronized,
is_fast_native,
is_critical_native,
shorty,
kRiscv64PointerSize) {
}
ManagedRegister Riscv64JniCallingConvention::ReturnRegister() const {
return ReturnRegisterForShorty(GetShorty());
}
ManagedRegister Riscv64JniCallingConvention::IntReturnRegister() const {
return Riscv64ManagedRegister::FromXRegister(A0);
}
size_t Riscv64JniCallingConvention::FrameSize() const {
if (is_critical_native_) {
CHECK(!SpillsMethod());
CHECK(!HasLocalReferenceSegmentState());
return 0u; // There is no managed frame for @CriticalNative.
}
// Method*, callee save area size, local reference segment state
DCHECK(SpillsMethod());
size_t method_ptr_size = static_cast<size_t>(kFramePointerSize);
size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
size_t total_size = method_ptr_size + callee_save_area_size;
DCHECK(HasLocalReferenceSegmentState());
// Cookie is saved in one of the spilled registers.
return RoundUp(total_size, kStackAlignment);
}
size_t Riscv64JniCallingConvention::OutFrameSize() const {
// Count param args, including JNIEnv* and jclass*.
size_t all_args = NumberOfExtraArgumentsForJni() + NumArgs();
size_t num_fp_args = NumFloatOrDoubleArgs();
DCHECK_GE(all_args, num_fp_args);
size_t num_non_fp_args = all_args - num_fp_args;
// The size of outgoing arguments.
size_t size = GetNativeOutArgsSize(num_fp_args, num_non_fp_args);
// @CriticalNative can use tail call as all managed callee saves are preserved by AAPCS64.
static_assert((kCoreCalleeSpillMask & ~kNativeCoreCalleeSpillMask) == 0u);
static_assert((kFpCalleeSpillMask & ~kNativeFpCalleeSpillMask) == 0u);
// For @CriticalNative, we can make a tail call if there are no stack args.
// Otherwise, add space for return PC.
// Note: Result does not neeed to be zero- or sign-extended.
DCHECK(!RequiresSmallResultTypeExtension());
if (is_critical_native_ && size != 0u) {
size += kFramePointerSize; // We need to spill RA with the args.
}
size_t out_args_size = RoundUp(size, kNativeStackAlignment);
if (UNLIKELY(IsCriticalNative())) {
DCHECK_EQ(out_args_size, GetCriticalNativeStubFrameSize(GetShorty(), NumArgs() + 1u));
}
return out_args_size;
}
ArrayRef<const ManagedRegister> Riscv64JniCallingConvention::CalleeSaveRegisters() const {
if (UNLIKELY(IsCriticalNative())) {
if (UseTailCall()) {
return ArrayRef<const ManagedRegister>(); // Do not spill anything.
} else {
// Spill RA with out args.
static_assert((kCoreCalleeSpillMask & (1 << RA)) != 0u); // Contains RA.
constexpr size_t ra_index = POPCOUNT(kCoreCalleeSpillMask) - 1u;
static_assert(kCalleeSaveRegisters[ra_index].Equals(
Riscv64ManagedRegister::FromXRegister(RA)));
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters).SubArray(
/*pos=*/ ra_index, /*length=*/ 1u);
}
} else {
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
}
}
ArrayRef<const ManagedRegister> Riscv64JniCallingConvention::CalleeSaveScratchRegisters() const {
DCHECK(!IsCriticalNative());
// Use S3-S11 from managed callee saves. All these registers are also native callee saves.
constexpr size_t kStart = 2u;
constexpr size_t kLength = 9u;
static_assert(kCalleeSaveRegisters[kStart].Equals(Riscv64ManagedRegister::FromXRegister(S3)));
static_assert(kCalleeSaveRegisters[kStart + kLength - 1u].Equals(
Riscv64ManagedRegister::FromXRegister(S11)));
static_assert((kCoreCalleeSpillMask & ~kNativeCoreCalleeSpillMask) == 0u);
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters).SubArray(kStart, kLength);
}
ArrayRef<const ManagedRegister> Riscv64JniCallingConvention::ArgumentScratchRegisters() const {
DCHECK(!IsCriticalNative());
ArrayRef<const ManagedRegister> scratch_regs(kXArgumentRegisters);
// Exclude return register (A0) even if unused. Using the same scratch registers helps
// making more JNI stubs identical for better reuse, such as deduplicating them in oat files.
static_assert(kXArgumentRegisters[0].Equals(Riscv64ManagedRegister::FromXRegister(A0)));
scratch_regs = scratch_regs.SubArray(/*pos=*/ 1u);
DCHECK(std::none_of(scratch_regs.begin(),
scratch_regs.end(),
[return_reg = ReturnRegister().AsRiscv64()](ManagedRegister reg) {
return return_reg.Overlaps(reg.AsRiscv64());
}));
return scratch_regs;
}
uint32_t Riscv64JniCallingConvention::CoreSpillMask() const {
return is_critical_native_ ? 0u : kCoreCalleeSpillMask;
}
uint32_t Riscv64JniCallingConvention::FpSpillMask() const {
return is_critical_native_ ? 0u : kFpCalleeSpillMask;
}
size_t Riscv64JniCallingConvention::CurrentParamSize() const {
if (IsCurrentArgExtraForJni()) {
return static_cast<size_t>(frame_pointer_size_); // JNIEnv or jobject/jclass
} else {
size_t arg_pos = GetIteratorPositionWithinShorty();
DCHECK_LT(arg_pos, NumArgs());
if (IsStatic()) {
++arg_pos; // 0th argument must skip return value at start of the shorty
} else if (arg_pos == 0) {
return static_cast<size_t>(kRiscv64PointerSize); // this argument
}
// The riscv64 native calling convention specifies that integers narrower than XLEN (64)
// bits are "widened according to the sign of their type up to 32 bits, then sign-extended
// to XLEN bits." Thus, everything other than `float` (which has the high 32 bits undefined)
// is passed as 64 bits, whether in register, or on the stack.
return (GetShorty()[arg_pos] == 'F') ? 4u : static_cast<size_t>(kRiscv64PointerSize);
}
}
bool Riscv64JniCallingConvention::IsCurrentParamInRegister() {
// FP args use FPRs, then GPRs and only then the stack.
if (itr_float_and_doubles_ < kMaxFloatOrDoubleArgumentRegisters) {
if (IsCurrentParamAFloatOrDouble()) {
return true;
} else {
size_t num_non_fp_args = itr_args_ - itr_float_and_doubles_;
return num_non_fp_args < kMaxIntLikeArgumentRegisters;
}
} else {
return (itr_args_ < kMaxFloatOrDoubleArgumentRegisters + kMaxIntLikeArgumentRegisters);
}
}
bool Riscv64JniCallingConvention::IsCurrentParamOnStack() {
return !IsCurrentParamInRegister();
}
ManagedRegister Riscv64JniCallingConvention::CurrentParamRegister() {
// FP args use FPRs, then GPRs and only then the stack.
CHECK(IsCurrentParamInRegister());
if (itr_float_and_doubles_ < kMaxFloatOrDoubleArgumentRegisters) {
if (IsCurrentParamAFloatOrDouble()) {
return Riscv64ManagedRegister::FromFRegister(kFArgumentRegisters[itr_float_and_doubles_]);
} else {
size_t num_non_fp_args = itr_args_ - itr_float_and_doubles_;
DCHECK_LT(num_non_fp_args, kMaxIntLikeArgumentRegisters);
return kXArgumentRegisters[num_non_fp_args];
}
} else {
// This argument is in a GPR, whether it's a FP arg or a non-FP arg.
DCHECK_LT(itr_args_, kMaxFloatOrDoubleArgumentRegisters + kMaxIntLikeArgumentRegisters);
return kXArgumentRegisters[itr_args_ - kMaxFloatOrDoubleArgumentRegisters];
}
}
FrameOffset Riscv64JniCallingConvention::CurrentParamStackOffset() {
CHECK(IsCurrentParamOnStack());
// Account for FP arguments passed through FA0-FA7.
// All other args are passed through A0-A7 (even FP args) and the stack.
size_t num_gpr_and_stack_args =
itr_args_ - std::min<size_t>(kMaxFloatOrDoubleArgumentRegisters, itr_float_and_doubles_);
size_t args_on_stack =
num_gpr_and_stack_args - std::min(kMaxIntLikeArgumentRegisters, num_gpr_and_stack_args);
size_t offset = displacement_.Int32Value() - OutFrameSize() + (args_on_stack * kFramePointerSize);
CHECK_LT(offset, OutFrameSize());
return FrameOffset(offset);
}
bool Riscv64JniCallingConvention::RequiresSmallResultTypeExtension() const {
// RISC-V native calling convention requires values to be returned the way that the first
// argument would be passed. Arguments are zero-/sign-extended to 32 bits based on their
// type, then sign-extended to 64 bits. This is the same as in the ART mamaged ABI.
// (Not applicable to FP args which are returned in `FA0`. A `float` is NaN-boxed.)
return false;
}
// T0 is neither managed callee-save, nor argument register. It is suitable for use as the
// locking argument for synchronized methods and hidden argument for @CriticalNative methods.
static void AssertT0IsNeitherCalleeSaveNorArgumentRegister() {
// TODO: Change to static_assert; std::none_of should be constexpr since C++20.
DCHECK(std::none_of(kCalleeSaveRegisters,
kCalleeSaveRegisters + std::size(kCalleeSaveRegisters),
[](ManagedRegister callee_save) constexpr {
return callee_save.Equals(Riscv64ManagedRegister::FromXRegister(T0));
}));
DCHECK(std::none_of(kXArgumentRegisters,
kXArgumentRegisters + std::size(kXArgumentRegisters),
[](ManagedRegister arg) { return arg.AsRiscv64().AsXRegister() == T0; }));
}
ManagedRegister Riscv64JniCallingConvention::LockingArgumentRegister() const {
DCHECK(!IsFastNative());
DCHECK(!IsCriticalNative());
DCHECK(IsSynchronized());
AssertT0IsNeitherCalleeSaveNorArgumentRegister();
return Riscv64ManagedRegister::FromXRegister(T0);
}
ManagedRegister Riscv64JniCallingConvention::HiddenArgumentRegister() const {
DCHECK(IsCriticalNative());
AssertT0IsNeitherCalleeSaveNorArgumentRegister();
return Riscv64ManagedRegister::FromXRegister(T0);
}
// Whether to use tail call (used only for @CriticalNative).
bool Riscv64JniCallingConvention::UseTailCall() const {
CHECK(IsCriticalNative());
return OutFrameSize() == 0u;
}
} // namespace riscv64
} // namespace art