Compiler: Spring cleaning

Significant restructuring of the Quick compiler to break out the
common frontend more cleanly.  Additional C++'ification.

The goal is to move from the monolithic structure of the old
JIT towards a more modular model in which components - in
particular the compiler backend - can be replaced.  This CL
focuses on moving MIR-related data from the CompilationUnit
struct into a new MIRGraph class.  The next CL will isolate all
LIR-related data and code down into the Quick backend.

This change will happen in multiple steps, and may look uglier
before it starts looking better.

Among the changes:

   o Moved all mir-related fields from CompilationUnit to new
     MirGraph class.

   o Moved the register promotion stuff into the Quick backend.

   o Deleted the GBC to LIR conversion code.

   o Replaced with old C-style function pointer dataflow analysis
     dispatcher with a basic block iterator class.

   o Renamed some files to make the name more consistent with what
     the code actually does.

   o Added the foundation for future inlining support.

   o Stripped out the remains of the old fingerprinting mechanism.

Change-Id: I6c30facc642f8084b1c7b2075cf7014de387aa56
diff --git a/src/compiler/dex/mir_dataflow.cc b/src/compiler/dex/mir_dataflow.cc
new file mode 100644
index 0000000..c5ebc1b
--- /dev/null
+++ b/src/compiler/dex/mir_dataflow.cc
@@ -0,0 +1,1380 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "compiler_internals.h"
+#include "local_value_numbering.h"
+#include "dataflow_iterator.h"
+
+namespace art {
+
+/*
+ * Main table containing data flow attributes for each bytecode. The
+ * first kNumPackedOpcodes entries are for Dalvik bytecode
+ * instructions, where extended opcode at the MIR level are appended
+ * afterwards.
+ *
+ * TODO - many optimization flags are incomplete - they will only limit the
+ * scope of optimizations but will not cause mis-optimizations.
+ */
+const int oat_data_flow_attributes[kMirOpLast] = {
+  // 00 NOP
+  DF_NOP,
+
+  // 01 MOVE vA, vB
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 02 MOVE_FROM16 vAA, vBBBB
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 03 MOVE_16 vAAAA, vBBBB
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 04 MOVE_WIDE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
+
+  // 05 MOVE_WIDE_FROM16 vAA, vBBBB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
+
+  // 06 MOVE_WIDE_16 vAAAA, vBBBB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
+
+  // 07 MOVE_OBJECT vA, vB
+  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
+
+  // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
+  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
+
+  // 09 MOVE_OBJECT_16 vAAAA, vBBBB
+  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
+
+  // 0A MOVE_RESULT vAA
+  DF_DA,
+
+  // 0B MOVE_RESULT_WIDE vAA
+  DF_DA | DF_A_WIDE,
+
+  // 0C MOVE_RESULT_OBJECT vAA
+  DF_DA | DF_REF_A,
+
+  // 0D MOVE_EXCEPTION vAA
+  DF_DA | DF_REF_A,
+
+  // 0E RETURN_VOID
+  DF_NOP,
+
+  // 0F RETURN vAA
+  DF_UA,
+
+  // 10 RETURN_WIDE vAA
+  DF_UA | DF_A_WIDE,
+
+  // 11 RETURN_OBJECT vAA
+  DF_UA | DF_REF_A,
+
+  // 12 CONST_4 vA, #+B
+  DF_DA | DF_SETS_CONST,
+
+  // 13 CONST_16 vAA, #+BBBB
+  DF_DA | DF_SETS_CONST,
+
+  // 14 CONST vAA, #+BBBBBBBB
+  DF_DA | DF_SETS_CONST,
+
+  // 15 CONST_HIGH16 VAA, #+BBBB0000
+  DF_DA | DF_SETS_CONST,
+
+  // 16 CONST_WIDE_16 vAA, #+BBBB
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 1A CONST_STRING vAA, string@BBBB
+  DF_DA | DF_REF_A,
+
+  // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
+  DF_DA | DF_REF_A,
+
+  // 1C CONST_CLASS vAA, type@BBBB
+  DF_DA | DF_REF_A,
+
+  // 1D MONITOR_ENTER vAA
+  DF_UA | DF_NULL_CHK_0 | DF_REF_A,
+
+  // 1E MONITOR_EXIT vAA
+  DF_UA | DF_NULL_CHK_0 | DF_REF_A,
+
+  // 1F CHK_CAST vAA, type@BBBB
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 20 INSTANCE_OF vA, vB, type@CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,
+
+  // 21 ARRAY_LENGTH vA, vB
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B,
+
+  // 22 NEW_INSTANCE vAA, type@BBBB
+  DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,
+
+  // 23 NEW_ARRAY vA, vB, type@CCCC
+  DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,
+
+  // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,
+
+  // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
+  DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,
+
+  // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 27 THROW vAA
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 28 GOTO
+  DF_NOP,
+
+  // 29 GOTO_16
+  DF_NOP,
+
+  // 2A GOTO_32
+  DF_NOP,
+
+  // 2B PACKED_SWITCH vAA, +BBBBBBBB
+  DF_UA,
+
+  // 2C SPARSE_SWITCH vAA, +BBBBBBBB
+  DF_UA,
+
+  // 2D CMPL_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 2E CMPG_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 2F CMPL_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 30 CMPG_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 31 CMP_LONG vAA, vBB, vCC
+  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 32 IF_EQ vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 33 IF_NE vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 34 IF_LT vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 35 IF_GE vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 36 IF_GT vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 37 IF_LE vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 38 IF_EQZ vAA, +BBBB
+  DF_UA,
+
+  // 39 IF_NEZ vAA, +BBBB
+  DF_UA,
+
+  // 3A IF_LTZ vAA, +BBBB
+  DF_UA,
+
+  // 3B IF_GEZ vAA, +BBBB
+  DF_UA,
+
+  // 3C IF_GTZ vAA, +BBBB
+  DF_UA,
+
+  // 3D IF_LEZ vAA, +BBBB
+  DF_UA,
+
+  // 3E UNUSED_3E
+  DF_NOP,
+
+  // 3F UNUSED_3F
+  DF_NOP,
+
+  // 40 UNUSED_40
+  DF_NOP,
+
+  // 41 UNUSED_41
+  DF_NOP,
+
+  // 42 UNUSED_42
+  DF_NOP,
+
+  // 43 UNUSED_43
+  DF_NOP,
+
+  // 44 AGET vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 45 AGET_WIDE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 46 AGET_OBJECT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C,
+
+  // 47 AGET_BOOLEAN vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 48 AGET_BYTE vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 49 AGET_CHAR vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 4A AGET_SHORT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 4B APUT vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 4C APUT_WIDE vAA, vBB, vCC
+  DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C,
+
+  // 4D APUT_OBJECT vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C,
+
+  // 4E APUT_BOOLEAN vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 4F APUT_BYTE vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 50 APUT_CHAR vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 51 APUT_SHORT vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 52 IGET vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 53 IGET_WIDE vA, vB, field@CCCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 54 IGET_OBJECT vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B,
+
+  // 55 IGET_BOOLEAN vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 56 IGET_BYTE vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 57 IGET_CHAR vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 58 IGET_SHORT vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 59 IPUT vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5A IPUT_WIDE vA, vB, field@CCCC
+  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B,
+
+  // 5B IPUT_OBJECT vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B,
+
+  // 5C IPUT_BOOLEAN vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5D IPUT_BYTE vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5E IPUT_CHAR vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5F IPUT_SHORT vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 60 SGET vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 61 SGET_WIDE vAA, field@BBBB
+  DF_DA | DF_A_WIDE | DF_UMS,
+
+  // 62 SGET_OBJECT vAA, field@BBBB
+  DF_DA | DF_REF_A | DF_UMS,
+
+  // 63 SGET_BOOLEAN vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 64 SGET_BYTE vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 65 SGET_CHAR vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 66 SGET_SHORT vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 67 SPUT vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 68 SPUT_WIDE vAA, field@BBBB
+  DF_UA | DF_A_WIDE | DF_UMS,
+
+  // 69 SPUT_OBJECT vAA, field@BBBB
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 6A SPUT_BOOLEAN vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6B SPUT_BYTE vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6C SPUT_CHAR vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6D SPUT_SHORT vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_UMS,
+
+  // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_UMS,
+
+  // 73 UNUSED_73
+  DF_NOP,
+
+  // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_UMS,
+
+  // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_UMS,
+
+  // 79 UNUSED_79
+  DF_NOP,
+
+  // 7A UNUSED_7A
+  DF_NOP,
+
+  // 7B NEG_INT vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 7C NOT_INT vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 7D NEG_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 7E NOT_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 7F NEG_FLOAT vA, vB
+  DF_DA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // 80 NEG_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // 81 INT_TO_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 82 INT_TO_FLOAT vA, vB
+  DF_DA | DF_UB | DF_FP_A | DF_CORE_B,
+
+  // 83 INT_TO_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,
+
+  // 84 LONG_TO_INT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 85 LONG_TO_FLOAT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
+
+  // 86 LONG_TO_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
+
+  // 87 FLOAT_TO_INT vA, vB
+  DF_DA | DF_UB | DF_FP_B | DF_CORE_A,
+
+  // 88 FLOAT_TO_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,
+
+  // 89 FLOAT_TO_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,
+
+  // 8A DOUBLE_TO_INT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
+
+  // 8B DOUBLE_TO_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
+
+  // 8C DOUBLE_TO_FLOAT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // 8D INT_TO_BYTE vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 8E INT_TO_CHAR vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 8F INT_TO_SHORT vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 90 ADD_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 91 SUB_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 92 MUL_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 93 DIV_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 94 REM_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 95 AND_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 96 OR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 97 XOR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 98 SHL_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 99 SHR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9A USHR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9B ADD_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9C SUB_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9D MUL_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9E DIV_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9F REM_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A0 AND_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A1 OR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A2 XOR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A3 SHL_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A4 SHR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A5 USHR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A6 ADD_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // A7 SUB_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // A8 MUL_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // A9 DIV_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AA REM_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AB ADD_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AC SUB_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AD MUL_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AE DIV_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AF REM_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // B0 ADD_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B1 SUB_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B2 MUL_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B3 DIV_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B4 REM_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B5 AND_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B6 OR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B7 XOR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B8 SHL_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B9 SHR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // BA USHR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // BB ADD_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BC SUB_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BD MUL_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BE DIV_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BF REM_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C0 AND_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C1 OR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C2 XOR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C3 SHL_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // C4 SHR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // C5 USHR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // C6 ADD_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // C7 SUB_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // C8 MUL_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // C9 DIV_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // CA REM_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // CB ADD_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CC SUB_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CD MUL_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CE DIV_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CF REM_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // D0 ADD_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D1 RSUB_INT vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D2 MUL_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D3 DIV_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D4 REM_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D5 AND_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D6 OR_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D7 XOR_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D8 ADD_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DA MUL_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DB DIV_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DC REM_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DD AND_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DE OR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DF XOR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E0 SHL_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E1 SHR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E2 USHR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E3 IGET_VOLATILE
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // E4 IPUT_VOLATILE
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // E5 SGET_VOLATILE
+  DF_DA | DF_UMS,
+
+  // E6 SPUT_VOLATILE
+  DF_UA | DF_UMS,
+
+  // E7 IGET_OBJECT_VOLATILE
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B,
+
+  // E8 IGET_WIDE_VOLATILE
+  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // E9 IPUT_WIDE_VOLATILE
+  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B,
+
+  // EA SGET_WIDE_VOLATILE
+  DF_DA | DF_A_WIDE | DF_UMS,
+
+  // EB SPUT_WIDE_VOLATILE
+  DF_UA | DF_A_WIDE | DF_UMS,
+
+  // EC BREAKPOINT
+  DF_NOP,
+
+  // ED THROW_VERIFICATION_ERROR
+  DF_NOP | DF_UMS,
+
+  // EE EXECUTE_INLINE
+  DF_FORMAT_35C,
+
+  // EF EXECUTE_INLINE_RANGE
+  DF_FORMAT_3RC,
+
+  // F0 INVOKE_OBJECT_INIT_RANGE
+  DF_NOP | DF_NULL_CHK_0,
+
+  // F1 RETURN_VOID_BARRIER
+  DF_NOP,
+
+  // F2 IGET_QUICK
+  DF_DA | DF_UB | DF_NULL_CHK_0,
+
+  // F3 IGET_WIDE_QUICK
+  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0,
+
+  // F4 IGET_OBJECT_QUICK
+  DF_DA | DF_UB | DF_NULL_CHK_0,
+
+  // F5 IPUT_QUICK
+  DF_UA | DF_UB | DF_NULL_CHK_1,
+
+  // F6 IPUT_WIDE_QUICK
+  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2,
+
+  // F7 IPUT_OBJECT_QUICK
+  DF_UA | DF_UB | DF_NULL_CHK_1,
+
+  // F8 INVOKE_VIRTUAL_QUICK
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // F9 INVOKE_VIRTUAL_QUICK_RANGE
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // FA INVOKE_SUPER_QUICK
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // FB INVOKE_SUPER_QUICK_RANGE
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // FC IPUT_OBJECT_VOLATILE
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B,
+
+  // FD SGET_OBJECT_VOLATILE
+  DF_DA | DF_REF_A | DF_UMS,
+
+  // FE SPUT_OBJECT_VOLATILE
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // FF UNUSED_FF
+  DF_NOP,
+
+  // Beginning of extended MIR opcodes
+  // 100 MIR_PHI
+  DF_DA | DF_NULL_TRANSFER_N,
+
+  // 101 MIR_COPY
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 102 MIR_FUSED_CMPL_FLOAT
+  DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // 103 MIR_FUSED_CMPG_FLOAT
+  DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // 104 MIR_FUSED_CMPL_DOUBLE
+  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // 105 MIR_FUSED_CMPG_DOUBLE
+  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // 106 MIR_FUSED_CMP_LONG
+  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 107 MIR_NOP
+  DF_NOP,
+
+  // 108 MIR_NULL_CHECK
+  0,
+
+  // 109 MIR_RANGE_CHECK
+  0,
+
+  // 110 MIR_DIV_ZERO_CHECK
+  0,
+
+  // 111 MIR_CHECK
+  0,
+
+  // 112 MIR_CHECKPART2
+  0,
+
+  // 113 MIR_SELECT
+  DF_DA | DF_UB,
+};
+
+/* Return the base virtual register for a SSA name */
+int MIRGraph::SRegToVReg(int ssa_reg)
+{
+  DCHECK_LT(ssa_reg, static_cast<int>(ssa_base_vregs_->num_used));
+  return GET_ELEM_N(ssa_base_vregs_, int, ssa_reg);
+}
+
+/* Any register that is used before being defined is considered live-in */
+void MIRGraph::HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
+                            ArenaBitVector* live_in_v, int dalvik_reg_id)
+{
+  SetBit(cu_, use_v, dalvik_reg_id);
+  if (!IsBitSet(def_v, dalvik_reg_id)) {
+    SetBit(cu_, live_in_v, dalvik_reg_id);
+  }
+}
+
+/* Mark a reg as being defined */
+void MIRGraph::HandleDef(ArenaBitVector* def_v, int dalvik_reg_id)
+{
+  SetBit(cu_, def_v, dalvik_reg_id);
+}
+
+/*
+ * Find out live-in variables for natural loops. Variables that are live-in in
+ * the main loop body are considered to be defined in the entry block.
+ */
+bool MIRGraph::FindLocalLiveIn(BasicBlock* bb)
+{
+  MIR* mir;
+  ArenaBitVector *use_v, *def_v, *live_in_v;
+
+  if (bb->data_flow_info == NULL) return false;
+
+  use_v = bb->data_flow_info->use_v =
+      AllocBitVector(cu_, cu_->num_dalvik_registers, false, kBitMapUse);
+  def_v = bb->data_flow_info->def_v =
+      AllocBitVector(cu_, cu_->num_dalvik_registers, false, kBitMapDef);
+  live_in_v = bb->data_flow_info->live_in_v =
+      AllocBitVector(cu_, cu_->num_dalvik_registers, false, kBitMapLiveIn);
+
+  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode];
+    DecodedInstruction *d_insn = &mir->dalvikInsn;
+
+    if (df_attributes & DF_HAS_USES) {
+      if (df_attributes & DF_UA) {
+        HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA);
+        if (df_attributes & DF_A_WIDE) {
+          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA+1);
+        }
+      }
+      if (df_attributes & DF_UB) {
+        HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB);
+        if (df_attributes & DF_B_WIDE) {
+          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB+1);
+        }
+      }
+      if (df_attributes & DF_UC) {
+        HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC);
+        if (df_attributes & DF_C_WIDE) {
+          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+1);
+        }
+      }
+    }
+    if (df_attributes & DF_FORMAT_35C) {
+      for (unsigned int i = 0; i < d_insn->vA; i++) {
+        HandleLiveInUse(use_v, def_v, live_in_v, d_insn->arg[i]);
+      }
+    }
+    if (df_attributes & DF_FORMAT_3RC) {
+      for (unsigned int i = 0; i < d_insn->vA; i++) {
+        HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+i);
+      }
+    }
+    if (df_attributes & DF_HAS_DEFS) {
+      HandleDef(def_v, d_insn->vA);
+      if (df_attributes & DF_A_WIDE) {
+        HandleDef(def_v, d_insn->vA+1);
+      }
+    }
+  }
+  return true;
+}
+
+int MIRGraph::AddNewSReg(int v_reg)
+{
+  // Compiler temps always have a subscript of 0
+  int subscript = (v_reg < 0) ? 0 : ++ssa_last_defs_[v_reg];
+  int ssa_reg = GetNumSSARegs();
+  SetNumSSARegs(ssa_reg + 1);
+  InsertGrowableList(cu_, ssa_base_vregs_, v_reg);
+  InsertGrowableList(cu_, ssa_subscripts_, subscript);
+  std::string ssa_name = GetSSAName(cu_, ssa_reg);
+  char* name = static_cast<char*>(NewMem(cu_, ssa_name.length() + 1, false, kAllocDFInfo));
+  strncpy(name, ssa_name.c_str(), ssa_name.length() + 1);
+  InsertGrowableList(cu_, ssa_strings_, reinterpret_cast<uintptr_t>(name));
+  DCHECK_EQ(ssa_base_vregs_->num_used, ssa_subscripts_->num_used);
+  return ssa_reg;
+}
+
+/* Find out the latest SSA register for a given Dalvik register */
+void MIRGraph::HandleSSAUse(int* uses, int dalvik_reg, int reg_index)
+{
+  DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
+  uses[reg_index] = vreg_to_ssa_map_[dalvik_reg];
+}
+
+/* Setup a new SSA register for a given Dalvik register */
+void MIRGraph::HandleSSADef(int* defs, int dalvik_reg, int reg_index)
+{
+  DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
+  int ssa_reg = AddNewSReg(dalvik_reg);
+  vreg_to_ssa_map_[dalvik_reg] = ssa_reg;
+  defs[reg_index] = ssa_reg;
+}
+
+/* Look up new SSA names for format_35c instructions */
+void MIRGraph::DataFlowSSAFormat35C(MIR* mir)
+{
+  DecodedInstruction *d_insn = &mir->dalvikInsn;
+  int num_uses = d_insn->vA;
+  int i;
+
+  mir->ssa_rep->num_uses = num_uses;
+  mir->ssa_rep->uses = static_cast<int*>(NewMem(cu_, sizeof(int) * num_uses, true, kAllocDFInfo));
+  // NOTE: will be filled in during type & size inference pass
+  mir->ssa_rep->fp_use = static_cast<bool*>(NewMem(cu_, sizeof(bool) * num_uses, true,
+                                                 kAllocDFInfo));
+
+  for (i = 0; i < num_uses; i++) {
+    HandleSSAUse(mir->ssa_rep->uses, d_insn->arg[i], i);
+  }
+}
+
+/* Look up new SSA names for format_3rc instructions */
+void MIRGraph::DataFlowSSAFormat3RC(MIR* mir)
+{
+  DecodedInstruction *d_insn = &mir->dalvikInsn;
+  int num_uses = d_insn->vA;
+  int i;
+
+  mir->ssa_rep->num_uses = num_uses;
+  mir->ssa_rep->uses = static_cast<int*>(NewMem(cu_, sizeof(int) * num_uses, true, kAllocDFInfo));
+  // NOTE: will be filled in during type & size inference pass
+  mir->ssa_rep->fp_use = static_cast<bool*>(NewMem(cu_, sizeof(bool) * num_uses, true,
+                                                 kAllocDFInfo));
+
+  for (i = 0; i < num_uses; i++) {
+    HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+i, i);
+  }
+}
+
+/* Entry function to convert a block into SSA representation */
+bool MIRGraph::DoSSAConversion(BasicBlock* bb)
+{
+  MIR* mir;
+
+  if (bb->data_flow_info == NULL) return false;
+
+  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
+    mir->ssa_rep = static_cast<struct SSARepresentation *>(NewMem(cu_, sizeof(SSARepresentation),
+                                                                 true, kAllocDFInfo));
+
+    int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode];
+
+      // If not a pseudo-op, note non-leaf or can throw
+    if (static_cast<int>(mir->dalvikInsn.opcode) <
+        static_cast<int>(kNumPackedOpcodes)) {
+      int flags = Instruction::FlagsOf(mir->dalvikInsn.opcode);
+
+      if (flags & Instruction::kInvoke) {
+        cu_->attributes &= ~METHOD_IS_LEAF;
+      }
+    }
+
+    int num_uses = 0;
+
+    if (df_attributes & DF_FORMAT_35C) {
+      DataFlowSSAFormat35C(mir);
+      continue;
+    }
+
+    if (df_attributes & DF_FORMAT_3RC) {
+      DataFlowSSAFormat3RC(mir);
+      continue;
+    }
+
+    if (df_attributes & DF_HAS_USES) {
+      if (df_attributes & DF_UA) {
+        num_uses++;
+        if (df_attributes & DF_A_WIDE) {
+          num_uses ++;
+        }
+      }
+      if (df_attributes & DF_UB) {
+        num_uses++;
+        if (df_attributes & DF_B_WIDE) {
+          num_uses ++;
+        }
+      }
+      if (df_attributes & DF_UC) {
+        num_uses++;
+        if (df_attributes & DF_C_WIDE) {
+          num_uses ++;
+        }
+      }
+    }
+
+    if (num_uses) {
+      mir->ssa_rep->num_uses = num_uses;
+      mir->ssa_rep->uses = static_cast<int*>(NewMem(cu_, sizeof(int) * num_uses, false,
+                                                   kAllocDFInfo));
+      mir->ssa_rep->fp_use = static_cast<bool*>(NewMem(cu_, sizeof(bool) * num_uses, false,
+                                                     kAllocDFInfo));
+    }
+
+    int num_defs = 0;
+
+    if (df_attributes & DF_HAS_DEFS) {
+      num_defs++;
+      if (df_attributes & DF_A_WIDE) {
+        num_defs++;
+      }
+    }
+
+    if (num_defs) {
+      mir->ssa_rep->num_defs = num_defs;
+      mir->ssa_rep->defs = static_cast<int*>(NewMem(cu_, sizeof(int) * num_defs, false,
+                                                   kAllocDFInfo));
+      mir->ssa_rep->fp_def = static_cast<bool*>(NewMem(cu_, sizeof(bool) * num_defs, false,
+                                                     kAllocDFInfo));
+    }
+
+    DecodedInstruction *d_insn = &mir->dalvikInsn;
+
+    if (df_attributes & DF_HAS_USES) {
+      num_uses = 0;
+      if (df_attributes & DF_UA) {
+        mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
+        HandleSSAUse(mir->ssa_rep->uses, d_insn->vA, num_uses++);
+        if (df_attributes & DF_A_WIDE) {
+          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
+          HandleSSAUse(mir->ssa_rep->uses, d_insn->vA+1, num_uses++);
+        }
+      }
+      if (df_attributes & DF_UB) {
+        mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
+        HandleSSAUse(mir->ssa_rep->uses, d_insn->vB, num_uses++);
+        if (df_attributes & DF_B_WIDE) {
+          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
+          HandleSSAUse(mir->ssa_rep->uses, d_insn->vB+1, num_uses++);
+        }
+      }
+      if (df_attributes & DF_UC) {
+        mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
+        HandleSSAUse(mir->ssa_rep->uses, d_insn->vC, num_uses++);
+        if (df_attributes & DF_C_WIDE) {
+          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
+          HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+1, num_uses++);
+        }
+      }
+    }
+    if (df_attributes & DF_HAS_DEFS) {
+      mir->ssa_rep->fp_def[0] = df_attributes & DF_FP_A;
+      HandleSSADef(mir->ssa_rep->defs, d_insn->vA, 0);
+      if (df_attributes & DF_A_WIDE) {
+        mir->ssa_rep->fp_def[1] = df_attributes & DF_FP_A;
+        HandleSSADef(mir->ssa_rep->defs, d_insn->vA+1, 1);
+      }
+    }
+  }
+
+  if (!cu_->disable_dataflow) {
+    /*
+     * Take a snapshot of Dalvik->SSA mapping at the end of each block. The
+     * input to PHI nodes can be derived from the snapshot of all
+     * predecessor blocks.
+     */
+    bb->data_flow_info->vreg_to_ssa_map =
+        static_cast<int*>(NewMem(cu_, sizeof(int) * cu_->num_dalvik_registers, false,
+                                 kAllocDFInfo));
+
+    memcpy(bb->data_flow_info->vreg_to_ssa_map, vreg_to_ssa_map_,
+           sizeof(int) * cu_->num_dalvik_registers);
+  }
+  return true;
+}
+
+/* Setup the basic data structures for SSA conversion */
+void MIRGraph::CompilerInitializeSSAConversion()
+{
+  int i;
+  int num_dalvik_reg = cu_->num_dalvik_registers;
+
+  ssa_base_vregs_ =
+      static_cast<GrowableList*>(NewMem(cu_, sizeof(GrowableList), false, kAllocDFInfo));
+  ssa_subscripts_ =
+      static_cast<GrowableList*>(NewMem(cu_, sizeof(GrowableList), false, kAllocDFInfo));
+  ssa_strings_ =
+      static_cast<GrowableList*>(NewMem(cu_, sizeof(GrowableList), false, kAllocDFInfo));
+  // Create the ssa mappings, estimating the max size
+  CompilerInitGrowableList(cu_, ssa_base_vregs_, num_dalvik_reg + GetDefCount() + 128,
+                           kListSSAtoDalvikMap);
+  CompilerInitGrowableList(cu_, ssa_subscripts_, num_dalvik_reg + GetDefCount() + 128,
+                           kListSSAtoDalvikMap);
+  CompilerInitGrowableList(cu_, ssa_strings_, num_dalvik_reg + GetDefCount() + 128,
+                           kListSSAtoDalvikMap);
+  /*
+   * Initial number of SSA registers is equal to the number of Dalvik
+   * registers.
+   */
+  SetNumSSARegs(num_dalvik_reg);
+
+  /*
+   * Initialize the SSA2Dalvik map list. For the first num_dalvik_reg elements,
+   * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
+   * into "(0 << 16) | i"
+   */
+  for (i = 0; i < num_dalvik_reg; i++) {
+    InsertGrowableList(cu_, ssa_base_vregs_, i);
+    InsertGrowableList(cu_, ssa_subscripts_, 0);
+    std::string ssa_name = GetSSAName(cu_, i);
+    char* name = static_cast<char*>(NewMem(cu_, ssa_name.length() + 1, true, kAllocDFInfo));
+    strncpy(name, ssa_name.c_str(), ssa_name.length() + 1);
+    InsertGrowableList(cu_, ssa_strings_, reinterpret_cast<uintptr_t>(name));
+  }
+
+  /*
+   * Initialize the DalvikToSSAMap map. There is one entry for each
+   * Dalvik register, and the SSA names for those are the same.
+   */
+  vreg_to_ssa_map_ =
+      static_cast<int*>(NewMem(cu_, sizeof(int) * num_dalvik_reg, false, kAllocDFInfo));
+  /* Keep track of the higest def for each dalvik reg */
+  ssa_last_defs_ =
+      static_cast<int*>(NewMem(cu_, sizeof(int) * num_dalvik_reg, false, kAllocDFInfo));
+
+  for (i = 0; i < num_dalvik_reg; i++) {
+    vreg_to_ssa_map_[i] = i;
+    ssa_last_defs_[i] = 0;
+  }
+
+  /* Add ssa reg for Method* */
+  cu_->method_sreg = AddNewSReg(SSA_METHOD_BASEREG);
+
+  /*
+   * Allocate the BasicBlockDataFlow structure for the entry and code blocks
+   */
+  GrowableListIterator iterator = GetBasicBlockIterator();
+
+  while (true) {
+    BasicBlock* bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iterator));
+    if (bb == NULL) break;
+    if (bb->hidden == true) continue;
+    if (bb->block_type == kDalvikByteCode ||
+      bb->block_type == kEntryBlock ||
+      bb->block_type == kExitBlock) {
+      bb->data_flow_info = static_cast<BasicBlockDataFlow*>(NewMem(cu_, sizeof(BasicBlockDataFlow),
+                                                                 true, kAllocDFInfo));
+      }
+  }
+}
+
+/* Clear the visited flag for each BB */
+bool MIRGraph::ClearVisitedFlag(struct BasicBlock* bb)
+{
+  bb->visited = false;
+  return true;
+}
+
+/*
+ * This function will make a best guess at whether the invoke will
+ * end up using Method*.  It isn't critical to get it exactly right,
+ * and attempting to do would involve more complexity than it's
+ * worth.
+ */
+bool MIRGraph::InvokeUsesMethodStar(MIR* mir)
+{
+  InvokeType type;
+  Instruction::Code opcode = mir->dalvikInsn.opcode;
+  switch (opcode) {
+    case Instruction::INVOKE_STATIC:
+    case Instruction::INVOKE_STATIC_RANGE:
+      type = kStatic;
+      break;
+    case Instruction::INVOKE_DIRECT:
+    case Instruction::INVOKE_DIRECT_RANGE:
+      type = kDirect;
+      break;
+    case Instruction::INVOKE_VIRTUAL:
+    case Instruction::INVOKE_VIRTUAL_RANGE:
+      type = kVirtual;
+      break;
+    case Instruction::INVOKE_INTERFACE:
+    case Instruction::INVOKE_INTERFACE_RANGE:
+      return false;
+    case Instruction::INVOKE_SUPER_RANGE:
+    case Instruction::INVOKE_SUPER:
+      type = kSuper;
+      break;
+    default:
+      LOG(WARNING) << "Unexpected invoke op: " << opcode;
+      return false;
+  }
+  DexCompilationUnit m_unit(cu_);
+  // TODO: add a flag so we don't counts the stats for this twice
+  uint32_t dex_method_idx = mir->dalvikInsn.vB;
+  int vtable_idx;
+  uintptr_t direct_code;
+  uintptr_t direct_method;
+  bool fast_path =
+      cu_->compiler_driver->ComputeInvokeInfo(dex_method_idx, &m_unit, type,
+                                             vtable_idx, direct_code,
+                                             direct_method) &&
+                                             !(cu_->enable_debug & (1 << kDebugSlowInvokePath));
+  return (((type == kDirect) || (type == kStatic)) &&
+          fast_path && ((direct_code == 0) || (direct_method == 0)));
+}
+
+/*
+ * Count uses, weighting by loop nesting depth.  This code only
+ * counts explicitly used s_regs.  A later phase will add implicit
+ * counts for things such as Method*, null-checked references, etc.
+ */
+bool MIRGraph::CountUses(struct BasicBlock* bb)
+{
+  if (bb->block_type != kDalvikByteCode) {
+    return false;
+  }
+  for (MIR* mir = bb->first_mir_insn; (mir != NULL); mir = mir->next) {
+    if (mir->ssa_rep == NULL) {
+      continue;
+    }
+    uint32_t weight = std::min(16U, static_cast<uint32_t>(bb->nesting_depth));
+    for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
+      int s_reg = mir->ssa_rep->uses[i];
+      DCHECK_LT(s_reg, static_cast<int>(use_counts_.num_used));
+      raw_use_counts_.elem_list[s_reg]++;
+      use_counts_.elem_list[s_reg] += (1 << weight);
+    }
+    if (!(cu_->disable_opt & (1 << kPromoteCompilerTemps))) {
+      int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode];
+      // Implicit use of Method* ? */
+      if (df_attributes & DF_UMS) {
+        /*
+         * Some invokes will not use Method* - need to perform test similar
+         * to that found in GenInvoke() to decide whether to count refs
+         * for Method* on invoke-class opcodes.
+         * TODO: refactor for common test here, save results for GenInvoke
+         */
+        int uses_method_star = true;
+        if ((df_attributes & (DF_FORMAT_35C | DF_FORMAT_3RC)) &&
+            !(df_attributes & DF_NON_NULL_RET)) {
+          uses_method_star &= InvokeUsesMethodStar(mir);
+        }
+        if (uses_method_star) {
+          raw_use_counts_.elem_list[cu_->method_sreg]++;
+          use_counts_.elem_list[cu_->method_sreg] += (1 << weight);
+        }
+      }
+    }
+  }
+  return false;
+}
+
+void MIRGraph::MethodUseCount()
+{
+  int num_ssa_regs = GetNumSSARegs();
+  CompilerInitGrowableList(cu_, &use_counts_, num_ssa_regs + 32, kListMisc);
+  CompilerInitGrowableList(cu_, &raw_use_counts_, num_ssa_regs + 32, kListMisc);
+  // Initialize list
+  for (int i = 0; i < num_ssa_regs; i++) {
+    InsertGrowableList(cu_, &use_counts_, 0);
+    InsertGrowableList(cu_, &raw_use_counts_, 0);
+  }
+  if (cu_->disable_opt & (1 << kPromoteRegs)) {
+    return;
+  }
+  DataflowIterator iter(this, kAllNodes, false /* not iterative */);
+  for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
+    CountUses(bb);
+  }
+}
+
+/* Verify if all the successor is connected with all the claimed predecessors */
+bool MIRGraph::VerifyPredInfo(BasicBlock* bb)
+{
+  GrowableListIterator iter;
+
+  GrowableListIteratorInit(bb->predecessors, &iter);
+  while (true) {
+    BasicBlock *pred_bb = reinterpret_cast<BasicBlock*>(GrowableListIteratorNext(&iter));
+    if (!pred_bb) break;
+    bool found = false;
+    if (pred_bb->taken == bb) {
+        found = true;
+    } else if (pred_bb->fall_through == bb) {
+        found = true;
+    } else if (pred_bb->successor_block_list.block_list_type != kNotUsed) {
+      GrowableListIterator iterator;
+      GrowableListIteratorInit(&pred_bb->successor_block_list.blocks,
+                                  &iterator);
+      while (true) {
+        SuccessorBlockInfo *successor_block_info =
+            reinterpret_cast<SuccessorBlockInfo*>(GrowableListIteratorNext(&iterator));
+        if (successor_block_info == NULL) break;
+        BasicBlock *succ_bb = successor_block_info->block;
+        if (succ_bb == bb) {
+            found = true;
+            break;
+        }
+      }
+    }
+    if (found == false) {
+      char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
+      GetBlockName(bb, block_name1);
+      GetBlockName(pred_bb, block_name2);
+      DumpCFG("/sdcard/cfg/", false);
+      LOG(FATAL) << "Successor " << block_name1 << "not found from "
+                 << block_name2;
+    }
+  }
+  return true;
+}
+
+void MIRGraph::VerifyDataflow()
+{
+    /* Verify if all blocks are connected as claimed */
+  DataflowIterator iter(this, kAllNodes, false /* not iterative */);
+  for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
+    VerifyPredInfo(bb);
+  }
+}
+
+}  // namespace art