Induction variable analysis (with unit tests).

Rationale:
Induction variable analysis forms the basis of a wide
variety of compiler optimizations. This implementation
finds induction variables using the elegant SSA-based
algorithm defined by [Gerlek et al.].

Change-Id: I79b8dce33ffb8b283c179699a8dff5bd196f75b2
diff --git a/compiler/optimizing/induction_var_analysis.cc b/compiler/optimizing/induction_var_analysis.cc
new file mode 100644
index 0000000..8aaec68
--- /dev/null
+++ b/compiler/optimizing/induction_var_analysis.cc
@@ -0,0 +1,479 @@
+/*
+ * Copyright (C) 2015 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "induction_var_analysis.h"
+
+namespace art {
+
+/**
+ * Returns true if instruction is invariant within the given loop.
+ */
+static bool IsLoopInvariant(HLoopInformation* loop, HInstruction* instruction) {
+  HLoopInformation* other_loop = instruction->GetBlock()->GetLoopInformation();
+  if (other_loop != loop) {
+    // If instruction does not occur in same loop, it is invariant
+    // if it appears in an outer loop (including no loop at all).
+    return other_loop == nullptr || loop->IsIn(*other_loop);
+  }
+  return false;
+}
+
+/**
+ * Returns true if instruction is proper entry-phi-operation for given loop
+ * (referred to as mu-operation in Gerlek's paper).
+ */
+static bool IsEntryPhi(HLoopInformation* loop, HInstruction* instruction) {
+  return
+      instruction->IsPhi() &&
+      instruction->InputCount() == 2 &&
+      instruction->GetBlock() == loop->GetHeader();
+}
+
+//
+// Class methods.
+//
+
+HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph)
+    : HOptimization(graph, kInductionPassName),
+      global_depth_(0),
+      stack_(graph->GetArena()->Adapter()),
+      scc_(graph->GetArena()->Adapter()),
+      map_(std::less<int>(), graph->GetArena()->Adapter()),
+      cycle_(std::less<int>(), graph->GetArena()->Adapter()),
+      induction_(std::less<int>(), graph->GetArena()->Adapter()) {
+}
+
+void HInductionVarAnalysis::Run() {
+  // Detects sequence variables (generalized induction variables) during an
+  // inner-loop-first traversal of all loops using Gerlek's algorithm.
+  for (HPostOrderIterator it_graph(*graph_); !it_graph.Done(); it_graph.Advance()) {
+    HBasicBlock* graph_block = it_graph.Current();
+    if (graph_block->IsLoopHeader()) {
+      VisitLoop(graph_block->GetLoopInformation());
+    }
+  }
+}
+
+void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) {
+  // Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's
+  // algorithm. Due to the descendant-first nature, classification happens "on-demand".
+  global_depth_ = 0;
+  CHECK(stack_.empty());
+  map_.clear();
+
+  for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) {
+    HBasicBlock* loop_block = it_loop.Current();
+    CHECK(loop_block->IsInLoop());
+    if (loop_block->GetLoopInformation() != loop) {
+      continue;  // Inner loops already visited.
+    }
+    // Visit phi-operations and instructions.
+    for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) {
+      HInstruction* instruction = it.Current();
+      if (!IsVisitedNode(instruction->GetId())) {
+        VisitNode(loop, instruction);
+      }
+    }
+    for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) {
+      HInstruction* instruction = it.Current();
+      if (!IsVisitedNode(instruction->GetId())) {
+        VisitNode(loop, instruction);
+      }
+    }
+  }
+
+  CHECK(stack_.empty());
+  map_.clear();
+}
+
+void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) {
+  const int id = instruction->GetId();
+  const uint32_t d1 = ++global_depth_;
+  map_.Put(id, NodeInfo(d1));
+  stack_.push_back(instruction);
+
+  // Visit all descendants.
+  uint32_t low = d1;
+  for (size_t i = 0, count = instruction->InputCount(); i < count; ++i) {
+    low = std::min(low, VisitDescendant(loop, instruction->InputAt(i)));
+  }
+
+  // Lower or found SCC?
+  if (low < d1) {
+    map_.find(id)->second.depth = low;
+  } else {
+    scc_.clear();
+    cycle_.clear();
+
+    // Pop the stack to build the SCC for classification.
+    while (!stack_.empty()) {
+      HInstruction* x = stack_.back();
+      scc_.push_back(x);
+      stack_.pop_back();
+      map_.find(x->GetId())->second.done = true;
+      if (x == instruction) {
+        break;
+      }
+    }
+
+    // Classify the SCC.
+    if (scc_.size() == 1 && !IsEntryPhi(loop, scc_[0])) {
+      ClassifyTrivial(loop, scc_[0]);
+    } else {
+      ClassifyNonTrivial(loop);
+    }
+
+    scc_.clear();
+    cycle_.clear();
+  }
+}
+
+uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) {
+  // If the definition is either outside the loop (loop invariant entry value)
+  // or assigned in inner loop (inner exit value), the traversal stops.
+  HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation();
+  if (otherLoop != loop) {
+    return global_depth_;
+  }
+
+  // Inspect descendant node.
+  const int id = instruction->GetId();
+  if (!IsVisitedNode(id)) {
+    VisitNode(loop, instruction);
+    return map_.find(id)->second.depth;
+  } else {
+    auto it = map_.find(id);
+    return it->second.done ? global_depth_ : it->second.depth;
+  }
+}
+
+void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) {
+  InductionInfo* info = nullptr;
+  if (instruction->IsPhi()) {
+    for (size_t i = 1, count = instruction->InputCount(); i < count; i++) {
+      info = TransferPhi(LookupInfo(loop, instruction->InputAt(0)),
+                         LookupInfo(loop, instruction->InputAt(i)));
+    }
+  } else if (instruction->IsAdd()) {
+    info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
+                          LookupInfo(loop, instruction->InputAt(1)), kAdd);
+  } else if (instruction->IsSub()) {
+    info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
+                          LookupInfo(loop, instruction->InputAt(1)), kSub);
+  } else if (instruction->IsMul()) {
+    info = TransferMul(LookupInfo(loop, instruction->InputAt(0)),
+                       LookupInfo(loop, instruction->InputAt(1)));
+  } else if (instruction->IsNeg()) {
+    info = TransferNeg(LookupInfo(loop, instruction->InputAt(0)));
+  }
+
+  // Successfully classified?
+  if (info != nullptr) {
+    AssignInfo(loop, instruction, info);
+  }
+}
+
+void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) {
+  const size_t size = scc_.size();
+  CHECK_GE(size, 1u);
+  HInstruction* phi = scc_[size - 1];
+  if (!IsEntryPhi(loop, phi)) {
+    return;
+  }
+  HInstruction* external = phi->InputAt(0);
+  HInstruction* internal = phi->InputAt(1);
+  InductionInfo* initial = LookupInfo(loop, external);
+  if (initial == nullptr || initial->induction_class != kInvariant) {
+    return;
+  }
+
+  // Singleton entry-phi-operation may be a wrap-around induction.
+  if (size == 1) {
+    InductionInfo* update = LookupInfo(loop, internal);
+    if (update != nullptr) {
+      AssignInfo(loop, phi, NewInductionInfo(kWrapAround, kNop, initial, update, nullptr));
+    }
+    return;
+  }
+
+  // Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns
+  // temporary meaning to its nodes.
+  cycle_.Overwrite(phi->GetId(), nullptr);
+  for (size_t i = 0; i < size - 1; i++) {
+    HInstruction* operation = scc_[i];
+    InductionInfo* update = nullptr;
+    if (operation->IsPhi()) {
+      update = TransferCycleOverPhi(operation);
+    } else if (operation->IsAdd()) {
+      update = TransferCycleOverAddSub(loop, operation->InputAt(0), operation->InputAt(1), kAdd, true);
+    } else if (operation->IsSub()) {
+      update = TransferCycleOverAddSub(loop, operation->InputAt(0), operation->InputAt(1), kSub, true);
+    }
+    if (update == nullptr) {
+      return;
+    }
+    cycle_.Overwrite(operation->GetId(), update);
+  }
+
+  // Success if the internal link received accumulated nonzero update.
+  auto it = cycle_.find(internal->GetId());
+  if (it != cycle_.end() && it->second != nullptr) {
+    // Classify header phi and feed the cycle "on-demand".
+    AssignInfo(loop, phi, NewInductionInfo(kLinear, kNop, it->second, initial, nullptr));
+    for (size_t i = 0; i < size - 1; i++) {
+      ClassifyTrivial(loop, scc_[i]);
+    }
+  }
+}
+
+HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(InductionInfo* a,
+                                                                         InductionInfo* b) {
+  // Transfer over a phi: if both inputs are identical, result is input.
+  if (InductionEqual(a, b)) {
+    return a;
+  }
+  return nullptr;
+}
+
+HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a,
+                                                                            InductionInfo* b,
+                                                                            InductionOp op) {
+  // Transfer over an addition or subtraction: invariant or linear
+  // inputs combine into new invariant or linear result.
+  if (a != nullptr && b != nullptr) {
+    if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
+      return NewInductionInfo(kInvariant, op, a, b, nullptr);
+    } else if (a->induction_class == kLinear && b->induction_class == kInvariant) {
+      return NewInductionInfo(
+          kLinear,
+          kNop,
+          a->op_a,
+          NewInductionInfo(kInvariant, op, a->op_b, b, nullptr),
+          nullptr);
+    } else if (a->induction_class == kInvariant && b->induction_class == kLinear) {
+      InductionInfo* ba = b->op_a;
+      if (op == kSub) {  // negation required
+        ba = NewInductionInfo(kInvariant, kNeg, nullptr, ba, nullptr);
+      }
+      return NewInductionInfo(
+          kLinear,
+          kNop,
+          ba,
+          NewInductionInfo(kInvariant, op, a, b->op_b, nullptr),
+          nullptr);
+    } else if (a->induction_class == kLinear && b->induction_class == kLinear) {
+      return NewInductionInfo(
+          kLinear,
+          kNop,
+          NewInductionInfo(kInvariant, op, a->op_a, b->op_a, nullptr),
+          NewInductionInfo(kInvariant, op, a->op_b, b->op_b, nullptr),
+          nullptr);
+    }
+  }
+  return nullptr;
+}
+
+HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a,
+                                                                         InductionInfo* b) {
+  // Transfer over a multiplication: invariant or linear
+  // inputs combine into new invariant or linear result.
+  // Two linear inputs would become quadratic.
+  if (a != nullptr && b != nullptr) {
+    if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
+      return NewInductionInfo(kInvariant, kMul, a, b, nullptr);
+    } else if (a->induction_class == kLinear && b->induction_class == kInvariant) {
+      return NewInductionInfo(
+          kLinear,
+          kNop,
+          NewInductionInfo(kInvariant, kMul, a->op_a, b, nullptr),
+          NewInductionInfo(kInvariant, kMul, a->op_b, b, nullptr),
+          nullptr);
+    } else if (a->induction_class == kInvariant && b->induction_class == kLinear) {
+      return NewInductionInfo(
+          kLinear,
+          kNop,
+          NewInductionInfo(kInvariant, kMul, a, b->op_a, nullptr),
+          NewInductionInfo(kInvariant, kMul, a, b->op_b, nullptr),
+          nullptr);
+    }
+  }
+  return nullptr;
+}
+
+HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) {
+  // Transfer over a unary negation: invariant or linear input
+  // yields a similar, but negated result.
+  if (a != nullptr) {
+    if (a->induction_class == kInvariant) {
+      return NewInductionInfo(kInvariant, kNeg, nullptr, a, nullptr);
+    } else if (a->induction_class == kLinear) {
+      return NewInductionInfo(
+          kLinear,
+          kNop,
+          NewInductionInfo(kInvariant, kNeg, nullptr, a->op_a, nullptr),
+          NewInductionInfo(kInvariant, kNeg, nullptr, a->op_b, nullptr),
+          nullptr);
+    }
+  }
+  return nullptr;
+}
+
+HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCycleOverPhi(HInstruction* phi) {
+  // Transfer within a cycle over a phi: only identical inputs
+  // can be combined into that input as result.
+  const size_t count = phi->InputCount();
+  CHECK_GT(count, 0u);
+  auto ita = cycle_.find(phi->InputAt(0)->GetId());
+  if (ita != cycle_.end()) {
+    InductionInfo* a = ita->second;
+    for (size_t i = 1; i < count; i++) {
+      auto itb = cycle_.find(phi->InputAt(i)->GetId());
+      if (itb == cycle_.end() ||!HInductionVarAnalysis::InductionEqual(a, itb->second)) {
+        return nullptr;
+      }
+    }
+    return a;
+  }
+  return nullptr;
+}
+
+HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCycleOverAddSub(
+    HLoopInformation* loop,
+    HInstruction* x,
+    HInstruction* y,
+    InductionOp op,
+    bool first) {
+  // Transfer within a cycle over an addition or subtraction: adding or
+  // subtracting an invariant value adds to the stride of the induction,
+  // starting with the phi value denoted by the unusual nullptr value.
+  auto it = cycle_.find(x->GetId());
+  if (it != cycle_.end()) {
+    InductionInfo* a = it->second;
+    InductionInfo* b = LookupInfo(loop, y);
+    if (b != nullptr && b->induction_class == kInvariant) {
+      if (a == nullptr) {
+        if (op == kSub) {  // negation required
+          return NewInductionInfo(kInvariant, kNeg, nullptr, b, nullptr);
+        }
+        return b;
+      } else if (a->induction_class == kInvariant) {
+        return NewInductionInfo(kInvariant, op, a, b, nullptr);
+      }
+    }
+  }
+  // On failure, try alternatives.
+  if (op == kAdd) {
+    // Try the other way around for an addition.
+    if (first) {
+      return TransferCycleOverAddSub(loop, y, x, op, false);
+    }
+  }
+  return nullptr;
+}
+
+void HInductionVarAnalysis::PutInfo(int loop_id, int id, InductionInfo* info) {
+  auto it = induction_.find(loop_id);
+  if (it == induction_.end()) {
+    it = induction_.Put(
+        loop_id, ArenaSafeMap<int, InductionInfo*>(std::less<int>(), graph_->GetArena()->Adapter()));
+  }
+  it->second.Overwrite(id, info);
+}
+
+HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::GetInfo(int loop_id, int id) {
+  auto it = induction_.find(loop_id);
+  if (it != induction_.end()) {
+    auto loop_it = it->second.find(id);
+    if (loop_it != it->second.end()) {
+      return loop_it->second;
+    }
+  }
+  return nullptr;
+}
+
+void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop,
+                                       HInstruction* instruction,
+                                       InductionInfo* info) {
+  const int loopId = loop->GetHeader()->GetBlockId();
+  const int id = instruction->GetId();
+  PutInfo(loopId, id, info);
+}
+
+HInductionVarAnalysis::InductionInfo*
+HInductionVarAnalysis::LookupInfo(HLoopInformation* loop,
+                                  HInstruction* instruction) {
+  const int loop_id = loop->GetHeader()->GetBlockId();
+  const int id = instruction->GetId();
+  InductionInfo* info = GetInfo(loop_id, id);
+  if (info == nullptr && IsLoopInvariant(loop, instruction)) {
+    info = NewInductionInfo(kInvariant, kFetch, nullptr, nullptr, instruction);
+    PutInfo(loop_id, id, info);
+  }
+  return info;
+}
+
+bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1,
+                                           InductionInfo* info2) {
+  // Test structural equality only, without accounting for simplifications.
+  if (info1 != nullptr && info2 != nullptr) {
+    return
+        info1->induction_class == info2->induction_class &&
+        info1->operation       == info2->operation       &&
+        info1->fetch           == info2->fetch           &&
+        InductionEqual(info1->op_a, info2->op_a)         &&
+        InductionEqual(info1->op_b, info2->op_b);
+  }
+  // Otherwise only two nullptrs are considered equal.
+  return info1 == info2;
+}
+
+std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) {
+  if (info != nullptr) {
+    if (info->induction_class == kInvariant) {
+      std::string inv = "(";
+      inv += InductionToString(info->op_a);
+      switch (info->operation) {
+        case kNop: inv += " ? "; break;
+        case kAdd: inv += " + "; break;
+        case kSub:
+        case kNeg: inv += " - "; break;
+        case kMul: inv += " * "; break;
+        case kDiv: inv += " / "; break;
+        case kFetch:
+          CHECK(info->fetch != nullptr);
+          inv += std::to_string(info->fetch->GetId()) + ":" + info->fetch->DebugName();
+          break;
+      }
+      inv += InductionToString(info->op_b);
+      return inv + ")";
+    } else {
+      CHECK(info->operation == kNop);
+      if (info->induction_class == kLinear) {
+        return "(" + InductionToString(info->op_a) + " * i + " +
+                     InductionToString(info->op_b) + ")";
+      } else if (info->induction_class == kWrapAround) {
+        return "wrap(" + InductionToString(info->op_a) + ", " +
+                         InductionToString(info->op_b) + ")";
+      } else if (info->induction_class == kPeriodic) {
+        return "periodic(" + InductionToString(info->op_a) + ", " +
+                             InductionToString(info->op_b) + ")";
+      }
+    }
+  }
+  return "";
+}
+
+}  // namespace art