blob: 24419eff94d856f70007135fb5d3e17280ef2a4b [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "profile_compilation_info.h"
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <zlib.h>
#include <algorithm>
#include <cerrno>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <random>
#include <string>
#include <vector>
#include "android-base/file.h"
#include "base/arena_allocator.h"
#include "base/dumpable.h"
#include "base/file_utils.h"
#include "base/logging.h" // For VLOG.
#include "base/malloc_arena_pool.h"
#include "base/os.h"
#include "base/safe_map.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/unix_file/fd_file.h"
#include "base/utils.h"
#include "base/zip_archive.h"
#include "dex/dex_file_loader.h"
namespace art {
const uint8_t ProfileCompilationInfo::kProfileMagic[] = { 'p', 'r', 'o', '\0' };
// Last profile version: merge profiles directly from the file without creating
// profile_compilation_info object. All the profile line headers are now placed together
// before corresponding method_encodings and class_ids.
const uint8_t ProfileCompilationInfo::kProfileVersion[] = { '0', '1', '0', '\0' };
const uint8_t ProfileCompilationInfo::kProfileVersionForBootImage[] = { '0', '1', '2', '\0' };
static_assert(sizeof(ProfileCompilationInfo::kProfileVersion) == 4,
"Invalid profile version size");
static_assert(sizeof(ProfileCompilationInfo::kProfileVersionForBootImage) == 4,
"Invalid profile version size");
// The name of the profile entry in the dex metadata file.
// DO NOT CHANGE THIS! (it's similar to classes.dex in the apk files).
const char ProfileCompilationInfo::kDexMetadataProfileEntry[] = "primary.prof";
// A synthetic annotations that can be used to denote that no annotation should
// be associated with the profile samples. We use the empty string for the package name
// because that's an invalid package name and should never occur in practice.
const ProfileCompilationInfo::ProfileSampleAnnotation
ProfileCompilationInfo::ProfileSampleAnnotation::kNone =
ProfileCompilationInfo::ProfileSampleAnnotation("");
static constexpr char kSampleMetadataSeparator = ':';
static constexpr uint16_t kMaxDexFileKeyLength = PATH_MAX;
// Debug flag to ignore checksums when testing if a method or a class is present in the profile.
// Used to facilitate testing profile guided compilation across a large number of apps
// using the same test profile.
static constexpr bool kDebugIgnoreChecksum = false;
static constexpr uint8_t kIsMissingTypesEncoding = 6;
static constexpr uint8_t kIsMegamorphicEncoding = 7;
static_assert(sizeof(ProfileCompilationInfo::kIndividualInlineCacheSize) == sizeof(uint8_t),
"InlineCache::kIndividualInlineCacheSize does not have the expect type size");
static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMegamorphicEncoding,
"InlineCache::kIndividualInlineCacheSize is larger than expected");
static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMissingTypesEncoding,
"InlineCache::kIndividualInlineCacheSize is larger than expected");
static constexpr uint32_t kSizeWarningThresholdBytes = 500000U;
static constexpr uint32_t kSizeErrorThresholdBytes = 1500000U;
static constexpr uint32_t kSizeWarningThresholdBootBytes = 25000000U;
static constexpr uint32_t kSizeErrorThresholdBootBytes = 100000000U;
static bool ChecksumMatch(uint32_t dex_file_checksum, uint32_t checksum) {
return kDebugIgnoreChecksum || dex_file_checksum == checksum;
}
ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool, bool for_boot_image)
: default_arena_pool_(),
allocator_(custom_arena_pool),
info_(allocator_.Adapter(kArenaAllocProfile)),
profile_key_map_(std::less<const std::string>(), allocator_.Adapter(kArenaAllocProfile)) {
memcpy(version_,
for_boot_image ? kProfileVersionForBootImage : kProfileVersion,
kProfileVersionSize);
}
ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool)
: ProfileCompilationInfo(custom_arena_pool, /*for_boot_image=*/ false) { }
ProfileCompilationInfo::ProfileCompilationInfo()
: ProfileCompilationInfo(/*for_boot_image=*/ false) { }
ProfileCompilationInfo::ProfileCompilationInfo(bool for_boot_image)
: ProfileCompilationInfo(&default_arena_pool_, for_boot_image) { }
ProfileCompilationInfo::~ProfileCompilationInfo() {
VLOG(profiler) << Dumpable<MemStats>(allocator_.GetMemStats());
ClearData();
}
void ProfileCompilationInfo::DexPcData::AddClass(uint16_t dex_profile_idx,
const dex::TypeIndex& type_idx) {
if (is_megamorphic || is_missing_types) {
return;
}
// Perform an explicit lookup for the type instead of directly emplacing the
// element. We do this because emplace() allocates the node before doing the
// lookup and if it then finds an identical element, it shall deallocate the
// node. For Arena allocations, that's essentially a leak.
ClassReference ref(dex_profile_idx, type_idx);
auto it = classes.find(ref);
if (it != classes.end()) {
// The type index exists.
return;
}
// Check if the adding the type will cause the cache to become megamorphic.
if (classes.size() + 1 >= ProfileCompilationInfo::kIndividualInlineCacheSize) {
is_megamorphic = true;
classes.clear();
return;
}
// The type does not exist and the inline cache will not be megamorphic.
classes.insert(ref);
}
// Transform the actual dex location into a key used to index the dex file in the profile.
// See ProfileCompilationInfo#GetProfileDexFileBaseKey as well.
std::string ProfileCompilationInfo::GetProfileDexFileAugmentedKey(
const std::string& dex_location,
const ProfileSampleAnnotation& annotation) {
std::string base_key = GetProfileDexFileBaseKey(dex_location);
return annotation == ProfileSampleAnnotation::kNone
? base_key
: base_key + kSampleMetadataSeparator + annotation.GetOriginPackageName();;
}
// Transform the actual dex location into a base profile key (represented as relative paths).
// Note: this is OK because we don't store profiles of different apps into the same file.
// Apps with split apks don't cause trouble because each split has a different name and will not
// collide with other entries.
std::string ProfileCompilationInfo::GetProfileDexFileBaseKey(const std::string& dex_location) {
DCHECK(!dex_location.empty());
size_t last_sep_index = dex_location.find_last_of('/');
if (last_sep_index == std::string::npos) {
return dex_location;
} else {
DCHECK(last_sep_index < dex_location.size());
return dex_location.substr(last_sep_index + 1);
}
}
std::string ProfileCompilationInfo::GetBaseKeyFromAugmentedKey(
const std::string& profile_key) {
size_t pos = profile_key.rfind(kSampleMetadataSeparator);
return (pos == std::string::npos) ? profile_key : profile_key.substr(0, pos);
}
std::string ProfileCompilationInfo::MigrateAnnotationInfo(
const std::string& base_key,
const std::string& augmented_key) {
size_t pos = augmented_key.rfind(kSampleMetadataSeparator);
return (pos == std::string::npos)
? base_key
: base_key + augmented_key.substr(pos);
}
ProfileCompilationInfo::ProfileSampleAnnotation ProfileCompilationInfo::GetAnnotationFromKey(
const std::string& augmented_key) {
size_t pos = augmented_key.rfind(kSampleMetadataSeparator);
return (pos == std::string::npos)
? ProfileSampleAnnotation::kNone
: ProfileSampleAnnotation(augmented_key.substr(pos + 1));
}
bool ProfileCompilationInfo::AddMethods(const std::vector<ProfileMethodInfo>& methods,
MethodHotness::Flag flags,
const ProfileSampleAnnotation& annotation) {
for (const ProfileMethodInfo& method : methods) {
if (!AddMethod(method, flags, annotation)) {
return false;
}
}
return true;
}
bool ProfileCompilationInfo::MergeWith(const std::string& filename) {
std::string error;
#ifdef _WIN32
int flags = O_RDONLY;
#else
int flags = O_RDONLY | O_NOFOLLOW | O_CLOEXEC;
#endif
ScopedFlock profile_file =
LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
if (profile_file.get() == nullptr) {
LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
return false;
}
int fd = profile_file->Fd();
ProfileLoadStatus status = LoadInternal(fd, &error);
if (status == kProfileLoadSuccess) {
return true;
}
LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
return false;
}
bool ProfileCompilationInfo::Load(const std::string& filename, bool clear_if_invalid) {
ScopedTrace trace(__PRETTY_FUNCTION__);
std::string error;
if (!IsEmpty()) {
return false;
}
#ifdef _WIN32
int flags = O_RDWR;
#else
int flags = O_RDWR | O_NOFOLLOW | O_CLOEXEC;
#endif
// There's no need to fsync profile data right away. We get many chances
// to write it again in case something goes wrong. We can rely on a simple
// close(), no sync, and let to the kernel decide when to write to disk.
ScopedFlock profile_file =
LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
if (profile_file.get() == nullptr) {
LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
return false;
}
int fd = profile_file->Fd();
ProfileLoadStatus status = LoadInternal(fd, &error);
if (status == kProfileLoadSuccess) {
return true;
}
if (clear_if_invalid &&
((status == kProfileLoadVersionMismatch) || (status == kProfileLoadBadData))) {
LOG(WARNING) << "Clearing bad or obsolete profile data from file "
<< filename << ": " << error;
if (profile_file->ClearContent()) {
return true;
} else {
PLOG(WARNING) << "Could not clear profile file: " << filename;
return false;
}
}
LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
return false;
}
bool ProfileCompilationInfo::Save(const std::string& filename, uint64_t* bytes_written) {
ScopedTrace trace(__PRETTY_FUNCTION__);
std::string error;
#ifdef _WIN32
int flags = O_WRONLY;
#else
int flags = O_WRONLY | O_NOFOLLOW | O_CLOEXEC;
#endif
// There's no need to fsync profile data right away. We get many chances
// to write it again in case something goes wrong. We can rely on a simple
// close(), no sync, and let to the kernel decide when to write to disk.
ScopedFlock profile_file =
LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
if (profile_file.get() == nullptr) {
LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
return false;
}
int fd = profile_file->Fd();
// We need to clear the data because we don't support appending to the profiles yet.
if (!profile_file->ClearContent()) {
PLOG(WARNING) << "Could not clear profile file: " << filename;
return false;
}
// This doesn't need locking because we are trying to lock the file for exclusive
// access and fail immediately if we can't.
bool result = Save(fd);
if (result) {
int64_t size = OS::GetFileSizeBytes(filename.c_str());
if (size != -1) {
VLOG(profiler)
<< "Successfully saved profile info to " << filename << " Size: "
<< size;
if (bytes_written != nullptr) {
*bytes_written = static_cast<uint64_t>(size);
}
}
} else {
VLOG(profiler) << "Failed to save profile info to " << filename;
}
return result;
}
// Returns true if all the bytes were successfully written to the file descriptor.
static bool WriteBuffer(int fd, const uint8_t* buffer, size_t byte_count) {
while (byte_count > 0) {
int bytes_written = TEMP_FAILURE_RETRY(write(fd, buffer, byte_count));
if (bytes_written == -1) {
return false;
}
byte_count -= bytes_written; // Reduce the number of remaining bytes.
buffer += bytes_written; // Move the buffer forward.
}
return true;
}
// Add the string bytes to the buffer.
static void AddStringToBuffer(std::vector<uint8_t>* buffer, const std::string& value) {
buffer->insert(buffer->end(), value.begin(), value.end());
}
// Insert each byte, from low to high into the buffer.
template <typename T>
static void AddUintToBuffer(std::vector<uint8_t>* buffer, T value) {
for (size_t i = 0; i < sizeof(T); i++) {
buffer->push_back((value >> (i * kBitsPerByte)) & 0xff);
}
}
static constexpr size_t kLineHeaderSize =
2 * sizeof(uint16_t) + // class_set.size + dex_location.size
3 * sizeof(uint32_t); // method_map.size + checksum + num_method_ids
/**
* Serialization format:
* [profile_header, zipped[[profile_line_header1, profile_line_header2...],[profile_line_data1,
* profile_line_data2...]]
* profile_header:
* magic,version,number_of_dex_files,uncompressed_size_of_zipped_data,compressed_data_size
* profile_line_header:
* profile_key,number_of_classes,methods_region_size,dex_location_checksum,num_method_ids
* profile_line_data:
* method_encoding_1,method_encoding_2...,class_id1,class_id2...,method_flags bitmap,
* The method_encoding is:
* method_id,number_of_inline_caches,inline_cache1,inline_cache2...
* The inline_cache is:
* dex_pc,[M|dex_map_size], dex_profile_index,class_id1,class_id2...,dex_profile_index2,...
* dex_map_size is the number of dex_indeces that follows.
* Classes are grouped per their dex files and the line
* `dex_profile_index,class_id1,class_id2...,dex_profile_index2,...` encodes the
* mapping from `dex_profile_index` to the set of classes `class_id1,class_id2...`
* M stands for megamorphic or missing types and it's encoded as either
* the byte kIsMegamorphicEncoding or kIsMissingTypesEncoding.
* When present, there will be no class ids following.
**/
bool ProfileCompilationInfo::Save(int fd) {
uint64_t start = NanoTime();
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_GE(fd, 0);
// Use a vector wrapper to avoid keeping track of offsets when we add elements.
std::vector<uint8_t> buffer;
if (!WriteBuffer(fd, kProfileMagic, sizeof(kProfileMagic))) {
return false;
}
if (!WriteBuffer(fd, version_, sizeof(version_))) {
return false;
}
DCHECK_LE(info_.size(), MaxProfileIndex());
WriteProfileIndex(&buffer, static_cast<ProfileIndexType>(info_.size()));
uint32_t required_capacity = 0;
for (const DexFileData* dex_data_ptr : info_) {
const DexFileData& dex_data = *dex_data_ptr;
uint32_t methods_region_size = GetMethodsRegionSize(dex_data);
required_capacity += kLineHeaderSize +
dex_data.profile_key.size() +
sizeof(uint16_t) * dex_data.class_set.size() +
methods_region_size +
dex_data.bitmap_storage.size();
}
// Allow large profiles for non target builds for the case where we are merging many profiles
// to generate a boot image profile.
VLOG(profiler) << "Required capacity: " << required_capacity << " bytes.";
if (required_capacity > GetSizeErrorThresholdBytes()) {
LOG(ERROR) << "Profile data size exceeds "
<< GetSizeErrorThresholdBytes()
<< " bytes. Profile will not be written to disk."
<< " It requires " << required_capacity << " bytes.";
return false;
}
AddUintToBuffer(&buffer, required_capacity);
if (!WriteBuffer(fd, buffer.data(), buffer.size())) {
return false;
}
// Make sure that the buffer has enough capacity to avoid repeated resizings
// while we add data.
buffer.reserve(required_capacity);
buffer.clear();
// Dex files must be written in the order of their profile index. This
// avoids writing the index in the output file and simplifies the parsing logic.
// Write profile line headers.
for (const DexFileData* dex_data_ptr : info_) {
const DexFileData& dex_data = *dex_data_ptr;
if (dex_data.profile_key.size() >= kMaxDexFileKeyLength) {
LOG(WARNING) << "DexFileKey exceeds allocated limit";
return false;
}
uint32_t methods_region_size = GetMethodsRegionSize(dex_data);
DCHECK_LE(dex_data.profile_key.size(), std::numeric_limits<uint16_t>::max());
DCHECK_LE(dex_data.class_set.size(), std::numeric_limits<uint16_t>::max());
// Write profile line header.
AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_data.profile_key.size()));
AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_data.class_set.size()));
AddUintToBuffer(&buffer, methods_region_size); // uint32_t
AddUintToBuffer(&buffer, dex_data.checksum); // uint32_t
AddUintToBuffer(&buffer, dex_data.num_method_ids); // uint32_t
AddStringToBuffer(&buffer, dex_data.profile_key);
}
for (const DexFileData* dex_data_ptr : info_) {
const DexFileData& dex_data = *dex_data_ptr;
// Note that we allow dex files without any methods or classes, so that
// inline caches can refer valid dex files.
uint16_t last_method_index = 0;
for (const auto& method_it : dex_data.method_map) {
// Store the difference between the method indices. The SafeMap is ordered by
// method_id, so the difference will always be non negative.
DCHECK_GE(method_it.first, last_method_index);
uint16_t diff_with_last_method_index = method_it.first - last_method_index;
last_method_index = method_it.first;
AddUintToBuffer(&buffer, diff_with_last_method_index);
AddInlineCacheToBuffer(&buffer, method_it.second);
}
uint16_t last_class_index = 0;
for (const auto& class_id : dex_data.class_set) {
// Store the difference between the class indices. The set is ordered by
// class_id, so the difference will always be non negative.
DCHECK_GE(class_id.index_, last_class_index);
uint16_t diff_with_last_class_index = class_id.index_ - last_class_index;
last_class_index = class_id.index_;
AddUintToBuffer(&buffer, diff_with_last_class_index);
}
buffer.insert(buffer.end(),
dex_data.bitmap_storage.begin(),
dex_data.bitmap_storage.end());
}
uint32_t output_size = 0;
std::unique_ptr<uint8_t[]> compressed_buffer = DeflateBuffer(buffer.data(),
required_capacity,
&output_size);
if (output_size > GetSizeWarningThresholdBytes()) {
LOG(WARNING) << "Profile data size exceeds "
<< GetSizeWarningThresholdBytes()
<< " It has " << output_size << " bytes";
}
buffer.clear();
AddUintToBuffer(&buffer, output_size);
if (!WriteBuffer(fd, buffer.data(), buffer.size())) {
return false;
}
if (!WriteBuffer(fd, compressed_buffer.get(), output_size)) {
return false;
}
uint64_t total_time = NanoTime() - start;
VLOG(profiler) << "Compressed from "
<< std::to_string(required_capacity)
<< " to "
<< std::to_string(output_size);
VLOG(profiler) << "Time to save profile: " << std::to_string(total_time);
return true;
}
void ProfileCompilationInfo::AddInlineCacheToBuffer(std::vector<uint8_t>* buffer,
const InlineCacheMap& inline_cache_map) {
// Add inline cache map size.
AddUintToBuffer(buffer, static_cast<uint16_t>(inline_cache_map.size()));
if (inline_cache_map.size() == 0) {
return;
}
for (const auto& inline_cache_it : inline_cache_map) {
uint16_t dex_pc = inline_cache_it.first;
const DexPcData dex_pc_data = inline_cache_it.second;
const ClassSet& classes = dex_pc_data.classes;
// Add the dex pc.
AddUintToBuffer(buffer, dex_pc);
// Add the megamorphic/missing_types encoding if needed and continue.
// In either cases we don't add any classes to the profiles and so there's
// no point to continue.
// TODO(calin): in case we miss types there is still value to add the
// rest of the classes. They can be added without bumping the profile version.
if (dex_pc_data.is_missing_types) {
DCHECK(!dex_pc_data.is_megamorphic); // at this point the megamorphic flag should not be set.
DCHECK_EQ(classes.size(), 0u);
AddUintToBuffer(buffer, kIsMissingTypesEncoding);
continue;
} else if (dex_pc_data.is_megamorphic) {
DCHECK_EQ(classes.size(), 0u);
AddUintToBuffer(buffer, kIsMegamorphicEncoding);
continue;
}
DCHECK_LT(classes.size(), ProfileCompilationInfo::kIndividualInlineCacheSize);
DCHECK_NE(classes.size(), 0u) << "InlineCache contains a dex_pc with 0 classes";
SafeMap<ProfileIndexType, std::vector<dex::TypeIndex>> dex_to_classes_map;
// Group the classes by dex. We expect that most of the classes will come from
// the same dex, so this will be more efficient than encoding the dex index
// for each class reference.
GroupClassesByDex(classes, &dex_to_classes_map);
// Add the dex map size.
AddUintToBuffer(buffer, static_cast<uint8_t>(dex_to_classes_map.size()));
for (const auto& dex_it : dex_to_classes_map) {
ProfileIndexType dex_profile_index = dex_it.first;
const std::vector<dex::TypeIndex>& dex_classes = dex_it.second;
// Add the dex profile index.
WriteProfileIndex(buffer, dex_profile_index);
// Add the the number of classes for each dex profile index.
AddUintToBuffer(buffer, static_cast<uint8_t>(dex_classes.size()));
for (size_t i = 0; i < dex_classes.size(); i++) {
// Add the type index of the classes.
AddUintToBuffer(buffer, dex_classes[i].index_);
}
}
}
}
uint32_t ProfileCompilationInfo::GetMethodsRegionSize(const DexFileData& dex_data) {
// ((uint16_t)method index + (uint16_t)inline cache size) * number of methods
uint32_t size = 2 * sizeof(uint16_t) * dex_data.method_map.size();
for (const auto& method_it : dex_data.method_map) {
const InlineCacheMap& inline_cache = method_it.second;
size += sizeof(uint16_t) * inline_cache.size(); // dex_pc
for (const auto& inline_cache_it : inline_cache) {
const ClassSet& classes = inline_cache_it.second.classes;
SafeMap<ProfileIndexType, std::vector<dex::TypeIndex>> dex_to_classes_map;
GroupClassesByDex(classes, &dex_to_classes_map);
size += sizeof(uint8_t); // dex_to_classes_map size
for (const auto& dex_it : dex_to_classes_map) {
size += SizeOfProfileIndexType(); // dex profile index
size += sizeof(uint8_t); // number of classes
const std::vector<dex::TypeIndex>& dex_classes = dex_it.second;
size += sizeof(uint16_t) * dex_classes.size(); // the actual classes
}
}
}
return size;
}
void ProfileCompilationInfo::GroupClassesByDex(
const ClassSet& classes,
/*out*/SafeMap<ProfileIndexType, std::vector<dex::TypeIndex>>* dex_to_classes_map) {
for (const auto& classes_it : classes) {
auto dex_it = dex_to_classes_map->FindOrAdd(classes_it.dex_profile_index);
dex_it->second.push_back(classes_it.type_index);
}
}
ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData(
const std::string& profile_key,
uint32_t checksum,
uint32_t num_method_ids) {
const auto profile_index_it = profile_key_map_.FindOrAdd(profile_key, profile_key_map_.size());
if (profile_key_map_.size() > MaxProfileIndex()) {
// Allow only a limited number dex files to be profiled. This allows us to save bytes
// when encoding. For regular profiles this 2^8, and for boot profiles is 2^16
// (well above what we expect for normal applications).
if (kIsDebugBuild) {
LOG(ERROR) << "Exceeded the maximum number of dex file. Something went wrong";
}
profile_key_map_.erase(profile_key);
return nullptr;
}
ProfileIndexType profile_index = profile_index_it->second;
if (info_.size() <= profile_index) {
// This is a new addition. Add it to the info_ array.
DexFileData* dex_file_data = new (&allocator_) DexFileData(
&allocator_,
profile_key,
checksum,
profile_index,
num_method_ids,
IsForBootImage());
info_.push_back(dex_file_data);
}
DexFileData* result = info_[profile_index];
// Check that the checksum matches.
// This may different if for example the dex file was updated and we had a record of the old one.
if (result->checksum != checksum) {
LOG(WARNING) << "Checksum mismatch for dex " << profile_key;
return nullptr;
}
// DCHECK that profile info map key is consistent with the one stored in the dex file data.
// This should always be the case since since the cache map is managed by ProfileCompilationInfo.
DCHECK_EQ(profile_key, result->profile_key);
DCHECK_EQ(profile_index, result->profile_index);
if (num_method_ids != result->num_method_ids) {
// This should not happen... added to help investigating b/65812889.
LOG(ERROR) << "num_method_ids mismatch for dex " << profile_key
<< ", expected=" << num_method_ids
<< ", actual=" << result->num_method_ids;
return nullptr;
}
return result;
}
const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexData(
const std::string& profile_key,
uint32_t checksum,
bool verify_checksum) const {
const auto profile_index_it = profile_key_map_.find(profile_key);
if (profile_index_it == profile_key_map_.end()) {
return nullptr;
}
ProfileIndexType profile_index = profile_index_it->second;
const DexFileData* result = info_[profile_index];
if (verify_checksum && !ChecksumMatch(result->checksum, checksum)) {
return nullptr;
}
DCHECK_EQ(profile_key, result->profile_key);
DCHECK_EQ(profile_index, result->profile_index);
return result;
}
const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexDataUsingAnnotations(
const DexFile* dex_file,
const ProfileSampleAnnotation& annotation) const {
if (annotation == ProfileSampleAnnotation::kNone) {
std::string profile_key = GetProfileDexFileBaseKey(dex_file->GetLocation());
for (const DexFileData* dex_data : info_) {
if (profile_key == GetBaseKeyFromAugmentedKey(dex_data->profile_key)) {
if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
return nullptr;
}
return dex_data;
}
}
} else {
std::string profile_key = GetProfileDexFileAugmentedKey(dex_file->GetLocation(), annotation);
return FindDexData(profile_key, dex_file->GetLocationChecksum());
}
return nullptr;
}
void ProfileCompilationInfo::FindAllDexData(
const DexFile* dex_file,
/*out*/ std::vector<const ProfileCompilationInfo::DexFileData*>* result) const {
std::string profile_key = GetProfileDexFileBaseKey(dex_file->GetLocation());
for (const DexFileData* dex_data : info_) {
if (profile_key == GetBaseKeyFromAugmentedKey(dex_data->profile_key)) {
if (ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
result->push_back(dex_data);
}
}
}
}
bool ProfileCompilationInfo::AddMethod(const ProfileMethodInfo& pmi,
MethodHotness::Flag flags,
const ProfileSampleAnnotation& annotation) {
DexFileData* const data = GetOrAddDexFileData(pmi.ref.dex_file, annotation);
if (data == nullptr) { // checksum mismatch
return false;
}
if (!data->AddMethod(flags, pmi.ref.index)) {
return false;
}
if ((flags & MethodHotness::kFlagHot) == 0) {
// The method is not hot, do not add inline caches.
return true;
}
// Add inline caches. Do this only for regular profiles. The boot image profiles don't use
// them and they take up useless space.
if (IsForBootImage()) {
return true; // early success return.
}
InlineCacheMap* inline_cache = data->FindOrAddHotMethod(pmi.ref.index);
DCHECK(inline_cache != nullptr);
for (const ProfileMethodInfo::ProfileInlineCache& cache : pmi.inline_caches) {
if (cache.is_missing_types) {
FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMissingTypes();
continue;
}
for (const TypeReference& class_ref : cache.classes) {
DexFileData* class_dex_data = GetOrAddDexFileData(class_ref.dex_file, annotation);
if (class_dex_data == nullptr) { // checksum mismatch
return false;
}
DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, cache.dex_pc);
if (dex_pc_data->is_missing_types) {
// Don't bother adding classes if we are missing types.
break;
}
dex_pc_data->AddClass(class_dex_data->profile_index, class_ref.TypeIndex());
}
}
return true;
}
#define READ_UINT(type, buffer, dest, error) \
do { \
if (!(buffer).ReadUintAndAdvance<type>(&(dest))) { \
*(error) = "Could not read "#dest; \
return false; \
} \
} \
while (false)
bool ProfileCompilationInfo::ReadInlineCache(
SafeBuffer& buffer,
ProfileIndexType number_of_dex_files,
const SafeMap<ProfileIndexType, ProfileIndexType>& dex_profile_index_remap,
/*out*/ InlineCacheMap* inline_cache,
/*out*/ std::string* error) {
uint16_t inline_cache_size;
READ_UINT(uint16_t, buffer, inline_cache_size, error);
for (; inline_cache_size > 0; inline_cache_size--) {
uint16_t dex_pc;
uint8_t dex_to_classes_map_size;
READ_UINT(uint16_t, buffer, dex_pc, error);
READ_UINT(uint8_t, buffer, dex_to_classes_map_size, error);
DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, dex_pc);
if (dex_to_classes_map_size == kIsMissingTypesEncoding) {
dex_pc_data->SetIsMissingTypes();
continue;
}
if (dex_to_classes_map_size == kIsMegamorphicEncoding) {
dex_pc_data->SetIsMegamorphic();
continue;
}
for (; dex_to_classes_map_size > 0; dex_to_classes_map_size--) {
ProfileIndexType dex_profile_index;
uint8_t dex_classes_size;
if (!ReadProfileIndex(buffer, &dex_profile_index)) {
*error = "Cannot read profile index";
return false;
}
READ_UINT(uint8_t, buffer, dex_classes_size, error);
if (dex_profile_index >= number_of_dex_files) {
*error = "dex_profile_index out of bounds ";
*error += std::to_string(dex_profile_index) + " " + std::to_string(number_of_dex_files);
return false;
}
for (; dex_classes_size > 0; dex_classes_size--) {
uint16_t type_index;
READ_UINT(uint16_t, buffer, type_index, error);
auto it = dex_profile_index_remap.find(dex_profile_index);
if (it == dex_profile_index_remap.end()) {
// If we don't have an index that's because the dex file was filtered out when loading.
// Set missing types on the dex pc data.
dex_pc_data->SetIsMissingTypes();
} else {
dex_pc_data->AddClass(it->second, dex::TypeIndex(type_index));
}
}
}
}
return true;
}
bool ProfileCompilationInfo::ReadMethods(
SafeBuffer& buffer,
ProfileIndexType number_of_dex_files,
const ProfileLineHeader& line_header,
const SafeMap<ProfileIndexType, ProfileIndexType>& dex_profile_index_remap,
/*out*/std::string* error) {
uint32_t unread_bytes_before_operation = buffer.CountUnreadBytes();
if (unread_bytes_before_operation < line_header.method_region_size_bytes) {
*error += "Profile EOF reached prematurely for ReadMethod";
return false;
}
size_t expected_unread_bytes_after_operation = buffer.CountUnreadBytes()
- line_header.method_region_size_bytes;
uint16_t last_method_index = 0;
while (buffer.CountUnreadBytes() > expected_unread_bytes_after_operation) {
DexFileData* const data = GetOrAddDexFileData(line_header.profile_key,
line_header.checksum,
line_header.num_method_ids);
uint16_t diff_with_last_method_index;
READ_UINT(uint16_t, buffer, diff_with_last_method_index, error);
uint16_t method_index = last_method_index + diff_with_last_method_index;
last_method_index = method_index;
InlineCacheMap* inline_cache = data->FindOrAddHotMethod(method_index);
if (inline_cache == nullptr) {
return false;
}
if (!ReadInlineCache(buffer,
number_of_dex_files,
dex_profile_index_remap,
inline_cache,
error)) {
return false;
}
}
uint32_t total_bytes_read = unread_bytes_before_operation - buffer.CountUnreadBytes();
if (total_bytes_read != line_header.method_region_size_bytes) {
*error += "Profile data inconsistent for ReadMethods";
return false;
}
return true;
}
bool ProfileCompilationInfo::ReadClasses(SafeBuffer& buffer,
const ProfileLineHeader& line_header,
/*out*/std::string* error) {
size_t unread_bytes_before_op = buffer.CountUnreadBytes();
if (unread_bytes_before_op < line_header.class_set_size) {
*error += "Profile EOF reached prematurely for ReadClasses";
return false;
}
uint16_t last_class_index = 0;
for (uint16_t i = 0; i < line_header.class_set_size; i++) {
uint16_t diff_with_last_class_index;
READ_UINT(uint16_t, buffer, diff_with_last_class_index, error);
uint16_t type_index = last_class_index + diff_with_last_class_index;
last_class_index = type_index;
DexFileData* const data = GetOrAddDexFileData(line_header.profile_key,
line_header.checksum,
line_header.num_method_ids);
if (data == nullptr) {
return false;
}
data->class_set.insert(dex::TypeIndex(type_index));
}
size_t total_bytes_read = unread_bytes_before_op - buffer.CountUnreadBytes();
uint32_t expected_bytes_read = line_header.class_set_size * sizeof(uint16_t);
if (total_bytes_read != expected_bytes_read) {
*error += "Profile data inconsistent for ReadClasses";
return false;
}
return true;
}
// Tests for EOF by trying to read 1 byte from the descriptor.
// Returns:
// 0 if the descriptor is at the EOF,
// -1 if there was an IO error
// 1 if the descriptor has more content to read
static int testEOF(int fd) {
uint8_t buffer[1];
return TEMP_FAILURE_RETRY(read(fd, buffer, 1));
}
// Reads an uint value previously written with AddUintToBuffer.
template <typename T>
bool ProfileCompilationInfo::SafeBuffer::ReadUintAndAdvance(/*out*/T* value) {
static_assert(std::is_unsigned<T>::value, "Type is not unsigned");
if (ptr_current_ + sizeof(T) > ptr_end_) {
return false;
}
*value = 0;
for (size_t i = 0; i < sizeof(T); i++) {
*value += ptr_current_[i] << (i * kBitsPerByte);
}
ptr_current_ += sizeof(T);
return true;
}
bool ProfileCompilationInfo::SafeBuffer::CompareAndAdvance(const uint8_t* data, size_t data_size) {
if (ptr_current_ + data_size > ptr_end_) {
return false;
}
if (memcmp(ptr_current_, data, data_size) == 0) {
ptr_current_ += data_size;
return true;
}
return false;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::SafeBuffer::Fill(
ProfileSource& source,
const std::string& debug_stage,
/*out*/ std::string* error) {
size_t byte_count = (ptr_end_ - ptr_current_) * sizeof(*ptr_current_);
uint8_t* buffer = ptr_current_;
return source.Read(buffer, byte_count, debug_stage, error);
}
size_t ProfileCompilationInfo::SafeBuffer::CountUnreadBytes() {
return (ptr_end_ - ptr_current_) * sizeof(*ptr_current_);
}
const uint8_t* ProfileCompilationInfo::SafeBuffer::GetCurrentPtr() {
return ptr_current_;
}
void ProfileCompilationInfo::SafeBuffer::Advance(size_t data_size) {
ptr_current_ += data_size;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadProfileHeader(
ProfileSource& source,
/*out*/ProfileIndexType* number_of_dex_files,
/*out*/uint32_t* uncompressed_data_size,
/*out*/uint32_t* compressed_data_size,
/*out*/std::string* error) {
// Read magic and version
const size_t kMagicVersionSize =
sizeof(kProfileMagic) +
kProfileVersionSize;
SafeBuffer safe_buffer_version(kMagicVersionSize);
ProfileLoadStatus status = safe_buffer_version.Fill(source, "ReadProfileHeaderVersion", error);
if (status != kProfileLoadSuccess) {
return status;
}
if (!safe_buffer_version.CompareAndAdvance(kProfileMagic, sizeof(kProfileMagic))) {
*error = "Profile missing magic";
return kProfileLoadVersionMismatch;
}
if (safe_buffer_version.CountUnreadBytes() < kProfileVersionSize) {
*error = "Cannot read profile version";
return kProfileLoadBadData;
}
memcpy(version_, safe_buffer_version.GetCurrentPtr(), kProfileVersionSize);
if ((memcmp(version_, kProfileVersion, kProfileVersionSize) != 0) &&
(memcmp(version_, kProfileVersionForBootImage, kProfileVersionSize) != 0)) {
*error = "Profile version mismatch";
return kProfileLoadVersionMismatch;
}
const size_t kProfileHeaderDataSize =
SizeOfProfileIndexType() + // number of dex files
sizeof(uint32_t) + // size of uncompressed profile data
sizeof(uint32_t); // size of compressed profile data
SafeBuffer safe_buffer_header_data(kProfileHeaderDataSize);
status = safe_buffer_header_data.Fill(source, "ReadProfileHeaderData", error);
if (status != kProfileLoadSuccess) {
return status;
}
if (!ReadProfileIndex(safe_buffer_header_data, number_of_dex_files)) {
*error = "Cannot read the number of dex files";
return kProfileLoadBadData;
}
if (!safe_buffer_header_data.ReadUintAndAdvance<uint32_t>(uncompressed_data_size)) {
*error = "Cannot read the size of uncompressed data";
return kProfileLoadBadData;
}
if (!safe_buffer_header_data.ReadUintAndAdvance<uint32_t>(compressed_data_size)) {
*error = "Cannot read the size of compressed data";
return kProfileLoadBadData;
}
return kProfileLoadSuccess;
}
bool ProfileCompilationInfo::ReadProfileLineHeaderElements(SafeBuffer& buffer,
/*out*/uint16_t* profile_key_size,
/*out*/ProfileLineHeader* line_header,
/*out*/std::string* error) {
READ_UINT(uint16_t, buffer, *profile_key_size, error);
READ_UINT(uint16_t, buffer, line_header->class_set_size, error);
READ_UINT(uint32_t, buffer, line_header->method_region_size_bytes, error);
READ_UINT(uint32_t, buffer, line_header->checksum, error);
READ_UINT(uint32_t, buffer, line_header->num_method_ids, error);
return true;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadProfileLineHeader(
SafeBuffer& buffer,
/*out*/ProfileLineHeader* line_header,
/*out*/std::string* error) {
if (buffer.CountUnreadBytes() < kLineHeaderSize) {
*error += "Profile EOF reached prematurely for ReadProfileLineHeader";
return kProfileLoadBadData;
}
uint16_t profile_key_size;
if (!ReadProfileLineHeaderElements(buffer, &profile_key_size, line_header, error)) {
return kProfileLoadBadData;
}
if (profile_key_size == 0 || profile_key_size > kMaxDexFileKeyLength) {
*error = "ProfileKey has an invalid size: " +
std::to_string(static_cast<uint32_t>(profile_key_size));
return kProfileLoadBadData;
}
if (buffer.CountUnreadBytes() < profile_key_size) {
*error += "Profile EOF reached prematurely for ReadProfileHeaderDexLocation";
return kProfileLoadBadData;
}
const uint8_t* base_ptr = buffer.GetCurrentPtr();
line_header->profile_key.assign(
reinterpret_cast<const char*>(base_ptr), profile_key_size);
buffer.Advance(profile_key_size);
return kProfileLoadSuccess;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadProfileLine(
SafeBuffer& buffer,
ProfileIndexType number_of_dex_files,
const ProfileLineHeader& line_header,
const SafeMap<ProfileIndexType, ProfileIndexType>& dex_profile_index_remap,
bool merge_classes,
/*out*/std::string* error) {
DexFileData* data = GetOrAddDexFileData(line_header.profile_key,
line_header.checksum,
line_header.num_method_ids);
if (data == nullptr) {
*error = "Error when reading profile file line header: checksum mismatch for "
+ line_header.profile_key;
return kProfileLoadBadData;
}
if (!ReadMethods(buffer, number_of_dex_files, line_header, dex_profile_index_remap, error)) {
return kProfileLoadBadData;
}
if (merge_classes) {
if (!ReadClasses(buffer, line_header, error)) {
return kProfileLoadBadData;
}
}
// Read method bitmap.
const size_t bytes = data->bitmap_storage.size();
if (buffer.CountUnreadBytes() < bytes) {
*error += "Profile EOF reached prematurely for ReadProfileHeaderDexLocation";
return kProfileLoadBadData;
}
const uint8_t* base_ptr = buffer.GetCurrentPtr();
std::copy_n(base_ptr, bytes, data->bitmap_storage.data());
buffer.Advance(bytes);
return kProfileLoadSuccess;
}
// TODO(calin): Fix this API. ProfileCompilationInfo::Load should be static and
// return a unique pointer to a ProfileCompilationInfo upon success.
bool ProfileCompilationInfo::Load(
int fd, bool merge_classes, const ProfileLoadFilterFn& filter_fn) {
std::string error;
ProfileLoadStatus status = LoadInternal(fd, &error, merge_classes, filter_fn);
if (status == kProfileLoadSuccess) {
return true;
} else {
LOG(WARNING) << "Error when reading profile: " << error;
return false;
}
}
bool ProfileCompilationInfo::VerifyProfileData(const std::vector<const DexFile*>& dex_files) {
std::unordered_map<std::string, const DexFile*> key_to_dex_file;
for (const DexFile* dex_file : dex_files) {
key_to_dex_file.emplace(GetProfileDexFileBaseKey(dex_file->GetLocation()), dex_file);
}
for (const DexFileData* dex_data : info_) {
// We need to remove any annotation from the key during verification.
const auto it = key_to_dex_file.find(GetBaseKeyFromAugmentedKey(dex_data->profile_key));
if (it == key_to_dex_file.end()) {
// It is okay if profile contains data for additional dex files.
continue;
}
const DexFile* dex_file = it->second;
const std::string& dex_location = dex_file->GetLocation();
if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
LOG(ERROR) << "Dex checksum mismatch while verifying profile "
<< "dex location " << dex_location << " (checksum="
<< dex_file->GetLocationChecksum() << ", profile checksum="
<< dex_data->checksum;
return false;
}
if (dex_data->num_method_ids != dex_file->NumMethodIds()) {
LOG(ERROR) << "Number of method ids in dex file and profile don't match."
<< "dex location " << dex_location << " NumMethodId in DexFile"
<< dex_file->NumMethodIds() << ", NumMethodId in profile"
<< dex_data->num_method_ids;
return false;
}
// Verify method_encoding.
for (const auto& method_it : dex_data->method_map) {
size_t method_id = (size_t)(method_it.first);
if (method_id >= dex_file->NumMethodIds()) {
LOG(ERROR) << "Invalid method id in profile file. dex location="
<< dex_location << " method_id=" << method_id << " NumMethodIds="
<< dex_file->NumMethodIds();
return false;
}
// Verify class indices of inline caches.
const InlineCacheMap &inline_cache_map = method_it.second;
for (const auto& inline_cache_it : inline_cache_map) {
const DexPcData dex_pc_data = inline_cache_it.second;
if (dex_pc_data.is_missing_types || dex_pc_data.is_megamorphic) {
// No class indices to verify.
continue;
}
const ClassSet &classes = dex_pc_data.classes;
SafeMap<ProfileIndexType, std::vector<dex::TypeIndex>> dex_to_classes_map;
// Group the classes by dex. We expect that most of the classes will come from
// the same dex, so this will be more efficient than encoding the dex index
// for each class reference.
GroupClassesByDex(classes, &dex_to_classes_map);
for (const auto &dex_it : dex_to_classes_map) {
ProfileIndexType dex_profile_index = dex_it.first;
const auto dex_file_inline_cache_it = key_to_dex_file.find(
info_[dex_profile_index]->profile_key);
if (dex_file_inline_cache_it == key_to_dex_file.end()) {
// It is okay if profile contains data for additional dex files.
continue;
}
const DexFile *dex_file_for_inline_cache_check = dex_file_inline_cache_it->second;
const std::vector<dex::TypeIndex> &dex_classes = dex_it.second;
for (size_t i = 0; i < dex_classes.size(); i++) {
if (dex_classes[i].index_ >= dex_file_for_inline_cache_check->NumTypeIds()) {
LOG(ERROR) << "Invalid inline cache in profile file. dex location="
<< dex_location << " method_id=" << method_id
<< " dex_profile_index="
<< static_cast<uint16_t >(dex_profile_index) << " type_index="
<< dex_classes[i].index_
<< " NumTypeIds="
<< dex_file_for_inline_cache_check->NumTypeIds();
return false;
}
}
}
}
}
// Verify class_ids.
for (const auto& class_id : dex_data->class_set) {
if (class_id.index_ >= dex_file->NumTypeIds()) {
LOG(ERROR) << "Invalid class id in profile file. dex_file location "
<< dex_location << " class_id=" << class_id.index_ << " NumClassIds="
<< dex_file->NumClassDefs();
return false;
}
}
}
return true;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::OpenSource(
int32_t fd,
/*out*/ std::unique_ptr<ProfileSource>* source,
/*out*/ std::string* error) {
if (IsProfileFile(fd)) {
source->reset(ProfileSource::Create(fd));
return kProfileLoadSuccess;
} else {
std::unique_ptr<ZipArchive> zip_archive(
ZipArchive::OpenFromFd(DupCloexec(fd), "profile", error));
if (zip_archive.get() == nullptr) {
*error = "Could not open the profile zip archive";
return kProfileLoadBadData;
}
std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(kDexMetadataProfileEntry, error));
if (zip_entry == nullptr) {
// Allow archives without the profile entry. In this case, create an empty profile.
// This gives more flexible when ure-using archives that may miss the entry.
// (e.g. dex metadata files)
LOG(WARNING) << "Could not find entry " << kDexMetadataProfileEntry
<< " in the zip archive. Creating an empty profile.";
source->reset(ProfileSource::Create(MemMap::Invalid()));
return kProfileLoadSuccess;
}
if (zip_entry->GetUncompressedLength() == 0) {
*error = "Empty profile entry in the zip archive.";
return kProfileLoadBadData;
}
// TODO(calin) pass along file names to assist with debugging.
MemMap map = zip_entry->MapDirectlyOrExtract(
kDexMetadataProfileEntry, "profile file", error, alignof(ProfileSource));
if (map.IsValid()) {
source->reset(ProfileSource::Create(std::move(map)));
return kProfileLoadSuccess;
} else {
return kProfileLoadBadData;
}
}
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ProfileSource::Read(
uint8_t* buffer,
size_t byte_count,
const std::string& debug_stage,
std::string* error) {
if (IsMemMap()) {
if (mem_map_cur_ + byte_count > mem_map_.Size()) {
return kProfileLoadBadData;
}
for (size_t i = 0; i < byte_count; i++) {
buffer[i] = *(mem_map_.Begin() + mem_map_cur_);
mem_map_cur_++;
}
} else {
while (byte_count > 0) {
int bytes_read = TEMP_FAILURE_RETRY(read(fd_, buffer, byte_count));;
if (bytes_read == 0) {
*error += "Profile EOF reached prematurely for " + debug_stage;
return kProfileLoadBadData;
} else if (bytes_read < 0) {
*error += "Profile IO error for " + debug_stage + strerror(errno);
return kProfileLoadIOError;
}
byte_count -= bytes_read;
buffer += bytes_read;
}
}
return kProfileLoadSuccess;
}
bool ProfileCompilationInfo::ProfileSource::HasConsumedAllData() const {
return IsMemMap()
? (!mem_map_.IsValid() || mem_map_cur_ == mem_map_.Size())
: (testEOF(fd_) == 0);
}
bool ProfileCompilationInfo::ProfileSource::HasEmptyContent() const {
if (IsMemMap()) {
return !mem_map_.IsValid() || mem_map_.Size() == 0;
} else {
struct stat stat_buffer;
if (fstat(fd_, &stat_buffer) != 0) {
return false;
}
return stat_buffer.st_size == 0;
}
}
// TODO(calin): fail fast if the dex checksums don't match.
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::LoadInternal(
int32_t fd,
std::string* error,
bool merge_classes,
const ProfileLoadFilterFn& filter_fn) {
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_GE(fd, 0);
std::unique_ptr<ProfileSource> source;
ProfileLoadStatus status = OpenSource(fd, &source, error);
if (status != kProfileLoadSuccess) {
return status;
}
// We allow empty profile files.
// Profiles may be created by ActivityManager or installd before we manage to
// process them in the runtime or profman.
if (source->HasEmptyContent()) {
return kProfileLoadSuccess;
}
// Read profile header: magic + version + number_of_dex_files.
ProfileIndexType number_of_dex_files;
uint32_t uncompressed_data_size;
uint32_t compressed_data_size;
status = ReadProfileHeader(*source,
&number_of_dex_files,
&uncompressed_data_size,
&compressed_data_size,
error);
if (status != kProfileLoadSuccess) {
return status;
}
// Allow large profiles for non target builds for the case where we are merging many profiles
// to generate a boot image profile.
if (uncompressed_data_size > GetSizeErrorThresholdBytes()) {
LOG(ERROR) << "Profile data size exceeds "
<< GetSizeErrorThresholdBytes()
<< " bytes. It has " << uncompressed_data_size << " bytes.";
return kProfileLoadBadData;
}
if (uncompressed_data_size > GetSizeWarningThresholdBytes()) {
LOG(WARNING) << "Profile data size exceeds "
<< GetSizeWarningThresholdBytes()
<< " bytes. It has " << uncompressed_data_size << " bytes.";
}
std::unique_ptr<uint8_t[]> compressed_data(new uint8_t[compressed_data_size]);
status = source->Read(compressed_data.get(), compressed_data_size, "ReadContent", error);
if (status != kProfileLoadSuccess) {
*error += "Unable to read compressed profile data";
return status;
}
if (!source->HasConsumedAllData()) {
*error += "Unexpected data in the profile file.";
return kProfileLoadBadData;
}
SafeBuffer uncompressed_data(uncompressed_data_size);
int ret = InflateBuffer(compressed_data.get(),
compressed_data_size,
uncompressed_data_size,
uncompressed_data.Get());
if (ret != Z_STREAM_END) {
*error += "Error reading uncompressed profile data";
return kProfileLoadBadData;
}
std::vector<ProfileLineHeader> profile_line_headers;
// Read profile line headers.
for (ProfileIndexType k = 0; k < number_of_dex_files; k++) {
ProfileLineHeader line_header;
// First, read the line header to get the amount of data we need to read.
status = ReadProfileLineHeader(uncompressed_data, &line_header, error);
if (status != kProfileLoadSuccess) {
return status;
}
profile_line_headers.push_back(line_header);
}
SafeMap<ProfileIndexType, ProfileIndexType> dex_profile_index_remap;
if (!RemapProfileIndex(profile_line_headers, filter_fn, &dex_profile_index_remap)) {
return kProfileLoadBadData;
}
for (ProfileIndexType k = 0; k < number_of_dex_files; k++) {
if (!filter_fn(profile_line_headers[k].profile_key, profile_line_headers[k].checksum)) {
// We have to skip the line. Advanced the current pointer of the buffer.
size_t profile_line_size =
profile_line_headers[k].class_set_size * sizeof(uint16_t) +
profile_line_headers[k].method_region_size_bytes +
DexFileData::ComputeBitmapStorage(IsForBootImage(),
profile_line_headers[k].num_method_ids);
uncompressed_data.Advance(profile_line_size);
} else {
// Now read the actual profile line.
status = ReadProfileLine(uncompressed_data,
number_of_dex_files,
profile_line_headers[k],
dex_profile_index_remap,
merge_classes,
error);
if (status != kProfileLoadSuccess) {
return status;
}
}
}
// Check that we read everything and that profiles don't contain junk data.
if (uncompressed_data.CountUnreadBytes() > 0) {
*error = "Unexpected content in the profile file: " +
std::to_string(uncompressed_data.CountUnreadBytes()) + " extra bytes";
return kProfileLoadBadData;
} else {
return kProfileLoadSuccess;
}
}
bool ProfileCompilationInfo::RemapProfileIndex(
const std::vector<ProfileLineHeader>& profile_line_headers,
const ProfileLoadFilterFn& filter_fn,
/*out*/SafeMap<ProfileIndexType, ProfileIndexType>* dex_profile_index_remap) {
// First verify that all checksums match. This will avoid adding garbage to
// the current profile info.
// Note that the number of elements should be very small, so this should not
// be a performance issue.
for (const ProfileLineHeader& other_profile_line_header : profile_line_headers) {
if (!filter_fn(other_profile_line_header.profile_key, other_profile_line_header.checksum)) {
continue;
}
// verify_checksum is false because we want to differentiate between a missing dex data and
// a mismatched checksum.
const DexFileData* dex_data = FindDexData(other_profile_line_header.profile_key,
/* checksum= */ 0u,
/* verify_checksum= */ false);
if ((dex_data != nullptr) && (dex_data->checksum != other_profile_line_header.checksum)) {
LOG(WARNING) << "Checksum mismatch for dex " << other_profile_line_header.profile_key;
return false;
}
}
// All checksums match. Import the data.
uint32_t num_dex_files = static_cast<uint32_t>(profile_line_headers.size());
for (uint32_t i = 0; i < num_dex_files; i++) {
if (!filter_fn(profile_line_headers[i].profile_key, profile_line_headers[i].checksum)) {
continue;
}
const DexFileData* dex_data = GetOrAddDexFileData(profile_line_headers[i].profile_key,
profile_line_headers[i].checksum,
profile_line_headers[i].num_method_ids);
if (dex_data == nullptr) {
return false; // Could happen if we exceed the number of allowed dex files.
}
dex_profile_index_remap->Put(i, dex_data->profile_index);
}
return true;
}
std::unique_ptr<uint8_t[]> ProfileCompilationInfo::DeflateBuffer(const uint8_t* in_buffer,
uint32_t in_size,
uint32_t* compressed_data_size) {
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
int ret = deflateInit(&strm, 1);
if (ret != Z_OK) {
return nullptr;
}
uint32_t out_size = deflateBound(&strm, in_size);
std::unique_ptr<uint8_t[]> compressed_buffer(new uint8_t[out_size]);
strm.avail_in = in_size;
strm.next_in = const_cast<uint8_t*>(in_buffer);
strm.avail_out = out_size;
strm.next_out = &compressed_buffer[0];
ret = deflate(&strm, Z_FINISH);
if (ret == Z_STREAM_ERROR) {
return nullptr;
}
*compressed_data_size = out_size - strm.avail_out;
deflateEnd(&strm);
return compressed_buffer;
}
int ProfileCompilationInfo::InflateBuffer(const uint8_t* in_buffer,
uint32_t in_size,
uint32_t expected_uncompressed_data_size,
uint8_t* out_buffer) {
z_stream strm;
/* allocate inflate state */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = in_size;
strm.next_in = const_cast<uint8_t*>(in_buffer);
strm.avail_out = expected_uncompressed_data_size;
strm.next_out = out_buffer;
int ret;
inflateInit(&strm);
ret = inflate(&strm, Z_NO_FLUSH);
if (strm.avail_in != 0 || strm.avail_out != 0) {
return Z_DATA_ERROR;
}
inflateEnd(&strm);
return ret;
}
bool ProfileCompilationInfo::MergeWith(const ProfileCompilationInfo& other,
bool merge_classes) {
if (!SameVersion(other)) {
LOG(WARNING) << "Cannot merge different profile versions";
return false;
}
// First verify that all checksums match. This will avoid adding garbage to
// the current profile info.
// Note that the number of elements should be very small, so this should not
// be a performance issue.
for (const DexFileData* other_dex_data : other.info_) {
// verify_checksum is false because we want to differentiate between a missing dex data and
// a mismatched checksum.
const DexFileData* dex_data = FindDexData(other_dex_data->profile_key,
/* checksum= */ 0u,
/* verify_checksum= */ false);
if ((dex_data != nullptr) && (dex_data->checksum != other_dex_data->checksum)) {
LOG(WARNING) << "Checksum mismatch for dex " << other_dex_data->profile_key;
return false;
}
}
// All checksums match. Import the data.
// The other profile might have a different indexing of dex files.
// That is because each dex files gets a 'dex_profile_index' on a first come first served basis.
// That means that the order in with the methods are added to the profile matters for the
// actual indices.
// The reason we cannot rely on the actual multidex index is that a single profile may store
// data from multiple splits. This means that a profile may contain a classes2.dex from split-A
// and one from split-B.
// First, build a mapping from other_dex_profile_index to this_dex_profile_index.
// This will make sure that the ClassReferences will point to the correct dex file.
SafeMap<ProfileIndexType, ProfileIndexType> dex_profile_index_remap;
for (const DexFileData* other_dex_data : other.info_) {
const DexFileData* dex_data = GetOrAddDexFileData(other_dex_data->profile_key,
other_dex_data->checksum,
other_dex_data->num_method_ids);
if (dex_data == nullptr) {
return false; // Could happen if we exceed the number of allowed dex files.
}
dex_profile_index_remap.Put(other_dex_data->profile_index, dex_data->profile_index);
}
// Merge the actual profile data.
for (const DexFileData* other_dex_data : other.info_) {
DexFileData* dex_data = const_cast<DexFileData*>(FindDexData(other_dex_data->profile_key,
other_dex_data->checksum));
DCHECK(dex_data != nullptr);
// Merge the classes.
if (merge_classes) {
dex_data->class_set.insert(other_dex_data->class_set.begin(),
other_dex_data->class_set.end());
}
// Merge the methods and the inline caches.
for (const auto& other_method_it : other_dex_data->method_map) {
uint16_t other_method_index = other_method_it.first;
InlineCacheMap* inline_cache = dex_data->FindOrAddHotMethod(other_method_index);
if (inline_cache == nullptr) {
return false;
}
const auto& other_inline_cache = other_method_it.second;
for (const auto& other_ic_it : other_inline_cache) {
uint16_t other_dex_pc = other_ic_it.first;
const ClassSet& other_class_set = other_ic_it.second.classes;
DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, other_dex_pc);
if (other_ic_it.second.is_missing_types) {
dex_pc_data->SetIsMissingTypes();
} else if (other_ic_it.second.is_megamorphic) {
dex_pc_data->SetIsMegamorphic();
} else {
for (const auto& class_it : other_class_set) {
dex_pc_data->AddClass(dex_profile_index_remap.Get(
class_it.dex_profile_index), class_it.type_index);
}
}
}
}
// Merge the method bitmaps.
dex_data->MergeBitmap(*other_dex_data);
}
return true;
}
ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::GetMethodHotness(
const MethodReference& method_ref,
const ProfileSampleAnnotation& annotation) const {
const DexFileData* dex_data = FindDexDataUsingAnnotations(method_ref.dex_file, annotation);
return dex_data != nullptr
? dex_data->GetHotnessInfo(method_ref.index)
: MethodHotness();
}
std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo>
ProfileCompilationInfo::GetHotMethodInfo(const MethodReference& method_ref,
const ProfileSampleAnnotation& annotation) const {
MethodHotness hotness(GetMethodHotness(method_ref, annotation));
if (!hotness.IsHot()) {
return nullptr;
}
const InlineCacheMap* inline_caches = hotness.GetInlineCacheMap();
DCHECK(inline_caches != nullptr);
std::unique_ptr<OfflineProfileMethodInfo> pmi(new OfflineProfileMethodInfo(inline_caches));
pmi->dex_references.resize(info_.size());
for (const DexFileData* dex_data : info_) {
pmi->dex_references[dex_data->profile_index].profile_key = dex_data->profile_key;
pmi->dex_references[dex_data->profile_index].dex_checksum = dex_data->checksum;
pmi->dex_references[dex_data->profile_index].num_method_ids = dex_data->num_method_ids;
}
return pmi;
}
bool ProfileCompilationInfo::ContainsClass(const DexFile& dex_file,
dex::TypeIndex type_idx,
const ProfileSampleAnnotation& annotation) const {
const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation);
return (dex_data != nullptr) && dex_data->ContainsClass(type_idx);
}
uint32_t ProfileCompilationInfo::GetNumberOfMethods() const {
uint32_t total = 0;
for (const DexFileData* dex_data : info_) {
total += dex_data->method_map.size();
}
return total;
}
uint32_t ProfileCompilationInfo::GetNumberOfResolvedClasses() const {
uint32_t total = 0;
for (const DexFileData* dex_data : info_) {
total += dex_data->class_set.size();
}
return total;
}
std::string ProfileCompilationInfo::DumpInfo(const std::vector<const DexFile*>& dex_files,
bool print_full_dex_location) const {
std::ostringstream os;
os << "ProfileInfo [";
for (size_t k = 0; k < kProfileVersionSize - 1; k++) {
// Iterate to 'kProfileVersionSize - 1' because the version_ ends with '\0'
// which we don't want to print.
os << static_cast<char>(version_[k]);
}
os << "]\n";
if (info_.empty()) {
os << "-empty-";
return os.str();
}
const std::string kFirstDexFileKeySubstitute = "!classes.dex";
for (const DexFileData* dex_data : info_) {
os << "\n";
if (print_full_dex_location) {
os << dex_data->profile_key;
} else {
// Replace the (empty) multidex suffix of the first key with a substitute for easier reading.
std::string multidex_suffix = DexFileLoader::GetMultiDexSuffix(
GetBaseKeyFromAugmentedKey(dex_data->profile_key));
os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix);
}
os << " [index=" << static_cast<uint32_t>(dex_data->profile_index) << "]";
os << " [checksum=" << std::hex << dex_data->checksum << "]" << std::dec;
const DexFile* dex_file = nullptr;
for (const DexFile* current : dex_files) {
if (GetBaseKeyFromAugmentedKey(dex_data->profile_key) == current->GetLocation() &&
dex_data->checksum == current->GetLocationChecksum()) {
dex_file = current;
}
}
os << "\n\thot methods: ";
for (const auto& method_it : dex_data->method_map) {
if (dex_file != nullptr) {
os << "\n\t\t" << dex_file->PrettyMethod(method_it.first, true);
} else {
os << method_it.first;
}
os << "[";
for (const auto& inline_cache_it : method_it.second) {
os << "{" << std::hex << inline_cache_it.first << std::dec << ":";
if (inline_cache_it.second.is_missing_types) {
os << "MT";
} else if (inline_cache_it.second.is_megamorphic) {
os << "MM";
} else {
for (const ClassReference& class_ref : inline_cache_it.second.classes) {
os << "(" << static_cast<uint32_t>(class_ref.dex_profile_index)
<< "," << class_ref.type_index.index_ << ")";
}
}
os << "}";
}
os << "], ";
}
bool startup = true;
while (true) {
os << "\n\t" << (startup ? "startup methods: " : "post startup methods: ");
for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
MethodHotness hotness_info(dex_data->GetHotnessInfo(method_idx));
if (startup ? hotness_info.IsStartup() : hotness_info.IsPostStartup()) {
if (dex_file != nullptr) {
os << "\n\t\t" << dex_file->PrettyMethod(method_idx, true);
} else {
os << method_idx << ", ";
}
}
}
if (startup == false) {
break;
}
startup = false;
}
os << "\n\tclasses: ";
for (const auto class_it : dex_data->class_set) {
if (dex_file != nullptr) {
os << "\n\t\t" << dex_file->PrettyType(class_it);
} else {
os << class_it.index_ << ",";
}
}
}
return os.str();
}
bool ProfileCompilationInfo::GetClassesAndMethods(
const DexFile& dex_file,
/*out*/std::set<dex::TypeIndex>* class_set,
/*out*/std::set<uint16_t>* hot_method_set,
/*out*/std::set<uint16_t>* startup_method_set,
/*out*/std::set<uint16_t>* post_startup_method_method_set,
const ProfileSampleAnnotation& annotation) const {
std::set<std::string> ret;
const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation);
if (dex_data == nullptr) {
return false;
}
for (const auto& it : dex_data->method_map) {
hot_method_set->insert(it.first);
}
for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
MethodHotness hotness = dex_data->GetHotnessInfo(method_idx);
if (hotness.IsStartup()) {
startup_method_set->insert(method_idx);
}
if (hotness.IsPostStartup()) {
post_startup_method_method_set->insert(method_idx);
}
}
for (const dex::TypeIndex& type_index : dex_data->class_set) {
class_set->insert(type_index);
}
return true;
}
bool ProfileCompilationInfo::SameVersion(const ProfileCompilationInfo& other) const {
return memcmp(version_, other.version_, kProfileVersionSize) == 0;
}
bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) {
// No need to compare profile_key_map_. That's only a cache for fast search.
// All the information is already in the info_ vector.
if (!SameVersion(other)) {
return false;
}
if (info_.size() != other.info_.size()) {
return false;
}
for (size_t i = 0; i < info_.size(); i++) {
const DexFileData& dex_data = *info_[i];
const DexFileData& other_dex_data = *other.info_[i];
if (!(dex_data == other_dex_data)) {
return false;
}
}
return true;
}
// Naive implementation to generate a random profile file suitable for testing.
bool ProfileCompilationInfo::GenerateTestProfile(int fd,
uint16_t number_of_dex_files,
uint16_t method_percentage,
uint16_t class_percentage,
uint32_t random_seed) {
const std::string base_dex_location = "base.apk";
ProfileCompilationInfo info;
// The limits are defined by the dex specification.
const uint16_t max_method = std::numeric_limits<uint16_t>::max();
const uint16_t max_classes = std::numeric_limits<uint16_t>::max();
uint16_t number_of_methods = max_method * method_percentage / 100;
uint16_t number_of_classes = max_classes * class_percentage / 100;
std::srand(random_seed);
// Make sure we generate more samples with a low index value.
// This makes it more likely to hit valid method/class indices in small apps.
const uint16_t kFavorFirstN = 10000;
const uint16_t kFavorSplit = 2;
for (uint16_t i = 0; i < number_of_dex_files; i++) {
std::string dex_location = DexFileLoader::GetMultiDexLocation(i, base_dex_location.c_str());
std::string profile_key = info.GetProfileDexFileBaseKey(dex_location);
DexFileData* const data = info.GetOrAddDexFileData(profile_key, /*checksum=*/ 0, max_method);
for (uint16_t m = 0; m < number_of_methods; m++) {
uint16_t method_idx = rand() % max_method;
if (m < (number_of_methods / kFavorSplit)) {
method_idx %= kFavorFirstN;
}
// Alternate between startup and post startup.
uint32_t flags = MethodHotness::kFlagHot;
flags |= ((m & 1) != 0) ? MethodHotness::kFlagPostStartup : MethodHotness::kFlagStartup;
data->AddMethod(static_cast<MethodHotness::Flag>(flags), method_idx);
}
for (uint16_t c = 0; c < number_of_classes; c++) {
uint16_t type_idx = rand() % max_classes;
if (c < (number_of_classes / kFavorSplit)) {
type_idx %= kFavorFirstN;
}
data->class_set.insert(dex::TypeIndex(type_idx));
}
}
return info.Save(fd);
}
// Naive implementation to generate a random profile file suitable for testing.
// Description of random selection:
// * Select a random starting point S.
// * For every index i, add (S+i) % (N - total number of methods/classes) to profile with the
// probably of 1/(N - i - number of methods/classes needed to add in profile).
bool ProfileCompilationInfo::GenerateTestProfile(
int fd,
std::vector<std::unique_ptr<const DexFile>>& dex_files,
uint16_t method_percentage,
uint16_t class_percentage,
uint32_t random_seed) {
ProfileCompilationInfo info;
std::default_random_engine rng(random_seed);
auto create_shuffled_range = [&rng](uint32_t take, uint32_t out_of) {
CHECK_LE(take, out_of);
std::vector<uint32_t> vec(out_of);
std::iota(vec.begin(), vec.end(), 0u);
std::shuffle(vec.begin(), vec.end(), rng);
vec.erase(vec.begin() + take, vec.end());
std::sort(vec.begin(), vec.end());
return vec;
};
for (std::unique_ptr<const DexFile>& dex_file : dex_files) {
const std::string& profile_key = dex_file->GetLocation();
uint32_t checksum = dex_file->GetLocationChecksum();
uint32_t number_of_classes = dex_file->NumClassDefs();
uint32_t classes_required_in_profile = (number_of_classes * class_percentage) / 100;
DexFileData* const data = info.GetOrAddDexFileData(
profile_key, checksum, dex_file->NumMethodIds());
for (uint32_t class_index : create_shuffled_range(classes_required_in_profile,
number_of_classes)) {
data->class_set.insert(dex_file->GetClassDef(class_index).class_idx_);
}
uint32_t number_of_methods = dex_file->NumMethodIds();
uint32_t methods_required_in_profile = (number_of_methods * method_percentage) / 100;
for (uint32_t method_index : create_shuffled_range(methods_required_in_profile,
number_of_methods)) {
// Alternate between startup and post startup.
uint32_t flags = MethodHotness::kFlagHot;
flags |= ((method_index & 1) != 0)
? MethodHotness::kFlagPostStartup
: MethodHotness::kFlagStartup;
data->AddMethod(static_cast<MethodHotness::Flag>(flags), method_index);
}
}
return info.Save(fd);
}
bool ProfileCompilationInfo::OfflineProfileMethodInfo::operator==(
const OfflineProfileMethodInfo& other) const {
if (inline_caches->size() != other.inline_caches->size()) {
return false;
}
// We can't use a simple equality test because we need to match the dex files
// of the inline caches which might have different profile indexes.
for (const auto& inline_cache_it : *inline_caches) {
uint16_t dex_pc = inline_cache_it.first;
const DexPcData dex_pc_data = inline_cache_it.second;
const auto& other_it = other.inline_caches->find(dex_pc);
if (other_it == other.inline_caches->end()) {
return false;
}
const DexPcData& other_dex_pc_data = other_it->second;
if (dex_pc_data.is_megamorphic != other_dex_pc_data.is_megamorphic ||
dex_pc_data.is_missing_types != other_dex_pc_data.is_missing_types) {
return false;
}
for (const ClassReference& class_ref : dex_pc_data.classes) {
bool found = false;
for (const ClassReference& other_class_ref : other_dex_pc_data.classes) {
CHECK_LE(class_ref.dex_profile_index, dex_references.size());
CHECK_LE(other_class_ref.dex_profile_index, other.dex_references.size());
const DexReference& dex_ref = dex_references[class_ref.dex_profile_index];
const DexReference& other_dex_ref = other.dex_references[other_class_ref.dex_profile_index];
if (class_ref.type_index == other_class_ref.type_index &&
dex_ref == other_dex_ref) {
found = true;
break;
}
}
if (!found) {
return false;
}
}
}
return true;
}
bool ProfileCompilationInfo::OfflineProfileMethodInfo::operator==(
const std::vector<ProfileMethodInfo::ProfileInlineCache>& runtime_caches) const {
if (inline_caches->size() != runtime_caches.size()) {
return false;
}
for (const auto& inline_cache_it : *inline_caches) {
uint16_t dex_pc = inline_cache_it.first;
const DexPcData dex_pc_data = inline_cache_it.second;
// Find the corresponding inline cahce.
const ProfileMethodInfo::ProfileInlineCache* runtime_cache = nullptr;
for (const ProfileMethodInfo::ProfileInlineCache& pic : runtime_caches) {
if (pic.dex_pc == dex_pc) {
runtime_cache = &pic;
break;
}
}
// If not found, returnb false.
if (runtime_cache == nullptr) {
return false;
}
// Check that the inline cache properties match up.
if (dex_pc_data.is_missing_types) {
if (!runtime_cache->is_missing_types) {
return false;
} else {
// If the inline cache is megamorphic do not check the classes (they don't matter).
continue;
}
}
if (dex_pc_data.is_megamorphic) {
if (runtime_cache->classes.size() < ProfileCompilationInfo::kIndividualInlineCacheSize) {
return false;
} else {
// If the inline cache is megamorphic do not check the classes (they don't matter).
continue;
}
}
if (dex_pc_data.classes.size() != runtime_cache->classes.size()) {
return false;
}
// Verify that all classes matches.
for (const ClassReference& class_ref : dex_pc_data.classes) {
bool found = false;
const DexReference& dex_ref = dex_references[class_ref.dex_profile_index];
for (const TypeReference& type_ref : runtime_cache->classes) {
if (class_ref.type_index == type_ref.TypeIndex() &&
dex_ref.MatchesDex(type_ref.dex_file)) {
found = true;
break;
}
}
if (!found) {
return false;
}
}
}
// If we didn't fail until now, then the two inline caches are equal.
return true;
}
bool ProfileCompilationInfo::IsEmpty() const {
DCHECK_EQ(info_.empty(), profile_key_map_.empty());
return info_.empty();
}
ProfileCompilationInfo::InlineCacheMap*
ProfileCompilationInfo::DexFileData::FindOrAddHotMethod(uint16_t method_index) {
if (method_index >= num_method_ids) {
LOG(ERROR) << "Invalid method index " << method_index << ". num_method_ids=" << num_method_ids;
return nullptr;
}
return &(method_map.FindOrAdd(
method_index,
InlineCacheMap(std::less<uint16_t>(), allocator_->Adapter(kArenaAllocProfile)))->second);
}
// Mark a method as executed at least once.
bool ProfileCompilationInfo::DexFileData::AddMethod(MethodHotness::Flag flags, size_t index) {
if (index >= num_method_ids) {
LOG(ERROR) << "Invalid method index " << index << ". num_method_ids=" << num_method_ids;
return false;
}
SetMethodHotness(index, flags);
if ((flags & MethodHotness::kFlagHot) != 0) {
ProfileCompilationInfo::InlineCacheMap* result = FindOrAddHotMethod(index);
DCHECK(result != nullptr);
}
return true;
}
void ProfileCompilationInfo::DexFileData::SetMethodHotness(size_t index,
MethodHotness::Flag flags) {
DCHECK_LT(index, num_method_ids);
uint32_t lastFlag = is_for_boot_image
? MethodHotness::kFlagLastBoot
: MethodHotness::kFlagLastRegular;
for (uint32_t flag = MethodHotness::kFlagFirst; flag <= lastFlag; flag = flag << 1) {
if (flag == MethodHotness::kFlagHot) {
// There's no bit for hotness in the bitmap.
// We store the hotness by recording the method in the method list.
continue;
}
if ((flags & flag) != 0) {
method_bitmap.StoreBit(MethodFlagBitmapIndex(
static_cast<MethodHotness::Flag>(flag), index), /*value=*/ true);
}
}
}
ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::DexFileData::GetHotnessInfo(
uint32_t dex_method_index) const {
MethodHotness ret;
uint32_t lastFlag = is_for_boot_image
? MethodHotness::kFlagLastBoot
: MethodHotness::kFlagLastRegular;
for (uint32_t flag = MethodHotness::kFlagFirst; flag <= lastFlag; flag = flag << 1) {
if (flag == MethodHotness::kFlagHot) {
continue;
}
if (method_bitmap.LoadBit(MethodFlagBitmapIndex(
static_cast<MethodHotness::Flag>(flag), dex_method_index))) {
ret.AddFlag(static_cast<MethodHotness::Flag>(flag));
}
}
auto it = method_map.find(dex_method_index);
if (it != method_map.end()) {
ret.SetInlineCacheMap(&it->second);
ret.AddFlag(MethodHotness::kFlagHot);
}
return ret;
}
// To simplify the implementation we use the MethodHotness flag values as indexes into the internal
// bitmap representation. As such, they should never change unless the profile version is updated
// and the implementation changed accordingly.
static_assert(ProfileCompilationInfo::MethodHotness::kFlagFirst == 1 << 0);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagHot == 1 << 0);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartup == 1 << 1);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostStartup == 1 << 2);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastRegular == 1 << 2);
static_assert(ProfileCompilationInfo::MethodHotness::kFlag32bit == 1 << 3);
static_assert(ProfileCompilationInfo::MethodHotness::kFlag64bit == 1 << 4);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagSensitiveThread == 1 << 5);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmStartup == 1 << 6);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmPostStartup == 1 << 7);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagBoot == 1 << 8);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostBoot == 1 << 9);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupBin == 1 << 10);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupMaxBin == 1 << 15);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastBoot == 1 << 15);
size_t ProfileCompilationInfo::DexFileData::MethodFlagBitmapIndex(
MethodHotness::Flag flag, size_t method_index) const {
DCHECK_LT(method_index, num_method_ids);
// The format is [startup bitmap][post startup bitmap][AmStartup][...]
// This compresses better than ([startup bit][post startup bit])*
return method_index + FlagBitmapIndex(flag) * num_method_ids;
}
size_t ProfileCompilationInfo::DexFileData::FlagBitmapIndex(MethodHotness::Flag flag) {
DCHECK(flag != MethodHotness::kFlagHot);
DCHECK(IsPowerOfTwo(static_cast<uint32_t>(flag)));
// We arrange the method flags in order, starting with the startup flag.
// The kFlagHot is not encoded in the bitmap and thus not expected as an
// argument here. Since all the other flags start at 1 we have to subtract
// one for the power of 2.
return WhichPowerOf2(static_cast<uint32_t>(flag)) - 1;
}
ProfileCompilationInfo::DexPcData*
ProfileCompilationInfo::FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc) {
return &(inline_cache->FindOrAdd(dex_pc, DexPcData(&allocator_))->second);
}
HashSet<std::string> ProfileCompilationInfo::GetClassDescriptors(
const std::vector<const DexFile*>& dex_files,
const ProfileSampleAnnotation& annotation) {
HashSet<std::string> ret;
for (const DexFile* dex_file : dex_files) {
const DexFileData* data = FindDexDataUsingAnnotations(dex_file, annotation);
if (data != nullptr) {
for (dex::TypeIndex type_idx : data->class_set) {
if (!dex_file->IsTypeIndexValid(type_idx)) {
// Something went bad. The profile is probably corrupted. Abort and return an emtpy set.
LOG(WARNING) << "Corrupted profile: invalid type index "
<< type_idx.index_ << " in dex " << dex_file->GetLocation();
return HashSet<std::string>();
}
const dex::TypeId& type_id = dex_file->GetTypeId(type_idx);
ret.insert(dex_file->GetTypeDescriptor(type_id));
}
} else {
VLOG(compiler) << "Failed to find profile data for " << dex_file->GetLocation();
}
}
return ret;
}
bool ProfileCompilationInfo::IsProfileFile(int fd) {
// First check if it's an empty file as we allow empty profile files.
// Profiles may be created by ActivityManager or installd before we manage to
// process them in the runtime or profman.
struct stat stat_buffer;
if (fstat(fd, &stat_buffer) != 0) {
return false;
}
if (stat_buffer.st_size == 0) {
return true;
}
// The files is not empty. Check if it contains the profile magic.
size_t byte_count = sizeof(kProfileMagic);
uint8_t buffer[sizeof(kProfileMagic)];
if (!android::base::ReadFully(fd, buffer, byte_count)) {
return false;
}
// Reset the offset to prepare the file for reading.
off_t rc = TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET));
if (rc == static_cast<off_t>(-1)) {
PLOG(ERROR) << "Failed to reset the offset";
return false;
}
return memcmp(buffer, kProfileMagic, byte_count) == 0;
}
bool ProfileCompilationInfo::UpdateProfileKeys(
const std::vector<std::unique_ptr<const DexFile>>& dex_files) {
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
for (DexFileData* dex_data : info_) {
if (dex_data->checksum == dex_file->GetLocationChecksum()
&& dex_data->num_method_ids == dex_file->NumMethodIds()) {
std::string new_profile_key = GetProfileDexFileBaseKey(dex_file->GetLocation());
std::string dex_data_base_key = GetBaseKeyFromAugmentedKey(dex_data->profile_key);
if (dex_data_base_key != new_profile_key) {
if (profile_key_map_.find(new_profile_key) != profile_key_map_.end()) {
// We can't update the key if the new key belongs to a different dex file.
LOG(ERROR) << "Cannot update profile key to " << new_profile_key
<< " because the new key belongs to another dex file.";
return false;
}
profile_key_map_.erase(dex_data->profile_key);
// Retain the annotation (if any) during the renaming by re-attaching the info
// form the old key.
profile_key_map_.Put(MigrateAnnotationInfo(new_profile_key, dex_data->profile_key),
dex_data->profile_index);
dex_data->profile_key = new_profile_key;
}
}
}
}
return true;
}
bool ProfileCompilationInfo::ProfileFilterFnAcceptAll(
const std::string& dex_location ATTRIBUTE_UNUSED,
uint32_t checksum ATTRIBUTE_UNUSED) {
return true;
}
void ProfileCompilationInfo::ClearData() {
for (DexFileData* data : info_) {
delete data;
}
info_.clear();
profile_key_map_.clear();
}
void ProfileCompilationInfo::ClearDataAndAdjustVersion(bool for_boot_image) {
ClearData();
memcpy(version_,
for_boot_image ? kProfileVersionForBootImage : kProfileVersion,
kProfileVersionSize);
}
bool ProfileCompilationInfo::IsForBootImage() const {
return memcmp(version_, kProfileVersionForBootImage, sizeof(kProfileVersionForBootImage)) == 0;
}
const uint8_t* ProfileCompilationInfo::GetVersion() const {
return version_;
}
bool ProfileCompilationInfo::DexFileData::ContainsClass(const dex::TypeIndex type_index) const {
return class_set.find(type_index) != class_set.end();
}
size_t ProfileCompilationInfo::GetSizeWarningThresholdBytes() const {
return IsForBootImage() ? kSizeWarningThresholdBootBytes : kSizeWarningThresholdBytes;
}
size_t ProfileCompilationInfo::GetSizeErrorThresholdBytes() const {
return IsForBootImage() ? kSizeErrorThresholdBootBytes : kSizeErrorThresholdBytes;
}
std::ostream& operator<<(std::ostream& stream,
const ProfileCompilationInfo::DexReference& dex_ref) {
stream << "[profile_key=" << dex_ref.profile_key
<< ",dex_checksum=" << std::hex << dex_ref.dex_checksum << std::dec
<< ",num_method_ids=" << dex_ref.num_method_ids
<< "]";
return stream;
}
bool ProfileCompilationInfo::ProfileSampleAnnotation::operator==(
const ProfileSampleAnnotation& other) const {
return origin_package_name_ == other.origin_package_name_;
}
void ProfileCompilationInfo::WriteProfileIndex(
std::vector<uint8_t>* buffer, ProfileIndexType value) const {
if (IsForBootImage()) {
AddUintToBuffer(buffer, value);
} else {
AddUintToBuffer(buffer, static_cast<ProfileIndexTypeRegular>(value));
}
}
bool ProfileCompilationInfo::ReadProfileIndex(
SafeBuffer& safe_buffer, ProfileIndexType* value) const {
if (IsForBootImage()) {
return safe_buffer.ReadUintAndAdvance<ProfileIndexType>(value);
} else {
ProfileIndexTypeRegular out;
bool result = safe_buffer.ReadUintAndAdvance<ProfileIndexTypeRegular>(&out);
*value = out;
return result;
}
}
ProfileCompilationInfo::ProfileIndexType ProfileCompilationInfo::MaxProfileIndex() const {
return IsForBootImage()
? std::numeric_limits<ProfileIndexType>::max()
: std::numeric_limits<ProfileIndexTypeRegular>::max();
}
uint32_t ProfileCompilationInfo::SizeOfProfileIndexType() const {
return IsForBootImage()
? sizeof(ProfileIndexType)
: sizeof(ProfileIndexTypeRegular);
}
FlattenProfileData::FlattenProfileData() :
max_aggregation_for_methods_(0),
max_aggregation_for_classes_(0) {
}
FlattenProfileData::ItemMetadata::ItemMetadata() :
flags_(0) {
}
FlattenProfileData::ItemMetadata::ItemMetadata(const ItemMetadata& other) :
flags_(other.flags_),
annotations_(other.annotations_) {
}
std::unique_ptr<FlattenProfileData> ProfileCompilationInfo::ExtractProfileData(
const std::vector<std::unique_ptr<const DexFile>>& dex_files) const {
std::unique_ptr<FlattenProfileData> result(new FlattenProfileData());
auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); };
// Iterate through all the dex files, find the methods/classes associated with each of them,
// and add them to the flatten result.
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
// Find all the dex data for the given dex file.
// We may have multiple dex data if the methods or classes were added using
// different annotations.
std::vector<const DexFileData*> all_dex_data;
FindAllDexData(dex_file.get(), &all_dex_data);
for (const DexFileData* dex_data : all_dex_data) {
// Extract the annotation from the key as we want to store it in the flatten result.
ProfileSampleAnnotation annotation = GetAnnotationFromKey(dex_data->profile_key);
// Check which methods from the current dex files are in the profile.
for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
MethodHotness hotness = dex_data->GetHotnessInfo(method_idx);
if (!hotness.IsInProfile()) {
// Not in the profile, continue.
continue;
}
// The method is in the profile, create metadata item for it and added to the result.
MethodReference ref(dex_file.get(), method_idx);
FlattenProfileData::ItemMetadata& metadata =
result->method_metadata_.GetOrCreate(ref, create_metadata_fn);
metadata.flags_ |= hotness.flags_;
metadata.annotations_.push_back(annotation);
// Update the max aggregation counter for methods.
// This is essentially a cache, to avoid traversing all the methods just to find out
// this value.
result->max_aggregation_for_methods_ = std::max(
result->max_aggregation_for_methods_,
static_cast<uint32_t>(metadata.annotations_.size()));
}
// Check which classes from the current dex files are in the profile.
for (const dex::TypeIndex& type_index : dex_data->class_set) {
TypeReference ref(dex_file.get(), type_index);
FlattenProfileData::ItemMetadata& metadata =
result->class_metadata_.GetOrCreate(ref, create_metadata_fn);
metadata.annotations_.push_back(annotation);
// Update the max aggregation counter for classes.
result->max_aggregation_for_classes_ = std::max(
result->max_aggregation_for_classes_,
static_cast<uint32_t>(metadata.annotations_.size()));
}
}
}
return result;
}
void FlattenProfileData::MergeData(const FlattenProfileData& other) {
auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); };
for (const auto& it : other.method_metadata_) {
const MethodReference& otherRef = it.first;
const FlattenProfileData::ItemMetadata otherData = it.second;
const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& other_annotations =
otherData.GetAnnotations();
FlattenProfileData::ItemMetadata& metadata =
method_metadata_.GetOrCreate(otherRef, create_metadata_fn);
metadata.flags_ |= otherData.GetFlags();
metadata.annotations_.insert(
metadata.annotations_.end(), other_annotations.begin(), other_annotations.end());
max_aggregation_for_methods_ = std::max(
max_aggregation_for_methods_,
static_cast<uint32_t>(metadata.annotations_.size()));
}
for (const auto& it : other.class_metadata_) {
const TypeReference& otherRef = it.first;
const FlattenProfileData::ItemMetadata otherData = it.second;
const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& other_annotations =
otherData.GetAnnotations();
FlattenProfileData::ItemMetadata& metadata =
class_metadata_.GetOrCreate(otherRef, create_metadata_fn);
metadata.flags_ |= otherData.GetFlags();
metadata.annotations_.insert(
metadata.annotations_.end(), other_annotations.begin(), other_annotations.end());
max_aggregation_for_classes_ = std::max(
max_aggregation_for_classes_,
static_cast<uint32_t>(metadata.annotations_.size()));
}
}
} // namespace art