| /* |
| * Copyright 2022 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "base/gc_visited_arena_pool.h" |
| |
| #include "base/arena_allocator-inl.h" |
| #include "base/utils.h" |
| |
| #include <sys/mman.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| namespace art { |
| |
| #if defined(__LP64__) |
| // Use a size in multiples of 1GB as that can utilize the optimized mremap |
| // page-table move. |
| static constexpr size_t kLinearAllocPoolSize = 1 * GB; |
| static constexpr size_t kLow4GBLinearAllocPoolSize = 32 * MB; |
| #else |
| static constexpr size_t kLinearAllocPoolSize = 32 * MB; |
| #endif |
| |
| TrackedArena::TrackedArena(uint8_t* start, size_t size) : Arena(), first_obj_array_(nullptr) { |
| static_assert(ArenaAllocator::kArenaAlignment <= kPageSize, |
| "Arena should not need stronger alignment than kPageSize."); |
| DCHECK_ALIGNED(size, kPageSize); |
| DCHECK_ALIGNED(start, kPageSize); |
| memory_ = start; |
| size_ = size; |
| size_t arr_size = size / kPageSize; |
| first_obj_array_.reset(new uint8_t*[arr_size]); |
| std::fill_n(first_obj_array_.get(), arr_size, nullptr); |
| } |
| |
| void TrackedArena::Release() { |
| if (bytes_allocated_ > 0) { |
| ZeroAndReleasePages(Begin(), Size()); |
| std::fill_n(first_obj_array_.get(), Size() / kPageSize, nullptr); |
| bytes_allocated_ = 0; |
| } |
| } |
| |
| void TrackedArena::SetFirstObject(uint8_t* obj_begin, uint8_t* obj_end) { |
| DCHECK_LE(static_cast<void*>(Begin()), static_cast<void*>(obj_end)); |
| DCHECK_LT(static_cast<void*>(obj_begin), static_cast<void*>(obj_end)); |
| size_t idx = static_cast<size_t>(obj_begin - Begin()) / kPageSize; |
| size_t last_byte_idx = static_cast<size_t>(obj_end - 1 - Begin()) / kPageSize; |
| // If the addr is at the beginning of a page, then we set it for that page too. |
| if (IsAligned<kPageSize>(obj_begin)) { |
| first_obj_array_[idx] = obj_begin; |
| } |
| while (idx < last_byte_idx) { |
| first_obj_array_[++idx] = obj_begin; |
| } |
| } |
| |
| void GcVisitedArenaPool::AddMap(size_t min_size) { |
| size_t size = std::max(min_size, kLinearAllocPoolSize); |
| #if defined(__LP64__) |
| // This is true only when we are running a 64-bit dex2oat to compile a 32-bit image. |
| if (low_4gb_) { |
| size = std::max(min_size, kLow4GBLinearAllocPoolSize); |
| } |
| #endif |
| std::string err_msg; |
| maps_.emplace_back(MemMap::MapAnonymous(name_, |
| size, |
| PROT_READ | PROT_WRITE, |
| low_4gb_, |
| &err_msg)); |
| MemMap& map = maps_.back(); |
| if (!map.IsValid()) { |
| LOG(FATAL) << "Failed to allocate " << name_ |
| << ": " << err_msg; |
| UNREACHABLE(); |
| } |
| Chunk* chunk = new Chunk(map.Begin(), map.Size()); |
| best_fit_allocs_.insert(chunk); |
| free_chunks_.insert(chunk); |
| } |
| |
| GcVisitedArenaPool::GcVisitedArenaPool(bool low_4gb, const char* name) |
| : bytes_allocated_(0), name_(name), low_4gb_(low_4gb) { |
| std::lock_guard<std::mutex> lock(lock_); |
| // It's extremely rare to have more than one map. |
| maps_.reserve(1); |
| AddMap(/*min_size=*/0); |
| } |
| |
| GcVisitedArenaPool::~GcVisitedArenaPool() { |
| for (Chunk* chunk : free_chunks_) { |
| delete chunk; |
| } |
| // Must not delete chunks from best_fit_allocs_ as they are shared with |
| // free_chunks_. |
| } |
| |
| size_t GcVisitedArenaPool::GetBytesAllocated() const { |
| std::lock_guard<std::mutex> lock(lock_); |
| return bytes_allocated_; |
| } |
| |
| Arena* GcVisitedArenaPool::AllocArena(size_t size) { |
| // Return only page aligned sizes so that madvise can be leveraged. |
| size = RoundUp(size, kPageSize); |
| Chunk temp_chunk(nullptr, size); |
| std::lock_guard<std::mutex> lock(lock_); |
| auto best_fit_iter = best_fit_allocs_.lower_bound(&temp_chunk); |
| if (UNLIKELY(best_fit_iter == best_fit_allocs_.end())) { |
| AddMap(size); |
| best_fit_iter = best_fit_allocs_.lower_bound(&temp_chunk); |
| CHECK(best_fit_iter != best_fit_allocs_.end()); |
| } |
| auto free_chunks_iter = free_chunks_.find(*best_fit_iter); |
| DCHECK(free_chunks_iter != free_chunks_.end()); |
| Chunk* chunk = *best_fit_iter; |
| DCHECK_EQ(chunk, *free_chunks_iter); |
| // if the best-fit chunk < 2x the requested size, then give the whole chunk. |
| if (chunk->size_ < 2 * size) { |
| DCHECK_GE(chunk->size_, size); |
| auto emplace_result = allocated_arenas_.emplace(chunk->addr_, chunk->size_); |
| DCHECK(emplace_result.second); |
| free_chunks_.erase(free_chunks_iter); |
| best_fit_allocs_.erase(best_fit_iter); |
| delete chunk; |
| return const_cast<TrackedArena*>(&(*emplace_result.first)); |
| } else { |
| auto emplace_result = allocated_arenas_.emplace(chunk->addr_, size); |
| DCHECK(emplace_result.second); |
| // Compute next iterators for faster insert later. |
| auto next_best_fit_iter = best_fit_iter; |
| next_best_fit_iter++; |
| auto next_free_chunks_iter = free_chunks_iter; |
| next_free_chunks_iter++; |
| auto best_fit_nh = best_fit_allocs_.extract(best_fit_iter); |
| auto free_chunks_nh = free_chunks_.extract(free_chunks_iter); |
| best_fit_nh.value()->addr_ += size; |
| best_fit_nh.value()->size_ -= size; |
| DCHECK_EQ(free_chunks_nh.value()->addr_, chunk->addr_); |
| best_fit_allocs_.insert(next_best_fit_iter, std::move(best_fit_nh)); |
| free_chunks_.insert(next_free_chunks_iter, std::move(free_chunks_nh)); |
| return const_cast<TrackedArena*>(&(*emplace_result.first)); |
| } |
| } |
| |
| void GcVisitedArenaPool::FreeRangeLocked(uint8_t* range_begin, size_t range_size) { |
| Chunk temp_chunk(range_begin, range_size); |
| bool merge_with_next = false; |
| bool merge_with_prev = false; |
| auto next_iter = free_chunks_.lower_bound(&temp_chunk); |
| auto iter_for_extract = free_chunks_.end(); |
| // Can we merge with the previous chunk? |
| if (next_iter != free_chunks_.begin()) { |
| auto prev_iter = next_iter; |
| prev_iter--; |
| merge_with_prev = (*prev_iter)->addr_ + (*prev_iter)->size_ == range_begin; |
| if (merge_with_prev) { |
| range_begin = (*prev_iter)->addr_; |
| range_size += (*prev_iter)->size_; |
| // Hold on to the iterator for faster extract later |
| iter_for_extract = prev_iter; |
| } |
| } |
| // Can we merge with the next chunk? |
| if (next_iter != free_chunks_.end()) { |
| merge_with_next = range_begin + range_size == (*next_iter)->addr_; |
| if (merge_with_next) { |
| range_size += (*next_iter)->size_; |
| if (merge_with_prev) { |
| auto iter = next_iter; |
| next_iter++; |
| // Keep only one of the two chunks to be expanded. |
| Chunk* chunk = *iter; |
| size_t erase_res = best_fit_allocs_.erase(chunk); |
| DCHECK_EQ(erase_res, 1u); |
| free_chunks_.erase(iter); |
| delete chunk; |
| } else { |
| iter_for_extract = next_iter; |
| next_iter++; |
| } |
| } |
| } |
| |
| // Extract-insert avoids 2/4 destroys and 2/2 creations |
| // as compared to erase-insert, so use that when merging. |
| if (merge_with_prev || merge_with_next) { |
| auto free_chunks_nh = free_chunks_.extract(iter_for_extract); |
| auto best_fit_allocs_nh = best_fit_allocs_.extract(*iter_for_extract); |
| |
| free_chunks_nh.value()->addr_ = range_begin; |
| DCHECK_EQ(best_fit_allocs_nh.value()->addr_, range_begin); |
| free_chunks_nh.value()->size_ = range_size; |
| DCHECK_EQ(best_fit_allocs_nh.value()->size_, range_size); |
| |
| free_chunks_.insert(next_iter, std::move(free_chunks_nh)); |
| // Since the chunk's size has expanded, the hint won't be useful |
| // for best-fit set. |
| best_fit_allocs_.insert(std::move(best_fit_allocs_nh)); |
| } else { |
| DCHECK(iter_for_extract == free_chunks_.end()); |
| Chunk* chunk = new Chunk(range_begin, range_size); |
| free_chunks_.insert(next_iter, chunk); |
| best_fit_allocs_.insert(chunk); |
| } |
| } |
| |
| void GcVisitedArenaPool::FreeArenaChain(Arena* first) { |
| if (kRunningOnMemoryTool) { |
| for (Arena* arena = first; arena != nullptr; arena = arena->Next()) { |
| MEMORY_TOOL_MAKE_UNDEFINED(arena->Begin(), arena->GetBytesAllocated()); |
| } |
| } |
| |
| // TODO: Handle the case when arena_allocator::kArenaAllocatorPreciseTracking |
| // is true. See MemMapArenaPool::FreeArenaChain() for example. |
| CHECK(!arena_allocator::kArenaAllocatorPreciseTracking); |
| |
| // madvise the arenas before acquiring lock for scalability |
| for (Arena* temp = first; temp != nullptr; temp = temp->Next()) { |
| temp->Release(); |
| } |
| |
| std::lock_guard<std::mutex> lock(lock_); |
| while (first != nullptr) { |
| FreeRangeLocked(first->Begin(), first->Size()); |
| // In other implementations of ArenaPool this is calculated when asked for, |
| // thanks to the list of free arenas that is kept around. But in this case, |
| // we release the freed arena back to the pool and therefore need to |
| // calculate here. |
| bytes_allocated_ += first->GetBytesAllocated(); |
| TrackedArena* temp = down_cast<TrackedArena*>(first); |
| first = first->Next(); |
| size_t erase_count = allocated_arenas_.erase(*temp); |
| DCHECK_EQ(erase_count, 1u); |
| } |
| } |
| |
| } // namespace art |
| |