blob: b385e035d3bd83156fe23cce40c522acb654bce1 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "load_store_elimination.h"
#include <algorithm>
#include <optional>
#include <sstream>
#include <variant>
#include "base/arena_allocator.h"
#include "base/arena_bit_vector.h"
#include "base/array_ref.h"
#include "base/bit_vector-inl.h"
#include "base/bit_vector.h"
#include "base/globals.h"
#include "base/indenter.h"
#include "base/iteration_range.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "base/transform_iterator.h"
#include "escape.h"
#include "execution_subgraph.h"
#include "handle.h"
#include "load_store_analysis.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "nodes.h"
#include "optimizing/execution_subgraph.h"
#include "optimizing_compiler_stats.h"
#include "reference_type_propagation.h"
#include "side_effects_analysis.h"
#include "stack_map.h"
/**
* The general algorithm of load-store elimination (LSE).
*
* We use load-store analysis to collect a list of heap locations and perform
* alias analysis of those heap locations. LSE then keeps track of a list of
* heap values corresponding to the heap locations and stores that put those
* values in these locations.
* - In phase 1, we visit basic blocks in reverse post order and for each basic
* block, visit instructions sequentially, recording heap values and looking
* for loads and stores to eliminate without relying on loop Phis.
* - In phase 2, we look for loads that can be replaced by creating loop Phis
* or using a loop-invariant value.
* - In phase 3, we determine which stores are dead and can be eliminated and
* based on that information we re-evaluate whether some kept stores are
* storing the same value as the value in the heap location; such stores are
* also marked for elimination.
* - In phase 4, we commit the changes, replacing loads marked for elimination
* in previous processing and removing stores not marked for keeping. We also
* remove allocations that are no longer needed.
* - In phase 5, we move allocations which only escape along some executions
* closer to their escape points and fixup non-escaping paths with their actual
* values, creating PHIs when needed.
*
* 1. Walk over blocks and their instructions.
*
* The initial set of heap values for a basic block is
* - For a loop header of an irreducible loop, all heap values are unknown.
* - For a loop header of a normal loop, all values unknown at the end of the
* preheader are initialized to unknown, other heap values are set to Phi
* placeholders as we cannot determine yet whether these values are known on
* all back-edges. We use Phi placeholders also for array heap locations with
* index defined inside the loop but this helps only when the value remains
* zero from the array allocation throughout the loop.
* - For catch blocks, we clear all assumptions since we arrived due to an
* instruction throwing.
* - For other basic blocks, we merge incoming values from the end of all
* predecessors. If any incoming value is unknown, the start value for this
* block is also unknown. Otherwise, if all the incoming values are the same
* (including the case of a single predecessor), the incoming value is used.
* Otherwise, we use a Phi placeholder to indicate different incoming values.
* We record whether such Phi placeholder depends on a loop Phi placeholder.
*
* For each instruction in the block
* - If the instruction is a load from a heap location with a known value not
* dependent on a loop Phi placeholder, the load can be eliminated, either by
* using an existing instruction or by creating new Phi(s) instead. In order
* to maintain the validity of all heap locations during the optimization
* phase, we only record substitutes at this phase and the real elimination
* is delayed till the end of LSE. Loads that require a loop Phi placeholder
* replacement are recorded for processing later. We also keep track of the
* heap-value at the start load so that later partial-LSE can predicate the
* load.
* - If the instruction is a store, it updates the heap value for the heap
* location with the stored value and records the store itself so that we can
* mark it for keeping if the value becomes observable. Heap values are
* invalidated for heap locations that may alias with the store instruction's
* heap location and their recorded stores are marked for keeping as they are
* now potentially observable. The store instruction can be eliminated unless
* the value stored is later needed e.g. by a load from the same/aliased heap
* location or the heap location persists at method return/deoptimization.
* - A store that stores the same value as the heap value is eliminated.
* - For newly instantiated instances, their heap values are initialized to
* language defined default values.
* - Finalizable objects are considered as persisting at method
* return/deoptimization.
* - Some instructions such as invokes are treated as loading and invalidating
* all the heap values, depending on the instruction's side effects.
* - SIMD graphs (with VecLoad and VecStore instructions) are also handled. Any
* partial overlap access among ArrayGet/ArraySet/VecLoad/Store is seen as
* alias and no load/store is eliminated in such case.
*
* The time complexity of the initial phase has several components. The total
* time for the initialization of heap values for all blocks is
* O(heap_locations * edges)
* and the time complexity for simple instruction processing is
* O(instructions).
* See the description of phase 3 for additional complexity due to matching of
* existing Phis for replacing loads.
*
* 2. Process loads that depend on loop Phi placeholders.
*
* We go over these loads to determine whether they can be eliminated. We look
* for the set of all Phi placeholders that feed the load and depend on a loop
* Phi placeholder and, if we find no unknown value, we construct the necessary
* Phi(s) or, if all other inputs are identical, i.e. the location does not
* change in the loop, just use that input. If we do find an unknown input, this
* must be from a loop back-edge and we replace the loop Phi placeholder with
* unknown value and re-process loads and stores that previously depended on
* loop Phi placeholders. This shall find at least one load of an unknown value
* which is now known to be unreplaceable or a new unknown value on a back-edge
* and we repeat this process until each load is either marked for replacement
* or found to be unreplaceable. As we mark at least one additional loop Phi
* placeholder as unreplacable in each iteration, this process shall terminate.
*
* The depth-first search for Phi placeholders in FindLoopPhisToMaterialize()
* is limited by the number of Phi placeholders and their dependencies we need
* to search with worst-case time complexity
* O(phi_placeholder_dependencies) .
* The dependencies are usually just the Phi placeholders' potential inputs,
* but if we use TryReplacingLoopPhiPlaceholderWithDefault() for default value
* replacement search, there are additional dependencies to consider, see below.
*
* In the successful case (no unknown inputs found) we use the Floyd-Warshall
* algorithm to determine transitive closures for each found Phi placeholder,
* and then match or materialize Phis from the smallest transitive closure,
* so that we can determine if such subset has a single other input. This has
* time complexity
* O(phi_placeholders_found^3) .
* Note that successful TryReplacingLoopPhiPlaceholderWithDefault() does not
* contribute to this as such Phi placeholders are replaced immediately.
* The total time of all such successful cases has time complexity
* O(phi_placeholders^3)
* because the found sets are disjoint and `Sum(n_i^3) <= Sum(n_i)^3`. Similar
* argument applies to the searches used to find all successful cases, so their
* total contribution is also just an insignificant
* O(phi_placeholder_dependencies) .
* The materialization of Phis has an insignificant total time complexity
* O(phi_placeholders * edges) .
*
* If we find an unknown input, we re-process heap values and loads with a time
* complexity that's the same as the phase 1 in the worst case. Adding this to
* the depth-first search time complexity yields
* O(phi_placeholder_dependencies + heap_locations * edges + instructions)
* for a single iteration. We can ignore the middle term as it's proprotional
* to the number of Phi placeholder inputs included in the first term. Using
* the upper limit of number of such iterations, the total time complexity is
* O((phi_placeholder_dependencies + instructions) * phi_placeholders) .
*
* The upper bound of Phi placeholder inputs is
* heap_locations * edges
* but if we use TryReplacingLoopPhiPlaceholderWithDefault(), the dependencies
* include other heap locations in predecessor blocks with the upper bound of
* heap_locations^2 * edges .
* Using the estimate
* edges <= blocks^2
* and
* phi_placeholders <= heap_locations * blocks ,
* the worst-case time complexity of the
* O(phi_placeholder_dependencies * phi_placeholders)
* term from unknown input cases is actually
* O(heap_locations^3 * blocks^3) ,
* exactly as the estimate for the Floyd-Warshall parts of successful cases.
* Adding the other term from the unknown input cases (to account for the case
* with significantly more instructions than blocks and heap locations), the
* phase 2 time complexity is
* O(heap_locations^3 * blocks^3 + heap_locations * blocks * instructions) .
*
* See the description of phase 3 for additional complexity due to matching of
* existing Phis for replacing loads.
*
* 3. Determine which stores to keep and which to eliminate.
*
* During instruction processing in phase 1 and re-processing in phase 2, we are
* keeping a record of the stores and Phi placeholders that become observable
* and now propagate the observable Phi placeholders to all actual stores that
* feed them. Having determined observable stores, we look for stores that just
* overwrite the old value with the same. Since ignoring non-observable stores
* actually changes the old values in heap locations, we need to recalculate
* Phi placeholder replacements but we proceed similarly to the previous phase.
* We look for the set of all Phis that feed the old value replaced by the store
* (but ignoring whether they depend on a loop Phi) and, if we find no unknown
* value, we try to match existing Phis (we do not create new Phis anymore) or,
* if all other inputs are identical, i.e. the location does not change in the
* loop, just use that input. If this succeeds and the old value is identical to
* the value we're storing, such store shall be eliminated.
*
* The work is similar to the phase 2, except that we're not re-processing loads
* and stores anymore, so the time complexity of phase 3 is
* O(heap_locations^3 * blocks^3) .
*
* There is additional complexity in matching existing Phis shared between the
* phases 1, 2 and 3. We are never trying to match two or more Phis at the same
* time (this could be difficult and slow), so each matching attempt is just
* looking at Phis in the block (both old Phis and newly created Phis) and their
* inputs. As we create at most `heap_locations` Phis in each block, the upper
* bound on the number of Phis we look at is
* heap_locations * (old_phis + heap_locations)
* and the worst-case time complexity is
* O(heap_locations^2 * edges + heap_locations * old_phis * edges) .
* The first term is lower than one term in phase 2, so the relevant part is
* O(heap_locations * old_phis * edges) .
*
* 4. Replace loads and remove unnecessary stores and singleton allocations.
*
* A special type of objects called singletons are instantiated in the method
* and have a single name, i.e. no aliases. Singletons have exclusive heap
* locations since they have no aliases. Singletons are helpful in narrowing
* down the life span of a heap location such that they do not always need to
* participate in merging heap values. Allocation of a singleton can be
* eliminated if that singleton is not used and does not persist at method
* return/deoptimization.
*
* The time complexity of this phase is
* O(instructions + instruction_uses) .
*
* 5. Partial LSE
*
* Move allocations closer to their escapes and remove/predicate loads and
* stores as required.
*
* Partial singletons are objects which only escape from the function or have
* multiple names along certain execution paths. In cases where we recognize
* these partial singletons we can move the allocation and initialization
* closer to the actual escape(s). We can then perform a simplified version of
* LSE step 2 to determine the unescaped value of any reads performed after the
* object may have escaped. These are used to replace these reads with
* 'predicated-read' instructions where the value is only read if the object
* has actually escaped. We use the existence of the object itself as the
* marker of whether escape has occurred.
*
* There are several steps in this sub-pass
*
* 5.1 Group references
*
* Since all heap-locations for a single reference escape at the same time, we
* need to group the heap-locations by reference and process them at the same
* time.
*
* O(heap_locations).
*
* FIXME: The time complexity above assumes we can bucket the heap-locations in
* O(1) which is not true since we just perform a linear-scan of the heap-ref
* list. Since there are generally only a small number of heap-references which
* are partial-singletons this is fine and lower real overhead than a hash map.
*
* 5.2 Generate materializations
*
* Once we have the references we add new 'materialization blocks' on the edges
* where escape becomes inevitable. This information is calculated by the
* execution-subgraphs created during load-store-analysis. We create new
* 'materialization's in these blocks and initialize them with the value of
* each heap-location ignoring side effects (since the object hasn't escaped
* yet). Worst case this is the same time-complexity as step 3 since we may
* need to materialize phis.
*
* O(heap_locations^2 * materialization_edges)
*
* 5.3 Propagate materializations
*
* Since we use the materialization as the marker for escape we need to
* propagate it throughout the graph. Since the subgraph analysis considers any
* lifetime that escapes a loop (and hence would require a loop-phi) to be
* escaping at the loop-header we do not need to create any loop-phis to do
* this.
*
* O(edges)
*
* NB: Currently the subgraph analysis considers all objects to have their
* lifetimes start at the entry block. This simplifies that analysis enormously
* but means that we cannot distinguish between an escape in a loop where the
* lifetime does not escape the loop (in which case this pass could optimize)
* and one where it does escape the loop (in which case the whole loop is
* escaping). This is a shortcoming that would be good to fix at some point.
*
* 5.4 Propagate partial values
*
* We need to replace loads and stores to the partial reference with predicated
* ones that have default non-escaping values. Again this is the same as step 3.
*
* O(heap_locations^2 * edges)
*
* 5.5 Final fixup
*
* Now all we need to do is replace and remove uses of the old reference with the
* appropriate materialization.
*
* O(instructions + uses)
*
* FIXME: The time complexities described above assumes that the
* HeapLocationCollector finds a heap location for an instruction in O(1)
* time but it is currently O(heap_locations); this can be fixed by adding
* a hash map to the HeapLocationCollector.
*/
namespace art HIDDEN {
#define LSE_VLOG \
if (::art::LoadStoreElimination::kVerboseLoggingMode && VLOG_IS_ON(compiler)) LOG(INFO)
class PartialLoadStoreEliminationHelper;
class HeapRefHolder;
// Use HGraphDelegateVisitor for which all VisitInvokeXXX() delegate to VisitInvoke().
class LSEVisitor final : private HGraphDelegateVisitor {
public:
LSEVisitor(HGraph* graph,
const HeapLocationCollector& heap_location_collector,
bool perform_partial_lse,
OptimizingCompilerStats* stats);
void Run();
private:
class PhiPlaceholder {
public:
constexpr PhiPlaceholder() : block_id_(-1), heap_location_(-1) {}
constexpr PhiPlaceholder(uint32_t block_id, size_t heap_location)
: block_id_(block_id), heap_location_(dchecked_integral_cast<uint32_t>(heap_location)) {}
constexpr PhiPlaceholder(const PhiPlaceholder& p) = default;
constexpr PhiPlaceholder(PhiPlaceholder&& p) = default;
constexpr PhiPlaceholder& operator=(const PhiPlaceholder& p) = default;
constexpr PhiPlaceholder& operator=(PhiPlaceholder&& p) = default;
constexpr uint32_t GetBlockId() const {
return block_id_;
}
constexpr size_t GetHeapLocation() const {
return heap_location_;
}
constexpr bool Equals(const PhiPlaceholder& p2) const {
return block_id_ == p2.block_id_ && heap_location_ == p2.heap_location_;
}
void Dump(std::ostream& oss) const {
oss << "PhiPlaceholder[blk: " << block_id_ << ", heap_location_: " << heap_location_ << "]";
}
private:
uint32_t block_id_;
uint32_t heap_location_;
};
struct Marker {};
class Value;
class PriorValueHolder {
public:
constexpr explicit PriorValueHolder(Value prior);
constexpr bool IsInstruction() const {
return std::holds_alternative<HInstruction*>(value_);
}
constexpr bool IsPhi() const {
return std::holds_alternative<PhiPlaceholder>(value_);
}
constexpr bool IsDefault() const {
return std::holds_alternative<Marker>(value_);
}
constexpr PhiPlaceholder GetPhiPlaceholder() const {
DCHECK(IsPhi());
return std::get<PhiPlaceholder>(value_);
}
constexpr HInstruction* GetInstruction() const {
DCHECK(IsInstruction());
return std::get<HInstruction*>(value_);
}
Value ToValue() const;
void Dump(std::ostream& oss) const;
constexpr bool Equals(PriorValueHolder other) const {
return value_ == other.value_;
}
private:
std::variant<Marker, HInstruction*, PhiPlaceholder> value_;
};
friend constexpr bool operator==(const Marker&, const Marker&);
friend constexpr bool operator==(const PriorValueHolder& p1, const PriorValueHolder& p2);
friend constexpr bool operator==(const PhiPlaceholder& p1, const PhiPlaceholder& p2);
friend std::ostream& operator<<(std::ostream& oss, const PhiPlaceholder& p2);
class Value {
public:
enum class ValuelessType {
kInvalid,
kPureUnknown,
kDefault,
};
struct MergedUnknownMarker {
PhiPlaceholder phi_;
};
struct NeedsNonLoopPhiMarker {
PhiPlaceholder phi_;
};
struct NeedsLoopPhiMarker {
PhiPlaceholder phi_;
};
static constexpr Value Invalid() {
return Value(ValuelessType::kInvalid);
}
// An unknown heap value. Loads with such a value in the heap location cannot be eliminated.
// A heap location can be set to an unknown heap value when:
// - it is coming from outside the method,
// - it is killed due to aliasing, or side effects, or merging with an unknown value.
static constexpr Value PureUnknown() {
return Value(ValuelessType::kPureUnknown);
}
static constexpr Value PartialUnknown(Value old_value) {
if (old_value.IsInvalid() || old_value.IsPureUnknown()) {
return PureUnknown();
} else {
return Value(PriorValueHolder(old_value));
}
}
static constexpr Value MergedUnknown(PhiPlaceholder phi_placeholder) {
return Value(MergedUnknownMarker{phi_placeholder});
}
// Default heap value after an allocation.
// A heap location can be set to that value right after an allocation.
static constexpr Value Default() {
return Value(ValuelessType::kDefault);
}
static constexpr Value ForInstruction(HInstruction* instruction) {
return Value(instruction);
}
static constexpr Value ForNonLoopPhiPlaceholder(PhiPlaceholder phi_placeholder) {
return Value(NeedsNonLoopPhiMarker{phi_placeholder});
}
static constexpr Value ForLoopPhiPlaceholder(PhiPlaceholder phi_placeholder) {
return Value(NeedsLoopPhiMarker{phi_placeholder});
}
static constexpr Value ForPhiPlaceholder(PhiPlaceholder phi_placeholder, bool needs_loop_phi) {
return needs_loop_phi ? ForLoopPhiPlaceholder(phi_placeholder)
: ForNonLoopPhiPlaceholder(phi_placeholder);
}
constexpr bool IsValid() const {
return !IsInvalid();
}
constexpr bool IsInvalid() const {
return std::holds_alternative<ValuelessType>(value_) &&
GetValuelessType() == ValuelessType::kInvalid;
}
bool IsPartialUnknown() const {
return std::holds_alternative<PriorValueHolder>(value_);
}
bool IsMergedUnknown() const {
return std::holds_alternative<MergedUnknownMarker>(value_);
}
bool IsPureUnknown() const {
return std::holds_alternative<ValuelessType>(value_) &&
GetValuelessType() == ValuelessType::kPureUnknown;
}
bool IsUnknown() const {
return IsPureUnknown() || IsMergedUnknown() || IsPartialUnknown();
}
bool IsDefault() const {
return std::holds_alternative<ValuelessType>(value_) &&
GetValuelessType() == ValuelessType::kDefault;
}
bool IsInstruction() const {
return std::holds_alternative<HInstruction*>(value_);
}
bool NeedsNonLoopPhi() const {
return std::holds_alternative<NeedsNonLoopPhiMarker>(value_);
}
bool NeedsLoopPhi() const {
return std::holds_alternative<NeedsLoopPhiMarker>(value_);
}
bool NeedsPhi() const {
return NeedsNonLoopPhi() || NeedsLoopPhi();
}
HInstruction* GetInstruction() const {
DCHECK(IsInstruction()) << *this;
return std::get<HInstruction*>(value_);
}
PriorValueHolder GetPriorValue() const {
DCHECK(IsPartialUnknown());
return std::get<PriorValueHolder>(value_);
}
PhiPlaceholder GetPhiPlaceholder() const {
DCHECK(NeedsPhi() || IsMergedUnknown());
if (NeedsNonLoopPhi()) {
return std::get<NeedsNonLoopPhiMarker>(value_).phi_;
} else if (NeedsLoopPhi()) {
return std::get<NeedsLoopPhiMarker>(value_).phi_;
} else {
return std::get<MergedUnknownMarker>(value_).phi_;
}
}
uint32_t GetMergeBlockId() const {
DCHECK(IsMergedUnknown()) << this;
return std::get<MergedUnknownMarker>(value_).phi_.GetBlockId();
}
HBasicBlock* GetMergeBlock(const HGraph* graph) const {
DCHECK(IsMergedUnknown()) << *this;
return graph->GetBlocks()[GetMergeBlockId()];
}
size_t GetHeapLocation() const {
DCHECK(IsMergedUnknown() || NeedsPhi()) << this;
return GetPhiPlaceholder().GetHeapLocation();
}
constexpr bool ExactEquals(Value other) const;
constexpr bool Equals(Value other) const;
constexpr bool Equals(HInstruction* instruction) const {
return Equals(ForInstruction(instruction));
}
std::ostream& Dump(std::ostream& os) const;
// Public for use with lists.
constexpr Value() : value_(ValuelessType::kInvalid) {}
private:
using ValueHolder = std::variant<ValuelessType,
HInstruction*,
MergedUnknownMarker,
NeedsNonLoopPhiMarker,
NeedsLoopPhiMarker,
PriorValueHolder>;
constexpr ValuelessType GetValuelessType() const {
return std::get<ValuelessType>(value_);
}
constexpr explicit Value(ValueHolder v) : value_(v) {}
friend std::ostream& operator<<(std::ostream& os, const Value& v);
ValueHolder value_;
static_assert(std::is_move_assignable<PhiPlaceholder>::value);
};
friend constexpr bool operator==(const Value::NeedsLoopPhiMarker& p1,
const Value::NeedsLoopPhiMarker& p2);
friend constexpr bool operator==(const Value::NeedsNonLoopPhiMarker& p1,
const Value::NeedsNonLoopPhiMarker& p2);
friend constexpr bool operator==(const Value::MergedUnknownMarker& p1,
const Value::MergedUnknownMarker& p2);
// Get Phi placeholder index for access to `phi_placeholder_replacements_`
// and "visited" bit vectors during depth-first searches.
size_t PhiPlaceholderIndex(PhiPlaceholder phi_placeholder) const {
size_t res =
phi_placeholder.GetBlockId() * heap_location_collector_.GetNumberOfHeapLocations() +
phi_placeholder.GetHeapLocation();
DCHECK_EQ(phi_placeholder, GetPhiPlaceholderAt(res))
<< res << "blks: " << GetGraph()->GetBlocks().size()
<< " hls: " << heap_location_collector_.GetNumberOfHeapLocations();
return res;
}
size_t PhiPlaceholderIndex(Value phi_placeholder) const {
return PhiPlaceholderIndex(phi_placeholder.GetPhiPlaceholder());
}
bool IsEscapingObject(ReferenceInfo* info, HBasicBlock* block, size_t index) {
return !info->IsSingletonAndRemovable() &&
!(info->IsPartialSingleton() && IsPartialNoEscape(block, index));
}
bool IsPartialNoEscape(HBasicBlock* blk, size_t idx) {
auto* ri = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo();
if (!ri->IsPartialSingleton()) {
return false;
}
ArrayRef<const ExecutionSubgraph::ExcludedCohort> cohorts =
ri->GetNoEscapeSubgraph()->GetExcludedCohorts();
return std::none_of(cohorts.cbegin(),
cohorts.cend(),
[&](const ExecutionSubgraph::ExcludedCohort& ex) -> bool {
// Make sure we haven't yet and never will escape.
return ex.PrecedesBlock(blk) ||
ex.ContainsBlock(blk) ||
ex.SucceedsBlock(blk);
});
}
PhiPlaceholder GetPhiPlaceholderAt(size_t off) const {
DCHECK_LT(off, num_phi_placeholders_);
size_t id = off % heap_location_collector_.GetNumberOfHeapLocations();
// Technically this should be (off - id) / NumberOfHeapLocations
// but due to truncation it's all the same.
size_t blk_id = off / heap_location_collector_.GetNumberOfHeapLocations();
return GetPhiPlaceholder(blk_id, id);
}
PhiPlaceholder GetPhiPlaceholder(uint32_t block_id, size_t idx) const {
DCHECK(GetGraph()->GetBlocks()[block_id] != nullptr) << block_id;
return PhiPlaceholder(block_id, idx);
}
Value Replacement(Value value) const {
DCHECK(value.NeedsPhi() ||
(current_phase_ == Phase::kPartialElimination && value.IsMergedUnknown()))
<< value << " phase: " << current_phase_;
Value replacement = phi_placeholder_replacements_[PhiPlaceholderIndex(value)];
DCHECK(replacement.IsUnknown() || replacement.IsInstruction());
DCHECK(replacement.IsUnknown() ||
FindSubstitute(replacement.GetInstruction()) == replacement.GetInstruction());
return replacement;
}
Value ReplacementOrValue(Value value) const {
if (current_phase_ == Phase::kPartialElimination) {
// In this phase we are materializing the default values which are used
// only if the partial singleton did not escape, so we can replace
// a partial unknown with the prior value.
if (value.IsPartialUnknown()) {
value = value.GetPriorValue().ToValue();
}
if ((value.IsMergedUnknown() || value.NeedsPhi()) &&
phi_placeholder_replacements_[PhiPlaceholderIndex(value)].IsValid()) {
value = phi_placeholder_replacements_[PhiPlaceholderIndex(value)];
DCHECK(!value.IsMergedUnknown());
DCHECK(!value.NeedsPhi());
} else if (value.IsMergedUnknown()) {
return Value::ForLoopPhiPlaceholder(value.GetPhiPlaceholder());
}
if (value.IsInstruction() && value.GetInstruction()->IsInstanceFieldGet()) {
DCHECK_LT(static_cast<size_t>(value.GetInstruction()->GetId()),
substitute_instructions_for_loads_.size());
HInstruction* substitute =
substitute_instructions_for_loads_[value.GetInstruction()->GetId()];
if (substitute != nullptr) {
DCHECK(substitute->IsPredicatedInstanceFieldGet());
return Value::ForInstruction(substitute);
}
}
DCHECK_IMPLIES(value.IsInstruction(),
FindSubstitute(value.GetInstruction()) == value.GetInstruction());
return value;
}
if (value.NeedsPhi() && phi_placeholder_replacements_[PhiPlaceholderIndex(value)].IsValid()) {
return Replacement(value);
} else {
DCHECK_IMPLIES(value.IsInstruction(),
FindSubstitute(value.GetInstruction()) == value.GetInstruction());
return value;
}
}
// The record of a heap value and instruction(s) that feed that value.
struct ValueRecord {
Value value;
Value stored_by;
};
HTypeConversion* FindOrAddTypeConversionIfNecessary(HInstruction* instruction,
HInstruction* value,
DataType::Type expected_type) {
// Should never add type conversion into boolean value.
if (expected_type == DataType::Type::kBool ||
DataType::IsTypeConversionImplicit(value->GetType(), expected_type) ||
// TODO: This prevents type conversion of default values but we can still insert
// type conversion of other constants and there is no constant folding pass after LSE.
IsZeroBitPattern(value)) {
return nullptr;
}
// Check if there is already a suitable TypeConversion we can reuse.
for (const HUseListNode<HInstruction*>& use : value->GetUses()) {
if (use.GetUser()->IsTypeConversion() &&
use.GetUser()->GetType() == expected_type &&
// TODO: We could move the TypeConversion to a common dominator
// if it does not cross irreducible loop header.
use.GetUser()->GetBlock()->Dominates(instruction->GetBlock()) &&
// Don't share across irreducible loop headers.
// TODO: can be more fine-grained than this by testing each dominator.
(use.GetUser()->GetBlock() == instruction->GetBlock() ||
!GetGraph()->HasIrreducibleLoops())) {
if (use.GetUser()->GetBlock() == instruction->GetBlock() &&
use.GetUser()->GetBlock()->GetInstructions().FoundBefore(instruction, use.GetUser())) {
// Move the TypeConversion before the instruction.
use.GetUser()->MoveBefore(instruction);
}
DCHECK(use.GetUser()->StrictlyDominates(instruction));
return use.GetUser()->AsTypeConversion();
}
}
// We must create a new TypeConversion instruction.
HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion(
expected_type, value, instruction->GetDexPc());
instruction->GetBlock()->InsertInstructionBefore(type_conversion, instruction);
return type_conversion;
}
// Find an instruction's substitute if it's a removed load.
// Return the same instruction if it should not be removed.
HInstruction* FindSubstitute(HInstruction* instruction) const {
size_t id = static_cast<size_t>(instruction->GetId());
if (id >= substitute_instructions_for_loads_.size()) {
// New Phi (may not be in the graph yet), default value or PredicatedInstanceFieldGet.
DCHECK_IMPLIES(IsLoad(instruction), instruction->IsPredicatedInstanceFieldGet());
return instruction;
}
HInstruction* substitute = substitute_instructions_for_loads_[id];
DCHECK(substitute == nullptr || IsLoad(instruction));
return (substitute != nullptr) ? substitute : instruction;
}
void AddRemovedLoad(HInstruction* load, HInstruction* heap_value) {
DCHECK(IsLoad(load));
DCHECK_EQ(FindSubstitute(load), load);
DCHECK_EQ(FindSubstitute(heap_value), heap_value) <<
"Unexpected heap_value that has a substitute " << heap_value->DebugName();
// The load expects to load the heap value as type load->GetType().
// However the tracked heap value may not be of that type. An explicit
// type conversion may be needed.
// There are actually three types involved here:
// (1) tracked heap value's type (type A)
// (2) heap location (field or element)'s type (type B)
// (3) load's type (type C)
// We guarantee that type A stored as type B and then fetched out as
// type C is the same as casting from type A to type C directly, since
// type B and type C will have the same size which is guaranteed in
// HInstanceFieldGet/HStaticFieldGet/HArrayGet/HVecLoad's SetType().
// So we only need one type conversion from type A to type C.
HTypeConversion* type_conversion = FindOrAddTypeConversionIfNecessary(
load, heap_value, load->GetType());
substitute_instructions_for_loads_[load->GetId()] =
type_conversion != nullptr ? type_conversion : heap_value;
}
static bool IsLoad(HInstruction* instruction) {
// Unresolved load is not treated as a load.
return instruction->IsInstanceFieldGet() ||
instruction->IsPredicatedInstanceFieldGet() ||
instruction->IsStaticFieldGet() ||
instruction->IsVecLoad() ||
instruction->IsArrayGet();
}
static bool IsStore(HInstruction* instruction) {
// Unresolved store is not treated as a store.
return instruction->IsInstanceFieldSet() ||
instruction->IsArraySet() ||
instruction->IsVecStore() ||
instruction->IsStaticFieldSet();
}
// Check if it is allowed to use default values or Phis for the specified load.
static bool IsDefaultOrPhiAllowedForLoad(HInstruction* instruction) {
DCHECK(IsLoad(instruction));
// Using defaults for VecLoads requires to create additional vector operations.
// As there are some issues with scheduling vector operations it is better to avoid creating
// them.
return !instruction->IsVecOperation();
}
// Keep the store referenced by the instruction, or all stores that feed a Phi placeholder.
// This is necessary if the stored heap value can be observed.
void KeepStores(Value value) {
if (value.IsPureUnknown() || value.IsPartialUnknown()) {
return;
}
if (value.IsMergedUnknown()) {
kept_merged_unknowns_.SetBit(PhiPlaceholderIndex(value));
phi_placeholders_to_search_for_kept_stores_.SetBit(PhiPlaceholderIndex(value));
return;
}
if (value.NeedsPhi()) {
phi_placeholders_to_search_for_kept_stores_.SetBit(PhiPlaceholderIndex(value));
} else {
HInstruction* instruction = value.GetInstruction();
DCHECK(IsStore(instruction));
kept_stores_.SetBit(instruction->GetId());
}
}
// If a heap location X may alias with heap location at `loc_index`
// and heap_values of that heap location X holds a store, keep that store.
// It's needed for a dependent load that's not eliminated since any store
// that may put value into the load's heap location needs to be kept.
void KeepStoresIfAliasedToLocation(ScopedArenaVector<ValueRecord>& heap_values,
size_t loc_index) {
for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
if (i == loc_index) {
// We use this function when reading a location with unknown value and
// therefore we cannot know what exact store wrote that unknown value.
// But we can have a phi placeholder here marking multiple stores to keep.
DCHECK(
!heap_values[i].stored_by.IsInstruction() ||
heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->IsPartialSingleton());
KeepStores(heap_values[i].stored_by);
heap_values[i].stored_by = Value::PureUnknown();
} else if (heap_location_collector_.MayAlias(i, loc_index)) {
KeepStores(heap_values[i].stored_by);
heap_values[i].stored_by = Value::PureUnknown();
}
}
}
HInstruction* GetDefaultValue(DataType::Type type) {
switch (type) {
case DataType::Type::kReference:
return GetGraph()->GetNullConstant();
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
return GetGraph()->GetIntConstant(0);
case DataType::Type::kInt64:
return GetGraph()->GetLongConstant(0);
case DataType::Type::kFloat32:
return GetGraph()->GetFloatConstant(0);
case DataType::Type::kFloat64:
return GetGraph()->GetDoubleConstant(0);
default:
UNREACHABLE();
}
}
bool CanValueBeKeptIfSameAsNew(Value value,
HInstruction* new_value,
HInstruction* new_value_set_instr) {
// For field/array set location operations, if the value is the same as the new_value
// it can be kept even if aliasing happens. All aliased operations will access the same memory
// range.
// For vector values, this is not true. For example:
// packed_data = [0xA, 0xB, 0xC, 0xD]; <-- Different values in each lane.
// VecStore array[i ,i+1,i+2,i+3] = packed_data;
// VecStore array[i+1,i+2,i+3,i+4] = packed_data; <-- We are here (partial overlap).
// VecLoad vx = array[i,i+1,i+2,i+3]; <-- Cannot be eliminated because the value
// here is not packed_data anymore.
//
// TODO: to allow such 'same value' optimization on vector data,
// LSA needs to report more fine-grain MAY alias information:
// (1) May alias due to two vector data partial overlap.
// e.g. a[i..i+3] and a[i+1,..,i+4].
// (2) May alias due to two vector data may complete overlap each other.
// e.g. a[i..i+3] and b[i..i+3].
// (3) May alias but the exact relationship between two locations is unknown.
// e.g. a[i..i+3] and b[j..j+3], where values of a,b,i,j are all unknown.
// This 'same value' optimization can apply only on case (2).
if (new_value_set_instr->IsVecOperation()) {
return false;
}
return value.Equals(new_value);
}
Value PrepareLoopValue(HBasicBlock* block, size_t idx);
Value PrepareLoopStoredBy(HBasicBlock* block, size_t idx);
void PrepareLoopRecords(HBasicBlock* block);
Value MergePredecessorValues(HBasicBlock* block, size_t idx);
void MergePredecessorRecords(HBasicBlock* block);
void MaterializeNonLoopPhis(PhiPlaceholder phi_placeholder, DataType::Type type);
void VisitGetLocation(HInstruction* instruction, size_t idx);
void VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value);
void RecordFieldInfo(const FieldInfo* info, size_t heap_loc) {
field_infos_[heap_loc] = info;
}
void VisitBasicBlock(HBasicBlock* block) override;
enum class Phase {
kLoadElimination,
kStoreElimination,
kPartialElimination,
};
bool MayAliasOnBackEdge(HBasicBlock* loop_header, size_t idx1, size_t idx2) const;
bool TryReplacingLoopPhiPlaceholderWithDefault(
PhiPlaceholder phi_placeholder,
DataType::Type type,
/*inout*/ ArenaBitVector* phi_placeholders_to_materialize);
bool TryReplacingLoopPhiPlaceholderWithSingleInput(
PhiPlaceholder phi_placeholder,
/*inout*/ ArenaBitVector* phi_placeholders_to_materialize);
std::optional<PhiPlaceholder> FindLoopPhisToMaterialize(
PhiPlaceholder phi_placeholder,
/*out*/ ArenaBitVector* phi_placeholders_to_materialize,
DataType::Type type,
bool can_use_default_or_phi);
bool MaterializeLoopPhis(const ScopedArenaVector<size_t>& phi_placeholder_indexes,
DataType::Type type);
bool MaterializeLoopPhis(ArrayRef<const size_t> phi_placeholder_indexes, DataType::Type type);
bool MaterializeLoopPhis(const ArenaBitVector& phi_placeholders_to_materialize,
DataType::Type type);
bool FullyMaterializePhi(PhiPlaceholder phi_placeholder, DataType::Type type);
std::optional<PhiPlaceholder> TryToMaterializeLoopPhis(PhiPlaceholder phi_placeholder,
HInstruction* load);
void ProcessLoopPhiWithUnknownInput(PhiPlaceholder loop_phi_with_unknown_input);
void ProcessLoadsRequiringLoopPhis();
void SearchPhiPlaceholdersForKeptStores();
void UpdateValueRecordForStoreElimination(/*inout*/ValueRecord* value_record);
void FindOldValueForPhiPlaceholder(PhiPlaceholder phi_placeholder, DataType::Type type);
void FindStoresWritingOldValues();
void FinishFullLSE();
void PrepareForPartialPhiComputation();
// Create materialization block and materialization object for the given predecessor of entry.
HInstruction* SetupPartialMaterialization(PartialLoadStoreEliminationHelper& helper,
HeapRefHolder&& holder,
size_t pred_idx,
HBasicBlock* blk);
// Returns the value that would be read by the 'read' instruction on
// 'orig_new_inst' if 'orig_new_inst' has not escaped.
HInstruction* GetPartialValueAt(HNewInstance* orig_new_inst, HInstruction* read);
void MovePartialEscapes();
void VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet* instruction) override {
LOG(FATAL) << "Visited instruction " << instruction->DumpWithoutArgs()
<< " but LSE should be the only source of predicated-ifield-gets!";
}
void HandleAcquireLoad(HInstruction* instruction) {
DCHECK((instruction->IsInstanceFieldGet() && instruction->AsInstanceFieldGet()->IsVolatile()) ||
(instruction->IsStaticFieldGet() && instruction->AsStaticFieldGet()->IsVolatile()) ||
(instruction->IsMonitorOperation() && instruction->AsMonitorOperation()->IsEnter()))
<< "Unexpected instruction " << instruction->GetId() << ": " << instruction->DebugName();
// Acquire operations e.g. MONITOR_ENTER change the thread's view of the memory, so we must
// invalidate all current values.
ScopedArenaVector<ValueRecord>& heap_values =
heap_values_for_[instruction->GetBlock()->GetBlockId()];
for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
KeepStores(heap_values[i].stored_by);
heap_values[i].stored_by = Value::PureUnknown();
heap_values[i].value = Value::PartialUnknown(heap_values[i].value);
}
// Note that there's no need to record the load as subsequent acquire loads shouldn't be
// eliminated either.
}
void HandleReleaseStore(HInstruction* instruction) {
DCHECK((instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->IsVolatile()) ||
(instruction->IsStaticFieldSet() && instruction->AsStaticFieldSet()->IsVolatile()) ||
(instruction->IsMonitorOperation() && !instruction->AsMonitorOperation()->IsEnter()))
<< "Unexpected instruction " << instruction->GetId() << ": " << instruction->DebugName();
// Release operations e.g. MONITOR_EXIT do not affect this thread's view of the memory, but
// they will push the modifications for other threads to see. Therefore, we must keep the
// stores but there's no need to clobber the value.
ScopedArenaVector<ValueRecord>& heap_values =
heap_values_for_[instruction->GetBlock()->GetBlockId()];
for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
KeepStores(heap_values[i].stored_by);
heap_values[i].stored_by = Value::PureUnknown();
}
// Note that there's no need to record the store as subsequent release store shouldn't be
// eliminated either.
}
void VisitInstanceFieldGet(HInstanceFieldGet* instruction) override {
if (instruction->IsVolatile()) {
HandleAcquireLoad(instruction);
return;
}
HInstruction* object = instruction->InputAt(0);
const FieldInfo& field = instruction->GetFieldInfo();
VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(object, &field));
}
void VisitInstanceFieldSet(HInstanceFieldSet* instruction) override {
if (instruction->IsVolatile()) {
HandleReleaseStore(instruction);
return;
}
HInstruction* object = instruction->InputAt(0);
const FieldInfo& field = instruction->GetFieldInfo();
HInstruction* value = instruction->InputAt(1);
size_t idx = heap_location_collector_.GetFieldHeapLocation(object, &field);
VisitSetLocation(instruction, idx, value);
}
void VisitStaticFieldGet(HStaticFieldGet* instruction) override {
if (instruction->IsVolatile()) {
HandleAcquireLoad(instruction);
return;
}
HInstruction* cls = instruction->InputAt(0);
const FieldInfo& field = instruction->GetFieldInfo();
VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(cls, &field));
}
void VisitStaticFieldSet(HStaticFieldSet* instruction) override {
if (instruction->IsVolatile()) {
HandleReleaseStore(instruction);
return;
}
HInstruction* cls = instruction->InputAt(0);
const FieldInfo& field = instruction->GetFieldInfo();
HInstruction* value = instruction->InputAt(1);
size_t idx = heap_location_collector_.GetFieldHeapLocation(cls, &field);
VisitSetLocation(instruction, idx, value);
}
void VisitMonitorOperation(HMonitorOperation* monitor_op) override {
if (monitor_op->IsEnter()) {
HandleAcquireLoad(monitor_op);
} else {
HandleReleaseStore(monitor_op);
}
}
void VisitArrayGet(HArrayGet* instruction) override {
VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction));
}
void VisitArraySet(HArraySet* instruction) override {
size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction);
VisitSetLocation(instruction, idx, instruction->GetValue());
}
void VisitVecLoad(HVecLoad* instruction) override {
VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction));
}
void VisitVecStore(HVecStore* instruction) override {
size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction);
VisitSetLocation(instruction, idx, instruction->GetValue());
}
void VisitDeoptimize(HDeoptimize* instruction) override {
// If we are in a try, even singletons are observable.
const bool inside_a_try = instruction->GetBlock()->IsTryBlock();
HBasicBlock* block = instruction->GetBlock();
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
Value* stored_by = &heap_values[i].stored_by;
if (stored_by->IsUnknown()) {
continue;
}
// Stores are generally observeable after deoptimization, except
// for singletons that don't escape in the deoptimization environment.
bool observable = true;
ReferenceInfo* info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
if (!inside_a_try && info->IsSingleton()) {
HInstruction* reference = info->GetReference();
// Finalizable objects always escape.
const bool finalizable_object =
reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable();
if (!finalizable_object && !IsEscapingObject(info, block, i)) {
// Check whether the reference for a store is used by an environment local of
// the HDeoptimize. If not, the singleton is not observed after deoptimization.
const HUseList<HEnvironment*>& env_uses = reference->GetEnvUses();
observable = std::any_of(
env_uses.begin(),
env_uses.end(),
[instruction](const HUseListNode<HEnvironment*>& use) {
return use.GetUser()->GetHolder() == instruction;
});
}
}
if (observable) {
KeepStores(*stored_by);
*stored_by = Value::PureUnknown();
}
}
}
// Keep necessary stores before exiting a method via return/throw.
void HandleExit(HBasicBlock* block, bool must_keep_stores = false) {
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
if (must_keep_stores || IsEscapingObject(ref_info, block, i)) {
KeepStores(heap_values[i].stored_by);
heap_values[i].stored_by = Value::PureUnknown();
}
}
}
void VisitReturn(HReturn* instruction) override {
HandleExit(instruction->GetBlock());
}
void VisitReturnVoid(HReturnVoid* return_void) override {
HandleExit(return_void->GetBlock());
}
void HandleThrowingInstruction(HInstruction* instruction) {
DCHECK(instruction->CanThrow());
// If we are inside of a try, singletons can become visible since we may not exit the method.
HandleExit(instruction->GetBlock(), instruction->GetBlock()->IsTryBlock());
}
void VisitMethodEntryHook(HMethodEntryHook* method_entry) override {
HandleThrowingInstruction(method_entry);
}
void VisitMethodExitHook(HMethodExitHook* method_exit) override {
HandleThrowingInstruction(method_exit);
}
void VisitDivZeroCheck(HDivZeroCheck* div_zero_check) override {
HandleThrowingInstruction(div_zero_check);
}
void VisitNullCheck(HNullCheck* null_check) override {
HandleThrowingInstruction(null_check);
}
void VisitBoundsCheck(HBoundsCheck* bounds_check) override {
HandleThrowingInstruction(bounds_check);
}
void VisitLoadClass(HLoadClass* load_class) override {
if (load_class->CanThrow()) {
HandleThrowingInstruction(load_class);
}
}
void VisitLoadString(HLoadString* load_string) override {
if (load_string->CanThrow()) {
HandleThrowingInstruction(load_string);
}
}
void VisitLoadMethodHandle(HLoadMethodHandle* load_method_handle) override {
HandleThrowingInstruction(load_method_handle);
}
void VisitLoadMethodType(HLoadMethodType* load_method_type) override {
HandleThrowingInstruction(load_method_type);
}
void VisitStringBuilderAppend(HStringBuilderAppend* sb_append) override {
HandleThrowingInstruction(sb_append);
}
void VisitThrow(HThrow* throw_instruction) override {
HandleThrowingInstruction(throw_instruction);
}
void VisitCheckCast(HCheckCast* check_cast) override {
HandleThrowingInstruction(check_cast);
}
void HandleInvoke(HInstruction* instruction) {
// If `instruction` can throw we have to presume all stores are visible.
const bool can_throw = instruction->CanThrow();
// If we are in a try, even singletons are observable.
const bool can_throw_inside_a_try = can_throw && instruction->GetBlock()->IsTryBlock();
SideEffects side_effects = instruction->GetSideEffects();
ScopedArenaVector<ValueRecord>& heap_values =
heap_values_for_[instruction->GetBlock()->GetBlockId()];
for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
HBasicBlock* blk = instruction->GetBlock();
// We don't need to do anything if the reference has not escaped at this point.
// This is true if either we (1) never escape or (2) sometimes escape but
// there is no possible execution where we have done so at this time. NB
// We count being in the excluded cohort as escaping. Technically, this is
// a bit over-conservative (since we can have multiple non-escaping calls
// before a single escaping one) but this simplifies everything greatly.
auto partial_singleton_did_not_escape = [](ReferenceInfo* ref_info, HBasicBlock* blk) {
DCHECK(ref_info->IsPartialSingleton());
if (!ref_info->GetNoEscapeSubgraph()->ContainsBlock(blk)) {
return false;
}
ArrayRef<const ExecutionSubgraph::ExcludedCohort> cohorts =
ref_info->GetNoEscapeSubgraph()->GetExcludedCohorts();
return std::none_of(cohorts.begin(),
cohorts.end(),
[&](const ExecutionSubgraph::ExcludedCohort& cohort) {
return cohort.PrecedesBlock(blk);
});
};
if (!can_throw_inside_a_try &&
(ref_info->IsSingleton() ||
// partial and we aren't currently escaping and we haven't escaped yet.
(ref_info->IsPartialSingleton() && partial_singleton_did_not_escape(ref_info, blk)))) {
// Singleton references cannot be seen by the callee.
} else {
if (can_throw || side_effects.DoesAnyRead() || side_effects.DoesAnyWrite()) {
// Previous stores may become visible (read) and/or impossible for LSE to track (write).
KeepStores(heap_values[i].stored_by);
heap_values[i].stored_by = Value::PureUnknown();
}
if (side_effects.DoesAnyWrite()) {
// The value may be clobbered.
heap_values[i].value = Value::PartialUnknown(heap_values[i].value);
}
}
}
}
void VisitInvoke(HInvoke* invoke) override {
HandleInvoke(invoke);
}
void VisitClinitCheck(HClinitCheck* clinit) override {
// Class initialization check can result in class initializer calling arbitrary methods.
HandleInvoke(clinit);
}
void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) override {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) override {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) override {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) override {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitNewInstance(HNewInstance* new_instance) override {
// If we are in a try, even singletons are observable.
const bool inside_a_try = new_instance->GetBlock()->IsTryBlock();
ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance);
if (ref_info == nullptr) {
// new_instance isn't used for field accesses. No need to process it.
return;
}
if (ref_info->IsSingletonAndRemovable() && !new_instance->NeedsChecks()) {
DCHECK(!new_instance->IsFinalizable());
// new_instance can potentially be eliminated.
singleton_new_instances_.push_back(new_instance);
}
HBasicBlock* block = new_instance->GetBlock();
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
ReferenceInfo* info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
HInstruction* ref = info->GetReference();
size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset();
if (ref == new_instance) {
if (offset >= mirror::kObjectHeaderSize ||
MemberOffset(offset) == mirror::Object::MonitorOffset()) {
// Instance fields except the header fields are set to default heap values.
// The shadow$_monitor_ field is set to the default value however.
heap_values[i].value = Value::Default();
heap_values[i].stored_by = Value::PureUnknown();
} else if (MemberOffset(offset) == mirror::Object::ClassOffset()) {
// The shadow$_klass_ field is special and has an actual value however.
heap_values[i].value = Value::ForInstruction(new_instance->GetLoadClass());
heap_values[i].stored_by = Value::PureUnknown();
}
} else if (inside_a_try || IsEscapingObject(info, block, i)) {
// Since NewInstance can throw, we presume all previous stores could be visible.
KeepStores(heap_values[i].stored_by);
heap_values[i].stored_by = Value::PureUnknown();
}
}
}
void VisitNewArray(HNewArray* new_array) override {
// If we are in a try, even singletons are observable.
const bool inside_a_try = new_array->GetBlock()->IsTryBlock();
ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array);
if (ref_info == nullptr) {
// new_array isn't used for array accesses. No need to process it.
return;
}
if (ref_info->IsSingletonAndRemovable()) {
if (new_array->GetLength()->IsIntConstant() &&
new_array->GetLength()->AsIntConstant()->GetValue() >= 0) {
// new_array can potentially be eliminated.
singleton_new_instances_.push_back(new_array);
} else {
// new_array may throw NegativeArraySizeException. Keep it.
}
}
HBasicBlock* block = new_array->GetBlock();
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
HeapLocation* location = heap_location_collector_.GetHeapLocation(i);
ReferenceInfo* info = location->GetReferenceInfo();
HInstruction* ref = info->GetReference();
if (ref == new_array && location->GetIndex() != nullptr) {
// Array elements are set to default heap values.
heap_values[i].value = Value::Default();
heap_values[i].stored_by = Value::PureUnknown();
} else if (inside_a_try || IsEscapingObject(info, block, i)) {
// Since NewArray can throw, we presume all previous stores could be visible.
KeepStores(heap_values[i].stored_by);
heap_values[i].stored_by = Value::PureUnknown();
}
}
}
void VisitInstruction(HInstruction* instruction) override {
// Throwing instructions must be handled specially.
DCHECK(!instruction->CanThrow());
}
bool ShouldPerformPartialLSE() const {
return perform_partial_lse_ && !GetGraph()->IsCompilingOsr();
}
bool perform_partial_lse_;
const HeapLocationCollector& heap_location_collector_;
// Use local allocator for allocating memory.
ScopedArenaAllocator allocator_;
// The number of unique phi_placeholders there possibly are
size_t num_phi_placeholders_;
// One array of heap value records for each block.
ScopedArenaVector<ScopedArenaVector<ValueRecord>> heap_values_for_;
// We record loads and stores for re-processing when we find a loop Phi placeholder
// with unknown value from a predecessor, and also for removing stores that are
// found to be dead, i.e. not marked in `kept_stores_` at the end.
struct LoadStoreRecord {
HInstruction* load_or_store;
size_t heap_location_index;
};
ScopedArenaVector<LoadStoreRecord> loads_and_stores_;
// We record the substitute instructions for loads that should be
// eliminated but may be used by heap locations. They'll be removed
// in the end. These are indexed by the load's id.
ScopedArenaVector<HInstruction*> substitute_instructions_for_loads_;
// Value at the start of the given instruction for instructions which directly
// read from a heap-location (i.e. FieldGet). The mapping to heap-location is
// implicit through the fact that each instruction can only directly refer to
// a single heap-location.
ScopedArenaHashMap<HInstruction*, Value> intermediate_values_;
// Record stores to keep in a bit vector indexed by instruction ID.
ArenaBitVector kept_stores_;
// When we need to keep all stores that feed a Phi placeholder, we just record the
// index of that placeholder for processing after graph traversal.
ArenaBitVector phi_placeholders_to_search_for_kept_stores_;
// Loads that would require a loop Phi to replace are recorded for processing
// later as we do not have enough information from back-edges to determine if
// a suitable Phi can be found or created when we visit these loads.
ScopedArenaHashMap<HInstruction*, ValueRecord> loads_requiring_loop_phi_;
// For stores, record the old value records that were replaced and the stored values.
struct StoreRecord {
ValueRecord old_value_record;
HInstruction* stored_value;
};
// Small pre-allocated initial buffer avoids initializing a large one until it's really needed.
static constexpr size_t kStoreRecordsInitialBufferSize = 16;
std::pair<HInstruction*, StoreRecord> store_records_buffer_[kStoreRecordsInitialBufferSize];
ScopedArenaHashMap<HInstruction*, StoreRecord> store_records_;
// Replacements for Phi placeholders.
// The invalid heap value is used to mark Phi placeholders that cannot be replaced.
ScopedArenaVector<Value> phi_placeholder_replacements_;
// Merged-unknowns that must have their predecessor values kept to ensure
// partially escaped values are written
ArenaBitVector kept_merged_unknowns_;
ScopedArenaVector<HInstruction*> singleton_new_instances_;
// The field infos for each heap location (if relevant).
ScopedArenaVector<const FieldInfo*> field_infos_;
Phase current_phase_;
friend class PartialLoadStoreEliminationHelper;
friend struct ScopedRestoreHeapValues;
friend std::ostream& operator<<(std::ostream& os, const Value& v);
friend std::ostream& operator<<(std::ostream& os, const PriorValueHolder& v);
friend std::ostream& operator<<(std::ostream& oss, const LSEVisitor::Phase& phase);
DISALLOW_COPY_AND_ASSIGN(LSEVisitor);
};
std::ostream& operator<<(std::ostream& oss, const LSEVisitor::PriorValueHolder& p) {
p.Dump(oss);
return oss;
}
std::ostream& operator<<(std::ostream& oss, const LSEVisitor::Phase& phase) {
switch (phase) {
case LSEVisitor::Phase::kLoadElimination:
return oss << "kLoadElimination";
case LSEVisitor::Phase::kStoreElimination:
return oss << "kStoreElimination";
case LSEVisitor::Phase::kPartialElimination:
return oss << "kPartialElimination";
}
}
void LSEVisitor::PriorValueHolder::Dump(std::ostream& oss) const {
if (IsDefault()) {
oss << "Default";
} else if (IsPhi()) {
oss << "Phi: " << GetPhiPlaceholder();
} else {
oss << "Instruction: " << *GetInstruction();
}
}
constexpr LSEVisitor::PriorValueHolder::PriorValueHolder(Value val)
: value_(Marker{}) {
DCHECK(!val.IsInvalid() && !val.IsPureUnknown());
if (val.IsPartialUnknown()) {
value_ = val.GetPriorValue().value_;
} else if (val.IsMergedUnknown() || val.NeedsPhi()) {
value_ = val.GetPhiPlaceholder();
} else if (val.IsInstruction()) {
value_ = val.GetInstruction();
} else {
DCHECK(val.IsDefault());
}
}
constexpr bool operator==(const LSEVisitor::Marker&, const LSEVisitor::Marker&) {
return true;
}
constexpr bool operator==(const LSEVisitor::PriorValueHolder& p1,
const LSEVisitor::PriorValueHolder& p2) {
return p1.Equals(p2);
}
constexpr bool operator==(const LSEVisitor::PhiPlaceholder& p1,
const LSEVisitor::PhiPlaceholder& p2) {
return p1.Equals(p2);
}
constexpr bool operator==(const LSEVisitor::Value::NeedsLoopPhiMarker& p1,
const LSEVisitor::Value::NeedsLoopPhiMarker& p2) {
return p1.phi_ == p2.phi_;
}
constexpr bool operator==(const LSEVisitor::Value::NeedsNonLoopPhiMarker& p1,
const LSEVisitor::Value::NeedsNonLoopPhiMarker& p2) {
return p1.phi_ == p2.phi_;
}
constexpr bool operator==(const LSEVisitor::Value::MergedUnknownMarker& p1,
const LSEVisitor::Value::MergedUnknownMarker& p2) {
return p1.phi_ == p2.phi_;
}
std::ostream& operator<<(std::ostream& oss, const LSEVisitor::PhiPlaceholder& p) {
p.Dump(oss);
return oss;
}
LSEVisitor::Value LSEVisitor::PriorValueHolder::ToValue() const {
if (IsDefault()) {
return Value::Default();
} else if (IsPhi()) {
return Value::ForLoopPhiPlaceholder(GetPhiPlaceholder());
} else {
return Value::ForInstruction(GetInstruction());
}
}
constexpr bool LSEVisitor::Value::ExactEquals(LSEVisitor::Value other) const {
return value_ == other.value_;
}
constexpr bool LSEVisitor::Value::Equals(LSEVisitor::Value other) const {
// Only valid values can be compared.
DCHECK(IsValid());
DCHECK(other.IsValid());
if (value_ == other.value_) {
// Note: Two unknown values are considered different.
return !IsUnknown();
} else {
// Default is considered equal to zero-bit-pattern instructions.
return (IsDefault() && other.IsInstruction() && IsZeroBitPattern(other.GetInstruction())) ||
(other.IsDefault() && IsInstruction() && IsZeroBitPattern(GetInstruction()));
}
}
std::ostream& LSEVisitor::Value::Dump(std::ostream& os) const {
if (std::holds_alternative<LSEVisitor::Value::ValuelessType>(value_)) {
switch (GetValuelessType()) {
case ValuelessType::kDefault:
return os << "Default";
case ValuelessType::kPureUnknown:
return os << "PureUnknown";
case ValuelessType::kInvalid:
return os << "Invalid";
}
} else if (IsPartialUnknown()) {
return os << "PartialUnknown[" << GetPriorValue() << "]";
} else if (IsInstruction()) {
return os << "Instruction[id: " << GetInstruction()->GetId()
<< ", block: " << GetInstruction()->GetBlock()->GetBlockId() << "]";
} else if (IsMergedUnknown()) {
return os << "MergedUnknown[block: " << GetPhiPlaceholder().GetBlockId()
<< ", heap_loc: " << GetPhiPlaceholder().GetHeapLocation() << "]";
} else if (NeedsLoopPhi()) {
return os << "NeedsLoopPhi[block: " << GetPhiPlaceholder().GetBlockId()
<< ", heap_loc: " << GetPhiPlaceholder().GetHeapLocation() << "]";
} else {
return os << "NeedsNonLoopPhi[block: " << GetPhiPlaceholder().GetBlockId()
<< ", heap_loc: " << GetPhiPlaceholder().GetHeapLocation() << "]";
}
}
std::ostream& operator<<(std::ostream& os, const LSEVisitor::Value& v) {
return v.Dump(os);
}
LSEVisitor::LSEVisitor(HGraph* graph,
const HeapLocationCollector& heap_location_collector,
bool perform_partial_lse,
OptimizingCompilerStats* stats)
: HGraphDelegateVisitor(graph, stats),
perform_partial_lse_(perform_partial_lse),
heap_location_collector_(heap_location_collector),
allocator_(graph->GetArenaStack()),
num_phi_placeholders_(GetGraph()->GetBlocks().size() *
heap_location_collector_.GetNumberOfHeapLocations()),
heap_values_for_(graph->GetBlocks().size(),
ScopedArenaVector<ValueRecord>(allocator_.Adapter(kArenaAllocLSE)),
allocator_.Adapter(kArenaAllocLSE)),
loads_and_stores_(allocator_.Adapter(kArenaAllocLSE)),
// We may add new instructions (default values, Phis) but we're not adding loads
// or stores, so we shall not need to resize following vector and BitVector.
substitute_instructions_for_loads_(graph->GetCurrentInstructionId(),
nullptr,
allocator_.Adapter(kArenaAllocLSE)),
intermediate_values_(allocator_.Adapter(kArenaAllocLSE)),
kept_stores_(&allocator_,
/*start_bits=*/graph->GetCurrentInstructionId(),
/*expandable=*/false,
kArenaAllocLSE),
phi_placeholders_to_search_for_kept_stores_(&allocator_,
num_phi_placeholders_,
/*expandable=*/false,
kArenaAllocLSE),
loads_requiring_loop_phi_(allocator_.Adapter(kArenaAllocLSE)),
store_records_(store_records_buffer_,
kStoreRecordsInitialBufferSize,
allocator_.Adapter(kArenaAllocLSE)),
phi_placeholder_replacements_(num_phi_placeholders_,
Value::Invalid(),
allocator_.Adapter(kArenaAllocLSE)),
kept_merged_unknowns_(&allocator_,
/*start_bits=*/num_phi_placeholders_,
/*expandable=*/false,
kArenaAllocLSE),
singleton_new_instances_(allocator_.Adapter(kArenaAllocLSE)),
field_infos_(heap_location_collector_.GetNumberOfHeapLocations(),
allocator_.Adapter(kArenaAllocLSE)),
current_phase_(Phase::kLoadElimination) {
// Clear bit vectors.
phi_placeholders_to_search_for_kept_stores_.ClearAllBits();
kept_stores_.ClearAllBits();
}
LSEVisitor::Value LSEVisitor::PrepareLoopValue(HBasicBlock* block, size_t idx) {
// If the pre-header value is known (which implies that the reference dominates this
// block), use a Phi placeholder for the value in the loop header. If all predecessors
// are later found to have a known value, we can replace loads from this location,
// either with the pre-header value or with a new Phi. For array locations, the index
// may be defined inside the loop but the only known value in that case should be the
// default value or a Phi placeholder that can be replaced only with the default value.
HLoopInformation* loop_info = block->GetLoopInformation();
uint32_t pre_header_block_id = loop_info->GetPreHeader()->GetBlockId();
Value pre_header_value = ReplacementOrValue(heap_values_for_[pre_header_block_id][idx].value);
if (pre_header_value.IsUnknown()) {
return pre_header_value;
}
if (kIsDebugBuild) {
// Check that the reference indeed dominates this loop.
HeapLocation* location = heap_location_collector_.GetHeapLocation(idx);
HInstruction* ref = location->GetReferenceInfo()->GetReference();
CHECK(ref->GetBlock() != block && ref->GetBlock()->Dominates(block))
<< GetGraph()->PrettyMethod();
// Check that the index, if defined inside the loop, tracks a default value
// or a Phi placeholder requiring a loop Phi.
HInstruction* index = location->GetIndex();
if (index != nullptr && loop_info->Contains(*index->GetBlock())) {
CHECK(pre_header_value.NeedsLoopPhi() || pre_header_value.Equals(Value::Default()))
<< GetGraph()->PrettyMethod() << " blk: " << block->GetBlockId() << " "
<< pre_header_value;
}
}
PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
return ReplacementOrValue(Value::ForLoopPhiPlaceholder(phi_placeholder));
}
LSEVisitor::Value LSEVisitor::PrepareLoopStoredBy(HBasicBlock* block, size_t idx) {
// Use the Phi placeholder for `stored_by` to make sure all incoming stores are kept
// if the value in the location escapes. This is not applicable to singletons that are
// defined inside the loop as they shall be dead in the loop header.
const ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo();
const HInstruction* reference = ref_info->GetReference();
// Finalizable objects always escape.
const bool is_finalizable =
reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable();
if (ref_info->IsSingleton() &&
block->GetLoopInformation()->Contains(*reference->GetBlock()) &&
!is_finalizable) {
return Value::PureUnknown();
}
PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
return Value::ForLoopPhiPlaceholder(phi_placeholder);
}
void LSEVisitor::PrepareLoopRecords(HBasicBlock* block) {
DCHECK(block->IsLoopHeader());
int block_id = block->GetBlockId();
HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader();
ScopedArenaVector<ValueRecord>& pre_header_heap_values =
heap_values_for_[pre_header->GetBlockId()];
size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations();
DCHECK_EQ(num_heap_locations, pre_header_heap_values.size());
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block_id];
DCHECK(heap_values.empty());
// Don't eliminate loads in irreducible loops.
if (block->GetLoopInformation()->IsIrreducible()) {
heap_values.resize(num_heap_locations,
{/*value=*/Value::Invalid(), /*stored_by=*/Value::PureUnknown()});
// Also keep the stores before the loop header, including in blocks that were not visited yet.
bool is_osr = GetGraph()->IsCompilingOsr();
for (size_t idx = 0u; idx != num_heap_locations; ++idx) {
heap_values[idx].value =
is_osr ? Value::PureUnknown()
: Value::MergedUnknown(GetPhiPlaceholder(block->GetBlockId(), idx));
KeepStores(Value::ForLoopPhiPlaceholder(GetPhiPlaceholder(block->GetBlockId(), idx)));
}
return;
}
// Fill `heap_values` based on values from pre-header.
heap_values.reserve(num_heap_locations);
for (size_t idx = 0u; idx != num_heap_locations; ++idx) {
heap_values.push_back({ PrepareLoopValue(block, idx), PrepareLoopStoredBy(block, idx) });
}
}
LSEVisitor::Value LSEVisitor::MergePredecessorValues(HBasicBlock* block, size_t idx) {
ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors());
DCHECK(!predecessors.empty());
Value merged_value =
ReplacementOrValue(heap_values_for_[predecessors[0]->GetBlockId()][idx].value);
for (size_t i = 1u, size = predecessors.size(); i != size; ++i) {
Value pred_value =
ReplacementOrValue(heap_values_for_[predecessors[i]->GetBlockId()][idx].value);
if (pred_value.Equals(merged_value)) {
// Value is the same. No need to update our merged value.
continue;
} else if (pred_value.IsUnknown() || merged_value.IsUnknown()) {
// If one is unknown and the other is a different type of unknown
PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
merged_value = Value::MergedUnknown(phi_placeholder);
// We know that at least one of the merge points is unknown (and both are
// not pure-unknowns since that's captured above). This means that the
// overall value needs to be a MergedUnknown. Just return that.
break;
} else {
// There are conflicting known values. We may still be able to replace loads with a Phi.
PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
// Propagate the need for a new loop Phi from all predecessors.
bool needs_loop_phi = merged_value.NeedsLoopPhi() || pred_value.NeedsLoopPhi();
merged_value = ReplacementOrValue(Value::ForPhiPlaceholder(phi_placeholder, needs_loop_phi));
}
}
DCHECK_IMPLIES(merged_value.IsPureUnknown(), block->GetPredecessors().size() <= 1)
<< merged_value << " in " << GetGraph()->PrettyMethod();
return merged_value;
}
void LSEVisitor::MergePredecessorRecords(HBasicBlock* block) {
if (block->IsExitBlock()) {
// Exit block doesn't really merge values since the control flow ends in
// its predecessors. Each predecessor needs to make sure stores are kept
// if necessary.
return;
}
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
DCHECK(heap_values.empty());
size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations();
if (block->GetPredecessors().empty() || block->IsCatchBlock()) {
DCHECK_IMPLIES(block->GetPredecessors().empty(), block->IsEntryBlock());
heap_values.resize(num_heap_locations,
{/*value=*/Value::PureUnknown(), /*stored_by=*/Value::PureUnknown()});
return;
}
heap_values.reserve(num_heap_locations);
for (size_t idx = 0u; idx != num_heap_locations; ++idx) {
Value merged_value = MergePredecessorValues(block, idx);
if (kIsDebugBuild) {
if (merged_value.NeedsPhi()) {
uint32_t block_id = merged_value.GetPhiPlaceholder().GetBlockId();
CHECK(GetGraph()->GetBlocks()[block_id]->Dominates(block));
} else if (merged_value.IsInstruction()) {
CHECK(merged_value.GetInstruction()->GetBlock()->Dominates(block));
}
}
ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors());
Value merged_stored_by = heap_values_for_[predecessors[0]->GetBlockId()][idx].stored_by;
for (size_t predecessor_idx = 1u; predecessor_idx != predecessors.size(); ++predecessor_idx) {
uint32_t predecessor_block_id = predecessors[predecessor_idx]->GetBlockId();
Value stored_by = heap_values_for_[predecessor_block_id][idx].stored_by;
if ((!stored_by.IsUnknown() || !merged_stored_by.IsUnknown()) &&
!merged_stored_by.Equals(stored_by)) {
// Use the Phi placeholder to track that we need to keep stores from all predecessors.
PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
merged_stored_by = Value::ForNonLoopPhiPlaceholder(phi_placeholder);
break;
}
}
heap_values.push_back({ merged_value, merged_stored_by });
}
}
static HInstruction* FindOrConstructNonLoopPhi(
HBasicBlock* block,
const ScopedArenaVector<HInstruction*>& phi_inputs,
DataType::Type type) {
for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
HInstruction* phi = phi_it.Current();
DCHECK_EQ(phi->InputCount(), phi_inputs.size());
auto cmp = [](HInstruction* lhs, const HUserRecord<HInstruction*>& rhs) {
return lhs == rhs.GetInstruction();
};
if (std::equal(phi_inputs.begin(), phi_inputs.end(), phi->GetInputRecords().begin(), cmp)) {
return phi;
}
}
ArenaAllocator* allocator = block->GetGraph()->GetAllocator();
HPhi* phi = new (allocator) HPhi(allocator, kNoRegNumber, phi_inputs.size(), type);
for (size_t i = 0, size = phi_inputs.size(); i != size; ++i) {
DCHECK_NE(phi_inputs[i]->GetType(), DataType::Type::kVoid) << phi_inputs[i]->DebugName();
phi->SetRawInputAt(i, phi_inputs[i]);
}
block->AddPhi(phi);
if (type == DataType::Type::kReference) {
// Update reference type information. Pass invalid handles, these are not used for Phis.
ReferenceTypePropagation rtp_fixup(block->GetGraph(),
Handle<mirror::DexCache>(),
/* is_first_run= */ false);
rtp_fixup.Visit(phi);
}
return phi;
}
void LSEVisitor::MaterializeNonLoopPhis(PhiPlaceholder phi_placeholder, DataType::Type type) {
DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid());
const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
size_t idx = phi_placeholder.GetHeapLocation();
// Use local allocator to reduce peak memory usage.
ScopedArenaAllocator allocator(allocator_.GetArenaStack());
// Reuse the same vector for collecting phi inputs.
ScopedArenaVector<HInstruction*> phi_inputs(allocator.Adapter(kArenaAllocLSE));
ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE));
work_queue.push_back(phi_placeholder);
while (!work_queue.empty()) {
PhiPlaceholder current_phi_placeholder = work_queue.back();
if (phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)].IsValid()) {
// This Phi placeholder was pushed to the `work_queue` followed by another Phi placeholder
// that directly or indirectly depends on it, so it was already processed as part of the
// other Phi placeholder's dependencies before this one got back to the top of the stack.
work_queue.pop_back();
continue;
}
uint32_t current_block_id = current_phi_placeholder.GetBlockId();
HBasicBlock* current_block = blocks[current_block_id];
DCHECK_GE(current_block->GetPredecessors().size(), 2u);
// Non-loop Phis cannot depend on a loop Phi, so we should not see any loop header here.
// And the only way for such merged value to reach a different heap location is through
// a load at which point we materialize the Phi. Therefore all non-loop Phi placeholders
// seen here are tied to one heap location.
DCHECK(!current_block->IsLoopHeader())
<< current_phi_placeholder << " phase: " << current_phase_;
DCHECK_EQ(current_phi_placeholder.GetHeapLocation(), idx);
phi_inputs.clear();
for (HBasicBlock* predecessor : current_block->GetPredecessors()) {
Value pred_value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
DCHECK(!pred_value.IsPureUnknown()) << pred_value << " block " << current_block->GetBlockId()
<< " pred: " << predecessor->GetBlockId();
if (pred_value.NeedsNonLoopPhi() ||
(current_phase_ == Phase::kPartialElimination && pred_value.IsMergedUnknown())) {
// We need to process the Phi placeholder first.
work_queue.push_back(pred_value.GetPhiPlaceholder());
} else if (pred_value.IsDefault()) {
phi_inputs.push_back(GetDefaultValue(type));
} else {
DCHECK(pred_value.IsInstruction()) << pred_value << " block " << current_block->GetBlockId()
<< " pred: " << predecessor->GetBlockId();
phi_inputs.push_back(pred_value.GetInstruction());
}
}
if (phi_inputs.size() == current_block->GetPredecessors().size()) {
// All inputs are available. Find or construct the Phi replacement.
phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)] =
Value::ForInstruction(FindOrConstructNonLoopPhi(current_block, phi_inputs, type));
// Remove the block from the queue.
DCHECK_EQ(current_phi_placeholder, work_queue.back());
work_queue.pop_back();
}
}
}
void LSEVisitor::VisitGetLocation(HInstruction* instruction, size_t idx) {
DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
uint32_t block_id = instruction->GetBlock()->GetBlockId();
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block_id];
ValueRecord& record = heap_values[idx];
if (instruction->IsFieldAccess()) {
RecordFieldInfo(&instruction->GetFieldInfo(), idx);
}
DCHECK(record.value.IsUnknown() || record.value.Equals(ReplacementOrValue(record.value)));
// If we are unknown, we either come from somewhere untracked or we can reconstruct the partial
// value.
DCHECK(!record.value.IsPureUnknown() ||
heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo() == nullptr ||
!heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo()->IsPartialSingleton())
<< "In " << GetGraph()->PrettyMethod() << ": " << record.value << " for " << *instruction;
intermediate_values_.insert({instruction, record.value});
loads_and_stores_.push_back({ instruction, idx });
if ((record.value.IsDefault() || record.value.NeedsNonLoopPhi()) &&
!IsDefaultOrPhiAllowedForLoad(instruction)) {
record.value = Value::PureUnknown();
}
if (record.value.IsDefault()) {
KeepStores(record.stored_by);
HInstruction* constant = GetDefaultValue(instruction->GetType());
AddRemovedLoad(instruction, constant);
record.value = Value::ForInstruction(constant);
} else if (record.value.IsUnknown()) {
// Load isn't eliminated. Put the load as the value into the HeapLocation.
// This acts like GVN but with better aliasing analysis.
Value old_value = record.value;
record.value = Value::ForInstruction(instruction);
KeepStoresIfAliasedToLocation(heap_values, idx);
KeepStores(old_value);
} else if (record.value.NeedsLoopPhi()) {
// We do not know yet if the value is known for all back edges. Record for future processing.
loads_requiring_loop_phi_.insert(std::make_pair(instruction, record));
} else {
// This load can be eliminated but we may need to construct non-loop Phis.
if (record.value.NeedsNonLoopPhi()) {
MaterializeNonLoopPhis(record.value.GetPhiPlaceholder(), instruction->GetType());
record.value = Replacement(record.value);
}
HInstruction* heap_value = FindSubstitute(record.value.GetInstruction());
AddRemovedLoad(instruction, heap_value);
}
}
void LSEVisitor::VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value) {
DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
DCHECK(!IsStore(value)) << value->DebugName();
if (instruction->IsFieldAccess()) {
RecordFieldInfo(&instruction->GetFieldInfo(), idx);
}
// value may already have a substitute.
value = FindSubstitute(value);
HBasicBlock* block = instruction->GetBlock();
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
ValueRecord& record = heap_values[idx];
DCHECK_IMPLIES(record.value.IsInstruction(),
FindSubstitute(record.value.GetInstruction()) == record.value.GetInstruction());
if (record.value.Equals(value)) {
// Store into the heap location with the same value.
// This store can be eliminated right away.
block->RemoveInstruction(instruction);
return;
}
store_records_.insert(std::make_pair(instruction, StoreRecord{record, value}));
loads_and_stores_.push_back({ instruction, idx });
// If the `record.stored_by` specified a store from this block, it shall be removed
// at the end, except for throwing ArraySet; it cannot be marked for keeping in
// `kept_stores_` anymore after we update the `record.stored_by` below.
DCHECK(!record.stored_by.IsInstruction() ||
record.stored_by.GetInstruction()->GetBlock() != block ||
record.stored_by.GetInstruction()->CanThrow() ||
!kept_stores_.IsBitSet(record.stored_by.GetInstruction()->GetId()));
if (instruction->CanThrow()) {
// Previous stores can become visible.
HandleThrowingInstruction(instruction);
// We cannot remove a possibly throwing store.
// After marking it as kept, it does not matter if we track it in `stored_by` or not.
kept_stores_.SetBit(instruction->GetId());
}
// Update the record.
auto it = loads_requiring_loop_phi_.find(value);
if (it != loads_requiring_loop_phi_.end()) {
// Propapate the Phi placeholder to the record.
record.value = it->second.value;
DCHECK(record.value.NeedsLoopPhi());
} else {
record.value = Value::ForInstruction(value);
}
// Track the store in the value record. If the value is loaded or needed after
// return/deoptimization later, this store isn't really redundant.
record.stored_by = Value::ForInstruction(instruction);
// This store may kill values in other heap locations due to aliasing.
for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
if (i == idx ||
heap_values[i].value.IsUnknown() ||
CanValueBeKeptIfSameAsNew(heap_values[i].value, value, instruction) ||
!heap_location_collector_.MayAlias(i, idx)) {
continue;
}
// Kill heap locations that may alias and keep previous stores to these locations.
KeepStores(heap_values[i].stored_by);
heap_values[i].stored_by = Value::PureUnknown();
heap_values[i].value = Value::PartialUnknown(heap_values[i].value);
}
}
void LSEVisitor::VisitBasicBlock(HBasicBlock* block) {
// Populate the heap_values array for this block.
// TODO: try to reuse the heap_values array from one predecessor if possible.
if (block->IsLoopHeader()) {
PrepareLoopRecords(block);
} else {
MergePredecessorRecords(block);
}
// Visit instructions.
HGraphVisitor::VisitBasicBlock(block);
}
bool LSEVisitor::MayAliasOnBackEdge(HBasicBlock* loop_header, size_t idx1, size_t idx2) const {
DCHECK_NE(idx1, idx2);
DCHECK(loop_header->IsLoopHeader());
if (heap_location_collector_.MayAlias(idx1, idx2)) {
return true;
}
// For array locations with index defined inside the loop, include
// all other locations in the array, even those that LSA declares
// non-aliasing, such as `a[i]` and `a[i + 1]`, as they may actually
// refer to the same locations for different iterations. (LSA's
// `ComputeMayAlias()` does not consider different loop iterations.)
HeapLocation* loc1 = heap_location_collector_.GetHeapLocation(idx1);
HeapLocation* loc2 = heap_location_collector_.GetHeapLocation(idx2);
if (loc1->IsArray() &&
loc2->IsArray() &&
HeapLocationCollector::CanReferencesAlias(loc1->GetReferenceInfo(),
loc2->GetReferenceInfo())) {
HLoopInformation* loop_info = loop_header->GetLoopInformation();
if (loop_info->Contains(*loc1->GetIndex()->GetBlock()) ||
loop_info->Contains(*loc2->GetIndex()->GetBlock())) {
// Consider the locations aliasing. Do not optimize the case where both indexes
// are loop invariants defined inside the loop, rely on LICM to pull them out.
return true;
}
}
return false;
}
bool LSEVisitor::TryReplacingLoopPhiPlaceholderWithDefault(
PhiPlaceholder phi_placeholder,
DataType::Type type,
/*inout*/ ArenaBitVector* phi_placeholders_to_materialize) {
// Use local allocator to reduce peak memory usage.
ScopedArenaAllocator allocator(allocator_.GetArenaStack());
ArenaBitVector visited(&allocator,
/*start_bits=*/ num_phi_placeholders_,
/*expandable=*/ false,
kArenaAllocLSE);
visited.ClearAllBits();
ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE));
// Use depth first search to check if any non-Phi input is unknown.
const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations();
visited.SetBit(PhiPlaceholderIndex(phi_placeholder));
work_queue.push_back(phi_placeholder);
while (!work_queue.empty()) {
PhiPlaceholder current_phi_placeholder = work_queue.back();
work_queue.pop_back();
HBasicBlock* block = blocks[current_phi_placeholder.GetBlockId()];
DCHECK_GE(block->GetPredecessors().size(), 2u);
size_t idx = current_phi_placeholder.GetHeapLocation();
for (HBasicBlock* predecessor : block->GetPredecessors()) {
Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
if (value.NeedsPhi()) {
// Visit the predecessor Phi placeholder if it's not visited yet.
if (!visited.IsBitSet(PhiPlaceholderIndex(value))) {
visited.SetBit(PhiPlaceholderIndex(value));
work_queue.push_back(value.GetPhiPlaceholder());
}
} else if (!value.Equals(Value::Default())) {
return false; // Report failure.
}
}
if (block->IsLoopHeader()) {
// For back-edges we need to check all locations that write to the same array,
// even those that LSA declares non-aliasing, such as `a[i]` and `a[i + 1]`
// as they may actually refer to the same locations for different iterations.
for (size_t i = 0; i != num_heap_locations; ++i) {
if (i == idx ||
heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo() !=
heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo()) {
continue;
}
for (HBasicBlock* predecessor : block->GetPredecessors()) {
// Check if there were any writes to this location.
// Note: We could simply process the values but due to the vector operation
// carve-out (see `IsDefaultOrPhiAllowedForLoad()`), a vector load can cause
// the value to change and not be equal to default. To work around this and
// allow replacing the non-vector load of loop-invariant default values
// anyway, skip over paths that do not have any writes.
ValueRecord record = heap_values_for_[predecessor->GetBlockId()][i];
while (record.stored_by.NeedsLoopPhi() &&
blocks[record.stored_by.GetPhiPlaceholder().GetBlockId()]->IsLoopHeader()) {
HLoopInformation* loop_info =
blocks[record.stored_by.GetPhiPlaceholder().GetBlockId()]->GetLoopInformation();
record = heap_values_for_[loop_info->GetPreHeader()->GetBlockId()][i];
}
Value value = ReplacementOrValue(record.value);
if (value.NeedsPhi()) {
// Visit the predecessor Phi placeholder if it's not visited yet.
if (!visited.IsBitSet(PhiPlaceholderIndex(value))) {
visited.SetBit(PhiPlaceholderIndex(value));
work_queue.push_back(value.GetPhiPlaceholder());
}
} else if (!value.Equals(Value::Default())) {
return false; // Report failure.
}
}
}
}
}
// Record replacement and report success.
HInstruction* replacement = GetDefaultValue(type);
for (uint32_t phi_placeholder_index : visited.Indexes()) {
DCHECK(phi_placeholder_replacements_[phi_placeholder_index].IsInvalid());
phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement);
}
phi_placeholders_to_materialize->Subtract(&visited);
return true;
}
bool LSEVisitor::TryReplacingLoopPhiPlaceholderWithSingleInput(
PhiPlaceholder phi_placeholder,
/*inout*/ ArenaBitVector* phi_placeholders_to_materialize) {
// Use local allocator to reduce peak memory usage.
ScopedArenaAllocator allocator(allocator_.GetArenaStack());
ArenaBitVector visited(&allocator,
/*start_bits=*/ num_phi_placeholders_,
/*expandable=*/ false,
kArenaAllocLSE);
visited.ClearAllBits();
ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE));
// Use depth first search to check if any non-Phi input is unknown.
HInstruction* replacement = nullptr;
const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
visited.SetBit(PhiPlaceholderIndex(phi_placeholder));
work_queue.push_back(phi_placeholder);
while (!work_queue.empty()) {
PhiPlaceholder current_phi_placeholder = work_queue.back();
work_queue.pop_back();
HBasicBlock* current_block = blocks[current_phi_placeholder.GetBlockId()];
DCHECK_GE(current_block->GetPredecessors().size(), 2u);
size_t idx = current_phi_placeholder.GetHeapLocation();
for (HBasicBlock* predecessor : current_block->GetPredecessors()) {
Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
if (value.NeedsPhi()) {
// Visit the predecessor Phi placeholder if it's not visited yet.
if (!visited.IsBitSet(PhiPlaceholderIndex(value))) {
visited.SetBit(PhiPlaceholderIndex(value));
work_queue.push_back(value.GetPhiPlaceholder());
}
} else {
if (!value.IsInstruction() ||
(replacement != nullptr && replacement != value.GetInstruction())) {
return false; // Report failure.
}
replacement = value.GetInstruction();
}
}
// While `TryReplacingLoopPhiPlaceholderWithDefault()` has special treatment
// for back-edges, it is not needed here. When looking for a single input
// instruction coming from before the loop, the array index must also be
// defined before the loop and the aliasing analysis done by LSA is sufficient.
// Any writes of a different value with an index that is not loop invariant
// would invalidate the heap location in `VisitSetLocation()`.
}
// Record replacement and report success.
DCHECK(replacement != nullptr);
for (uint32_t phi_placeholder_index : visited.Indexes()) {
DCHECK(phi_placeholder_replacements_[phi_placeholder_index].IsInvalid());
phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement);
}
phi_placeholders_to_materialize->Subtract(&visited);
return true;
}
std::optional<LSEVisitor::PhiPlaceholder> LSEVisitor::FindLoopPhisToMaterialize(
PhiPlaceholder phi_placeholder,
/*inout*/ ArenaBitVector* phi_placeholders_to_materialize,
DataType::Type type,
bool can_use_default_or_phi) {
DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid());
// Use local allocator to reduce peak memory usage.
ScopedArenaAllocator allocator(allocator_.GetArenaStack());
ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE));
// Use depth first search to check if any non-Phi input is unknown.
const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
phi_placeholders_to_materialize->ClearAllBits();
phi_placeholders_to_materialize->SetBit(PhiPlaceholderIndex(phi_placeholder));
work_queue.push_back(phi_placeholder);
while (!work_queue.empty()) {
PhiPlaceholder current_phi_placeholder = work_queue.back();
work_queue.pop_back();
if (!phi_placeholders_to_materialize->IsBitSet(PhiPlaceholderIndex(current_phi_placeholder))) {
// Replaced by `TryReplacingLoopPhiPlaceholderWith{Default,SingleInput}()`.
DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)].Equals(
Value::Default()));
continue;
}
HBasicBlock* current_block = blocks[current_phi_placeholder.GetBlockId()];
DCHECK_GE(current_block->GetPredecessors().size(), 2u);
size_t idx = current_phi_placeholder.GetHeapLocation();
if (current_block->IsLoopHeader()) {
// If the index is defined inside the loop, it may reference different elements of the
// array on each iteration. Since we do not track if all elements of an array are set
// to the same value explicitly, the only known value in pre-header can be the default
// value from NewArray or a Phi placeholder depending on a default value from some outer
// loop pre-header. This Phi placeholder can be replaced only by the default value.
HInstruction* index = heap_location_collector_.GetHeapLocation(idx)->GetIndex();
if (index != nullptr && current_block->GetLoopInformation()->Contains(*index->GetBlock())) {
if (can_use_default_or_phi &&
TryReplacingLoopPhiPlaceholderWithDefault(current_phi_placeholder,
type,
phi_placeholders_to_materialize)) {
continue;
} else {
return current_phi_placeholder; // Report the loop Phi placeholder.
}
}
// A similar situation arises with the index defined outside the loop if we cannot use
// default values or Phis, i.e. for vector loads, as we can only replace the Phi
// placeholder with a single instruction defined before the loop.
if (!can_use_default_or_phi) {
DCHECK(index != nullptr); // Vector operations are array operations.
if (TryReplacingLoopPhiPlaceholderWithSingleInput(current_phi_placeholder,
phi_placeholders_to_materialize)) {
continue;
} else {
return current_phi_placeholder; // Report the loop Phi placeholder.
}
}
}
for (HBasicBlock* predecessor : current_block->GetPredecessors()) {
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[predecessor->GetBlockId()];
Value value = ReplacementOrValue(heap_values[idx].value);
if (value.IsUnknown()) {
// We cannot create a Phi for this loop Phi placeholder.
return current_phi_placeholder; // Report the loop Phi placeholder.
}
// For arrays, the location may have been clobbered by writes to other locations
// in a loop that LSA does not consider aliasing, such as `a[i]` and `a[i + 1]`.
if (current_block->IsLoopHeader() &&
predecessor != current_block->GetLoopInformation()->GetPreHeader() &&
heap_location_collector_.GetHeapLocation(idx)->GetIndex() != nullptr) {
for (size_t i = 0, size = heap_values.size(); i != size; ++i) {
if (i != idx &&
!heap_values[i].stored_by.IsUnknown() &&
MayAliasOnBackEdge(current_block, idx, i)) {
// We cannot create a Phi for this loop Phi placeholder.
return current_phi_placeholder;
}
}
}
if (value.NeedsLoopPhi()) {
// Visit the predecessor Phi placeholder if it's not visited yet.
if (!phi_placeholders_to_materialize->IsBitSet(PhiPlaceholderIndex(value))) {
phi_placeholders_to_materialize->SetBit(PhiPlaceholderIndex(value));
work_queue.push_back(value.GetPhiPlaceholder());
LSE_VLOG << "For materialization of " << phi_placeholder
<< " we need to materialize " << value;
}
}
}
}
// There are no unknown values feeding this Phi, so we can construct the Phis if needed.
return std::nullopt;
}
bool LSEVisitor::MaterializeLoopPhis(const ScopedArenaVector<size_t>& phi_placeholder_indexes,
DataType::Type type) {
return MaterializeLoopPhis(ArrayRef<const size_t>(phi_placeholder_indexes), type);
}
bool LSEVisitor::MaterializeLoopPhis(ArrayRef<const size_t> phi_placeholder_indexes,
DataType::Type type) {
// Materialize all predecessors that do not need a loop Phi and determine if all inputs
// other than loop Phis are the same.
const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
std::optional<Value> other_value = std::nullopt;
for (size_t phi_placeholder_index : phi_placeholder_indexes) {
PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index);
HBasicBlock* block = blocks[phi_placeholder.GetBlockId()];
DCHECK_GE(block->GetPredecessors().size(), 2u);
size_t idx = phi_placeholder.GetHeapLocation();
for (HBasicBlock* predecessor : block->GetPredecessors()) {
Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
if (value.NeedsNonLoopPhi()) {
DCHECK(current_phase_ == Phase::kLoadElimination ||
current_phase_ == Phase::kPartialElimination)
<< current_phase_;
MaterializeNonLoopPhis(value.GetPhiPlaceholder(), type);
value = Replacement(value);
}
if (!value.NeedsLoopPhi()) {
if (!other_value) {
// The first other value we found.
other_value = value;
} else if (!other_value->IsInvalid()) {
// Check if the current `value` differs from the previous `other_value`.
if (!value.Equals(*other_value)) {
other_value = Value::Invalid();
}
}
}
}
}
DCHECK(other_value.has_value());
if (!other_value->IsInvalid()) {
HInstruction* replacement =
(other_value->IsDefault()) ? GetDefaultValue(type) : other_value->GetInstruction();
for (size_t phi_placeholder_index : phi_placeholder_indexes) {
phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement);
}
return true;
}
// If we're materializing only a single Phi, try to match it with an existing Phi.
// (Matching multiple Phis would need investigation. It may be prohibitively slow.)
// This also covers the case when after replacing a previous set of Phi placeholders,
// we continue with a Phi placeholder that does not really need a loop Phi anymore.
if (phi_placeholder_indexes.size() == 1u) {
PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_indexes[0]);
size_t idx = phi_placeholder.GetHeapLocation();
HBasicBlock* block = GetGraph()->GetBlocks()[phi_placeholder.GetBlockId()];
ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors());
for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
HInstruction* phi = phi_it.Current();
DCHECK_EQ(phi->InputCount(), predecessors.size());
ArrayRef<HUserRecord<HInstruction*>> phi_inputs = phi->GetInputRecords();
auto cmp = [=](const HUserRecord<HInstruction*>& lhs, HBasicBlock* rhs) {
Value value = ReplacementOrValue(heap_values_for_[rhs->GetBlockId()][idx].value);
if (value.NeedsPhi()) {
DCHECK(value.GetPhiPlaceholder() == phi_placeholder);
return lhs.GetInstruction() == phi;
} else {
DCHECK(value.IsDefault() || value.IsInstruction());
return value.Equals(lhs.GetInstruction());
}
};
if (std::equal(phi_inputs.begin(), phi_inputs.end(), predecessors.begin(), cmp)) {
phi_placeholder_replacements_[phi_placeholder_indexes[0]] = Value::ForInstruction(phi);
return true;
}
}
}
if (current_phase_ == Phase::kStoreElimination) {
// We're not creating Phis during the final store elimination phase.
return false;
}
// There are different inputs to the Phi chain. Create the Phis.
ArenaAllocator* allocator = GetGraph()->GetAllocator();
for (size_t phi_placeholder_index : phi_placeholder_indexes) {
PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index);
HBasicBlock* block = blocks[phi_placeholder.GetBlockId()];
CHECK_GE(block->GetPredecessors().size(), 2u);
phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(
new (allocator) HPhi(allocator, kNoRegNumber, block->GetPredecessors().size(), type));
}
// Fill the Phi inputs.
for (size_t phi_placeholder_index : phi_placeholder_indexes) {
PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index);
HBasicBlock* block = blocks[phi_placeholder.GetBlockId()];
size_t idx = phi_placeholder.GetHeapLocation();
HInstruction* phi = phi_placeholder_replacements_[phi_placeholder_index].GetInstruction();
DCHECK(DataType::IsTypeConversionImplicit(type, phi->GetType()))
<< "type=" << type << " vs phi-type=" << phi->GetType();
for (size_t i = 0, size = block->GetPredecessors().size(); i != size; ++i) {
HBasicBlock* predecessor = block->GetPredecessors()[i];
Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
HInstruction* input = value.IsDefault() ? GetDefaultValue(type) : value.GetInstruction();
DCHECK_NE(input->GetType(), DataType::Type::kVoid);
phi->SetRawInputAt(i, input);
DCHECK(DataType::IsTypeConversionImplicit(input->GetType(), phi->GetType()))
<< " input: " << input->GetType() << value << " phi: " << phi->GetType()
<< " request: " << type;
}
}
// Add the Phis to their blocks.
for (size_t phi_placeholder_index : phi_placeholder_indexes) {
PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index);
HBasicBlock* block = blocks[phi_placeholder.GetBlockId()];
block->AddPhi(phi_placeholder_replacements_[phi_placeholder_index].GetInstruction()->AsPhi());
}
if (type == DataType::Type::kReference) {
ScopedArenaAllocator local_allocator(allocator_.GetArenaStack());
ScopedArenaVector<HInstruction*> phis(local_allocator.Adapter(kArenaAllocLSE));
for (size_t phi_placeholder_index : phi_placeholder_indexes) {
phis.push_back(phi_placeholder_replacements_[phi_placeholder_index].GetInstruction());
}
// Update reference type information. Pass invalid handles, these are not used for Phis.
ReferenceTypePropagation rtp_fixup(GetGraph(),
Handle<mirror::DexCache>(),
/* is_first_run= */ false);
rtp_fixup.Visit(ArrayRef<HInstruction* const>(phis));
}
return true;
}
bool LSEVisitor::MaterializeLoopPhis(const ArenaBitVector& phi_placeholders_to_materialize,
DataType::Type type) {
// Use local allocator to reduce peak memory usage.
ScopedArenaAllocator allocator(allocator_.GetArenaStack());
// We want to recognize when a subset of these loop Phis that do not need other
// loop Phis, i.e. a transitive closure, has only one other instruction as an input,
// i.e. that instruction can be used instead of each Phi in the set. See for example
// Main.testLoop{5,6,7,8}() in the test 530-checker-lse. To do that, we shall
// materialize these loop Phis from the smallest transitive closure.
// Construct a matrix of loop phi placeholder dependencies. To reduce the memory usage,
// assign new indexes to the Phi placeholders, making the matrix dense.
ScopedArenaVector<size_t> matrix_indexes(num_phi_placeholders_,
static_cast<size_t>(-1), // Invalid.
allocator.Adapter(kArenaAllocLSE));
ScopedArenaVector<size_t> phi_placeholder_indexes(allocator.Adapter(kArenaAllocLSE));
size_t num_phi_placeholders = phi_placeholders_to_materialize.NumSetBits();
phi_placeholder_indexes.reserve(num_phi_placeholders);
for (uint32_t marker_index : phi_placeholders_to_materialize.Indexes()) {
matrix_indexes[marker_index] = phi_placeholder_indexes.size();
phi_placeholder_indexes.push_back(marker_index);
}
const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
ScopedArenaVector<ArenaBitVector*> dependencies(allocator.Adapter(kArenaAllocLSE));
dependencies.reserve(num_phi_placeholders);
for (size_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) {
static constexpr bool kExpandable = false;
dependencies.push_back(
ArenaBitVector::Create(&allocator, num_phi_placeholders, kExpandable, kArenaAllocLSE));
ArenaBitVector* current_dependencies = dependencies.back();
current_dependencies->ClearAllBits();
current_dependencies->SetBit(matrix_index); // Count the Phi placeholder as its own dependency.
PhiPlaceholder current_phi_placeholder =
GetPhiPlaceholderAt(phi_placeholder_indexes[matrix_index]);
HBasicBlock* current_block = blocks[current_phi_placeholder.GetBlockId()];
DCHECK_GE(current_block->GetPredecessors().size(), 2u);
size_t idx = current_phi_placeholder.GetHeapLocation();
for (HBasicBlock* predecessor : current_block->GetPredecessors()) {
Value pred_value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
if (pred_value.NeedsLoopPhi()) {
size_t pred_value_index = PhiPlaceholderIndex(pred_value);
DCHECK(phi_placeholder_replacements_[pred_value_index].IsInvalid());
DCHECK_NE(matrix_indexes[pred_value_index], static_cast<size_t>(-1));
current_dependencies->SetBit(matrix_indexes[PhiPlaceholderIndex(pred_value)]);
}
}
}
// Use the Floyd-Warshall algorithm to determine all transitive dependencies.
for (size_t k = 0; k != num_phi_placeholders; ++k) {
for (size_t i = 0; i != num_phi_placeholders; ++i) {
for (size_t j = 0; j != num_phi_placeholders; ++j) {
if (dependencies[i]->IsBitSet(k) && dependencies[k]->IsBitSet(j)) {
dependencies[i]->SetBit(j);
}
}
}
}
// Count the number of transitive dependencies for each replaceable Phi placeholder.
ScopedArenaVector<size_t> num_dependencies(allocator.Adapter(kArenaAllocLSE));
num_dependencies.reserve(num_phi_placeholders);
for (size_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) {
num_dependencies.push_back(dependencies[matrix_index]->NumSetBits());
}
// Pick a Phi placeholder with the smallest number of transitive dependencies and
// materialize it and its dependencies. Repeat until we have materialized all.
ScopedArenaVector<size_t> current_subset(allocator.Adapter(kArenaAllocLSE));
current_subset.reserve(num_phi_placeholders);
size_t remaining_phi_placeholders = num_phi_placeholders;
while (remaining_phi_placeholders != 0u) {
auto it = std::min_element(num_dependencies.begin(), num_dependencies.end());
DCHECK_LE(*it, remaining_phi_placeholders);
size_t current_matrix_index = std::distance(num_dependencies.begin(), it);
ArenaBitVector* current_dependencies = dependencies[current_matrix_index];
size_t current_num_dependencies = num_dependencies[current_matrix_index];
current_subset.clear();
for (uint32_t matrix_index : current_dependencies->Indexes()) {
current_subset.push_back(phi_placeholder_indexes[matrix_index]);
}
if (!MaterializeLoopPhis(current_subset, type)) {
DCHECK_EQ(current_phase_, Phase::kStoreElimination);
// This is the final store elimination phase and we shall not be able to eliminate any
// stores that depend on the current subset, so mark these Phi placeholders unreplaceable.
for (uint32_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) {
if (dependencies[matrix_index]->IsBitSet(current_matrix_index)) {
DCHECK(phi_placeholder_replacements_[phi_placeholder_indexes[matrix_index]].IsInvalid());
phi_placeholder_replacements_[phi_placeholder_indexes[matrix_index]] =
Value::PureUnknown();
}
}
return false;
}
for (uint32_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) {
if (current_dependencies->IsBitSet(matrix_index)) {
// Mark all dependencies as done by incrementing their `num_dependencies[.]`,
// so that they shall never be the minimum again.
num_dependencies[matrix_index] = num_phi_placeholders;
} else if (dependencies[matrix_index]->IsBitSet(current_matrix_index)) {
// Remove dependencies from other Phi placeholders.
dependencies[matrix_index]->Subtract(current_dependencies);
num_dependencies[matrix_index] -= current_num_dependencies;
}
}
remaining_phi_placeholders -= current_num_dependencies;
}
return true;
}
bool LSEVisitor::FullyMaterializePhi(PhiPlaceholder phi_placeholder, DataType::Type type) {
ScopedArenaAllocator saa(GetGraph()->GetArenaStack());
ArenaBitVector abv(&saa, num_phi_placeholders_, false, ArenaAllocKind::kArenaAllocLSE);
auto res =
FindLoopPhisToMaterialize(phi_placeholder, &abv, type, /* can_use_default_or_phi=*/true);
CHECK(!res.has_value()) << *res;
return MaterializeLoopPhis(abv, type);
}
std::optional<LSEVisitor::PhiPlaceholder> LSEVisitor::TryToMaterializeLoopPhis(
PhiPlaceholder phi_placeholder, HInstruction* load) {
DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid());
// Use local allocator to reduce peak memory usage.
ScopedArenaAllocator allocator(allocator_.GetArenaStack());
// Find Phi placeholders to materialize.
ArenaBitVector phi_placeholders_to_materialize(
&allocator, num_phi_placeholders_, /*expandable=*/ false, kArenaAllocLSE);
phi_placeholders_to_materialize.ClearAllBits();
DataType::Type type = load->GetType();
bool can_use_default_or_phi = IsDefaultOrPhiAllowedForLoad(load);
std::optional<PhiPlaceholder> loop_phi_with_unknown_input = FindLoopPhisToMaterialize(
phi_placeholder, &phi_placeholders_to_materialize, type, can_use_default_or_phi);
if (loop_phi_with_unknown_input) {
DCHECK_GE(GetGraph()
->GetBlocks()[loop_phi_with_unknown_input->GetBlockId()]
->GetPredecessors()
.size(),
2u);
return loop_phi_with_unknown_input; // Return failure.
}
DCHECK_EQ(current_phase_, Phase::kLoadElimination);
bool success = MaterializeLoopPhis(phi_placeholders_to_materialize, type);
DCHECK(success);
// Report success.
return std::nullopt;
}
// Re-process loads and stores in successors from the `loop_phi_with_unknown_input`. This may
// find one or more loads from `loads_requiring_loop_phi_` which cannot be replaced by Phis and
// propagate the load(s) as the new value(s) to successors; this may uncover new elimination
// opportunities. If we find no such load, we shall at least propagate an unknown value to some
// heap location that is needed by another loop Phi placeholder.
void LSEVisitor::ProcessLoopPhiWithUnknownInput(PhiPlaceholder loop_phi_with_unknown_input) {
size_t loop_phi_with_unknown_input_index = PhiPlaceholderIndex(loop_phi_with_unknown_input);
DCHECK(phi_placeholder_replacements_[loop_phi_with_unknown_input_index].IsInvalid());
phi_placeholder_replacements_[loop_phi_with_unknown_input_index] =
Value::MergedUnknown(loop_phi_with_unknown_input);
uint32_t block_id = loop_phi_with_unknown_input.GetBlockId();
const ArenaVector<HBasicBlock*> reverse_post_order = GetGraph()->GetReversePostOrder();
size_t reverse_post_order_index = 0;
size_t reverse_post_order_size = reverse_post_order.size();
size_t loads_and_stores_index = 0u;
size_t loads_and_stores_size = loads_and_stores_.size();
// Skip blocks and instructions before the block containing the loop phi with unknown input.
DCHECK_NE(reverse_post_order_index, reverse_post_order_size);
while (reverse_post_order[reverse_post_order_index]->GetBlockId() != block_id) {
HBasicBlock* block = reverse_post_order[reverse_post_order_index];
while (loads_and_stores_index != loads_and_stores_size &&
loads_and_stores_[loads_and_stores_index].load_or_store->GetBlock() == block) {
++loads_and_stores_index;
}
++reverse_post_order_index;
DCHECK_NE(reverse_post_order_index, reverse_post_order_size);
}
// Use local allocator to reduce peak memory usage.
ScopedArenaAllocator allocator(allocator_.GetArenaStack());
// Reuse one temporary vector for all remaining blocks.
size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations();
ScopedArenaVector<Value> local_heap_values(allocator.Adapter(kArenaAllocLSE));
auto get_initial_value = [this](HBasicBlock* block, size_t idx) {
Value value;
if (block->IsLoopHeader()) {
if (block->GetLoopInformation()->IsIrreducible()) {
PhiPlaceholder placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
value = Value::MergedUnknown(placeholder);
} else {
value = PrepareLoopValue(block, idx);
}
} else {
value = MergePredecessorValues(block, idx);
}
DCHECK(value.IsUnknown() || ReplacementOrValue(value).Equals(value));
return value;
};
// Process remaining blocks and instructions.
bool found_unreplaceable_load = false;
bool replaced_heap_value_with_unknown = false;
for (; reverse_post_order_index != reverse_post_order_size; ++reverse_post_order_index) {
HBasicBlock* block = reverse_post_order[reverse_post_order_index];
if (block->IsExitBlock()) {
continue;
}
// We shall reconstruct only the heap values that we need for processing loads and stores.
local_heap_values.clear();
local_heap_values.resize(num_heap_locations, Value::Invalid());
for (; loads_and_stores_index != loads_and_stores_size; ++loads_and_stores_index) {
HInstruction* load_or_store = loads_and_stores_[loads_and_stores_index].load_or_store;
size_t idx = loads_and_stores_[loads_and_stores_index].heap_location_index;
if (load_or_store->GetBlock() != block) {
break; // End of instructions from the current block.
}
bool is_store = load_or_store->GetSideEffects().DoesAnyWrite();
DCHECK_EQ(is_store, IsStore(load_or_store));
HInstruction* stored_value = nullptr;
if (is_store) {
auto it = store_records_.find(load_or_store);
DCHECK(it != store_records_.end());
stored_value = it->second.stored_value;
}
auto it = loads_requiring_loop_phi_.find(
stored_value != nullptr ? stored_value : load_or_store);
if (it == loads_requiring_loop_phi_.end()) {
continue; // This load or store never needed a loop Phi.
}
ValueRecord& record = it->second;
if (is_store) {
// Process the store by updating `local_heap_values[idx]`. The last update shall
// be propagated to the `heap_values[idx].value` if it previously needed a loop Phi
// at the end of the block.
Value replacement = ReplacementOrValue(record.value);
if (replacement.NeedsLoopPhi()) {
// No replacement yet, use the Phi placeholder from the load.
DCHECK(record.value.NeedsLoopPhi());
local_heap_values[idx] = record.value;
} else {
// If the load fetched a known value, use it, otherwise use the load.
local_heap_values[idx] = Value::ForInstruction(
replacement.IsUnknown() ? stored_value : replacement.GetInstruction());
}
} else {
// Process the load unless it has previously been marked unreplaceable.
if (record.value.NeedsLoopPhi()) {
if (local_heap_values[idx].IsInvalid()) {
local_heap_values[idx] = get_initial_value(block, idx);
}
if (local_heap_values[idx].IsUnknown()) {
// This load cannot be replaced. Keep stores that feed the Phi placeholder
// (no aliasing since then, otherwise the Phi placeholder would not have been
// propagated as a value to this load) and store the load as the new heap value.
found_unreplaceable_load = true;
KeepStores(record.value);
record.value = Value::MergedUnknown(record.value.GetPhiPlaceholder());
local_heap_values[idx] = Value::ForInstruction(load_or_store);
} else if (local_heap_values[idx].NeedsLoopPhi()) {
// The load may still be replaced with a Phi later.
DCHECK(local_heap_values[idx].Equals(record.value));
} else {
// This load can be eliminated but we may need to construct non-loop Phis.
if (local_heap_values[idx].NeedsNonLoopPhi()) {
MaterializeNonLoopPhis(local_heap_values[idx].GetPhiPlaceholder(),
load_or_store->GetType());
local_heap_values[idx] = Replacement(local_heap_values[idx]);
}
record.value = local_heap_values[idx];
HInstruction* heap_value = local_heap_values[idx].GetInstruction();
AddRemovedLoad(load_or_store, heap_value);
}
}
}
}
// All heap values that previously needed a loop Phi at the end of the block
// need to be updated for processing successors.
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
for (size_t idx = 0; idx != num_heap_locations; ++idx) {
if (heap_values[idx].value.NeedsLoopPhi()) {
if (local_heap_values[idx].IsValid()) {
heap_values[idx].value = local_heap_values[idx];
} else {
heap_values[idx].value = get_initial_value(block, idx);
}
if (heap_values[idx].value.IsUnknown()) {
replaced_heap_value_with_unknown = true;
}
}
}
}
DCHECK(found_unreplaceable_load || replaced_heap_value_with_unknown);
}
void LSEVisitor::ProcessLoadsRequiringLoopPhis() {
// Note: The vector operations carve-out (see `IsDefaultOrPhiAllowedForLoad()`) can possibly
// make the result of the processing depend on the order in which we process these loads.
// To make sure the result is deterministic, iterate over `loads_and_stores_` instead of the
// `loads_requiring_loop_phi_` indexed by non-deterministic pointers.
for (const LoadStoreRecord& load_store_record : loads_and_stores_) {
auto it = loads_requiring_loop_phi_.find(load_store_record.load_or_store);
if (it == loads_requiring_loop_phi_.end()) {
continue;
}
HInstruction* load = it->first;
ValueRecord& record = it->second;
while (record.value.NeedsLoopPhi() &&
phi_placeholder_replacements_[PhiPlaceholderIndex(record.value)].IsInvalid()) {
std::optional<PhiPlaceholder> loop_phi_with_unknown_input =
TryToMaterializeLoopPhis(record.value.GetPhiPlaceholder(), load);
DCHECK_EQ(loop_phi_with_unknown_input.has_value(),
phi_placeholder_replacements_[PhiPlaceholderIndex(record.value)].IsInvalid());
if (loop_phi_with_unknown_input) {
DCHECK_GE(GetGraph()
->GetBlocks()[loop_phi_with_unknown_input->GetBlockId()]
->GetPredecessors()
.size(),
2u);
ProcessLoopPhiWithUnknownInput(*loop_phi_with_unknown_input);
}
}
// The load could have been marked as unreplaceable (and stores marked for keeping)
// or marked for replacement with an instruction in ProcessLoopPhiWithUnknownInput().
DCHECK(record.value.IsUnknown() || record.value.IsInstruction() || record.value.NeedsLoopPhi());
if (record.value.NeedsLoopPhi()) {
record.value = Replacement(record.value);
HInstruction* heap_value = record.value.GetInstruction();
AddRemovedLoad(load, heap_value);
}
}
}
void LSEVisitor::SearchPhiPlaceholdersForKeptStores() {
ScopedArenaVector<uint32_t> work_queue(allocator_.Adapter(kArenaAllocLSE));
size_t start_size = phi_placeholders_to_search_for_kept_stores_.NumSetBits();
work_queue.reserve(((start_size * 3u) + 1u) / 2u); // Reserve 1.5x start size, rounded up.
for (uint32_t index : phi_placeholders_to_search_for_kept_stores_.Indexes()) {
work_queue.push_back(index);
}
const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
std::optional<ArenaBitVector> not_kept_stores;
if (stats_) {
not_kept_stores.emplace(GetGraph()->GetAllocator(),
kept_stores_.GetBitSizeOf(),
false,
ArenaAllocKind::kArenaAllocLSE);
}
while (!work_queue.empty()) {
uint32_t cur_phi_idx = work_queue.back();
PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(cur_phi_idx);
// Only writes to partial-escapes need to be specifically kept.
bool is_partial_kept_merged_unknown =
kept_merged_unknowns_.IsBitSet(cur_phi_idx) &&
heap_location_collector_.GetHeapLocation(phi_placeholder.GetHeapLocation())
->GetReferenceInfo()
->IsPartialSingleton();
work_queue.pop_back();
size_t idx = phi_placeholder.GetHeapLocation();
HBasicBlock* block = blocks[phi_placeholder.GetBlockId()];
DCHECK(block != nullptr) << cur_phi_idx << " phi: " << phi_placeholder
<< " (blocks: " << blocks.size() << ")";
for (HBasicBlock* predecessor : block->GetPredecessors()) {
ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[predecessor->GetBlockId()];
// For loop back-edges we must also preserve all stores to locations that
// may alias with the location `idx`.
// TODO: Add tests cases around this.
bool is_back_edge =
block->IsLoopHeader() && predecessor != block->GetLoopInformation()->GetPreHeader();
size_t start = is_back_edge ? 0u : idx;
size_t end = is_back_edge ? heap_values.size() : idx + 1u;
for (size_t i = start; i != end; ++i) {
Value stored_by = heap_values[i].stored_by;
if (!stored_by.IsUnknown() && (i == idx || MayAliasOnBackEdge(block, idx, i))) {
if (stored_by.NeedsPhi()) {
size_t phi_placeholder_index = PhiPlaceholderIndex(stored_by);
if (is_partial_kept_merged_unknown) {
// Propagate merged-unknown keep since otherwise this might look
// like a partial escape we can remove.
kept_merged_unknowns_.SetBit(phi_placeholder_index);
}
if (!phi_placeholders_to_search_for_kept_stores_.IsBitSet(phi_placeholder_index)) {
phi_placeholders_to_search_for_kept_stores_.SetBit(phi_placeholder_index);
work_queue.push_back(phi_placeholder_index);
}
} else {
DCHECK(IsStore(stored_by.GetInstruction()));
ReferenceInfo* ri = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
DCHECK(ri != nullptr) << "No heap value for " << stored_by.GetInstruction()->DebugName()
<< " id: " << stored_by.GetInstruction()->GetId() << " block: "
<< stored_by.GetInstruction()->GetBlock()->GetBlockId();
if (!is_partial_kept_merged_unknown && IsPartialNoEscape(predecessor, idx)) {
if (not_kept_stores) {
not_kept_stores->SetBit(stored_by.GetInstruction()->GetId());
}
} else {
kept_stores_.SetBit(stored_by.GetInstruction()->GetId());
}
}
}
}
}
}
if (not_kept_stores) {
// a - b := (a & ~b)
not_kept_stores->Subtract(&kept_stores_);
auto num_removed = not_kept_stores->NumSetBits();
MaybeRecordStat(stats_, MethodCompilationStat::kPartialStoreRemoved, num_removed);
}
}
void LSEVisitor::UpdateValueRecordForStoreElimination(/*inout*/ValueRecord* value_record) {
while (value_record->stored_by.IsInstruction() &&
!kept_stores_.IsBitSet(value_record->stored_by.GetInstruction()->GetId())) {
auto it = store_records_.find(value_record->stored_by.GetInstruction());
DCHECK(it != store_records_.end());
*value_record = it->second.old_value_record;
}
if (value_record->stored_by.NeedsPhi() &&
!phi_placeholders_to_search_for_kept_stores_.IsBitSet(
PhiPlaceholderIndex(value_record->stored_by))) {
// Some stores feeding this heap location may have been eliminated. Use the `stored_by`
// Phi placeholder to recalculate the actual value.
value_record->value = value_record->stored_by;
}
value_record->value = ReplacementOrValue(value_record->value);
if (value_record->value.NeedsNonLoopPhi()) {
// Treat all Phi placeholders as requiring loop Phis at this point.
// We do not want MaterializeLoopPhis() to call MaterializeNonLoopPhis().
value_record->value = Value::ForLoopPhiPlaceholder(value_record->value.GetPhiPlaceholder());
}
}
void LSEVisitor::FindOldValueForPhiPlaceholder(PhiPlaceholder phi_placeholder,
DataType::Type type) {
DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid());
// Use local allocator to reduce peak memory usage.
ScopedArenaAllocator allocator(allocator_.GetArenaStack());
ArenaBitVector visited(&allocator,
/*start_bits=*/ num_phi_placeholders_,
/*expandable=*/ false,
kArenaAllocLSE);
visited.ClearAllBits();
// Find Phi placeholders to try and match against existing Phis or other replacement values.
ArenaBitVector phi_placeholders_to_materialize(
&allocator, num_phi_placeholders_, /*expandable=*/ false, kArenaAllocLSE);
phi_placeholders_to_materialize.ClearAllBits();
std::optional<PhiPlaceholder> loop_phi_with_unknown_input = FindLoopPhisToMaterialize(
phi_placeholder, &phi_placeholders_to_materialize, type, /*can_use_default_or_phi=*/true);
if (loop_phi_with_unknown_input) {
DCHECK_GE(GetGraph()
->GetBlocks()[loop_phi_with_unknown_input->GetBlockId()]
->GetPredecessors()
.size(),
2u);
// Mark the unreplacable placeholder as well as the input Phi placeholder as unreplaceable.
phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)] = Value::PureUnknown();
phi_placeholder_replacements_[PhiPlaceholderIndex(*loop_phi_with_unknown_input)] =
Value::PureUnknown();
return;
}
DCHECK_EQ(current_phase_, Phase::kStoreElimination);
bool success = MaterializeLoopPhis(phi_placeholders_to_materialize, type);
DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsValid());
DCHECK_EQ(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsUnknown(),
!success);
}
struct ScopedRestoreHeapValues {
public:
ScopedRestoreHeapValues(ArenaStack* alloc,
size_t num_heap_locs,
ScopedArenaVector<ScopedArenaVector<LSEVisitor::ValueRecord>>& to_restore)
: alloc_(alloc),
updated_values_(alloc_.Adapter(kArenaAllocLSE)),
to_restore_(to_restore) {
updated_values_.reserve(num_heap_locs * to_restore_.size());
}
~ScopedRestoreHeapValues() {
for (const auto& rec : updated_values_) {
to_restore_[rec.blk_id][rec.heap_loc].value = rec.val_;
}
}
template<typename Func>
void ForEachRecord(Func func) {
for (size_t blk_id : Range(to_restore_.size())) {
for (size_t heap_loc : Range(to_restore_[blk_id].size())) {
LSEVisitor::ValueRecord* vr = &to_restore_[blk_id][heap_loc];
LSEVisitor::Value initial = vr->value;
func(vr);
if (!vr->value.ExactEquals(initial)) {
updated_values_.push_back({blk_id, heap_loc, initial});
}
}
}
}
private:
struct UpdateRecord {
size_t blk_id;
size_t heap_loc;
LSEVisitor::Value val_;
};
ScopedArenaAllocator alloc_;
ScopedArenaVector<UpdateRecord> updated_values_;
ScopedArenaVector<ScopedArenaVector<LSEVisitor::ValueRecord>>& to_restore_;
DISALLOW_COPY_AND_ASSIGN(ScopedRestoreHeapValues);
};
void LSEVisitor::FindStoresWritingOldValues() {
// Partial LSE relies on knowing the real heap-values not the
// store-replacement versions so we need to restore the map after removing
// stores.
ScopedRestoreHeapValues heap_vals(allocator_.GetArenaStack(),
heap_location_collector_.GetNumberOfHeapLocations(),
heap_values_for_);
// The Phi placeholder replacements have so far been used for eliminating loads,
// tracking values that would be stored if all stores were kept. As we want to
// compare actual old values after removing unmarked stores, prune the Phi
// placeholder replacements that can be fed by values we may not actually store.
// Replacements marked as unknown can be kept as they are fed by some unknown
// value and would end up as unknown again if we recalculated them.
for (size_t i = 0, size = phi_placeholder_replacements_.size(); i != size; ++i) {
if (!phi_placeholder_replacements_[i].IsUnknown() &&
!phi_placeholders_to_search_for_kept_stores_.IsBitSet(i)) {
phi_placeholder_replacements_[i] = Value::Invalid();
}
}
// Update heap values at end of blocks.
heap_vals.ForEachRecord([&](ValueRecord* rec) {
UpdateValueRecordForStoreElimination(rec);
});
if (kIsDebugBuild) {
heap_vals.ForEachRecord([](ValueRecord* rec) {
DCHECK(!rec->value.NeedsNonLoopPhi()) << rec->value;
});
}
// Use local allocator to reduce peak memory usage.
ScopedArenaAllocator allocator(allocator_.GetArenaStack());
// Mark the stores we want to eliminate in a separate bit vector.
ArenaBitVector eliminated_stores(&allocator,
/*start_bits=*/ GetGraph()->GetCurrentInstructionId(),
/*expandable=*/ false,
kArenaAllocLSE);
eliminated_stores.ClearAllBits();
for (auto& entry : store_records_) {
HInstruction* store = entry.first;
StoreRecord& store_record = entry.second;
if (!kept_stores_.IsBitSet(store->GetId())) {
continue; // Ignore stores that are not kept.
}
UpdateValueRecordForStoreElimination(&store_record.old_value_record);
if (store_record.old_value_record.value.NeedsPhi()) {
DataType::Type type = store_record.stored_value->GetType();
FindOldValueForPhiPlaceholder(store_record.old_value_record.value.GetPhiPlaceholder(), type);
store_record.old_value_record.value = ReplacementOrValue(store_record.old_value_record.value);
}
DCHECK(!store_record.old_value_record.value.NeedsPhi());
HInstruction* stored_value = FindSubstitute(store_record.stored_value);
if (store_record.old_value_record.value.Equals(stored_value)) {
eliminated_stores.SetBit(store->GetId());
}
}
// Commit the stores to eliminate by removing them from `kept_stores_`.
kept_stores_.Subtract(&eliminated_stores);
}
void LSEVisitor::Run() {
// 1. Process blocks and instructions in reverse post order.
for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
VisitBasicBlock(block);
}
// 2. Process loads that require loop Phis, trying to find/create replacements.
current_phase_ = Phase::kLoadElimination;
ProcessLoadsRequiringLoopPhis();
// 3. Determine which stores to keep and which to eliminate.
current_phase_ = Phase::kStoreElimination;
// Finish marking stores for keeping.
SearchPhiPlaceholdersForKeptStores();
// Find stores that write the same value as is already present in the location.
FindStoresWritingOldValues();
// 4. Replace loads and remove unnecessary stores and singleton allocations.
FinishFullLSE();
// 5. Move partial escapes down and fixup with PHIs.
current_phase_ = Phase::kPartialElimination;
MovePartialEscapes();
}
// Clear unknown loop-phi results. Here we'll be able to use partial-unknowns so we need to
// retry all of them with more information about where they come from.
void LSEVisitor::PrepareForPartialPhiComputation() {
std::replace_if(
phi_placeholder_replacements_.begin(),
phi_placeholder_replacements_.end(),
[](const Value& val) { return !val.IsDefault() && !val.IsInstruction(); },
Value::Invalid());
}
class PartialLoadStoreEliminationHelper {
public:
PartialLoadStoreEliminationHelper(LSEVisitor* lse, ScopedArenaAllocator* alloc)
: lse_(lse),
alloc_(alloc),
new_ref_phis_(alloc_->Adapter(kArenaAllocLSE)),
heap_refs_(alloc_->Adapter(kArenaAllocLSE)),
max_preds_per_block_((*std::max_element(GetGraph()->GetActiveBlocks().begin(),
GetGraph()->GetActiveBlocks().end(),
[](HBasicBlock* a, HBasicBlock* b) {
return a->GetNumberOfPredecessors() <
b->GetNumberOfPredecessors();
}))
->GetNumberOfPredecessors()),
materialization_blocks_(GetGraph()->GetBlocks().size() * max_preds_per_block_,
nullptr,
alloc_->Adapter(kArenaAllocLSE)),
first_materialization_block_id_(GetGraph()->GetBlocks().size()) {
size_t num_partial_singletons = lse_->heap_location_collector_.CountPartialSingletons();
heap_refs_.reserve(num_partial_singletons);
new_ref_phis_.reserve(num_partial_singletons * GetGraph()->GetBlocks().size());
CollectInterestingHeapRefs();
}
~PartialLoadStoreEliminationHelper() {
if (heap_refs_.empty()) {
return;
}
ReferenceTypePropagation rtp_fixup(GetGraph(),
Handle<mirror::DexCache>(),
/* is_first_run= */ false);
rtp_fixup.Visit(ArrayRef<HInstruction* const>(new_ref_phis_));
GetGraph()->ClearLoopInformation();
GetGraph()->ClearDominanceInformation();
GetGraph()->ClearReachabilityInformation();
GetGraph()->BuildDominatorTree();
GetGraph()->ComputeReachabilityInformation();
}
class IdxToHeapLoc {
public:
explicit IdxToHeapLoc(const HeapLocationCollector* hlc) : collector_(hlc) {}
HeapLocation* operator()(size_t idx) const {
return collector_->GetHeapLocation(idx);
}
private:
const HeapLocationCollector* collector_;
};
class HeapReferenceData {
public:
using LocIterator = IterationRange<TransformIterator<BitVector::IndexIterator, IdxToHeapLoc>>;
HeapReferenceData(PartialLoadStoreEliminationHelper* helper,
HNewInstance* new_inst,
const ExecutionSubgraph* subgraph,
ScopedArenaAllocator* alloc)
: new_instance_(new_inst),
helper_(helper),
heap_locs_(alloc,
helper->lse_->heap_location_collector_.GetNumberOfHeapLocations(),
/* expandable= */ false,
kArenaAllocLSE),
materializations_(
// We generally won't need to create too many materialization blocks and we can expand
// this as needed so just start off with 2x.
2 * helper->lse_->GetGraph()->GetBlocks().size(),
nullptr,
alloc->Adapter(kArenaAllocLSE)),
collector_(helper->lse_->heap_location_collector_),
subgraph_(subgraph) {}
LocIterator IterateLocations() {
auto idxs = heap_locs_.Indexes();
return MakeTransformRange(idxs, IdxToHeapLoc(&collector_));
}
void AddHeapLocation(size_t idx) {
heap_locs_.SetBit(idx);
}
const ExecutionSubgraph* GetNoEscapeSubgraph() const {
return subgraph_;
}
bool IsPostEscape(HBasicBlock* blk) {
return std::any_of(
subgraph_->GetExcludedCohorts().cbegin(),
subgraph_->GetExcludedCohorts().cend(),
[&](const ExecutionSubgraph::ExcludedCohort& ec) { return ec.PrecedesBlock(blk); });
}
bool InEscapeCohort(HBasicBlock* blk) {
return std::any_of(
subgraph_->GetExcludedCohorts().cbegin(),
subgraph_->GetExcludedCohorts().cend(),
[&](const ExecutionSubgraph::ExcludedCohort& ec) { return ec.ContainsBlock(blk); });
}
bool BeforeAllEscapes(HBasicBlock* b) {
return std::none_of(subgraph_->GetExcludedCohorts().cbegin(),
subgraph_->GetExcludedCohorts().cend(),
[&](const ExecutionSubgraph::ExcludedCohort& ec) {
return ec.PrecedesBlock(b) || ec.ContainsBlock(b);
});
}
HNewInstance* OriginalNewInstance() const {
return new_instance_;
}
// Collect and replace all uses. We need to perform this twice since we will
// generate PHIs and additional uses as we create the default-values for
// pred-gets. These values might be other references that are also being
// partially eliminated. By running just the replacement part again we are
// able to avoid having to keep another whole in-progress partial map
// around. Since we will have already handled all the other uses in the
// first pass the second one will be quite fast.
void FixupUses(bool first_pass) {
ScopedArenaAllocator saa(GetGraph()->GetArenaStack());
// Replace uses with materialized values.
ScopedArenaVector<InstructionUse<HInstruction>> to_replace(saa.Adapter(kArenaAllocLSE));
ScopedArenaVector<HInstruction*> to_remove(saa.Adapter(kArenaAllocLSE));
// Do we need to add a constructor-fence.
ScopedArenaVector<InstructionUse<HConstructorFence>> constructor_fences(
saa.Adapter(kArenaAllocLSE));
ScopedArenaVector<InstructionUse<HInstruction>> to_predicate(saa.Adapter(kArenaAllocLSE));
CollectReplacements(to_replace, to_remove, constructor_fences, to_predicate);
if (!first_pass) {
// If another partial creates new references they can only be in Phis or pred-get defaults
// so they must be in the to_replace group.
DCHECK(to_predicate.empty());
DCHECK(constructor_fences.empty());
DCHECK(to_remove.empty());
}
ReplaceInput(to_replace);
RemoveAndReplaceInputs(to_remove);
CreateConstructorFences(constructor_fences);
PredicateInstructions(to_predicate);
CHECK(OriginalNewInstance()->GetUses().empty())
<< OriginalNewInstance()->GetUses() << ", " << OriginalNewInstance()->GetEnvUses();
}
void AddMaterialization(HBasicBlock* blk, HInstruction* ins) {
if (blk->GetBlockId() >= materializations_.size()) {
// Make sure the materialization array is large enough, try to avoid
// re-sizing too many times by giving extra space.
materializations_.resize(blk->GetBlockId() * 2, nullptr);
}
DCHECK(materializations_[blk->GetBlockId()] == nullptr)
<< "Already have a materialization in block " << blk->GetBlockId() << ": "
<< *materializations_[blk->GetBlockId()] << " when trying to set materialization to "
<< *ins;
materializations_[blk->GetBlockId()] = ins;
LSE_VLOG << "In block " << blk->GetBlockId() << " materialization is " << *ins;
helper_->NotifyNewMaterialization(ins);
}
bool HasMaterialization(HBasicBlock* blk) const {
return blk->GetBlockId() < materializations_.size() &&
materializations_[blk->GetBlockId()] != nullptr;
}
HInstruction* GetMaterialization(HBasicBlock* blk) const {
if (materializations_.size() <= blk->GetBlockId() ||
materializations_[blk->GetBlockId()] == nullptr) {
// This must be a materialization block added after the partial LSE of
// the current reference finished. Since every edge can only have at
// most one materialization block added to it we can just check the
// blocks predecessor.
DCHECK(helper_->IsMaterializationBlock(blk));
blk = helper_->FindDominatingNonMaterializationBlock(blk);
DCHECK(!helper_->IsMaterializationBlock(blk));
}
DCHECK_GT(materializations_.size(), blk->GetBlockId());
DCHECK(materializations_[blk->GetBlockId()] != nullptr);
return materializations_[blk->GetBlockId()];
}
void GenerateMaterializationValueFromPredecessors(HBasicBlock* blk) {
DCHECK(std::none_of(GetNoEscapeSubgraph()->GetExcludedCohorts().begin(),
GetNoEscapeSubgraph()->GetExcludedCohorts().end(),
[&](const ExecutionSubgraph::ExcludedCohort& cohort) {
return cohort.IsEntryBlock(blk);
}));
DCHECK(!HasMaterialization(blk));
if (blk->IsExitBlock()) {
return;
} else if (blk->IsLoopHeader()) {
// See comment in execution_subgraph.h. Currently we act as though every
// allocation for partial elimination takes place in the entry block.
// This simplifies the analysis by making it so any escape cohort
// expands to contain any loops it is a part of. This is something that
// we should rectify at some point. In either case however we can still
// special case the loop-header since (1) currently the loop can't have
// any merges between different cohort entries since the pre-header will
// be the earliest place entry can happen and (2) even if the analysis
// is improved to consider lifetime of the object WRT loops any values
// which would require loop-phis would have to make the whole loop
// escape anyway.
// This all means we can always use value from the pre-header when the
// block is the loop-header and we didn't already create a
// materialization block. (NB when we do improve the analysis we will
// need to modify the materialization creation code to deal with this
// correctly.)
HInstruction* pre_header_val =
GetMaterialization(blk->GetLoopInformation()->GetPreHeader());
AddMaterialization(blk, pre_header_val);
return;
}
ScopedArenaAllocator saa(GetGraph()->GetArenaStack());
ScopedArenaVector<HInstruction*> pred_vals(saa.Adapter(kArenaAllocLSE));
pred_vals.reserve(blk->GetNumberOfPredecessors());
for (HBasicBlock* pred : blk->GetPredecessors()) {
DCHECK(HasMaterialization(pred));
pred_vals.push_back(GetMaterialization(pred));
}
GenerateMaterializationValueFromPredecessorsDirect(blk, pred_vals);
}
void GenerateMaterializationValueFromPredecessorsForEntry(
HBasicBlock* entry, const ScopedArenaVector<HInstruction*>& pred_vals) {
DCHECK(std::any_of(GetNoEscapeSubgraph()->GetExcludedCohorts().begin(),
GetNoEscapeSubgraph()->GetExcludedCohorts().end(),
[&](const ExecutionSubgraph::ExcludedCohort& cohort) {
return cohort.IsEntryBlock(entry);
}));
GenerateMaterializationValueFromPredecessorsDirect(entry, pred_vals);
}
private:
template <typename InstructionType>
struct InstructionUse {
InstructionType* instruction_;
size_t index_;
};
void ReplaceInput(const ScopedArenaVector<InstructionUse<HInstruction>>& to_replace) {
for (auto& [ins, idx] : to_replace) {
HInstruction* merged_inst = GetMaterialization(ins->GetBlock());
if (ins->IsPhi() && merged_inst->IsPhi() && ins->GetBlock() == merged_inst->GetBlock()) {
// Phis we just pass through the appropriate inputs.
ins->ReplaceInput(merged_inst->InputAt(idx), idx);
} else {
ins->ReplaceInput(merged_inst, idx);
}
}
}
void RemoveAndReplaceInputs(const ScopedArenaVector<HInstruction*>& to_remove) {
for (HInstruction* ins : to_remove) {
if (ins->GetBlock() == nullptr) {
// Already dealt with.
continue;
}
DCHECK(BeforeAllEscapes(ins->GetBlock())) << *ins;
if (ins->IsInstanceFieldGet() || ins->IsInstanceFieldSet()) {
bool instruction_has_users =
ins->IsInstanceFieldGet() && (!ins->GetUses().empty() || !ins->GetEnvUses().empty());
if (instruction_has_users) {
// Make sure any remaining users of read are replaced.
HInstruction* replacement =
helper_->lse_->GetPartialValueAt(OriginalNewInstance(), ins);
// NB ReplaceInput will remove a use from the list so this is
// guaranteed to finish eventually.
while (!ins->GetUses().empty()) {
const HUseListNode<HInstruction*>& use = ins->GetUses().front();
use.GetUser()->ReplaceInput(replacement, use.GetIndex());
}
while (!ins->GetEnvUses().empty()) {
const HUseListNode<HEnvironment*>& use = ins->GetEnvUses().front();
use.GetUser()->ReplaceInput(replacement, use.GetIndex());
}
} else {
DCHECK(ins->GetUses().empty())
<< "Instruction has users!\n"
<< ins->DumpWithArgs() << "\nUsers are " << ins->GetUses();
DCHECK(ins->GetEnvUses().empty())
<< "Instruction has users!\n"
<< ins->DumpWithArgs() << "\nUsers are " << ins->GetEnvUses();
}
ins->GetBlock()->RemoveInstruction(ins);
} else {
// Can only be obj == other, obj != other, obj == obj (!?) or, obj != obj (!?)
// Since PHIs are escapes as far as LSE is concerned and we are before
// any escapes these are the only 4 options.
DCHECK(ins->IsEqual() || ins->IsNotEqual()) << *ins;
HInstruction* replacement;
if (UNLIKELY(ins->InputAt(0) == ins->InputAt(1))) {
replacement = ins->IsEqual() ? GetGraph()->GetIntConstant(1)
: GetGraph()->GetIntConstant(0);
} else {
replacement = ins->IsEqual() ? GetGraph()->GetIntConstant(0)
: GetGraph()->GetIntConstant(1);
}
ins->ReplaceWith(replacement);
ins->GetBlock()->RemoveInstruction(ins);
}
}
}
void CreateConstructorFences(
const ScopedArenaVector<InstructionUse<HConstructorFence>>& constructor_fences) {
if (!constructor_fences.empty()) {
uint32_t pc = constructor_fences.front().instruction_->GetDexPc();
for (auto& [cf, idx] : constructor_fences) {
if (cf->GetInputs().size() == 1) {
cf->GetBlock()->RemoveInstruction(cf);
} else {
cf->RemoveInputAt(idx);
}
}
for (const ExecutionSubgraph::ExcludedCohort& ec :
GetNoEscapeSubgraph()->GetExcludedCohorts()) {
for (HBasicBlock* blk : ec.EntryBlocks()) {
for (HBasicBlock* materializer :
Filter(MakeIterationRange(blk->GetPredecessors()),
[&](HBasicBlock* blk) { return helper_->IsMaterializationBlock(blk); })) {
HInstruction* new_cf = new (GetGraph()->GetAllocator()) HConstructorFence(
GetMaterialization(materializer), pc, GetGraph()->GetAllocator());
materializer->InsertInstructionBefore(new_cf, materializer->GetLastInstruction());
}
}
}
}
}
void PredicateInstructions(
const ScopedArenaVector<InstructionUse<HInstruction>>& to_predicate) {
for (auto& [ins, idx] : to_predicate) {
if (UNLIKELY(ins->GetBlock() == nullptr)) {
// Already handled due to obj == obj;
continue;
} else if (ins->IsInstanceFieldGet()) {
// IFieldGet[obj] => PredicatedIFieldGet[PartialValue, obj]
HInstruction* new_fget = new (GetGraph()->GetAllocator()) HPredicatedInstanceFieldGet(
ins->AsInstanceFieldGet(),
GetMaterialization(ins->GetBlock()),
helper_->lse_->GetPartialValueAt(OriginalNewInstance(), ins));
MaybeRecordStat(helper_->lse_->stats_, MethodCompilationStat::kPredicatedLoadAdded);
ins->GetBlock()->InsertInstructionBefore(new_fget, ins);
if (ins->GetType() == DataType::Type::kReference) {
// Reference info is the same
new_fget->SetReferenceTypeInfo(ins->GetReferenceTypeInfo());
}
// In this phase, substitute instructions are used only for the predicated get
// default values which are used only if the partial singleton did not escape,
// so the out value of the `new_fget` for the relevant cases is the same as
// the default value.
// TODO: Use the default value for materializing default values used by
// other predicated loads to avoid some unnecessary Phis. (This shall
// complicate the search for replacement in `ReplacementOrValue()`.)
DCHECK(helper_->lse_->substitute_instructions_for_loads_[ins->GetId()] == nullptr);
helper_->lse_->substitute_instructions_for_loads_[ins->GetId()] = new_fget;
ins->ReplaceWith(new_fget);
ins->ReplaceEnvUsesDominatedBy(ins, new_fget);
CHECK(ins->GetEnvUses().empty() && ins->GetUses().empty())
<< "Instruction: " << *ins << " uses: " << ins->GetUses()
<< ", env: " << ins->GetEnvUses();
ins->GetBlock()->RemoveInstruction(ins);
} else if (ins->IsInstanceFieldSet()) {
// Any predicated sets shouldn't require movement.
ins->AsInstanceFieldSet()->SetIsPredicatedSet();
MaybeRecordStat(helper_->lse_->stats_, MethodCompilationStat::kPredicatedStoreAdded);
HInstruction* merged_inst = GetMaterialization(ins->GetBlock());
ins->ReplaceInput(merged_inst, idx);
} else {
// comparisons need to be split into 2.
DCHECK(ins->IsEqual() || ins->IsNotEqual()) << "bad instruction " << *ins;
bool this_is_first = idx == 0;
if (ins->InputAt(0) == ins->InputAt(1)) {
// This is a obj == obj or obj != obj.
// No idea why anyone would do this but whatever.
ins->ReplaceWith(GetGraph()->GetIntConstant(ins->IsEqual() ? 1 : 0));
ins->GetBlock()->RemoveInstruction(ins);
continue;
} else {
HInstruction* is_escaped = new (GetGraph()->GetAllocator())
HNotEqual(GetMaterialization(ins->GetBlock()), GetGraph()->GetNullConstant());
HInstruction* combine_inst =
ins->IsEqual() ? static_cast<HInstruction*>(new (GetGraph()->GetAllocator()) HAnd(
DataType::Type::kBool, is_escaped, ins))
: static_cast<HInstruction*>(new (GetGraph()->GetAllocator()) HOr(
DataType::Type::kBool, is_escaped, ins));
ins->ReplaceInput(GetMaterialization(ins->GetBlock()), this_is_first ? 0 : 1);
ins->GetBlock()->InsertInstructionBefore(is_escaped, ins);
ins->GetBlock()->InsertInstructionAfter(combine_inst, ins);
ins->ReplaceWith(combine_inst);
combine_inst->ReplaceInput(ins, 1);
}
}
}
}
// Figure out all the instructions we need to
// fixup/replace/remove/duplicate. Since this requires an iteration of an
// intrusive linked list we want to do it only once and collect all the data
// here.
void CollectReplacements(
ScopedArenaVector<InstructionUse<HInstruction>>& to_replace,
ScopedArenaVector<HInstruction*>& to_remove,
ScopedArenaVector<InstructionUse<HConstructorFence>>& constructor_fences,
ScopedArenaVector<InstructionUse<HInstruction>>& to_predicate) {
size_t size = new_instance_->GetUses().SizeSlow();
to_replace.reserve(size);
to_remove.reserve(size);
constructor_fences.reserve(size);
to_predicate.reserve(size);
for (auto& use : new_instance_->GetUses()) {
HBasicBlock* blk =
helper_->FindDominatingNonMaterializationBlock(use.GetUser()->GetBlock());
if (InEscapeCohort(blk)) {
LSE_VLOG << "Replacing " << *new_instance_ << " use in " << *use.GetUser() << " with "
<< *GetMaterialization(blk);
to_replace.push_back({use.GetUser(), use.GetIndex()});
} else if (IsPostEscape(blk)) {
LSE_VLOG << "User " << *use.GetUser() << " after escapes!";
// The fields + cmp are normal uses. Phi can only be here if it was
// generated by full LSE so whatever store+load that created the phi
// is the escape.
if (use.GetUser()->IsPhi()) {
to_replace.push_back({use.GetUser(), use.GetIndex()});
} else {
DCHECK(use.GetUser()->IsFieldAccess() ||
use.GetUser()->IsEqual() ||
use.GetUser()->IsNotEqual())
<< *use.GetUser() << "@" << use.GetIndex();
to_predicate.push_back({use.GetUser(), use.GetIndex()});
}
} else if (use.GetUser()->IsConstructorFence()) {
LSE_VLOG << "User " << *use.GetUser() << " being moved to materialization!";
constructor_fences.push_back({use.GetUser()->AsConstructorFence(), use.GetIndex()});
} else {
LSE_VLOG << "User " << *use.GetUser() << " not contained in cohort!";
to_remove.push_back(use.GetUser());
}
}
DCHECK_EQ(
to_replace.size() + to_remove.size() + constructor_fences.size() + to_predicate.size(),
size);
}
void GenerateMaterializationValueFromPredecessorsDirect(
HBasicBlock* blk, const ScopedArenaVector<HInstruction*>& pred_vals) {
DCHECK(!pred_vals.empty());
bool all_equal = std::all_of(pred_vals.begin() + 1, pred_vals.end(), [&](HInstruction* val) {
return val == pred_vals.front();
});
if (LIKELY(all_equal)) {
AddMaterialization(blk, pred_vals.front());
} else {
// Make a PHI for the predecessors.
HPhi* phi = new (GetGraph()->GetAllocator()) HPhi(
GetGraph()->GetAllocator(), kNoRegNumber, pred_vals.size(), DataType::Type::kReference);
for (const auto& [ins, off] : ZipCount(MakeIterationRange(pred_vals))) {
phi->SetRawInputAt(off, ins);
}
blk->AddPhi(phi);
AddMaterialization(blk, phi);
}
}
HGraph* GetGraph() const {
return helper_->GetGraph();
}
HNewInstance* new_instance_;
PartialLoadStoreEliminationHelper* helper_;
ArenaBitVector heap_locs_;
ScopedArenaVector<HInstruction*> materializations_;
const HeapLocationCollector& collector_;
const ExecutionSubgraph* subgraph_;
};
ArrayRef<HeapReferenceData> GetHeapRefs() {
return ArrayRef<HeapReferenceData>(heap_refs_);
}
bool IsMaterializationBlock(HBasicBlock* blk) const {
return blk->GetBlockId() >= first_materialization_block_id_;
}
HBasicBlock* GetOrCreateMaterializationBlock(HBasicBlock* entry, size_t pred_num) {
size_t idx = GetMaterializationBlockIndex(entry, pred_num);
HBasicBlock* blk = materialization_blocks_[idx];
if (blk == nullptr) {
blk = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph());
GetGraph()->AddBlock(blk);
LSE_VLOG << "creating materialization block " << blk->GetBlockId() << " on edge "
<< entry->GetPredecessors()[pred_num]->GetBlockId() << "->" << entry->GetBlockId();
blk->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
materialization_blocks_[idx] = blk;
}
return blk;
}
HBasicBlock* GetMaterializationBlock(HBasicBlock* entry, size_t pred_num) {
HBasicBlock* out = materialization_blocks_[GetMaterializationBlockIndex(entry, pred_num)];
DCHECK(out != nullptr) << "No materialization block for edge " << entry->GetBlockId() << "->"
<< entry->GetPredecessors()[pred_num]->GetBlockId();
return out;
}
IterationRange<ArenaVector<HBasicBlock*>::const_iterator> IterateMaterializationBlocks() {
return MakeIterationRange(GetGraph()->GetBlocks().begin() + first_materialization_block_id_,
GetGraph()->GetBlocks().end());
}
void FixupPartialObjectUsers() {
for (PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data : GetHeapRefs()) {
// Use the materialized instances to replace original instance
ref_data.FixupUses(/*first_pass=*/true);
CHECK(ref_data.OriginalNewInstance()->GetUses().empty())
<< ref_data.OriginalNewInstance()->GetUses() << ", "
<< ref_data.OriginalNewInstance()->GetEnvUses();
}
// This can cause new uses to be created due to the creation of phis/pred-get defaults
for (PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data : GetHeapRefs()) {
// Only need to handle new phis/pred-get defaults. DCHECK that's all we find.
ref_data.FixupUses(/*first_pass=*/false);
CHECK(ref_data.OriginalNewInstance()->GetUses().empty())
<< ref_data.OriginalNewInstance()->GetUses() << ", "
<< ref_data.OriginalNewInstance()->GetEnvUses();
}
}
// Finds the first block which either is or dominates the given block which is
// not a materialization block
HBasicBlock* FindDominatingNonMaterializationBlock(HBasicBlock* blk) {
if (LIKELY(!IsMaterializationBlock(blk))) {
// Not a materialization block so itself.
return blk;
} else if (blk->GetNumberOfPredecessors() != 0) {
// We're far enough along that the materialization blocks have been
// inserted into the graph so no need to go searching.
return blk->GetSinglePredecessor();
}
// Search through the materialization blocks to find where it will be
// inserted.
for (auto [mat, idx] : ZipCount(MakeIterationRange(materialization_blocks_))) {
if (mat == blk) {
size_t cur_pred_idx = idx % max_preds_per_block_;
HBasicBlock* entry = GetGraph()->GetBlocks()[idx / max_preds_per_block_];
return entry->GetPredecessors()[cur_pred_idx];
}
}
LOG(FATAL) << "Unable to find materialization block position for " << blk->GetBlockId() << "!";
return nullptr;
}
void InsertMaterializationBlocks() {
for (auto [mat, idx] : ZipCount(MakeIterationRange(materialization_blocks_))) {
if (mat == nullptr) {
continue;
}
size_t cur_pred_idx = idx % max_preds_per_block_;
HBasicBlock* entry = GetGraph()->GetBlocks()[idx / max_preds_per_block_];
HBasicBlock* pred = entry->GetPredecessors()[cur_pred_idx];
mat->InsertBetween(pred, entry);
LSE_VLOG << "Adding materialization block " << mat->GetBlockId() << " on edge "
<< pred->GetBlockId() << "->" << entry->GetBlockId();
}
}
// Replace any env-uses remaining of the partial singletons with the
// appropriate phis and remove the instructions.
void RemoveReplacedInstructions() {
for (HeapReferenceData& ref_data : GetHeapRefs()) {
CHECK(ref_data.OriginalNewInstance()->GetUses().empty())
<< ref_data.OriginalNewInstance()->GetUses() << ", "
<< ref_data.OriginalNewInstance()->GetEnvUses()
<< " inst is: " << ref_data.OriginalNewInstance();
const auto& env_uses = ref_data.OriginalNewInstance()->GetEnvUses();
while (!env_uses.empty()) {
const HUseListNode<HEnvironment*>& use = env_uses.front();
HInstruction* merged_inst =
ref_data.GetMaterialization(use.GetUser()->GetHolder()->GetBlock());
LSE_VLOG << "Replacing env use of " << *use.GetUser()->GetHolder() << "@" << use.GetIndex()
<< " with " << *merged_inst;
use.GetUser()->ReplaceInput(merged_inst, use.GetIndex());
}
ref_data.OriginalNewInstance()->GetBlock()->RemoveInstruction(ref_data.OriginalNewInstance());
}
}
// We need to make sure any allocations dominate their environment uses.
// Technically we could probably remove the env-uses and be fine but this is easy.
void ReorderMaterializationsForEnvDominance() {
for (HBasicBlock* blk : IterateMaterializationBlocks()) {
ScopedArenaAllocator alloc(alloc_->GetArenaStack());
ArenaBitVector still_unsorted(
&alloc, GetGraph()->GetCurrentInstructionId(), false, kArenaAllocLSE);
// This is guaranteed to be very short (since we will abandon LSE if there
// are >= kMaxNumberOfHeapLocations (32) heap locations so that is the
// absolute maximum size this list can be) so doing a selection sort is
// fine. This avoids the need to do a complicated recursive check to
// ensure transitivity for std::sort.
ScopedArenaVector<HNewInstance*> materializations(alloc.Adapter(kArenaAllocLSE));
materializations.reserve(GetHeapRefs().size());
for (HInstruction* ins :
MakeSTLInstructionIteratorRange(HInstructionIterator(blk->GetInstructions()))) {
if (ins->IsNewInstance()) {
materializations.push_back(ins->AsNewInstance());
still_unsorted.SetBit(ins->GetId());
}
}
using Iter = ScopedArenaVector<HNewInstance*>::iterator;
Iter unsorted_start = materializations.begin();
Iter unsorted_end = materializations.end();
// selection sort. Required since the only check we can easily perform a
// is-before-all-unsorted check.
while (unsorted_start != unsorted_end) {
bool found_instruction = false;
for (Iter candidate = unsorted_start; candidate != unsorted_end; ++candidate) {
HNewInstance* ni = *candidate;
if (std::none_of(ni->GetAllEnvironments().cbegin(),
ni->GetAllEnvironments().cend(),
[&](const HEnvironment* env) {
return std::any_of(
env->GetEnvInputs().cbegin(),
env->GetEnvInputs().cend(),
[&](const HInstruction* env_element) {
return env_element != nullptr &&
still_unsorted.IsBitSet(env_element->GetId());
});
})) {
still_unsorted.ClearBit(ni->GetId());
std::swap(*unsorted_start, *candidate);
++unsorted_start;
found_instruction = true;
break;
}
}
CHECK(found_instruction) << "Unable to select next materialization instruction."
<< " Environments have a dependency loop!";
}
// Reverse so we as we prepend them we end up with the correct order.
auto reverse_iter = MakeIterationRange(materializations.rbegin(), materializations.rend());
for (HNewInstance* ins : reverse_iter) {
if (blk->GetFirstInstruction() != ins) {
// Don't do checks since that makes sure the move is safe WRT
// ins->CanBeMoved which for NewInstance is false.
ins->MoveBefore(blk->GetFirstInstruction(), /*do_checks=*/false);
}
}
}
}
private:
void CollectInterestingHeapRefs() {
// Get all the partials we need to move around.
for (size_t i = 0; i < lse_->heap_location_collector_.GetNumberOfHeapLocations(); ++i) {
ReferenceInfo* ri = lse_->heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
if (ri->IsPartialSingleton() &&
ri->GetReference()->GetBlock() != nullptr &&
ri->GetNoEscapeSubgraph()->ContainsBlock(ri->GetReference()->GetBlock())) {
RecordHeapRefField(ri->GetReference()->AsNewInstance(), i);
}
}
}
void RecordHeapRefField(HNewInstance* ni, size_t loc) {
DCHECK(ni != nullptr);
// This is likely to be very short so just do a linear search.
auto it = std::find_if(heap_refs_.begin(), heap_refs_.end(), [&](HeapReferenceData& data) {
return data.OriginalNewInstance() == ni;
});
HeapReferenceData& cur_ref =
(it == heap_refs_.end())
? heap_refs_.emplace_back(this,
ni,
lse_->heap_location_collector_.GetHeapLocation(loc)
->GetReferenceInfo()
->GetNoEscapeSubgraph(),
alloc_)
: *it;
cur_ref.AddHeapLocation(loc);
}
void NotifyNewMaterialization(HInstruction* ins) {
if (ins->IsPhi()) {
new_ref_phis_.push_back(ins->AsPhi());
}
}
size_t GetMaterializationBlockIndex(HBasicBlock* blk, size_t pred_num) const {
DCHECK_LT(blk->GetBlockId(), first_materialization_block_id_)
<< "block is a materialization block!";
DCHECK_LT(pred_num, max_preds_per_block_);
return blk->GetBlockId() * max_preds_per_block_ + pred_num;
}
HGraph* GetGraph() const {
return lse_->GetGraph();
}
LSEVisitor* lse_;
ScopedArenaAllocator* alloc_;
ScopedArenaVector<HInstruction*> new_ref_phis_;
ScopedArenaVector<HeapReferenceData> heap_refs_;
size_t max_preds_per_block_;
// An array of (# of non-materialization blocks) * max_preds_per_block
// arranged in block-id major order. Since we can only have at most one
// materialization block on each edge this is the maximum possible number of
// materialization blocks.
ScopedArenaVector<HBasicBlock*> materialization_blocks_;
size_t first_materialization_block_id_;
friend void LSEVisitor::MovePartialEscapes();
};
// Work around c++ type checking annoyances with not being able to forward-declare inner types.
class HeapRefHolder
: public std::reference_wrapper<PartialLoadStoreEliminationHelper::HeapReferenceData> {};
HInstruction* LSEVisitor::SetupPartialMaterialization(PartialLoadStoreEliminationHelper& helper,
HeapRefHolder&& holder,
size_t pred_idx,
HBasicBlock* entry) {
PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data = holder.get();
HBasicBlock* old_pred = entry->GetPredecessors()[pred_idx];
HInstruction* new_inst = ref_data.OriginalNewInstance();
if (UNLIKELY(!new_inst->GetBlock()->Dominates(entry))) {
LSE_VLOG << "Initial materialization in non-dominating block " << entry->GetBlockId()
<< " is null!";
return GetGraph()->GetNullConstant();
}
HBasicBlock* bb = helper.GetOrCreateMaterializationBlock(entry, pred_idx);
CHECK(bb != nullptr) << "entry " << entry->GetBlockId() << " -> " << old_pred->GetBlockId();
HNewInstance* repl_create = new_inst->Clone(GetGraph()->GetAllocator())->AsNewInstance();
repl_create->SetPartialMaterialization();
bb->InsertInstructionBefore(repl_create, bb->GetLastInstruction());
repl_create->CopyEnvironmentFrom(new_inst->GetEnvironment());
MaybeRecordStat(stats_, MethodCompilationStat::kPartialAllocationMoved);
LSE_VLOG << "In blk " << bb->GetBlockId() << " initial materialization is " << *repl_create;
ref_data.AddMaterialization(bb, repl_create);
const FieldInfo* info = nullptr;
for (const HeapLocation* loc : ref_data.IterateLocations()) {
size_t loc_off = heap_location_collector_.GetHeapLocationIndex(loc);
info = field_infos_[loc_off];
DCHECK(loc->GetIndex() == nullptr);
Value value = ReplacementOrValue(heap_values_for_[old_pred->GetBlockId()][loc_off].value);
if (value.NeedsLoopPhi() || value.IsMergedUnknown()) {
Value repl = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())];
DCHECK(repl.IsDefault() || repl.IsInvalid() || repl.IsInstruction())
<< repl << " from " << value << " pred is " << old_pred->GetBlockId();
if (!repl.IsInvalid()) {
value = repl;
} else {
FullyMaterializePhi(value.GetPhiPlaceholder(), info->GetFieldType());
value = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())];
}
} else if (value.NeedsNonLoopPhi()) {
Value repl = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())];
DCHECK(repl.IsDefault() || repl.IsInvalid() || repl.IsInstruction())
<< repl << " from " << value << " pred is " << old_pred->GetBlockId();
if (!repl.IsInvalid()) {
value = repl;
} else {
MaterializeNonLoopPhis(value.GetPhiPlaceholder(), info->GetFieldType());
value = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())];
}
}
DCHECK(value.IsDefault() || value.IsInstruction())
<< GetGraph()->PrettyMethod() << ": " << value;
if (!value.IsDefault() &&
// shadow$_klass_ doesn't need to be manually initialized.
MemberOffset(loc->GetOffset()) != mirror::Object::ClassOffset()) {
CHECK(info != nullptr);
HInstruction* set_value =
new (GetGraph()->GetAllocator()) HInstanceFieldSet(repl_create,
value.GetInstruction(),
field_infos_[loc_off]->GetField(),
loc->GetType(),
MemberOffset(loc->GetOffset()),
false,
field_infos_[loc_off]->GetFieldIndex(),
loc->GetDeclaringClassDefIndex(),
field_infos_[loc_off]->GetDexFile(),
0u);
bb->InsertInstructionAfter(set_value, repl_create);
LSE_VLOG << "Adding " << *set_value << " for materialization setup!";
}
}
return repl_create;
}
HInstruction* LSEVisitor::GetPartialValueAt(HNewInstance* orig_new_inst, HInstruction* read) {
size_t loc = heap_location_collector_.GetFieldHeapLocation(orig_new_inst, &read->GetFieldInfo());
Value pred = ReplacementOrValue(intermediate_values_.find(read)->second);
LSE_VLOG << "using " << pred << " as default value for " << *read;
if (pred.IsInstruction()) {
return pred.GetInstruction();
} else if (pred.IsMergedUnknown() || pred.NeedsPhi()) {
FullyMaterializePhi(pred.GetPhiPlaceholder(),
heap_location_collector_.GetHeapLocation(loc)->GetType());
HInstruction* res = Replacement(pred).GetInstruction();
LSE_VLOG << pred << " materialized to " << res->DumpWithArgs();
return res;
} else if (pred.IsDefault()) {
HInstruction* res = GetDefaultValue(read->GetType());
LSE_VLOG << pred << " materialized to " << res->DumpWithArgs();
return res;
}
LOG(FATAL) << "Unable to find unescaped value at " << read->DumpWithArgs()
<< "! This should be impossible! Value is " << pred;
UNREACHABLE();
}
void LSEVisitor::MovePartialEscapes() {
if (!ShouldPerformPartialLSE()) {
return;
}
ScopedArenaAllocator saa(allocator_.GetArenaStack());
PartialLoadStoreEliminationHelper helper(this, &saa);
// Since for PHIs we now will have more information (since we know the object
// hasn't escaped) we need to clear the old phi-replacements where we weren't
// able to find the value.
PrepareForPartialPhiComputation();
for (PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data : helper.GetHeapRefs()) {
LSE_VLOG << "Creating materializations for " << *ref_data.OriginalNewInstance();
// Setup entry and exit blocks.
for (const auto& excluded_cohort : ref_data.GetNoEscapeSubgraph()->GetExcludedCohorts()) {
// Setup materialization blocks.
for (HBasicBlock* entry : excluded_cohort.EntryBlocksReversePostOrder()) {
// Setup entries.
// TODO Assuming we correctly break critical edges every entry block
// must have only a single predecessor so we could just put all this
// stuff in there. OTOH simplifier can do it for us and this is simpler
// to implement - giving clean separation between the original graph and
// materialization blocks - so for now we might as well have these new
// blocks.
ScopedArenaAllocator pred_alloc(saa.GetArenaStack());
ScopedArenaVector<HInstruction*> pred_vals(pred_alloc.Adapter(kArenaAllocLSE));
pred_vals.reserve(entry->GetNumberOfPredecessors());
for (const auto& [pred, pred_idx] :
ZipCount(MakeIterationRange(entry->GetPredecessors()))) {
DCHECK(!helper.IsMaterializationBlock(pred));
if (excluded_cohort.IsEntryBlock(pred)) {
pred_vals.push_back(ref_data.GetMaterialization(pred));
continue;
} else {
pred_vals.push_back(SetupPartialMaterialization(helper, {ref_data}, pred_idx, entry));
}
}
ref_data.GenerateMaterializationValueFromPredecessorsForEntry(entry, pred_vals);
}
// Setup exit block heap-values for later phi-generation.
for (HBasicBlock* exit : excluded_cohort.ExitBlocks()) {
// mark every exit of cohorts as having a value so we can easily
// materialize the PHIs.
// TODO By setting this we can easily use the normal MaterializeLoopPhis
// (via FullyMaterializePhis) in order to generate the default-values
// for predicated-gets. This has the unfortunate side effect of creating
// somewhat more phis than are really needed (in some cases). We really
// should try to eventually know that we can lower these PHIs to only
// the non-escaping value in cases where it is possible. Currently this
// is done to some extent in instruction_simplifier but we have more
// information here to do the right thing.
for (const HeapLocation* loc : ref_data.IterateLocations()) {
size_t loc_off = heap_location_collector_.GetHeapLocationIndex(loc);
// This Value::Default() is only used to fill in PHIs used as the
// default value for PredicatedInstanceFieldGets. The actual value
// stored there is meaningless since the Predicated-iget will use the
// actual field value instead on these paths.
heap_values_for_[exit->GetBlockId()][loc_off].value = Value::Default();
}
}
}
// string materialization through the graph.
// // Visit RPO to PHI the materialized object through the cohort.
for (HBasicBlock* blk : GetGraph()->GetReversePostOrder()) {
// NB This doesn't include materialization blocks.
DCHECK(!helper.IsMaterializationBlock(blk))
<< "Materialization blocks should not be in RPO yet.";
if (ref_data.HasMaterialization(blk)) {
continue;
} else if (ref_data.BeforeAllEscapes(blk)) {
ref_data.AddMaterialization(blk, GetGraph()->GetNullConstant());
continue;
} else {
ref_data.GenerateMaterializationValueFromPredecessors(blk);
}
}
}
// Once we've generated all the materializations we can update the users.
helper.FixupPartialObjectUsers();
// Actually put materialization blocks into the graph
helper.InsertMaterializationBlocks();
// Get rid of the original instructions.
helper.RemoveReplacedInstructions();
// Ensure everything is ordered correctly in the materialization blocks. This
// involves moving every NewInstance to the top and ordering them so that any
// required env-uses are correctly ordered.
helper.ReorderMaterializationsForEnvDominance();
}
void LSEVisitor::FinishFullLSE() {
// Remove recorded load instructions that should be eliminated.
for (const LoadStoreRecord& record : loads_and_stores_) {
size_t id = dchecked_integral_cast<size_t>(record.load_or_store->GetId());
HInstruction* substitute = substitute_instructions_for_loads_[id];
if (substitute == nullptr) {
continue;
}
HInstruction* load = record.load_or_store;
DCHECK(load != nullptr);
DCHECK(IsLoad(load));
DCHECK(load->GetBlock() != nullptr) << load->DebugName() << "@" << load->GetDexPc();
// We proactively retrieve the substitute for a removed load, so
// a load that has a substitute should not be observed as a heap
// location value.
DCHECK_EQ(FindSubstitute(substitute), substitute);
load->ReplaceWith(substitute);
load->GetBlock()->RemoveInstruction(load);
}
// Remove all the stores we can.
for (const LoadStoreRecord& record : loads_and_stores_) {
bool is_store = record.load_or_store->GetSideEffects().DoesAnyWrite();
DCHECK_EQ(is_store, IsStore(record.load_or_store));
if (is_store && !kept_stores_.IsBitSet(record.load_or_store->GetId())) {
record.load_or_store->GetBlock()->RemoveInstruction(record.load_or_store);
}
}
// Eliminate singleton-classified instructions:
// * - Constructor fences (they never escape this thread).
// * - Allocations (if they are unused).
for (HInstruction* new_instance : singleton_new_instances_) {
size_t removed = HConstructorFence::RemoveConstructorFences(new_instance);
MaybeRecordStat(stats_,
MethodCompilationStat::kConstructorFenceRemovedLSE,
removed);
if (!new_instance->HasNonEnvironmentUses()) {
new_instance->RemoveEnvironmentUsers();
new_instance->GetBlock()->RemoveInstruction(new_instance);
MaybeRecordStat(stats_, MethodCompilationStat::kFullLSEAllocationRemoved);
}
}
}
// The LSEVisitor is a ValueObject (indirectly through base classes) and therefore
// cannot be directly allocated with an arena allocator, so we need to wrap it.
class LSEVisitorWrapper : public DeletableArenaObject<kArenaAllocLSE> {
public:
LSEVisitorWrapper(HGraph* graph,
const HeapLocationCollector& heap_location_collector,
bool perform_partial_lse,
OptimizingCompilerStats* stats)
: lse_visitor_(graph, heap_location_collector, perform_partial_lse, stats) {}
void Run() {
lse_visitor_.Run();
}
private:
LSEVisitor lse_visitor_;
};
bool LoadStoreElimination::Run(bool enable_partial_lse) {
if (graph_->IsDebuggable()) {
// Debugger may set heap values or trigger deoptimization of callers.
// Skip this optimization.
return false;
}
// We need to be able to determine reachability. Clear it just to be safe but
// this should initially be empty.
graph_->ClearReachabilityInformation();
// This is O(blocks^3) time complexity. It means we can query reachability in
// O(1) though.
graph_->ComputeReachabilityInformation();
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_,
stats_,
&allocator,
enable_partial_lse ? LoadStoreAnalysisType::kFull
: LoadStoreAnalysisType::kBasic);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
if (heap_location_collector.GetNumberOfHeapLocations() == 0) {
// No HeapLocation information from LSA, skip this optimization.
return false;
}
std::unique_ptr<LSEVisitorWrapper> lse_visitor(new (&allocator) LSEVisitorWrapper(
graph_, heap_location_collector, enable_partial_lse, stats_));
lse_visitor->Run();
return true;
}
#undef LSE_VLOG
} // namespace art