| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "load_store_elimination.h" |
| |
| #include <algorithm> |
| #include <optional> |
| #include <sstream> |
| #include <variant> |
| |
| #include "base/arena_allocator.h" |
| #include "base/arena_bit_vector.h" |
| #include "base/array_ref.h" |
| #include "base/bit_vector-inl.h" |
| #include "base/bit_vector.h" |
| #include "base/globals.h" |
| #include "base/indenter.h" |
| #include "base/iteration_range.h" |
| #include "base/scoped_arena_allocator.h" |
| #include "base/scoped_arena_containers.h" |
| #include "base/transform_iterator.h" |
| #include "escape.h" |
| #include "execution_subgraph.h" |
| #include "handle.h" |
| #include "load_store_analysis.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/dex_cache.h" |
| #include "nodes.h" |
| #include "optimizing/execution_subgraph.h" |
| #include "optimizing_compiler_stats.h" |
| #include "reference_type_propagation.h" |
| #include "side_effects_analysis.h" |
| #include "stack_map.h" |
| |
| /** |
| * The general algorithm of load-store elimination (LSE). |
| * |
| * We use load-store analysis to collect a list of heap locations and perform |
| * alias analysis of those heap locations. LSE then keeps track of a list of |
| * heap values corresponding to the heap locations and stores that put those |
| * values in these locations. |
| * - In phase 1, we visit basic blocks in reverse post order and for each basic |
| * block, visit instructions sequentially, recording heap values and looking |
| * for loads and stores to eliminate without relying on loop Phis. |
| * - In phase 2, we look for loads that can be replaced by creating loop Phis |
| * or using a loop-invariant value. |
| * - In phase 3, we determine which stores are dead and can be eliminated and |
| * based on that information we re-evaluate whether some kept stores are |
| * storing the same value as the value in the heap location; such stores are |
| * also marked for elimination. |
| * - In phase 4, we commit the changes, replacing loads marked for elimination |
| * in previous processing and removing stores not marked for keeping. We also |
| * remove allocations that are no longer needed. |
| * - In phase 5, we move allocations which only escape along some executions |
| * closer to their escape points and fixup non-escaping paths with their actual |
| * values, creating PHIs when needed. |
| * |
| * 1. Walk over blocks and their instructions. |
| * |
| * The initial set of heap values for a basic block is |
| * - For a loop header of an irreducible loop, all heap values are unknown. |
| * - For a loop header of a normal loop, all values unknown at the end of the |
| * preheader are initialized to unknown, other heap values are set to Phi |
| * placeholders as we cannot determine yet whether these values are known on |
| * all back-edges. We use Phi placeholders also for array heap locations with |
| * index defined inside the loop but this helps only when the value remains |
| * zero from the array allocation throughout the loop. |
| * - For catch blocks, we clear all assumptions since we arrived due to an |
| * instruction throwing. |
| * - For other basic blocks, we merge incoming values from the end of all |
| * predecessors. If any incoming value is unknown, the start value for this |
| * block is also unknown. Otherwise, if all the incoming values are the same |
| * (including the case of a single predecessor), the incoming value is used. |
| * Otherwise, we use a Phi placeholder to indicate different incoming values. |
| * We record whether such Phi placeholder depends on a loop Phi placeholder. |
| * |
| * For each instruction in the block |
| * - If the instruction is a load from a heap location with a known value not |
| * dependent on a loop Phi placeholder, the load can be eliminated, either by |
| * using an existing instruction or by creating new Phi(s) instead. In order |
| * to maintain the validity of all heap locations during the optimization |
| * phase, we only record substitutes at this phase and the real elimination |
| * is delayed till the end of LSE. Loads that require a loop Phi placeholder |
| * replacement are recorded for processing later. We also keep track of the |
| * heap-value at the start load so that later partial-LSE can predicate the |
| * load. |
| * - If the instruction is a store, it updates the heap value for the heap |
| * location with the stored value and records the store itself so that we can |
| * mark it for keeping if the value becomes observable. Heap values are |
| * invalidated for heap locations that may alias with the store instruction's |
| * heap location and their recorded stores are marked for keeping as they are |
| * now potentially observable. The store instruction can be eliminated unless |
| * the value stored is later needed e.g. by a load from the same/aliased heap |
| * location or the heap location persists at method return/deoptimization. |
| * - A store that stores the same value as the heap value is eliminated. |
| * - For newly instantiated instances, their heap values are initialized to |
| * language defined default values. |
| * - Finalizable objects are considered as persisting at method |
| * return/deoptimization. |
| * - Some instructions such as invokes are treated as loading and invalidating |
| * all the heap values, depending on the instruction's side effects. |
| * - SIMD graphs (with VecLoad and VecStore instructions) are also handled. Any |
| * partial overlap access among ArrayGet/ArraySet/VecLoad/Store is seen as |
| * alias and no load/store is eliminated in such case. |
| * |
| * The time complexity of the initial phase has several components. The total |
| * time for the initialization of heap values for all blocks is |
| * O(heap_locations * edges) |
| * and the time complexity for simple instruction processing is |
| * O(instructions). |
| * See the description of phase 3 for additional complexity due to matching of |
| * existing Phis for replacing loads. |
| * |
| * 2. Process loads that depend on loop Phi placeholders. |
| * |
| * We go over these loads to determine whether they can be eliminated. We look |
| * for the set of all Phi placeholders that feed the load and depend on a loop |
| * Phi placeholder and, if we find no unknown value, we construct the necessary |
| * Phi(s) or, if all other inputs are identical, i.e. the location does not |
| * change in the loop, just use that input. If we do find an unknown input, this |
| * must be from a loop back-edge and we replace the loop Phi placeholder with |
| * unknown value and re-process loads and stores that previously depended on |
| * loop Phi placeholders. This shall find at least one load of an unknown value |
| * which is now known to be unreplaceable or a new unknown value on a back-edge |
| * and we repeat this process until each load is either marked for replacement |
| * or found to be unreplaceable. As we mark at least one additional loop Phi |
| * placeholder as unreplacable in each iteration, this process shall terminate. |
| * |
| * The depth-first search for Phi placeholders in FindLoopPhisToMaterialize() |
| * is limited by the number of Phi placeholders and their dependencies we need |
| * to search with worst-case time complexity |
| * O(phi_placeholder_dependencies) . |
| * The dependencies are usually just the Phi placeholders' potential inputs, |
| * but if we use TryReplacingLoopPhiPlaceholderWithDefault() for default value |
| * replacement search, there are additional dependencies to consider, see below. |
| * |
| * In the successful case (no unknown inputs found) we use the Floyd-Warshall |
| * algorithm to determine transitive closures for each found Phi placeholder, |
| * and then match or materialize Phis from the smallest transitive closure, |
| * so that we can determine if such subset has a single other input. This has |
| * time complexity |
| * O(phi_placeholders_found^3) . |
| * Note that successful TryReplacingLoopPhiPlaceholderWithDefault() does not |
| * contribute to this as such Phi placeholders are replaced immediately. |
| * The total time of all such successful cases has time complexity |
| * O(phi_placeholders^3) |
| * because the found sets are disjoint and `Sum(n_i^3) <= Sum(n_i)^3`. Similar |
| * argument applies to the searches used to find all successful cases, so their |
| * total contribution is also just an insignificant |
| * O(phi_placeholder_dependencies) . |
| * The materialization of Phis has an insignificant total time complexity |
| * O(phi_placeholders * edges) . |
| * |
| * If we find an unknown input, we re-process heap values and loads with a time |
| * complexity that's the same as the phase 1 in the worst case. Adding this to |
| * the depth-first search time complexity yields |
| * O(phi_placeholder_dependencies + heap_locations * edges + instructions) |
| * for a single iteration. We can ignore the middle term as it's proprotional |
| * to the number of Phi placeholder inputs included in the first term. Using |
| * the upper limit of number of such iterations, the total time complexity is |
| * O((phi_placeholder_dependencies + instructions) * phi_placeholders) . |
| * |
| * The upper bound of Phi placeholder inputs is |
| * heap_locations * edges |
| * but if we use TryReplacingLoopPhiPlaceholderWithDefault(), the dependencies |
| * include other heap locations in predecessor blocks with the upper bound of |
| * heap_locations^2 * edges . |
| * Using the estimate |
| * edges <= blocks^2 |
| * and |
| * phi_placeholders <= heap_locations * blocks , |
| * the worst-case time complexity of the |
| * O(phi_placeholder_dependencies * phi_placeholders) |
| * term from unknown input cases is actually |
| * O(heap_locations^3 * blocks^3) , |
| * exactly as the estimate for the Floyd-Warshall parts of successful cases. |
| * Adding the other term from the unknown input cases (to account for the case |
| * with significantly more instructions than blocks and heap locations), the |
| * phase 2 time complexity is |
| * O(heap_locations^3 * blocks^3 + heap_locations * blocks * instructions) . |
| * |
| * See the description of phase 3 for additional complexity due to matching of |
| * existing Phis for replacing loads. |
| * |
| * 3. Determine which stores to keep and which to eliminate. |
| * |
| * During instruction processing in phase 1 and re-processing in phase 2, we are |
| * keeping a record of the stores and Phi placeholders that become observable |
| * and now propagate the observable Phi placeholders to all actual stores that |
| * feed them. Having determined observable stores, we look for stores that just |
| * overwrite the old value with the same. Since ignoring non-observable stores |
| * actually changes the old values in heap locations, we need to recalculate |
| * Phi placeholder replacements but we proceed similarly to the previous phase. |
| * We look for the set of all Phis that feed the old value replaced by the store |
| * (but ignoring whether they depend on a loop Phi) and, if we find no unknown |
| * value, we try to match existing Phis (we do not create new Phis anymore) or, |
| * if all other inputs are identical, i.e. the location does not change in the |
| * loop, just use that input. If this succeeds and the old value is identical to |
| * the value we're storing, such store shall be eliminated. |
| * |
| * The work is similar to the phase 2, except that we're not re-processing loads |
| * and stores anymore, so the time complexity of phase 3 is |
| * O(heap_locations^3 * blocks^3) . |
| * |
| * There is additional complexity in matching existing Phis shared between the |
| * phases 1, 2 and 3. We are never trying to match two or more Phis at the same |
| * time (this could be difficult and slow), so each matching attempt is just |
| * looking at Phis in the block (both old Phis and newly created Phis) and their |
| * inputs. As we create at most `heap_locations` Phis in each block, the upper |
| * bound on the number of Phis we look at is |
| * heap_locations * (old_phis + heap_locations) |
| * and the worst-case time complexity is |
| * O(heap_locations^2 * edges + heap_locations * old_phis * edges) . |
| * The first term is lower than one term in phase 2, so the relevant part is |
| * O(heap_locations * old_phis * edges) . |
| * |
| * 4. Replace loads and remove unnecessary stores and singleton allocations. |
| * |
| * A special type of objects called singletons are instantiated in the method |
| * and have a single name, i.e. no aliases. Singletons have exclusive heap |
| * locations since they have no aliases. Singletons are helpful in narrowing |
| * down the life span of a heap location such that they do not always need to |
| * participate in merging heap values. Allocation of a singleton can be |
| * eliminated if that singleton is not used and does not persist at method |
| * return/deoptimization. |
| * |
| * The time complexity of this phase is |
| * O(instructions + instruction_uses) . |
| * |
| * 5. Partial LSE |
| * |
| * Move allocations closer to their escapes and remove/predicate loads and |
| * stores as required. |
| * |
| * Partial singletons are objects which only escape from the function or have |
| * multiple names along certain execution paths. In cases where we recognize |
| * these partial singletons we can move the allocation and initialization |
| * closer to the actual escape(s). We can then perform a simplified version of |
| * LSE step 2 to determine the unescaped value of any reads performed after the |
| * object may have escaped. These are used to replace these reads with |
| * 'predicated-read' instructions where the value is only read if the object |
| * has actually escaped. We use the existence of the object itself as the |
| * marker of whether escape has occurred. |
| * |
| * There are several steps in this sub-pass |
| * |
| * 5.1 Group references |
| * |
| * Since all heap-locations for a single reference escape at the same time, we |
| * need to group the heap-locations by reference and process them at the same |
| * time. |
| * |
| * O(heap_locations). |
| * |
| * FIXME: The time complexity above assumes we can bucket the heap-locations in |
| * O(1) which is not true since we just perform a linear-scan of the heap-ref |
| * list. Since there are generally only a small number of heap-references which |
| * are partial-singletons this is fine and lower real overhead than a hash map. |
| * |
| * 5.2 Generate materializations |
| * |
| * Once we have the references we add new 'materialization blocks' on the edges |
| * where escape becomes inevitable. This information is calculated by the |
| * execution-subgraphs created during load-store-analysis. We create new |
| * 'materialization's in these blocks and initialize them with the value of |
| * each heap-location ignoring side effects (since the object hasn't escaped |
| * yet). Worst case this is the same time-complexity as step 3 since we may |
| * need to materialize phis. |
| * |
| * O(heap_locations^2 * materialization_edges) |
| * |
| * 5.3 Propagate materializations |
| * |
| * Since we use the materialization as the marker for escape we need to |
| * propagate it throughout the graph. Since the subgraph analysis considers any |
| * lifetime that escapes a loop (and hence would require a loop-phi) to be |
| * escaping at the loop-header we do not need to create any loop-phis to do |
| * this. |
| * |
| * O(edges) |
| * |
| * NB: Currently the subgraph analysis considers all objects to have their |
| * lifetimes start at the entry block. This simplifies that analysis enormously |
| * but means that we cannot distinguish between an escape in a loop where the |
| * lifetime does not escape the loop (in which case this pass could optimize) |
| * and one where it does escape the loop (in which case the whole loop is |
| * escaping). This is a shortcoming that would be good to fix at some point. |
| * |
| * 5.4 Propagate partial values |
| * |
| * We need to replace loads and stores to the partial reference with predicated |
| * ones that have default non-escaping values. Again this is the same as step 3. |
| * |
| * O(heap_locations^2 * edges) |
| * |
| * 5.5 Final fixup |
| * |
| * Now all we need to do is replace and remove uses of the old reference with the |
| * appropriate materialization. |
| * |
| * O(instructions + uses) |
| * |
| * FIXME: The time complexities described above assumes that the |
| * HeapLocationCollector finds a heap location for an instruction in O(1) |
| * time but it is currently O(heap_locations); this can be fixed by adding |
| * a hash map to the HeapLocationCollector. |
| */ |
| |
| namespace art HIDDEN { |
| |
| #define LSE_VLOG \ |
| if (::art::LoadStoreElimination::kVerboseLoggingMode && VLOG_IS_ON(compiler)) LOG(INFO) |
| |
| class PartialLoadStoreEliminationHelper; |
| class HeapRefHolder; |
| |
| // Use HGraphDelegateVisitor for which all VisitInvokeXXX() delegate to VisitInvoke(). |
| class LSEVisitor final : private HGraphDelegateVisitor { |
| public: |
| LSEVisitor(HGraph* graph, |
| const HeapLocationCollector& heap_location_collector, |
| bool perform_partial_lse, |
| OptimizingCompilerStats* stats); |
| |
| void Run(); |
| |
| private: |
| class PhiPlaceholder { |
| public: |
| constexpr PhiPlaceholder() : block_id_(-1), heap_location_(-1) {} |
| constexpr PhiPlaceholder(uint32_t block_id, size_t heap_location) |
| : block_id_(block_id), heap_location_(dchecked_integral_cast<uint32_t>(heap_location)) {} |
| |
| constexpr PhiPlaceholder(const PhiPlaceholder& p) = default; |
| constexpr PhiPlaceholder(PhiPlaceholder&& p) = default; |
| constexpr PhiPlaceholder& operator=(const PhiPlaceholder& p) = default; |
| constexpr PhiPlaceholder& operator=(PhiPlaceholder&& p) = default; |
| |
| constexpr uint32_t GetBlockId() const { |
| return block_id_; |
| } |
| |
| constexpr size_t GetHeapLocation() const { |
| return heap_location_; |
| } |
| |
| constexpr bool Equals(const PhiPlaceholder& p2) const { |
| return block_id_ == p2.block_id_ && heap_location_ == p2.heap_location_; |
| } |
| |
| void Dump(std::ostream& oss) const { |
| oss << "PhiPlaceholder[blk: " << block_id_ << ", heap_location_: " << heap_location_ << "]"; |
| } |
| |
| private: |
| uint32_t block_id_; |
| uint32_t heap_location_; |
| }; |
| |
| struct Marker {}; |
| |
| class Value; |
| |
| class PriorValueHolder { |
| public: |
| constexpr explicit PriorValueHolder(Value prior); |
| |
| constexpr bool IsInstruction() const { |
| return std::holds_alternative<HInstruction*>(value_); |
| } |
| constexpr bool IsPhi() const { |
| return std::holds_alternative<PhiPlaceholder>(value_); |
| } |
| constexpr bool IsDefault() const { |
| return std::holds_alternative<Marker>(value_); |
| } |
| constexpr PhiPlaceholder GetPhiPlaceholder() const { |
| DCHECK(IsPhi()); |
| return std::get<PhiPlaceholder>(value_); |
| } |
| constexpr HInstruction* GetInstruction() const { |
| DCHECK(IsInstruction()); |
| return std::get<HInstruction*>(value_); |
| } |
| |
| Value ToValue() const; |
| void Dump(std::ostream& oss) const; |
| |
| constexpr bool Equals(PriorValueHolder other) const { |
| return value_ == other.value_; |
| } |
| |
| private: |
| std::variant<Marker, HInstruction*, PhiPlaceholder> value_; |
| }; |
| |
| friend constexpr bool operator==(const Marker&, const Marker&); |
| friend constexpr bool operator==(const PriorValueHolder& p1, const PriorValueHolder& p2); |
| friend constexpr bool operator==(const PhiPlaceholder& p1, const PhiPlaceholder& p2); |
| friend std::ostream& operator<<(std::ostream& oss, const PhiPlaceholder& p2); |
| |
| class Value { |
| public: |
| enum class ValuelessType { |
| kInvalid, |
| kPureUnknown, |
| kDefault, |
| }; |
| struct MergedUnknownMarker { |
| PhiPlaceholder phi_; |
| }; |
| struct NeedsNonLoopPhiMarker { |
| PhiPlaceholder phi_; |
| }; |
| struct NeedsLoopPhiMarker { |
| PhiPlaceholder phi_; |
| }; |
| |
| static constexpr Value Invalid() { |
| return Value(ValuelessType::kInvalid); |
| } |
| |
| // An unknown heap value. Loads with such a value in the heap location cannot be eliminated. |
| // A heap location can be set to an unknown heap value when: |
| // - it is coming from outside the method, |
| // - it is killed due to aliasing, or side effects, or merging with an unknown value. |
| static constexpr Value PureUnknown() { |
| return Value(ValuelessType::kPureUnknown); |
| } |
| |
| static constexpr Value PartialUnknown(Value old_value) { |
| if (old_value.IsInvalid() || old_value.IsPureUnknown()) { |
| return PureUnknown(); |
| } else { |
| return Value(PriorValueHolder(old_value)); |
| } |
| } |
| |
| static constexpr Value MergedUnknown(PhiPlaceholder phi_placeholder) { |
| return Value(MergedUnknownMarker{phi_placeholder}); |
| } |
| |
| // Default heap value after an allocation. |
| // A heap location can be set to that value right after an allocation. |
| static constexpr Value Default() { |
| return Value(ValuelessType::kDefault); |
| } |
| |
| static constexpr Value ForInstruction(HInstruction* instruction) { |
| return Value(instruction); |
| } |
| |
| static constexpr Value ForNonLoopPhiPlaceholder(PhiPlaceholder phi_placeholder) { |
| return Value(NeedsNonLoopPhiMarker{phi_placeholder}); |
| } |
| |
| static constexpr Value ForLoopPhiPlaceholder(PhiPlaceholder phi_placeholder) { |
| return Value(NeedsLoopPhiMarker{phi_placeholder}); |
| } |
| |
| static constexpr Value ForPhiPlaceholder(PhiPlaceholder phi_placeholder, bool needs_loop_phi) { |
| return needs_loop_phi ? ForLoopPhiPlaceholder(phi_placeholder) |
| : ForNonLoopPhiPlaceholder(phi_placeholder); |
| } |
| |
| constexpr bool IsValid() const { |
| return !IsInvalid(); |
| } |
| |
| constexpr bool IsInvalid() const { |
| return std::holds_alternative<ValuelessType>(value_) && |
| GetValuelessType() == ValuelessType::kInvalid; |
| } |
| |
| bool IsPartialUnknown() const { |
| return std::holds_alternative<PriorValueHolder>(value_); |
| } |
| |
| bool IsMergedUnknown() const { |
| return std::holds_alternative<MergedUnknownMarker>(value_); |
| } |
| |
| bool IsPureUnknown() const { |
| return std::holds_alternative<ValuelessType>(value_) && |
| GetValuelessType() == ValuelessType::kPureUnknown; |
| } |
| |
| bool IsUnknown() const { |
| return IsPureUnknown() || IsMergedUnknown() || IsPartialUnknown(); |
| } |
| |
| bool IsDefault() const { |
| return std::holds_alternative<ValuelessType>(value_) && |
| GetValuelessType() == ValuelessType::kDefault; |
| } |
| |
| bool IsInstruction() const { |
| return std::holds_alternative<HInstruction*>(value_); |
| } |
| |
| bool NeedsNonLoopPhi() const { |
| return std::holds_alternative<NeedsNonLoopPhiMarker>(value_); |
| } |
| |
| bool NeedsLoopPhi() const { |
| return std::holds_alternative<NeedsLoopPhiMarker>(value_); |
| } |
| |
| bool NeedsPhi() const { |
| return NeedsNonLoopPhi() || NeedsLoopPhi(); |
| } |
| |
| HInstruction* GetInstruction() const { |
| DCHECK(IsInstruction()) << *this; |
| return std::get<HInstruction*>(value_); |
| } |
| |
| PriorValueHolder GetPriorValue() const { |
| DCHECK(IsPartialUnknown()); |
| return std::get<PriorValueHolder>(value_); |
| } |
| |
| PhiPlaceholder GetPhiPlaceholder() const { |
| DCHECK(NeedsPhi() || IsMergedUnknown()); |
| if (NeedsNonLoopPhi()) { |
| return std::get<NeedsNonLoopPhiMarker>(value_).phi_; |
| } else if (NeedsLoopPhi()) { |
| return std::get<NeedsLoopPhiMarker>(value_).phi_; |
| } else { |
| return std::get<MergedUnknownMarker>(value_).phi_; |
| } |
| } |
| |
| uint32_t GetMergeBlockId() const { |
| DCHECK(IsMergedUnknown()) << this; |
| return std::get<MergedUnknownMarker>(value_).phi_.GetBlockId(); |
| } |
| |
| HBasicBlock* GetMergeBlock(const HGraph* graph) const { |
| DCHECK(IsMergedUnknown()) << *this; |
| return graph->GetBlocks()[GetMergeBlockId()]; |
| } |
| |
| size_t GetHeapLocation() const { |
| DCHECK(IsMergedUnknown() || NeedsPhi()) << this; |
| return GetPhiPlaceholder().GetHeapLocation(); |
| } |
| |
| constexpr bool ExactEquals(Value other) const; |
| |
| constexpr bool Equals(Value other) const; |
| |
| constexpr bool Equals(HInstruction* instruction) const { |
| return Equals(ForInstruction(instruction)); |
| } |
| |
| std::ostream& Dump(std::ostream& os) const; |
| |
| // Public for use with lists. |
| constexpr Value() : value_(ValuelessType::kInvalid) {} |
| |
| private: |
| using ValueHolder = std::variant<ValuelessType, |
| HInstruction*, |
| MergedUnknownMarker, |
| NeedsNonLoopPhiMarker, |
| NeedsLoopPhiMarker, |
| PriorValueHolder>; |
| constexpr ValuelessType GetValuelessType() const { |
| return std::get<ValuelessType>(value_); |
| } |
| |
| constexpr explicit Value(ValueHolder v) : value_(v) {} |
| |
| friend std::ostream& operator<<(std::ostream& os, const Value& v); |
| |
| ValueHolder value_; |
| |
| static_assert(std::is_move_assignable<PhiPlaceholder>::value); |
| }; |
| |
| friend constexpr bool operator==(const Value::NeedsLoopPhiMarker& p1, |
| const Value::NeedsLoopPhiMarker& p2); |
| friend constexpr bool operator==(const Value::NeedsNonLoopPhiMarker& p1, |
| const Value::NeedsNonLoopPhiMarker& p2); |
| friend constexpr bool operator==(const Value::MergedUnknownMarker& p1, |
| const Value::MergedUnknownMarker& p2); |
| |
| // Get Phi placeholder index for access to `phi_placeholder_replacements_` |
| // and "visited" bit vectors during depth-first searches. |
| size_t PhiPlaceholderIndex(PhiPlaceholder phi_placeholder) const { |
| size_t res = |
| phi_placeholder.GetBlockId() * heap_location_collector_.GetNumberOfHeapLocations() + |
| phi_placeholder.GetHeapLocation(); |
| DCHECK_EQ(phi_placeholder, GetPhiPlaceholderAt(res)) |
| << res << "blks: " << GetGraph()->GetBlocks().size() |
| << " hls: " << heap_location_collector_.GetNumberOfHeapLocations(); |
| return res; |
| } |
| |
| size_t PhiPlaceholderIndex(Value phi_placeholder) const { |
| return PhiPlaceholderIndex(phi_placeholder.GetPhiPlaceholder()); |
| } |
| |
| bool IsEscapingObject(ReferenceInfo* info, HBasicBlock* block, size_t index) { |
| return !info->IsSingletonAndRemovable() && |
| !(info->IsPartialSingleton() && IsPartialNoEscape(block, index)); |
| } |
| |
| bool IsPartialNoEscape(HBasicBlock* blk, size_t idx) { |
| auto* ri = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo(); |
| if (!ri->IsPartialSingleton()) { |
| return false; |
| } |
| ArrayRef<const ExecutionSubgraph::ExcludedCohort> cohorts = |
| ri->GetNoEscapeSubgraph()->GetExcludedCohorts(); |
| return std::none_of(cohorts.cbegin(), |
| cohorts.cend(), |
| [&](const ExecutionSubgraph::ExcludedCohort& ex) -> bool { |
| // Make sure we haven't yet and never will escape. |
| return ex.PrecedesBlock(blk) || |
| ex.ContainsBlock(blk) || |
| ex.SucceedsBlock(blk); |
| }); |
| } |
| |
| PhiPlaceholder GetPhiPlaceholderAt(size_t off) const { |
| DCHECK_LT(off, num_phi_placeholders_); |
| size_t id = off % heap_location_collector_.GetNumberOfHeapLocations(); |
| // Technically this should be (off - id) / NumberOfHeapLocations |
| // but due to truncation it's all the same. |
| size_t blk_id = off / heap_location_collector_.GetNumberOfHeapLocations(); |
| return GetPhiPlaceholder(blk_id, id); |
| } |
| |
| PhiPlaceholder GetPhiPlaceholder(uint32_t block_id, size_t idx) const { |
| DCHECK(GetGraph()->GetBlocks()[block_id] != nullptr) << block_id; |
| return PhiPlaceholder(block_id, idx); |
| } |
| |
| Value Replacement(Value value) const { |
| DCHECK(value.NeedsPhi() || |
| (current_phase_ == Phase::kPartialElimination && value.IsMergedUnknown())) |
| << value << " phase: " << current_phase_; |
| Value replacement = phi_placeholder_replacements_[PhiPlaceholderIndex(value)]; |
| DCHECK(replacement.IsUnknown() || replacement.IsInstruction()); |
| DCHECK(replacement.IsUnknown() || |
| FindSubstitute(replacement.GetInstruction()) == replacement.GetInstruction()); |
| return replacement; |
| } |
| |
| Value ReplacementOrValue(Value value) const { |
| if (current_phase_ == Phase::kPartialElimination) { |
| // In this phase we are materializing the default values which are used |
| // only if the partial singleton did not escape, so we can replace |
| // a partial unknown with the prior value. |
| if (value.IsPartialUnknown()) { |
| value = value.GetPriorValue().ToValue(); |
| } |
| if ((value.IsMergedUnknown() || value.NeedsPhi()) && |
| phi_placeholder_replacements_[PhiPlaceholderIndex(value)].IsValid()) { |
| value = phi_placeholder_replacements_[PhiPlaceholderIndex(value)]; |
| DCHECK(!value.IsMergedUnknown()); |
| DCHECK(!value.NeedsPhi()); |
| } else if (value.IsMergedUnknown()) { |
| return Value::ForLoopPhiPlaceholder(value.GetPhiPlaceholder()); |
| } |
| if (value.IsInstruction() && value.GetInstruction()->IsInstanceFieldGet()) { |
| DCHECK_LT(static_cast<size_t>(value.GetInstruction()->GetId()), |
| substitute_instructions_for_loads_.size()); |
| HInstruction* substitute = |
| substitute_instructions_for_loads_[value.GetInstruction()->GetId()]; |
| if (substitute != nullptr) { |
| DCHECK(substitute->IsPredicatedInstanceFieldGet()); |
| return Value::ForInstruction(substitute); |
| } |
| } |
| DCHECK_IMPLIES(value.IsInstruction(), |
| FindSubstitute(value.GetInstruction()) == value.GetInstruction()); |
| return value; |
| } |
| if (value.NeedsPhi() && phi_placeholder_replacements_[PhiPlaceholderIndex(value)].IsValid()) { |
| return Replacement(value); |
| } else { |
| DCHECK_IMPLIES(value.IsInstruction(), |
| FindSubstitute(value.GetInstruction()) == value.GetInstruction()); |
| return value; |
| } |
| } |
| |
| // The record of a heap value and instruction(s) that feed that value. |
| struct ValueRecord { |
| Value value; |
| Value stored_by; |
| }; |
| |
| HTypeConversion* FindOrAddTypeConversionIfNecessary(HInstruction* instruction, |
| HInstruction* value, |
| DataType::Type expected_type) { |
| // Should never add type conversion into boolean value. |
| if (expected_type == DataType::Type::kBool || |
| DataType::IsTypeConversionImplicit(value->GetType(), expected_type) || |
| // TODO: This prevents type conversion of default values but we can still insert |
| // type conversion of other constants and there is no constant folding pass after LSE. |
| IsZeroBitPattern(value)) { |
| return nullptr; |
| } |
| |
| // Check if there is already a suitable TypeConversion we can reuse. |
| for (const HUseListNode<HInstruction*>& use : value->GetUses()) { |
| if (use.GetUser()->IsTypeConversion() && |
| use.GetUser()->GetType() == expected_type && |
| // TODO: We could move the TypeConversion to a common dominator |
| // if it does not cross irreducible loop header. |
| use.GetUser()->GetBlock()->Dominates(instruction->GetBlock()) && |
| // Don't share across irreducible loop headers. |
| // TODO: can be more fine-grained than this by testing each dominator. |
| (use.GetUser()->GetBlock() == instruction->GetBlock() || |
| !GetGraph()->HasIrreducibleLoops())) { |
| if (use.GetUser()->GetBlock() == instruction->GetBlock() && |
| use.GetUser()->GetBlock()->GetInstructions().FoundBefore(instruction, use.GetUser())) { |
| // Move the TypeConversion before the instruction. |
| use.GetUser()->MoveBefore(instruction); |
| } |
| DCHECK(use.GetUser()->StrictlyDominates(instruction)); |
| return use.GetUser()->AsTypeConversion(); |
| } |
| } |
| |
| // We must create a new TypeConversion instruction. |
| HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion( |
| expected_type, value, instruction->GetDexPc()); |
| instruction->GetBlock()->InsertInstructionBefore(type_conversion, instruction); |
| return type_conversion; |
| } |
| |
| // Find an instruction's substitute if it's a removed load. |
| // Return the same instruction if it should not be removed. |
| HInstruction* FindSubstitute(HInstruction* instruction) const { |
| size_t id = static_cast<size_t>(instruction->GetId()); |
| if (id >= substitute_instructions_for_loads_.size()) { |
| // New Phi (may not be in the graph yet), default value or PredicatedInstanceFieldGet. |
| DCHECK_IMPLIES(IsLoad(instruction), instruction->IsPredicatedInstanceFieldGet()); |
| return instruction; |
| } |
| HInstruction* substitute = substitute_instructions_for_loads_[id]; |
| DCHECK(substitute == nullptr || IsLoad(instruction)); |
| return (substitute != nullptr) ? substitute : instruction; |
| } |
| |
| void AddRemovedLoad(HInstruction* load, HInstruction* heap_value) { |
| DCHECK(IsLoad(load)); |
| DCHECK_EQ(FindSubstitute(load), load); |
| DCHECK_EQ(FindSubstitute(heap_value), heap_value) << |
| "Unexpected heap_value that has a substitute " << heap_value->DebugName(); |
| |
| // The load expects to load the heap value as type load->GetType(). |
| // However the tracked heap value may not be of that type. An explicit |
| // type conversion may be needed. |
| // There are actually three types involved here: |
| // (1) tracked heap value's type (type A) |
| // (2) heap location (field or element)'s type (type B) |
| // (3) load's type (type C) |
| // We guarantee that type A stored as type B and then fetched out as |
| // type C is the same as casting from type A to type C directly, since |
| // type B and type C will have the same size which is guaranteed in |
| // HInstanceFieldGet/HStaticFieldGet/HArrayGet/HVecLoad's SetType(). |
| // So we only need one type conversion from type A to type C. |
| HTypeConversion* type_conversion = FindOrAddTypeConversionIfNecessary( |
| load, heap_value, load->GetType()); |
| |
| substitute_instructions_for_loads_[load->GetId()] = |
| type_conversion != nullptr ? type_conversion : heap_value; |
| } |
| |
| static bool IsLoad(HInstruction* instruction) { |
| // Unresolved load is not treated as a load. |
| return instruction->IsInstanceFieldGet() || |
| instruction->IsPredicatedInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsVecLoad() || |
| instruction->IsArrayGet(); |
| } |
| |
| static bool IsStore(HInstruction* instruction) { |
| // Unresolved store is not treated as a store. |
| return instruction->IsInstanceFieldSet() || |
| instruction->IsArraySet() || |
| instruction->IsVecStore() || |
| instruction->IsStaticFieldSet(); |
| } |
| |
| // Check if it is allowed to use default values or Phis for the specified load. |
| static bool IsDefaultOrPhiAllowedForLoad(HInstruction* instruction) { |
| DCHECK(IsLoad(instruction)); |
| // Using defaults for VecLoads requires to create additional vector operations. |
| // As there are some issues with scheduling vector operations it is better to avoid creating |
| // them. |
| return !instruction->IsVecOperation(); |
| } |
| |
| // Keep the store referenced by the instruction, or all stores that feed a Phi placeholder. |
| // This is necessary if the stored heap value can be observed. |
| void KeepStores(Value value) { |
| if (value.IsPureUnknown() || value.IsPartialUnknown()) { |
| return; |
| } |
| if (value.IsMergedUnknown()) { |
| kept_merged_unknowns_.SetBit(PhiPlaceholderIndex(value)); |
| phi_placeholders_to_search_for_kept_stores_.SetBit(PhiPlaceholderIndex(value)); |
| return; |
| } |
| if (value.NeedsPhi()) { |
| phi_placeholders_to_search_for_kept_stores_.SetBit(PhiPlaceholderIndex(value)); |
| } else { |
| HInstruction* instruction = value.GetInstruction(); |
| DCHECK(IsStore(instruction)); |
| kept_stores_.SetBit(instruction->GetId()); |
| } |
| } |
| |
| // If a heap location X may alias with heap location at `loc_index` |
| // and heap_values of that heap location X holds a store, keep that store. |
| // It's needed for a dependent load that's not eliminated since any store |
| // that may put value into the load's heap location needs to be kept. |
| void KeepStoresIfAliasedToLocation(ScopedArenaVector<ValueRecord>& heap_values, |
| size_t loc_index) { |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| if (i == loc_index) { |
| // We use this function when reading a location with unknown value and |
| // therefore we cannot know what exact store wrote that unknown value. |
| // But we can have a phi placeholder here marking multiple stores to keep. |
| DCHECK( |
| !heap_values[i].stored_by.IsInstruction() || |
| heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->IsPartialSingleton()); |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| } else if (heap_location_collector_.MayAlias(i, loc_index)) { |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| } |
| } |
| } |
| |
| HInstruction* GetDefaultValue(DataType::Type type) { |
| switch (type) { |
| case DataType::Type::kReference: |
| return GetGraph()->GetNullConstant(); |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| return GetGraph()->GetIntConstant(0); |
| case DataType::Type::kInt64: |
| return GetGraph()->GetLongConstant(0); |
| case DataType::Type::kFloat32: |
| return GetGraph()->GetFloatConstant(0); |
| case DataType::Type::kFloat64: |
| return GetGraph()->GetDoubleConstant(0); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| bool CanValueBeKeptIfSameAsNew(Value value, |
| HInstruction* new_value, |
| HInstruction* new_value_set_instr) { |
| // For field/array set location operations, if the value is the same as the new_value |
| // it can be kept even if aliasing happens. All aliased operations will access the same memory |
| // range. |
| // For vector values, this is not true. For example: |
| // packed_data = [0xA, 0xB, 0xC, 0xD]; <-- Different values in each lane. |
| // VecStore array[i ,i+1,i+2,i+3] = packed_data; |
| // VecStore array[i+1,i+2,i+3,i+4] = packed_data; <-- We are here (partial overlap). |
| // VecLoad vx = array[i,i+1,i+2,i+3]; <-- Cannot be eliminated because the value |
| // here is not packed_data anymore. |
| // |
| // TODO: to allow such 'same value' optimization on vector data, |
| // LSA needs to report more fine-grain MAY alias information: |
| // (1) May alias due to two vector data partial overlap. |
| // e.g. a[i..i+3] and a[i+1,..,i+4]. |
| // (2) May alias due to two vector data may complete overlap each other. |
| // e.g. a[i..i+3] and b[i..i+3]. |
| // (3) May alias but the exact relationship between two locations is unknown. |
| // e.g. a[i..i+3] and b[j..j+3], where values of a,b,i,j are all unknown. |
| // This 'same value' optimization can apply only on case (2). |
| if (new_value_set_instr->IsVecOperation()) { |
| return false; |
| } |
| |
| return value.Equals(new_value); |
| } |
| |
| Value PrepareLoopValue(HBasicBlock* block, size_t idx); |
| Value PrepareLoopStoredBy(HBasicBlock* block, size_t idx); |
| void PrepareLoopRecords(HBasicBlock* block); |
| Value MergePredecessorValues(HBasicBlock* block, size_t idx); |
| void MergePredecessorRecords(HBasicBlock* block); |
| |
| void MaterializeNonLoopPhis(PhiPlaceholder phi_placeholder, DataType::Type type); |
| |
| void VisitGetLocation(HInstruction* instruction, size_t idx); |
| void VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value); |
| void RecordFieldInfo(const FieldInfo* info, size_t heap_loc) { |
| field_infos_[heap_loc] = info; |
| } |
| |
| void VisitBasicBlock(HBasicBlock* block) override; |
| |
| enum class Phase { |
| kLoadElimination, |
| kStoreElimination, |
| kPartialElimination, |
| }; |
| |
| bool MayAliasOnBackEdge(HBasicBlock* loop_header, size_t idx1, size_t idx2) const; |
| |
| bool TryReplacingLoopPhiPlaceholderWithDefault( |
| PhiPlaceholder phi_placeholder, |
| DataType::Type type, |
| /*inout*/ ArenaBitVector* phi_placeholders_to_materialize); |
| bool TryReplacingLoopPhiPlaceholderWithSingleInput( |
| PhiPlaceholder phi_placeholder, |
| /*inout*/ ArenaBitVector* phi_placeholders_to_materialize); |
| std::optional<PhiPlaceholder> FindLoopPhisToMaterialize( |
| PhiPlaceholder phi_placeholder, |
| /*out*/ ArenaBitVector* phi_placeholders_to_materialize, |
| DataType::Type type, |
| bool can_use_default_or_phi); |
| bool MaterializeLoopPhis(const ScopedArenaVector<size_t>& phi_placeholder_indexes, |
| DataType::Type type); |
| bool MaterializeLoopPhis(ArrayRef<const size_t> phi_placeholder_indexes, DataType::Type type); |
| bool MaterializeLoopPhis(const ArenaBitVector& phi_placeholders_to_materialize, |
| DataType::Type type); |
| bool FullyMaterializePhi(PhiPlaceholder phi_placeholder, DataType::Type type); |
| std::optional<PhiPlaceholder> TryToMaterializeLoopPhis(PhiPlaceholder phi_placeholder, |
| HInstruction* load); |
| void ProcessLoopPhiWithUnknownInput(PhiPlaceholder loop_phi_with_unknown_input); |
| void ProcessLoadsRequiringLoopPhis(); |
| |
| void SearchPhiPlaceholdersForKeptStores(); |
| void UpdateValueRecordForStoreElimination(/*inout*/ValueRecord* value_record); |
| void FindOldValueForPhiPlaceholder(PhiPlaceholder phi_placeholder, DataType::Type type); |
| void FindStoresWritingOldValues(); |
| void FinishFullLSE(); |
| void PrepareForPartialPhiComputation(); |
| // Create materialization block and materialization object for the given predecessor of entry. |
| HInstruction* SetupPartialMaterialization(PartialLoadStoreEliminationHelper& helper, |
| HeapRefHolder&& holder, |
| size_t pred_idx, |
| HBasicBlock* blk); |
| // Returns the value that would be read by the 'read' instruction on |
| // 'orig_new_inst' if 'orig_new_inst' has not escaped. |
| HInstruction* GetPartialValueAt(HNewInstance* orig_new_inst, HInstruction* read); |
| void MovePartialEscapes(); |
| |
| void VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet* instruction) override { |
| LOG(FATAL) << "Visited instruction " << instruction->DumpWithoutArgs() |
| << " but LSE should be the only source of predicated-ifield-gets!"; |
| } |
| |
| void HandleAcquireLoad(HInstruction* instruction) { |
| DCHECK((instruction->IsInstanceFieldGet() && instruction->AsInstanceFieldGet()->IsVolatile()) || |
| (instruction->IsStaticFieldGet() && instruction->AsStaticFieldGet()->IsVolatile()) || |
| (instruction->IsMonitorOperation() && instruction->AsMonitorOperation()->IsEnter())) |
| << "Unexpected instruction " << instruction->GetId() << ": " << instruction->DebugName(); |
| |
| // Acquire operations e.g. MONITOR_ENTER change the thread's view of the memory, so we must |
| // invalidate all current values. |
| ScopedArenaVector<ValueRecord>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| heap_values[i].value = Value::PartialUnknown(heap_values[i].value); |
| } |
| |
| // Note that there's no need to record the load as subsequent acquire loads shouldn't be |
| // eliminated either. |
| } |
| |
| void HandleReleaseStore(HInstruction* instruction) { |
| DCHECK((instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->IsVolatile()) || |
| (instruction->IsStaticFieldSet() && instruction->AsStaticFieldSet()->IsVolatile()) || |
| (instruction->IsMonitorOperation() && !instruction->AsMonitorOperation()->IsEnter())) |
| << "Unexpected instruction " << instruction->GetId() << ": " << instruction->DebugName(); |
| |
| // Release operations e.g. MONITOR_EXIT do not affect this thread's view of the memory, but |
| // they will push the modifications for other threads to see. Therefore, we must keep the |
| // stores but there's no need to clobber the value. |
| ScopedArenaVector<ValueRecord>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| } |
| |
| // Note that there's no need to record the store as subsequent release store shouldn't be |
| // eliminated either. |
| } |
| |
| void VisitInstanceFieldGet(HInstanceFieldGet* instruction) override { |
| if (instruction->IsVolatile()) { |
| HandleAcquireLoad(instruction); |
| return; |
| } |
| |
| HInstruction* object = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(object, &field)); |
| } |
| |
| void VisitInstanceFieldSet(HInstanceFieldSet* instruction) override { |
| if (instruction->IsVolatile()) { |
| HandleReleaseStore(instruction); |
| return; |
| } |
| |
| HInstruction* object = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| HInstruction* value = instruction->InputAt(1); |
| size_t idx = heap_location_collector_.GetFieldHeapLocation(object, &field); |
| VisitSetLocation(instruction, idx, value); |
| } |
| |
| void VisitStaticFieldGet(HStaticFieldGet* instruction) override { |
| if (instruction->IsVolatile()) { |
| HandleAcquireLoad(instruction); |
| return; |
| } |
| |
| HInstruction* cls = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(cls, &field)); |
| } |
| |
| void VisitStaticFieldSet(HStaticFieldSet* instruction) override { |
| if (instruction->IsVolatile()) { |
| HandleReleaseStore(instruction); |
| return; |
| } |
| |
| HInstruction* cls = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| HInstruction* value = instruction->InputAt(1); |
| size_t idx = heap_location_collector_.GetFieldHeapLocation(cls, &field); |
| VisitSetLocation(instruction, idx, value); |
| } |
| |
| void VisitMonitorOperation(HMonitorOperation* monitor_op) override { |
| if (monitor_op->IsEnter()) { |
| HandleAcquireLoad(monitor_op); |
| } else { |
| HandleReleaseStore(monitor_op); |
| } |
| } |
| |
| void VisitArrayGet(HArrayGet* instruction) override { |
| VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction)); |
| } |
| |
| void VisitArraySet(HArraySet* instruction) override { |
| size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction); |
| VisitSetLocation(instruction, idx, instruction->GetValue()); |
| } |
| |
| void VisitVecLoad(HVecLoad* instruction) override { |
| VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction)); |
| } |
| |
| void VisitVecStore(HVecStore* instruction) override { |
| size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction); |
| VisitSetLocation(instruction, idx, instruction->GetValue()); |
| } |
| |
| void VisitDeoptimize(HDeoptimize* instruction) override { |
| // If we are in a try, even singletons are observable. |
| const bool inside_a_try = instruction->GetBlock()->IsTryBlock(); |
| HBasicBlock* block = instruction->GetBlock(); |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| Value* stored_by = &heap_values[i].stored_by; |
| if (stored_by->IsUnknown()) { |
| continue; |
| } |
| // Stores are generally observeable after deoptimization, except |
| // for singletons that don't escape in the deoptimization environment. |
| bool observable = true; |
| ReferenceInfo* info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| if (!inside_a_try && info->IsSingleton()) { |
| HInstruction* reference = info->GetReference(); |
| // Finalizable objects always escape. |
| const bool finalizable_object = |
| reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable(); |
| if (!finalizable_object && !IsEscapingObject(info, block, i)) { |
| // Check whether the reference for a store is used by an environment local of |
| // the HDeoptimize. If not, the singleton is not observed after deoptimization. |
| const HUseList<HEnvironment*>& env_uses = reference->GetEnvUses(); |
| observable = std::any_of( |
| env_uses.begin(), |
| env_uses.end(), |
| [instruction](const HUseListNode<HEnvironment*>& use) { |
| return use.GetUser()->GetHolder() == instruction; |
| }); |
| } |
| } |
| if (observable) { |
| KeepStores(*stored_by); |
| *stored_by = Value::PureUnknown(); |
| } |
| } |
| } |
| |
| // Keep necessary stores before exiting a method via return/throw. |
| void HandleExit(HBasicBlock* block, bool must_keep_stores = false) { |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| if (must_keep_stores || IsEscapingObject(ref_info, block, i)) { |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| } |
| } |
| } |
| |
| void VisitReturn(HReturn* instruction) override { |
| HandleExit(instruction->GetBlock()); |
| } |
| |
| void VisitReturnVoid(HReturnVoid* return_void) override { |
| HandleExit(return_void->GetBlock()); |
| } |
| |
| void HandleThrowingInstruction(HInstruction* instruction) { |
| DCHECK(instruction->CanThrow()); |
| // If we are inside of a try, singletons can become visible since we may not exit the method. |
| HandleExit(instruction->GetBlock(), instruction->GetBlock()->IsTryBlock()); |
| } |
| |
| void VisitMethodEntryHook(HMethodEntryHook* method_entry) override { |
| HandleThrowingInstruction(method_entry); |
| } |
| |
| void VisitMethodExitHook(HMethodExitHook* method_exit) override { |
| HandleThrowingInstruction(method_exit); |
| } |
| |
| void VisitDivZeroCheck(HDivZeroCheck* div_zero_check) override { |
| HandleThrowingInstruction(div_zero_check); |
| } |
| |
| void VisitNullCheck(HNullCheck* null_check) override { |
| HandleThrowingInstruction(null_check); |
| } |
| |
| void VisitBoundsCheck(HBoundsCheck* bounds_check) override { |
| HandleThrowingInstruction(bounds_check); |
| } |
| |
| void VisitLoadClass(HLoadClass* load_class) override { |
| if (load_class->CanThrow()) { |
| HandleThrowingInstruction(load_class); |
| } |
| } |
| |
| void VisitLoadString(HLoadString* load_string) override { |
| if (load_string->CanThrow()) { |
| HandleThrowingInstruction(load_string); |
| } |
| } |
| |
| void VisitLoadMethodHandle(HLoadMethodHandle* load_method_handle) override { |
| HandleThrowingInstruction(load_method_handle); |
| } |
| |
| void VisitLoadMethodType(HLoadMethodType* load_method_type) override { |
| HandleThrowingInstruction(load_method_type); |
| } |
| |
| void VisitStringBuilderAppend(HStringBuilderAppend* sb_append) override { |
| HandleThrowingInstruction(sb_append); |
| } |
| |
| void VisitThrow(HThrow* throw_instruction) override { |
| HandleThrowingInstruction(throw_instruction); |
| } |
| |
| void VisitCheckCast(HCheckCast* check_cast) override { |
| HandleThrowingInstruction(check_cast); |
| } |
| |
| void HandleInvoke(HInstruction* instruction) { |
| // If `instruction` can throw we have to presume all stores are visible. |
| const bool can_throw = instruction->CanThrow(); |
| // If we are in a try, even singletons are observable. |
| const bool can_throw_inside_a_try = can_throw && instruction->GetBlock()->IsTryBlock(); |
| SideEffects side_effects = instruction->GetSideEffects(); |
| ScopedArenaVector<ValueRecord>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| HBasicBlock* blk = instruction->GetBlock(); |
| // We don't need to do anything if the reference has not escaped at this point. |
| // This is true if either we (1) never escape or (2) sometimes escape but |
| // there is no possible execution where we have done so at this time. NB |
| // We count being in the excluded cohort as escaping. Technically, this is |
| // a bit over-conservative (since we can have multiple non-escaping calls |
| // before a single escaping one) but this simplifies everything greatly. |
| auto partial_singleton_did_not_escape = [](ReferenceInfo* ref_info, HBasicBlock* blk) { |
| DCHECK(ref_info->IsPartialSingleton()); |
| if (!ref_info->GetNoEscapeSubgraph()->ContainsBlock(blk)) { |
| return false; |
| } |
| ArrayRef<const ExecutionSubgraph::ExcludedCohort> cohorts = |
| ref_info->GetNoEscapeSubgraph()->GetExcludedCohorts(); |
| return std::none_of(cohorts.begin(), |
| cohorts.end(), |
| [&](const ExecutionSubgraph::ExcludedCohort& cohort) { |
| return cohort.PrecedesBlock(blk); |
| }); |
| }; |
| if (!can_throw_inside_a_try && |
| (ref_info->IsSingleton() || |
| // partial and we aren't currently escaping and we haven't escaped yet. |
| (ref_info->IsPartialSingleton() && partial_singleton_did_not_escape(ref_info, blk)))) { |
| // Singleton references cannot be seen by the callee. |
| } else { |
| if (can_throw || side_effects.DoesAnyRead() || side_effects.DoesAnyWrite()) { |
| // Previous stores may become visible (read) and/or impossible for LSE to track (write). |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| } |
| if (side_effects.DoesAnyWrite()) { |
| // The value may be clobbered. |
| heap_values[i].value = Value::PartialUnknown(heap_values[i].value); |
| } |
| } |
| } |
| } |
| |
| void VisitInvoke(HInvoke* invoke) override { |
| HandleInvoke(invoke); |
| } |
| |
| void VisitClinitCheck(HClinitCheck* clinit) override { |
| // Class initialization check can result in class initializer calling arbitrary methods. |
| HandleInvoke(clinit); |
| } |
| |
| void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitNewInstance(HNewInstance* new_instance) override { |
| // If we are in a try, even singletons are observable. |
| const bool inside_a_try = new_instance->GetBlock()->IsTryBlock(); |
| ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance); |
| if (ref_info == nullptr) { |
| // new_instance isn't used for field accesses. No need to process it. |
| return; |
| } |
| if (ref_info->IsSingletonAndRemovable() && !new_instance->NeedsChecks()) { |
| DCHECK(!new_instance->IsFinalizable()); |
| // new_instance can potentially be eliminated. |
| singleton_new_instances_.push_back(new_instance); |
| } |
| HBasicBlock* block = new_instance->GetBlock(); |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| ReferenceInfo* info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| HInstruction* ref = info->GetReference(); |
| size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset(); |
| if (ref == new_instance) { |
| if (offset >= mirror::kObjectHeaderSize || |
| MemberOffset(offset) == mirror::Object::MonitorOffset()) { |
| // Instance fields except the header fields are set to default heap values. |
| // The shadow$_monitor_ field is set to the default value however. |
| heap_values[i].value = Value::Default(); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| } else if (MemberOffset(offset) == mirror::Object::ClassOffset()) { |
| // The shadow$_klass_ field is special and has an actual value however. |
| heap_values[i].value = Value::ForInstruction(new_instance->GetLoadClass()); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| } |
| } else if (inside_a_try || IsEscapingObject(info, block, i)) { |
| // Since NewInstance can throw, we presume all previous stores could be visible. |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| } |
| } |
| } |
| |
| void VisitNewArray(HNewArray* new_array) override { |
| // If we are in a try, even singletons are observable. |
| const bool inside_a_try = new_array->GetBlock()->IsTryBlock(); |
| ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array); |
| if (ref_info == nullptr) { |
| // new_array isn't used for array accesses. No need to process it. |
| return; |
| } |
| if (ref_info->IsSingletonAndRemovable()) { |
| if (new_array->GetLength()->IsIntConstant() && |
| new_array->GetLength()->AsIntConstant()->GetValue() >= 0) { |
| // new_array can potentially be eliminated. |
| singleton_new_instances_.push_back(new_array); |
| } else { |
| // new_array may throw NegativeArraySizeException. Keep it. |
| } |
| } |
| HBasicBlock* block = new_array->GetBlock(); |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| HeapLocation* location = heap_location_collector_.GetHeapLocation(i); |
| ReferenceInfo* info = location->GetReferenceInfo(); |
| HInstruction* ref = info->GetReference(); |
| if (ref == new_array && location->GetIndex() != nullptr) { |
| // Array elements are set to default heap values. |
| heap_values[i].value = Value::Default(); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| } else if (inside_a_try || IsEscapingObject(info, block, i)) { |
| // Since NewArray can throw, we presume all previous stores could be visible. |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| } |
| } |
| } |
| |
| void VisitInstruction(HInstruction* instruction) override { |
| // Throwing instructions must be handled specially. |
| DCHECK(!instruction->CanThrow()); |
| } |
| |
| bool ShouldPerformPartialLSE() const { |
| return perform_partial_lse_ && !GetGraph()->IsCompilingOsr(); |
| } |
| |
| bool perform_partial_lse_; |
| |
| const HeapLocationCollector& heap_location_collector_; |
| |
| // Use local allocator for allocating memory. |
| ScopedArenaAllocator allocator_; |
| |
| // The number of unique phi_placeholders there possibly are |
| size_t num_phi_placeholders_; |
| |
| // One array of heap value records for each block. |
| ScopedArenaVector<ScopedArenaVector<ValueRecord>> heap_values_for_; |
| |
| // We record loads and stores for re-processing when we find a loop Phi placeholder |
| // with unknown value from a predecessor, and also for removing stores that are |
| // found to be dead, i.e. not marked in `kept_stores_` at the end. |
| struct LoadStoreRecord { |
| HInstruction* load_or_store; |
| size_t heap_location_index; |
| }; |
| ScopedArenaVector<LoadStoreRecord> loads_and_stores_; |
| |
| // We record the substitute instructions for loads that should be |
| // eliminated but may be used by heap locations. They'll be removed |
| // in the end. These are indexed by the load's id. |
| ScopedArenaVector<HInstruction*> substitute_instructions_for_loads_; |
| |
| // Value at the start of the given instruction for instructions which directly |
| // read from a heap-location (i.e. FieldGet). The mapping to heap-location is |
| // implicit through the fact that each instruction can only directly refer to |
| // a single heap-location. |
| ScopedArenaHashMap<HInstruction*, Value> intermediate_values_; |
| |
| // Record stores to keep in a bit vector indexed by instruction ID. |
| ArenaBitVector kept_stores_; |
| // When we need to keep all stores that feed a Phi placeholder, we just record the |
| // index of that placeholder for processing after graph traversal. |
| ArenaBitVector phi_placeholders_to_search_for_kept_stores_; |
| |
| // Loads that would require a loop Phi to replace are recorded for processing |
| // later as we do not have enough information from back-edges to determine if |
| // a suitable Phi can be found or created when we visit these loads. |
| ScopedArenaHashMap<HInstruction*, ValueRecord> loads_requiring_loop_phi_; |
| |
| // For stores, record the old value records that were replaced and the stored values. |
| struct StoreRecord { |
| ValueRecord old_value_record; |
| HInstruction* stored_value; |
| }; |
| // Small pre-allocated initial buffer avoids initializing a large one until it's really needed. |
| static constexpr size_t kStoreRecordsInitialBufferSize = 16; |
| std::pair<HInstruction*, StoreRecord> store_records_buffer_[kStoreRecordsInitialBufferSize]; |
| ScopedArenaHashMap<HInstruction*, StoreRecord> store_records_; |
| |
| // Replacements for Phi placeholders. |
| // The invalid heap value is used to mark Phi placeholders that cannot be replaced. |
| ScopedArenaVector<Value> phi_placeholder_replacements_; |
| |
| // Merged-unknowns that must have their predecessor values kept to ensure |
| // partially escaped values are written |
| ArenaBitVector kept_merged_unknowns_; |
| |
| ScopedArenaVector<HInstruction*> singleton_new_instances_; |
| |
| // The field infos for each heap location (if relevant). |
| ScopedArenaVector<const FieldInfo*> field_infos_; |
| |
| Phase current_phase_; |
| |
| friend class PartialLoadStoreEliminationHelper; |
| friend struct ScopedRestoreHeapValues; |
| |
| friend std::ostream& operator<<(std::ostream& os, const Value& v); |
| friend std::ostream& operator<<(std::ostream& os, const PriorValueHolder& v); |
| friend std::ostream& operator<<(std::ostream& oss, const LSEVisitor::Phase& phase); |
| |
| DISALLOW_COPY_AND_ASSIGN(LSEVisitor); |
| }; |
| |
| std::ostream& operator<<(std::ostream& oss, const LSEVisitor::PriorValueHolder& p) { |
| p.Dump(oss); |
| return oss; |
| } |
| |
| std::ostream& operator<<(std::ostream& oss, const LSEVisitor::Phase& phase) { |
| switch (phase) { |
| case LSEVisitor::Phase::kLoadElimination: |
| return oss << "kLoadElimination"; |
| case LSEVisitor::Phase::kStoreElimination: |
| return oss << "kStoreElimination"; |
| case LSEVisitor::Phase::kPartialElimination: |
| return oss << "kPartialElimination"; |
| } |
| } |
| |
| void LSEVisitor::PriorValueHolder::Dump(std::ostream& oss) const { |
| if (IsDefault()) { |
| oss << "Default"; |
| } else if (IsPhi()) { |
| oss << "Phi: " << GetPhiPlaceholder(); |
| } else { |
| oss << "Instruction: " << *GetInstruction(); |
| } |
| } |
| |
| constexpr LSEVisitor::PriorValueHolder::PriorValueHolder(Value val) |
| : value_(Marker{}) { |
| DCHECK(!val.IsInvalid() && !val.IsPureUnknown()); |
| if (val.IsPartialUnknown()) { |
| value_ = val.GetPriorValue().value_; |
| } else if (val.IsMergedUnknown() || val.NeedsPhi()) { |
| value_ = val.GetPhiPlaceholder(); |
| } else if (val.IsInstruction()) { |
| value_ = val.GetInstruction(); |
| } else { |
| DCHECK(val.IsDefault()); |
| } |
| } |
| |
| constexpr bool operator==(const LSEVisitor::Marker&, const LSEVisitor::Marker&) { |
| return true; |
| } |
| |
| constexpr bool operator==(const LSEVisitor::PriorValueHolder& p1, |
| const LSEVisitor::PriorValueHolder& p2) { |
| return p1.Equals(p2); |
| } |
| |
| constexpr bool operator==(const LSEVisitor::PhiPlaceholder& p1, |
| const LSEVisitor::PhiPlaceholder& p2) { |
| return p1.Equals(p2); |
| } |
| |
| constexpr bool operator==(const LSEVisitor::Value::NeedsLoopPhiMarker& p1, |
| const LSEVisitor::Value::NeedsLoopPhiMarker& p2) { |
| return p1.phi_ == p2.phi_; |
| } |
| |
| constexpr bool operator==(const LSEVisitor::Value::NeedsNonLoopPhiMarker& p1, |
| const LSEVisitor::Value::NeedsNonLoopPhiMarker& p2) { |
| return p1.phi_ == p2.phi_; |
| } |
| |
| constexpr bool operator==(const LSEVisitor::Value::MergedUnknownMarker& p1, |
| const LSEVisitor::Value::MergedUnknownMarker& p2) { |
| return p1.phi_ == p2.phi_; |
| } |
| |
| std::ostream& operator<<(std::ostream& oss, const LSEVisitor::PhiPlaceholder& p) { |
| p.Dump(oss); |
| return oss; |
| } |
| |
| LSEVisitor::Value LSEVisitor::PriorValueHolder::ToValue() const { |
| if (IsDefault()) { |
| return Value::Default(); |
| } else if (IsPhi()) { |
| return Value::ForLoopPhiPlaceholder(GetPhiPlaceholder()); |
| } else { |
| return Value::ForInstruction(GetInstruction()); |
| } |
| } |
| |
| constexpr bool LSEVisitor::Value::ExactEquals(LSEVisitor::Value other) const { |
| return value_ == other.value_; |
| } |
| |
| constexpr bool LSEVisitor::Value::Equals(LSEVisitor::Value other) const { |
| // Only valid values can be compared. |
| DCHECK(IsValid()); |
| DCHECK(other.IsValid()); |
| if (value_ == other.value_) { |
| // Note: Two unknown values are considered different. |
| return !IsUnknown(); |
| } else { |
| // Default is considered equal to zero-bit-pattern instructions. |
| return (IsDefault() && other.IsInstruction() && IsZeroBitPattern(other.GetInstruction())) || |
| (other.IsDefault() && IsInstruction() && IsZeroBitPattern(GetInstruction())); |
| } |
| } |
| |
| std::ostream& LSEVisitor::Value::Dump(std::ostream& os) const { |
| if (std::holds_alternative<LSEVisitor::Value::ValuelessType>(value_)) { |
| switch (GetValuelessType()) { |
| case ValuelessType::kDefault: |
| return os << "Default"; |
| case ValuelessType::kPureUnknown: |
| return os << "PureUnknown"; |
| case ValuelessType::kInvalid: |
| return os << "Invalid"; |
| } |
| } else if (IsPartialUnknown()) { |
| return os << "PartialUnknown[" << GetPriorValue() << "]"; |
| } else if (IsInstruction()) { |
| return os << "Instruction[id: " << GetInstruction()->GetId() |
| << ", block: " << GetInstruction()->GetBlock()->GetBlockId() << "]"; |
| } else if (IsMergedUnknown()) { |
| return os << "MergedUnknown[block: " << GetPhiPlaceholder().GetBlockId() |
| << ", heap_loc: " << GetPhiPlaceholder().GetHeapLocation() << "]"; |
| |
| } else if (NeedsLoopPhi()) { |
| return os << "NeedsLoopPhi[block: " << GetPhiPlaceholder().GetBlockId() |
| << ", heap_loc: " << GetPhiPlaceholder().GetHeapLocation() << "]"; |
| } else { |
| return os << "NeedsNonLoopPhi[block: " << GetPhiPlaceholder().GetBlockId() |
| << ", heap_loc: " << GetPhiPlaceholder().GetHeapLocation() << "]"; |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const LSEVisitor::Value& v) { |
| return v.Dump(os); |
| } |
| |
| LSEVisitor::LSEVisitor(HGraph* graph, |
| const HeapLocationCollector& heap_location_collector, |
| bool perform_partial_lse, |
| OptimizingCompilerStats* stats) |
| : HGraphDelegateVisitor(graph, stats), |
| perform_partial_lse_(perform_partial_lse), |
| heap_location_collector_(heap_location_collector), |
| allocator_(graph->GetArenaStack()), |
| num_phi_placeholders_(GetGraph()->GetBlocks().size() * |
| heap_location_collector_.GetNumberOfHeapLocations()), |
| heap_values_for_(graph->GetBlocks().size(), |
| ScopedArenaVector<ValueRecord>(allocator_.Adapter(kArenaAllocLSE)), |
| allocator_.Adapter(kArenaAllocLSE)), |
| loads_and_stores_(allocator_.Adapter(kArenaAllocLSE)), |
| // We may add new instructions (default values, Phis) but we're not adding loads |
| // or stores, so we shall not need to resize following vector and BitVector. |
| substitute_instructions_for_loads_(graph->GetCurrentInstructionId(), |
| nullptr, |
| allocator_.Adapter(kArenaAllocLSE)), |
| intermediate_values_(allocator_.Adapter(kArenaAllocLSE)), |
| kept_stores_(&allocator_, |
| /*start_bits=*/graph->GetCurrentInstructionId(), |
| /*expandable=*/false, |
| kArenaAllocLSE), |
| phi_placeholders_to_search_for_kept_stores_(&allocator_, |
| num_phi_placeholders_, |
| /*expandable=*/false, |
| kArenaAllocLSE), |
| loads_requiring_loop_phi_(allocator_.Adapter(kArenaAllocLSE)), |
| store_records_(store_records_buffer_, |
| kStoreRecordsInitialBufferSize, |
| allocator_.Adapter(kArenaAllocLSE)), |
| phi_placeholder_replacements_(num_phi_placeholders_, |
| Value::Invalid(), |
| allocator_.Adapter(kArenaAllocLSE)), |
| kept_merged_unknowns_(&allocator_, |
| /*start_bits=*/num_phi_placeholders_, |
| /*expandable=*/false, |
| kArenaAllocLSE), |
| singleton_new_instances_(allocator_.Adapter(kArenaAllocLSE)), |
| field_infos_(heap_location_collector_.GetNumberOfHeapLocations(), |
| allocator_.Adapter(kArenaAllocLSE)), |
| current_phase_(Phase::kLoadElimination) { |
| // Clear bit vectors. |
| phi_placeholders_to_search_for_kept_stores_.ClearAllBits(); |
| kept_stores_.ClearAllBits(); |
| } |
| |
| LSEVisitor::Value LSEVisitor::PrepareLoopValue(HBasicBlock* block, size_t idx) { |
| // If the pre-header value is known (which implies that the reference dominates this |
| // block), use a Phi placeholder for the value in the loop header. If all predecessors |
| // are later found to have a known value, we can replace loads from this location, |
| // either with the pre-header value or with a new Phi. For array locations, the index |
| // may be defined inside the loop but the only known value in that case should be the |
| // default value or a Phi placeholder that can be replaced only with the default value. |
| HLoopInformation* loop_info = block->GetLoopInformation(); |
| uint32_t pre_header_block_id = loop_info->GetPreHeader()->GetBlockId(); |
| Value pre_header_value = ReplacementOrValue(heap_values_for_[pre_header_block_id][idx].value); |
| if (pre_header_value.IsUnknown()) { |
| return pre_header_value; |
| } |
| if (kIsDebugBuild) { |
| // Check that the reference indeed dominates this loop. |
| HeapLocation* location = heap_location_collector_.GetHeapLocation(idx); |
| HInstruction* ref = location->GetReferenceInfo()->GetReference(); |
| CHECK(ref->GetBlock() != block && ref->GetBlock()->Dominates(block)) |
| << GetGraph()->PrettyMethod(); |
| // Check that the index, if defined inside the loop, tracks a default value |
| // or a Phi placeholder requiring a loop Phi. |
| HInstruction* index = location->GetIndex(); |
| if (index != nullptr && loop_info->Contains(*index->GetBlock())) { |
| CHECK(pre_header_value.NeedsLoopPhi() || pre_header_value.Equals(Value::Default())) |
| << GetGraph()->PrettyMethod() << " blk: " << block->GetBlockId() << " " |
| << pre_header_value; |
| } |
| } |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| return ReplacementOrValue(Value::ForLoopPhiPlaceholder(phi_placeholder)); |
| } |
| |
| LSEVisitor::Value LSEVisitor::PrepareLoopStoredBy(HBasicBlock* block, size_t idx) { |
| // Use the Phi placeholder for `stored_by` to make sure all incoming stores are kept |
| // if the value in the location escapes. This is not applicable to singletons that are |
| // defined inside the loop as they shall be dead in the loop header. |
| const ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo(); |
| const HInstruction* reference = ref_info->GetReference(); |
| // Finalizable objects always escape. |
| const bool is_finalizable = |
| reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable(); |
| if (ref_info->IsSingleton() && |
| block->GetLoopInformation()->Contains(*reference->GetBlock()) && |
| !is_finalizable) { |
| return Value::PureUnknown(); |
| } |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| return Value::ForLoopPhiPlaceholder(phi_placeholder); |
| } |
| |
| void LSEVisitor::PrepareLoopRecords(HBasicBlock* block) { |
| DCHECK(block->IsLoopHeader()); |
| int block_id = block->GetBlockId(); |
| HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader(); |
| ScopedArenaVector<ValueRecord>& pre_header_heap_values = |
| heap_values_for_[pre_header->GetBlockId()]; |
| size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| DCHECK_EQ(num_heap_locations, pre_header_heap_values.size()); |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block_id]; |
| DCHECK(heap_values.empty()); |
| |
| // Don't eliminate loads in irreducible loops. |
| if (block->GetLoopInformation()->IsIrreducible()) { |
| heap_values.resize(num_heap_locations, |
| {/*value=*/Value::Invalid(), /*stored_by=*/Value::PureUnknown()}); |
| // Also keep the stores before the loop header, including in blocks that were not visited yet. |
| bool is_osr = GetGraph()->IsCompilingOsr(); |
| for (size_t idx = 0u; idx != num_heap_locations; ++idx) { |
| heap_values[idx].value = |
| is_osr ? Value::PureUnknown() |
| : Value::MergedUnknown(GetPhiPlaceholder(block->GetBlockId(), idx)); |
| KeepStores(Value::ForLoopPhiPlaceholder(GetPhiPlaceholder(block->GetBlockId(), idx))); |
| } |
| return; |
| } |
| |
| // Fill `heap_values` based on values from pre-header. |
| heap_values.reserve(num_heap_locations); |
| for (size_t idx = 0u; idx != num_heap_locations; ++idx) { |
| heap_values.push_back({ PrepareLoopValue(block, idx), PrepareLoopStoredBy(block, idx) }); |
| } |
| } |
| |
| LSEVisitor::Value LSEVisitor::MergePredecessorValues(HBasicBlock* block, size_t idx) { |
| ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors()); |
| DCHECK(!predecessors.empty()); |
| Value merged_value = |
| ReplacementOrValue(heap_values_for_[predecessors[0]->GetBlockId()][idx].value); |
| for (size_t i = 1u, size = predecessors.size(); i != size; ++i) { |
| Value pred_value = |
| ReplacementOrValue(heap_values_for_[predecessors[i]->GetBlockId()][idx].value); |
| if (pred_value.Equals(merged_value)) { |
| // Value is the same. No need to update our merged value. |
| continue; |
| } else if (pred_value.IsUnknown() || merged_value.IsUnknown()) { |
| // If one is unknown and the other is a different type of unknown |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| merged_value = Value::MergedUnknown(phi_placeholder); |
| // We know that at least one of the merge points is unknown (and both are |
| // not pure-unknowns since that's captured above). This means that the |
| // overall value needs to be a MergedUnknown. Just return that. |
| break; |
| } else { |
| // There are conflicting known values. We may still be able to replace loads with a Phi. |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| // Propagate the need for a new loop Phi from all predecessors. |
| bool needs_loop_phi = merged_value.NeedsLoopPhi() || pred_value.NeedsLoopPhi(); |
| merged_value = ReplacementOrValue(Value::ForPhiPlaceholder(phi_placeholder, needs_loop_phi)); |
| } |
| } |
| DCHECK_IMPLIES(merged_value.IsPureUnknown(), block->GetPredecessors().size() <= 1) |
| << merged_value << " in " << GetGraph()->PrettyMethod(); |
| return merged_value; |
| } |
| |
| void LSEVisitor::MergePredecessorRecords(HBasicBlock* block) { |
| if (block->IsExitBlock()) { |
| // Exit block doesn't really merge values since the control flow ends in |
| // its predecessors. Each predecessor needs to make sure stores are kept |
| // if necessary. |
| return; |
| } |
| |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| DCHECK(heap_values.empty()); |
| size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| if (block->GetPredecessors().empty() || block->IsCatchBlock()) { |
| DCHECK_IMPLIES(block->GetPredecessors().empty(), block->IsEntryBlock()); |
| heap_values.resize(num_heap_locations, |
| {/*value=*/Value::PureUnknown(), /*stored_by=*/Value::PureUnknown()}); |
| return; |
| } |
| |
| heap_values.reserve(num_heap_locations); |
| for (size_t idx = 0u; idx != num_heap_locations; ++idx) { |
| Value merged_value = MergePredecessorValues(block, idx); |
| if (kIsDebugBuild) { |
| if (merged_value.NeedsPhi()) { |
| uint32_t block_id = merged_value.GetPhiPlaceholder().GetBlockId(); |
| CHECK(GetGraph()->GetBlocks()[block_id]->Dominates(block)); |
| } else if (merged_value.IsInstruction()) { |
| CHECK(merged_value.GetInstruction()->GetBlock()->Dominates(block)); |
| } |
| } |
| ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors()); |
| Value merged_stored_by = heap_values_for_[predecessors[0]->GetBlockId()][idx].stored_by; |
| for (size_t predecessor_idx = 1u; predecessor_idx != predecessors.size(); ++predecessor_idx) { |
| uint32_t predecessor_block_id = predecessors[predecessor_idx]->GetBlockId(); |
| Value stored_by = heap_values_for_[predecessor_block_id][idx].stored_by; |
| if ((!stored_by.IsUnknown() || !merged_stored_by.IsUnknown()) && |
| !merged_stored_by.Equals(stored_by)) { |
| // Use the Phi placeholder to track that we need to keep stores from all predecessors. |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| merged_stored_by = Value::ForNonLoopPhiPlaceholder(phi_placeholder); |
| break; |
| } |
| } |
| heap_values.push_back({ merged_value, merged_stored_by }); |
| } |
| } |
| |
| static HInstruction* FindOrConstructNonLoopPhi( |
| HBasicBlock* block, |
| const ScopedArenaVector<HInstruction*>& phi_inputs, |
| DataType::Type type) { |
| for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| HInstruction* phi = phi_it.Current(); |
| DCHECK_EQ(phi->InputCount(), phi_inputs.size()); |
| auto cmp = [](HInstruction* lhs, const HUserRecord<HInstruction*>& rhs) { |
| return lhs == rhs.GetInstruction(); |
| }; |
| if (std::equal(phi_inputs.begin(), phi_inputs.end(), phi->GetInputRecords().begin(), cmp)) { |
| return phi; |
| } |
| } |
| ArenaAllocator* allocator = block->GetGraph()->GetAllocator(); |
| HPhi* phi = new (allocator) HPhi(allocator, kNoRegNumber, phi_inputs.size(), type); |
| for (size_t i = 0, size = phi_inputs.size(); i != size; ++i) { |
| DCHECK_NE(phi_inputs[i]->GetType(), DataType::Type::kVoid) << phi_inputs[i]->DebugName(); |
| phi->SetRawInputAt(i, phi_inputs[i]); |
| } |
| block->AddPhi(phi); |
| if (type == DataType::Type::kReference) { |
| // Update reference type information. Pass invalid handles, these are not used for Phis. |
| ReferenceTypePropagation rtp_fixup(block->GetGraph(), |
| Handle<mirror::DexCache>(), |
| /* is_first_run= */ false); |
| rtp_fixup.Visit(phi); |
| } |
| return phi; |
| } |
| |
| void LSEVisitor::MaterializeNonLoopPhis(PhiPlaceholder phi_placeholder, DataType::Type type) { |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| size_t idx = phi_placeholder.GetHeapLocation(); |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| // Reuse the same vector for collecting phi inputs. |
| ScopedArenaVector<HInstruction*> phi_inputs(allocator.Adapter(kArenaAllocLSE)); |
| |
| ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| work_queue.push_back(phi_placeholder); |
| while (!work_queue.empty()) { |
| PhiPlaceholder current_phi_placeholder = work_queue.back(); |
| if (phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)].IsValid()) { |
| // This Phi placeholder was pushed to the `work_queue` followed by another Phi placeholder |
| // that directly or indirectly depends on it, so it was already processed as part of the |
| // other Phi placeholder's dependencies before this one got back to the top of the stack. |
| work_queue.pop_back(); |
| continue; |
| } |
| uint32_t current_block_id = current_phi_placeholder.GetBlockId(); |
| HBasicBlock* current_block = blocks[current_block_id]; |
| DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| |
| // Non-loop Phis cannot depend on a loop Phi, so we should not see any loop header here. |
| // And the only way for such merged value to reach a different heap location is through |
| // a load at which point we materialize the Phi. Therefore all non-loop Phi placeholders |
| // seen here are tied to one heap location. |
| DCHECK(!current_block->IsLoopHeader()) |
| << current_phi_placeholder << " phase: " << current_phase_; |
| DCHECK_EQ(current_phi_placeholder.GetHeapLocation(), idx); |
| |
| phi_inputs.clear(); |
| for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| Value pred_value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| DCHECK(!pred_value.IsPureUnknown()) << pred_value << " block " << current_block->GetBlockId() |
| << " pred: " << predecessor->GetBlockId(); |
| if (pred_value.NeedsNonLoopPhi() || |
| (current_phase_ == Phase::kPartialElimination && pred_value.IsMergedUnknown())) { |
| // We need to process the Phi placeholder first. |
| work_queue.push_back(pred_value.GetPhiPlaceholder()); |
| } else if (pred_value.IsDefault()) { |
| phi_inputs.push_back(GetDefaultValue(type)); |
| } else { |
| DCHECK(pred_value.IsInstruction()) << pred_value << " block " << current_block->GetBlockId() |
| << " pred: " << predecessor->GetBlockId(); |
| phi_inputs.push_back(pred_value.GetInstruction()); |
| } |
| } |
| if (phi_inputs.size() == current_block->GetPredecessors().size()) { |
| // All inputs are available. Find or construct the Phi replacement. |
| phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)] = |
| Value::ForInstruction(FindOrConstructNonLoopPhi(current_block, phi_inputs, type)); |
| // Remove the block from the queue. |
| DCHECK_EQ(current_phi_placeholder, work_queue.back()); |
| work_queue.pop_back(); |
| } |
| } |
| } |
| |
| void LSEVisitor::VisitGetLocation(HInstruction* instruction, size_t idx) { |
| DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); |
| uint32_t block_id = instruction->GetBlock()->GetBlockId(); |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block_id]; |
| ValueRecord& record = heap_values[idx]; |
| if (instruction->IsFieldAccess()) { |
| RecordFieldInfo(&instruction->GetFieldInfo(), idx); |
| } |
| DCHECK(record.value.IsUnknown() || record.value.Equals(ReplacementOrValue(record.value))); |
| // If we are unknown, we either come from somewhere untracked or we can reconstruct the partial |
| // value. |
| DCHECK(!record.value.IsPureUnknown() || |
| heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo() == nullptr || |
| !heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo()->IsPartialSingleton()) |
| << "In " << GetGraph()->PrettyMethod() << ": " << record.value << " for " << *instruction; |
| intermediate_values_.insert({instruction, record.value}); |
| loads_and_stores_.push_back({ instruction, idx }); |
| if ((record.value.IsDefault() || record.value.NeedsNonLoopPhi()) && |
| !IsDefaultOrPhiAllowedForLoad(instruction)) { |
| record.value = Value::PureUnknown(); |
| } |
| if (record.value.IsDefault()) { |
| KeepStores(record.stored_by); |
| HInstruction* constant = GetDefaultValue(instruction->GetType()); |
| AddRemovedLoad(instruction, constant); |
| record.value = Value::ForInstruction(constant); |
| } else if (record.value.IsUnknown()) { |
| // Load isn't eliminated. Put the load as the value into the HeapLocation. |
| // This acts like GVN but with better aliasing analysis. |
| Value old_value = record.value; |
| record.value = Value::ForInstruction(instruction); |
| KeepStoresIfAliasedToLocation(heap_values, idx); |
| KeepStores(old_value); |
| } else if (record.value.NeedsLoopPhi()) { |
| // We do not know yet if the value is known for all back edges. Record for future processing. |
| loads_requiring_loop_phi_.insert(std::make_pair(instruction, record)); |
| } else { |
| // This load can be eliminated but we may need to construct non-loop Phis. |
| if (record.value.NeedsNonLoopPhi()) { |
| MaterializeNonLoopPhis(record.value.GetPhiPlaceholder(), instruction->GetType()); |
| record.value = Replacement(record.value); |
| } |
| HInstruction* heap_value = FindSubstitute(record.value.GetInstruction()); |
| AddRemovedLoad(instruction, heap_value); |
| } |
| } |
| |
| void LSEVisitor::VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value) { |
| DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); |
| DCHECK(!IsStore(value)) << value->DebugName(); |
| if (instruction->IsFieldAccess()) { |
| RecordFieldInfo(&instruction->GetFieldInfo(), idx); |
| } |
| // value may already have a substitute. |
| value = FindSubstitute(value); |
| HBasicBlock* block = instruction->GetBlock(); |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| ValueRecord& record = heap_values[idx]; |
| DCHECK_IMPLIES(record.value.IsInstruction(), |
| FindSubstitute(record.value.GetInstruction()) == record.value.GetInstruction()); |
| |
| if (record.value.Equals(value)) { |
| // Store into the heap location with the same value. |
| // This store can be eliminated right away. |
| block->RemoveInstruction(instruction); |
| return; |
| } |
| |
| store_records_.insert(std::make_pair(instruction, StoreRecord{record, value})); |
| loads_and_stores_.push_back({ instruction, idx }); |
| |
| // If the `record.stored_by` specified a store from this block, it shall be removed |
| // at the end, except for throwing ArraySet; it cannot be marked for keeping in |
| // `kept_stores_` anymore after we update the `record.stored_by` below. |
| DCHECK(!record.stored_by.IsInstruction() || |
| record.stored_by.GetInstruction()->GetBlock() != block || |
| record.stored_by.GetInstruction()->CanThrow() || |
| !kept_stores_.IsBitSet(record.stored_by.GetInstruction()->GetId())); |
| |
| if (instruction->CanThrow()) { |
| // Previous stores can become visible. |
| HandleThrowingInstruction(instruction); |
| // We cannot remove a possibly throwing store. |
| // After marking it as kept, it does not matter if we track it in `stored_by` or not. |
| kept_stores_.SetBit(instruction->GetId()); |
| } |
| |
| // Update the record. |
| auto it = loads_requiring_loop_phi_.find(value); |
| if (it != loads_requiring_loop_phi_.end()) { |
| // Propapate the Phi placeholder to the record. |
| record.value = it->second.value; |
| DCHECK(record.value.NeedsLoopPhi()); |
| } else { |
| record.value = Value::ForInstruction(value); |
| } |
| // Track the store in the value record. If the value is loaded or needed after |
| // return/deoptimization later, this store isn't really redundant. |
| record.stored_by = Value::ForInstruction(instruction); |
| |
| // This store may kill values in other heap locations due to aliasing. |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| if (i == idx || |
| heap_values[i].value.IsUnknown() || |
| CanValueBeKeptIfSameAsNew(heap_values[i].value, value, instruction) || |
| !heap_location_collector_.MayAlias(i, idx)) { |
| continue; |
| } |
| // Kill heap locations that may alias and keep previous stores to these locations. |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::PureUnknown(); |
| heap_values[i].value = Value::PartialUnknown(heap_values[i].value); |
| } |
| } |
| |
| void LSEVisitor::VisitBasicBlock(HBasicBlock* block) { |
| // Populate the heap_values array for this block. |
| // TODO: try to reuse the heap_values array from one predecessor if possible. |
| if (block->IsLoopHeader()) { |
| PrepareLoopRecords(block); |
| } else { |
| MergePredecessorRecords(block); |
| } |
| // Visit instructions. |
| HGraphVisitor::VisitBasicBlock(block); |
| } |
| |
| bool LSEVisitor::MayAliasOnBackEdge(HBasicBlock* loop_header, size_t idx1, size_t idx2) const { |
| DCHECK_NE(idx1, idx2); |
| DCHECK(loop_header->IsLoopHeader()); |
| if (heap_location_collector_.MayAlias(idx1, idx2)) { |
| return true; |
| } |
| // For array locations with index defined inside the loop, include |
| // all other locations in the array, even those that LSA declares |
| // non-aliasing, such as `a[i]` and `a[i + 1]`, as they may actually |
| // refer to the same locations for different iterations. (LSA's |
| // `ComputeMayAlias()` does not consider different loop iterations.) |
| HeapLocation* loc1 = heap_location_collector_.GetHeapLocation(idx1); |
| HeapLocation* loc2 = heap_location_collector_.GetHeapLocation(idx2); |
| if (loc1->IsArray() && |
| loc2->IsArray() && |
| HeapLocationCollector::CanReferencesAlias(loc1->GetReferenceInfo(), |
| loc2->GetReferenceInfo())) { |
| HLoopInformation* loop_info = loop_header->GetLoopInformation(); |
| if (loop_info->Contains(*loc1->GetIndex()->GetBlock()) || |
| loop_info->Contains(*loc2->GetIndex()->GetBlock())) { |
| // Consider the locations aliasing. Do not optimize the case where both indexes |
| // are loop invariants defined inside the loop, rely on LICM to pull them out. |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool LSEVisitor::TryReplacingLoopPhiPlaceholderWithDefault( |
| PhiPlaceholder phi_placeholder, |
| DataType::Type type, |
| /*inout*/ ArenaBitVector* phi_placeholders_to_materialize) { |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| ArenaBitVector visited(&allocator, |
| /*start_bits=*/ num_phi_placeholders_, |
| /*expandable=*/ false, |
| kArenaAllocLSE); |
| visited.ClearAllBits(); |
| ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| |
| // Use depth first search to check if any non-Phi input is unknown. |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| visited.SetBit(PhiPlaceholderIndex(phi_placeholder)); |
| work_queue.push_back(phi_placeholder); |
| while (!work_queue.empty()) { |
| PhiPlaceholder current_phi_placeholder = work_queue.back(); |
| work_queue.pop_back(); |
| HBasicBlock* block = blocks[current_phi_placeholder.GetBlockId()]; |
| DCHECK_GE(block->GetPredecessors().size(), 2u); |
| size_t idx = current_phi_placeholder.GetHeapLocation(); |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| if (value.NeedsPhi()) { |
| // Visit the predecessor Phi placeholder if it's not visited yet. |
| if (!visited.IsBitSet(PhiPlaceholderIndex(value))) { |
| visited.SetBit(PhiPlaceholderIndex(value)); |
| work_queue.push_back(value.GetPhiPlaceholder()); |
| } |
| } else if (!value.Equals(Value::Default())) { |
| return false; // Report failure. |
| } |
| } |
| if (block->IsLoopHeader()) { |
| // For back-edges we need to check all locations that write to the same array, |
| // even those that LSA declares non-aliasing, such as `a[i]` and `a[i + 1]` |
| // as they may actually refer to the same locations for different iterations. |
| for (size_t i = 0; i != num_heap_locations; ++i) { |
| if (i == idx || |
| heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo() != |
| heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo()) { |
| continue; |
| } |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| // Check if there were any writes to this location. |
| // Note: We could simply process the values but due to the vector operation |
| // carve-out (see `IsDefaultOrPhiAllowedForLoad()`), a vector load can cause |
| // the value to change and not be equal to default. To work around this and |
| // allow replacing the non-vector load of loop-invariant default values |
| // anyway, skip over paths that do not have any writes. |
| ValueRecord record = heap_values_for_[predecessor->GetBlockId()][i]; |
| while (record.stored_by.NeedsLoopPhi() && |
| blocks[record.stored_by.GetPhiPlaceholder().GetBlockId()]->IsLoopHeader()) { |
| HLoopInformation* loop_info = |
| blocks[record.stored_by.GetPhiPlaceholder().GetBlockId()]->GetLoopInformation(); |
| record = heap_values_for_[loop_info->GetPreHeader()->GetBlockId()][i]; |
| } |
| Value value = ReplacementOrValue(record.value); |
| if (value.NeedsPhi()) { |
| // Visit the predecessor Phi placeholder if it's not visited yet. |
| if (!visited.IsBitSet(PhiPlaceholderIndex(value))) { |
| visited.SetBit(PhiPlaceholderIndex(value)); |
| work_queue.push_back(value.GetPhiPlaceholder()); |
| } |
| } else if (!value.Equals(Value::Default())) { |
| return false; // Report failure. |
| } |
| } |
| } |
| } |
| } |
| |
| // Record replacement and report success. |
| HInstruction* replacement = GetDefaultValue(type); |
| for (uint32_t phi_placeholder_index : visited.Indexes()) { |
| DCHECK(phi_placeholder_replacements_[phi_placeholder_index].IsInvalid()); |
| phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement); |
| } |
| phi_placeholders_to_materialize->Subtract(&visited); |
| return true; |
| } |
| |
| bool LSEVisitor::TryReplacingLoopPhiPlaceholderWithSingleInput( |
| PhiPlaceholder phi_placeholder, |
| /*inout*/ ArenaBitVector* phi_placeholders_to_materialize) { |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| ArenaBitVector visited(&allocator, |
| /*start_bits=*/ num_phi_placeholders_, |
| /*expandable=*/ false, |
| kArenaAllocLSE); |
| visited.ClearAllBits(); |
| ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| |
| // Use depth first search to check if any non-Phi input is unknown. |
| HInstruction* replacement = nullptr; |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| visited.SetBit(PhiPlaceholderIndex(phi_placeholder)); |
| work_queue.push_back(phi_placeholder); |
| while (!work_queue.empty()) { |
| PhiPlaceholder current_phi_placeholder = work_queue.back(); |
| work_queue.pop_back(); |
| HBasicBlock* current_block = blocks[current_phi_placeholder.GetBlockId()]; |
| DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| size_t idx = current_phi_placeholder.GetHeapLocation(); |
| for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| if (value.NeedsPhi()) { |
| // Visit the predecessor Phi placeholder if it's not visited yet. |
| if (!visited.IsBitSet(PhiPlaceholderIndex(value))) { |
| visited.SetBit(PhiPlaceholderIndex(value)); |
| work_queue.push_back(value.GetPhiPlaceholder()); |
| } |
| } else { |
| if (!value.IsInstruction() || |
| (replacement != nullptr && replacement != value.GetInstruction())) { |
| return false; // Report failure. |
| } |
| replacement = value.GetInstruction(); |
| } |
| } |
| // While `TryReplacingLoopPhiPlaceholderWithDefault()` has special treatment |
| // for back-edges, it is not needed here. When looking for a single input |
| // instruction coming from before the loop, the array index must also be |
| // defined before the loop and the aliasing analysis done by LSA is sufficient. |
| // Any writes of a different value with an index that is not loop invariant |
| // would invalidate the heap location in `VisitSetLocation()`. |
| } |
| |
| // Record replacement and report success. |
| DCHECK(replacement != nullptr); |
| for (uint32_t phi_placeholder_index : visited.Indexes()) { |
| DCHECK(phi_placeholder_replacements_[phi_placeholder_index].IsInvalid()); |
| phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement); |
| } |
| phi_placeholders_to_materialize->Subtract(&visited); |
| return true; |
| } |
| |
| std::optional<LSEVisitor::PhiPlaceholder> LSEVisitor::FindLoopPhisToMaterialize( |
| PhiPlaceholder phi_placeholder, |
| /*inout*/ ArenaBitVector* phi_placeholders_to_materialize, |
| DataType::Type type, |
| bool can_use_default_or_phi) { |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| |
| // Use depth first search to check if any non-Phi input is unknown. |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| phi_placeholders_to_materialize->ClearAllBits(); |
| phi_placeholders_to_materialize->SetBit(PhiPlaceholderIndex(phi_placeholder)); |
| work_queue.push_back(phi_placeholder); |
| while (!work_queue.empty()) { |
| PhiPlaceholder current_phi_placeholder = work_queue.back(); |
| work_queue.pop_back(); |
| if (!phi_placeholders_to_materialize->IsBitSet(PhiPlaceholderIndex(current_phi_placeholder))) { |
| // Replaced by `TryReplacingLoopPhiPlaceholderWith{Default,SingleInput}()`. |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)].Equals( |
| Value::Default())); |
| continue; |
| } |
| HBasicBlock* current_block = blocks[current_phi_placeholder.GetBlockId()]; |
| DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| size_t idx = current_phi_placeholder.GetHeapLocation(); |
| if (current_block->IsLoopHeader()) { |
| // If the index is defined inside the loop, it may reference different elements of the |
| // array on each iteration. Since we do not track if all elements of an array are set |
| // to the same value explicitly, the only known value in pre-header can be the default |
| // value from NewArray or a Phi placeholder depending on a default value from some outer |
| // loop pre-header. This Phi placeholder can be replaced only by the default value. |
| HInstruction* index = heap_location_collector_.GetHeapLocation(idx)->GetIndex(); |
| if (index != nullptr && current_block->GetLoopInformation()->Contains(*index->GetBlock())) { |
| if (can_use_default_or_phi && |
| TryReplacingLoopPhiPlaceholderWithDefault(current_phi_placeholder, |
| type, |
| phi_placeholders_to_materialize)) { |
| continue; |
| } else { |
| return current_phi_placeholder; // Report the loop Phi placeholder. |
| } |
| } |
| // A similar situation arises with the index defined outside the loop if we cannot use |
| // default values or Phis, i.e. for vector loads, as we can only replace the Phi |
| // placeholder with a single instruction defined before the loop. |
| if (!can_use_default_or_phi) { |
| DCHECK(index != nullptr); // Vector operations are array operations. |
| if (TryReplacingLoopPhiPlaceholderWithSingleInput(current_phi_placeholder, |
| phi_placeholders_to_materialize)) { |
| continue; |
| } else { |
| return current_phi_placeholder; // Report the loop Phi placeholder. |
| } |
| } |
| } |
| for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[predecessor->GetBlockId()]; |
| Value value = ReplacementOrValue(heap_values[idx].value); |
| if (value.IsUnknown()) { |
| // We cannot create a Phi for this loop Phi placeholder. |
| return current_phi_placeholder; // Report the loop Phi placeholder. |
| } |
| // For arrays, the location may have been clobbered by writes to other locations |
| // in a loop that LSA does not consider aliasing, such as `a[i]` and `a[i + 1]`. |
| if (current_block->IsLoopHeader() && |
| predecessor != current_block->GetLoopInformation()->GetPreHeader() && |
| heap_location_collector_.GetHeapLocation(idx)->GetIndex() != nullptr) { |
| for (size_t i = 0, size = heap_values.size(); i != size; ++i) { |
| if (i != idx && |
| !heap_values[i].stored_by.IsUnknown() && |
| MayAliasOnBackEdge(current_block, idx, i)) { |
| // We cannot create a Phi for this loop Phi placeholder. |
| return current_phi_placeholder; |
| } |
| } |
| } |
| if (value.NeedsLoopPhi()) { |
| // Visit the predecessor Phi placeholder if it's not visited yet. |
| if (!phi_placeholders_to_materialize->IsBitSet(PhiPlaceholderIndex(value))) { |
| phi_placeholders_to_materialize->SetBit(PhiPlaceholderIndex(value)); |
| work_queue.push_back(value.GetPhiPlaceholder()); |
| LSE_VLOG << "For materialization of " << phi_placeholder |
| << " we need to materialize " << value; |
| } |
| } |
| } |
| } |
| |
| // There are no unknown values feeding this Phi, so we can construct the Phis if needed. |
| return std::nullopt; |
| } |
| |
| bool LSEVisitor::MaterializeLoopPhis(const ScopedArenaVector<size_t>& phi_placeholder_indexes, |
| DataType::Type type) { |
| return MaterializeLoopPhis(ArrayRef<const size_t>(phi_placeholder_indexes), type); |
| } |
| |
| bool LSEVisitor::MaterializeLoopPhis(ArrayRef<const size_t> phi_placeholder_indexes, |
| DataType::Type type) { |
| // Materialize all predecessors that do not need a loop Phi and determine if all inputs |
| // other than loop Phis are the same. |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| std::optional<Value> other_value = std::nullopt; |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index); |
| HBasicBlock* block = blocks[phi_placeholder.GetBlockId()]; |
| DCHECK_GE(block->GetPredecessors().size(), 2u); |
| size_t idx = phi_placeholder.GetHeapLocation(); |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| if (value.NeedsNonLoopPhi()) { |
| DCHECK(current_phase_ == Phase::kLoadElimination || |
| current_phase_ == Phase::kPartialElimination) |
| << current_phase_; |
| MaterializeNonLoopPhis(value.GetPhiPlaceholder(), type); |
| value = Replacement(value); |
| } |
| if (!value.NeedsLoopPhi()) { |
| if (!other_value) { |
| // The first other value we found. |
| other_value = value; |
| } else if (!other_value->IsInvalid()) { |
| // Check if the current `value` differs from the previous `other_value`. |
| if (!value.Equals(*other_value)) { |
| other_value = Value::Invalid(); |
| } |
| } |
| } |
| } |
| } |
| |
| DCHECK(other_value.has_value()); |
| if (!other_value->IsInvalid()) { |
| HInstruction* replacement = |
| (other_value->IsDefault()) ? GetDefaultValue(type) : other_value->GetInstruction(); |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement); |
| } |
| return true; |
| } |
| |
| // If we're materializing only a single Phi, try to match it with an existing Phi. |
| // (Matching multiple Phis would need investigation. It may be prohibitively slow.) |
| // This also covers the case when after replacing a previous set of Phi placeholders, |
| // we continue with a Phi placeholder that does not really need a loop Phi anymore. |
| if (phi_placeholder_indexes.size() == 1u) { |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_indexes[0]); |
| size_t idx = phi_placeholder.GetHeapLocation(); |
| HBasicBlock* block = GetGraph()->GetBlocks()[phi_placeholder.GetBlockId()]; |
| ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors()); |
| for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| HInstruction* phi = phi_it.Current(); |
| DCHECK_EQ(phi->InputCount(), predecessors.size()); |
| ArrayRef<HUserRecord<HInstruction*>> phi_inputs = phi->GetInputRecords(); |
| auto cmp = [=](const HUserRecord<HInstruction*>& lhs, HBasicBlock* rhs) { |
| Value value = ReplacementOrValue(heap_values_for_[rhs->GetBlockId()][idx].value); |
| if (value.NeedsPhi()) { |
| DCHECK(value.GetPhiPlaceholder() == phi_placeholder); |
| return lhs.GetInstruction() == phi; |
| } else { |
| DCHECK(value.IsDefault() || value.IsInstruction()); |
| return value.Equals(lhs.GetInstruction()); |
| } |
| }; |
| if (std::equal(phi_inputs.begin(), phi_inputs.end(), predecessors.begin(), cmp)) { |
| phi_placeholder_replacements_[phi_placeholder_indexes[0]] = Value::ForInstruction(phi); |
| return true; |
| } |
| } |
| } |
| |
| if (current_phase_ == Phase::kStoreElimination) { |
| // We're not creating Phis during the final store elimination phase. |
| return false; |
| } |
| |
| // There are different inputs to the Phi chain. Create the Phis. |
| ArenaAllocator* allocator = GetGraph()->GetAllocator(); |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index); |
| HBasicBlock* block = blocks[phi_placeholder.GetBlockId()]; |
| CHECK_GE(block->GetPredecessors().size(), 2u); |
| phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction( |
| new (allocator) HPhi(allocator, kNoRegNumber, block->GetPredecessors().size(), type)); |
| } |
| // Fill the Phi inputs. |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index); |
| HBasicBlock* block = blocks[phi_placeholder.GetBlockId()]; |
| size_t idx = phi_placeholder.GetHeapLocation(); |
| HInstruction* phi = phi_placeholder_replacements_[phi_placeholder_index].GetInstruction(); |
| DCHECK(DataType::IsTypeConversionImplicit(type, phi->GetType())) |
| << "type=" << type << " vs phi-type=" << phi->GetType(); |
| for (size_t i = 0, size = block->GetPredecessors().size(); i != size; ++i) { |
| HBasicBlock* predecessor = block->GetPredecessors()[i]; |
| Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| HInstruction* input = value.IsDefault() ? GetDefaultValue(type) : value.GetInstruction(); |
| DCHECK_NE(input->GetType(), DataType::Type::kVoid); |
| phi->SetRawInputAt(i, input); |
| DCHECK(DataType::IsTypeConversionImplicit(input->GetType(), phi->GetType())) |
| << " input: " << input->GetType() << value << " phi: " << phi->GetType() |
| << " request: " << type; |
| } |
| } |
| // Add the Phis to their blocks. |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index); |
| HBasicBlock* block = blocks[phi_placeholder.GetBlockId()]; |
| block->AddPhi(phi_placeholder_replacements_[phi_placeholder_index].GetInstruction()->AsPhi()); |
| } |
| if (type == DataType::Type::kReference) { |
| ScopedArenaAllocator local_allocator(allocator_.GetArenaStack()); |
| ScopedArenaVector<HInstruction*> phis(local_allocator.Adapter(kArenaAllocLSE)); |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| phis.push_back(phi_placeholder_replacements_[phi_placeholder_index].GetInstruction()); |
| } |
| // Update reference type information. Pass invalid handles, these are not used for Phis. |
| ReferenceTypePropagation rtp_fixup(GetGraph(), |
| Handle<mirror::DexCache>(), |
| /* is_first_run= */ false); |
| rtp_fixup.Visit(ArrayRef<HInstruction* const>(phis)); |
| } |
| |
| return true; |
| } |
| |
| bool LSEVisitor::MaterializeLoopPhis(const ArenaBitVector& phi_placeholders_to_materialize, |
| DataType::Type type) { |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| |
| // We want to recognize when a subset of these loop Phis that do not need other |
| // loop Phis, i.e. a transitive closure, has only one other instruction as an input, |
| // i.e. that instruction can be used instead of each Phi in the set. See for example |
| // Main.testLoop{5,6,7,8}() in the test 530-checker-lse. To do that, we shall |
| // materialize these loop Phis from the smallest transitive closure. |
| |
| // Construct a matrix of loop phi placeholder dependencies. To reduce the memory usage, |
| // assign new indexes to the Phi placeholders, making the matrix dense. |
| ScopedArenaVector<size_t> matrix_indexes(num_phi_placeholders_, |
| static_cast<size_t>(-1), // Invalid. |
| allocator.Adapter(kArenaAllocLSE)); |
| ScopedArenaVector<size_t> phi_placeholder_indexes(allocator.Adapter(kArenaAllocLSE)); |
| size_t num_phi_placeholders = phi_placeholders_to_materialize.NumSetBits(); |
| phi_placeholder_indexes.reserve(num_phi_placeholders); |
| for (uint32_t marker_index : phi_placeholders_to_materialize.Indexes()) { |
| matrix_indexes[marker_index] = phi_placeholder_indexes.size(); |
| phi_placeholder_indexes.push_back(marker_index); |
| } |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| ScopedArenaVector<ArenaBitVector*> dependencies(allocator.Adapter(kArenaAllocLSE)); |
| dependencies.reserve(num_phi_placeholders); |
| for (size_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| static constexpr bool kExpandable = false; |
| dependencies.push_back( |
| ArenaBitVector::Create(&allocator, num_phi_placeholders, kExpandable, kArenaAllocLSE)); |
| ArenaBitVector* current_dependencies = dependencies.back(); |
| current_dependencies->ClearAllBits(); |
| current_dependencies->SetBit(matrix_index); // Count the Phi placeholder as its own dependency. |
| PhiPlaceholder current_phi_placeholder = |
| GetPhiPlaceholderAt(phi_placeholder_indexes[matrix_index]); |
| HBasicBlock* current_block = blocks[current_phi_placeholder.GetBlockId()]; |
| DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| size_t idx = current_phi_placeholder.GetHeapLocation(); |
| for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| Value pred_value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| if (pred_value.NeedsLoopPhi()) { |
| size_t pred_value_index = PhiPlaceholderIndex(pred_value); |
| DCHECK(phi_placeholder_replacements_[pred_value_index].IsInvalid()); |
| DCHECK_NE(matrix_indexes[pred_value_index], static_cast<size_t>(-1)); |
| current_dependencies->SetBit(matrix_indexes[PhiPlaceholderIndex(pred_value)]); |
| } |
| } |
| } |
| |
| // Use the Floyd-Warshall algorithm to determine all transitive dependencies. |
| for (size_t k = 0; k != num_phi_placeholders; ++k) { |
| for (size_t i = 0; i != num_phi_placeholders; ++i) { |
| for (size_t j = 0; j != num_phi_placeholders; ++j) { |
| if (dependencies[i]->IsBitSet(k) && dependencies[k]->IsBitSet(j)) { |
| dependencies[i]->SetBit(j); |
| } |
| } |
| } |
| } |
| |
| // Count the number of transitive dependencies for each replaceable Phi placeholder. |
| ScopedArenaVector<size_t> num_dependencies(allocator.Adapter(kArenaAllocLSE)); |
| num_dependencies.reserve(num_phi_placeholders); |
| for (size_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| num_dependencies.push_back(dependencies[matrix_index]->NumSetBits()); |
| } |
| |
| // Pick a Phi placeholder with the smallest number of transitive dependencies and |
| // materialize it and its dependencies. Repeat until we have materialized all. |
| ScopedArenaVector<size_t> current_subset(allocator.Adapter(kArenaAllocLSE)); |
| current_subset.reserve(num_phi_placeholders); |
| size_t remaining_phi_placeholders = num_phi_placeholders; |
| while (remaining_phi_placeholders != 0u) { |
| auto it = std::min_element(num_dependencies.begin(), num_dependencies.end()); |
| DCHECK_LE(*it, remaining_phi_placeholders); |
| size_t current_matrix_index = std::distance(num_dependencies.begin(), it); |
| ArenaBitVector* current_dependencies = dependencies[current_matrix_index]; |
| size_t current_num_dependencies = num_dependencies[current_matrix_index]; |
| current_subset.clear(); |
| for (uint32_t matrix_index : current_dependencies->Indexes()) { |
| current_subset.push_back(phi_placeholder_indexes[matrix_index]); |
| } |
| if (!MaterializeLoopPhis(current_subset, type)) { |
| DCHECK_EQ(current_phase_, Phase::kStoreElimination); |
| // This is the final store elimination phase and we shall not be able to eliminate any |
| // stores that depend on the current subset, so mark these Phi placeholders unreplaceable. |
| for (uint32_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| if (dependencies[matrix_index]->IsBitSet(current_matrix_index)) { |
| DCHECK(phi_placeholder_replacements_[phi_placeholder_indexes[matrix_index]].IsInvalid()); |
| phi_placeholder_replacements_[phi_placeholder_indexes[matrix_index]] = |
| Value::PureUnknown(); |
| } |
| } |
| return false; |
| } |
| for (uint32_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| if (current_dependencies->IsBitSet(matrix_index)) { |
| // Mark all dependencies as done by incrementing their `num_dependencies[.]`, |
| // so that they shall never be the minimum again. |
| num_dependencies[matrix_index] = num_phi_placeholders; |
| } else if (dependencies[matrix_index]->IsBitSet(current_matrix_index)) { |
| // Remove dependencies from other Phi placeholders. |
| dependencies[matrix_index]->Subtract(current_dependencies); |
| num_dependencies[matrix_index] -= current_num_dependencies; |
| } |
| } |
| remaining_phi_placeholders -= current_num_dependencies; |
| } |
| return true; |
| } |
| |
| bool LSEVisitor::FullyMaterializePhi(PhiPlaceholder phi_placeholder, DataType::Type type) { |
| ScopedArenaAllocator saa(GetGraph()->GetArenaStack()); |
| ArenaBitVector abv(&saa, num_phi_placeholders_, false, ArenaAllocKind::kArenaAllocLSE); |
| auto res = |
| FindLoopPhisToMaterialize(phi_placeholder, &abv, type, /* can_use_default_or_phi=*/true); |
| CHECK(!res.has_value()) << *res; |
| return MaterializeLoopPhis(abv, type); |
| } |
| |
| std::optional<LSEVisitor::PhiPlaceholder> LSEVisitor::TryToMaterializeLoopPhis( |
| PhiPlaceholder phi_placeholder, HInstruction* load) { |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| |
| // Find Phi placeholders to materialize. |
| ArenaBitVector phi_placeholders_to_materialize( |
| &allocator, num_phi_placeholders_, /*expandable=*/ false, kArenaAllocLSE); |
| phi_placeholders_to_materialize.ClearAllBits(); |
| DataType::Type type = load->GetType(); |
| bool can_use_default_or_phi = IsDefaultOrPhiAllowedForLoad(load); |
| std::optional<PhiPlaceholder> loop_phi_with_unknown_input = FindLoopPhisToMaterialize( |
| phi_placeholder, &phi_placeholders_to_materialize, type, can_use_default_or_phi); |
| if (loop_phi_with_unknown_input) { |
| DCHECK_GE(GetGraph() |
| ->GetBlocks()[loop_phi_with_unknown_input->GetBlockId()] |
| ->GetPredecessors() |
| .size(), |
| 2u); |
| return loop_phi_with_unknown_input; // Return failure. |
| } |
| |
| DCHECK_EQ(current_phase_, Phase::kLoadElimination); |
| bool success = MaterializeLoopPhis(phi_placeholders_to_materialize, type); |
| DCHECK(success); |
| |
| // Report success. |
| return std::nullopt; |
| } |
| |
| // Re-process loads and stores in successors from the `loop_phi_with_unknown_input`. This may |
| // find one or more loads from `loads_requiring_loop_phi_` which cannot be replaced by Phis and |
| // propagate the load(s) as the new value(s) to successors; this may uncover new elimination |
| // opportunities. If we find no such load, we shall at least propagate an unknown value to some |
| // heap location that is needed by another loop Phi placeholder. |
| void LSEVisitor::ProcessLoopPhiWithUnknownInput(PhiPlaceholder loop_phi_with_unknown_input) { |
| size_t loop_phi_with_unknown_input_index = PhiPlaceholderIndex(loop_phi_with_unknown_input); |
| DCHECK(phi_placeholder_replacements_[loop_phi_with_unknown_input_index].IsInvalid()); |
| phi_placeholder_replacements_[loop_phi_with_unknown_input_index] = |
| Value::MergedUnknown(loop_phi_with_unknown_input); |
| |
| uint32_t block_id = loop_phi_with_unknown_input.GetBlockId(); |
| const ArenaVector<HBasicBlock*> reverse_post_order = GetGraph()->GetReversePostOrder(); |
| size_t reverse_post_order_index = 0; |
| size_t reverse_post_order_size = reverse_post_order.size(); |
| size_t loads_and_stores_index = 0u; |
| size_t loads_and_stores_size = loads_and_stores_.size(); |
| |
| // Skip blocks and instructions before the block containing the loop phi with unknown input. |
| DCHECK_NE(reverse_post_order_index, reverse_post_order_size); |
| while (reverse_post_order[reverse_post_order_index]->GetBlockId() != block_id) { |
| HBasicBlock* block = reverse_post_order[reverse_post_order_index]; |
| while (loads_and_stores_index != loads_and_stores_size && |
| loads_and_stores_[loads_and_stores_index].load_or_store->GetBlock() == block) { |
| ++loads_and_stores_index; |
| } |
| ++reverse_post_order_index; |
| DCHECK_NE(reverse_post_order_index, reverse_post_order_size); |
| } |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| // Reuse one temporary vector for all remaining blocks. |
| size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| ScopedArenaVector<Value> local_heap_values(allocator.Adapter(kArenaAllocLSE)); |
| |
| auto get_initial_value = [this](HBasicBlock* block, size_t idx) { |
| Value value; |
| if (block->IsLoopHeader()) { |
| if (block->GetLoopInformation()->IsIrreducible()) { |
| PhiPlaceholder placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| value = Value::MergedUnknown(placeholder); |
| } else { |
| value = PrepareLoopValue(block, idx); |
| } |
| } else { |
| value = MergePredecessorValues(block, idx); |
| } |
| DCHECK(value.IsUnknown() || ReplacementOrValue(value).Equals(value)); |
| return value; |
| }; |
| |
| // Process remaining blocks and instructions. |
| bool found_unreplaceable_load = false; |
| bool replaced_heap_value_with_unknown = false; |
| for (; reverse_post_order_index != reverse_post_order_size; ++reverse_post_order_index) { |
| HBasicBlock* block = reverse_post_order[reverse_post_order_index]; |
| if (block->IsExitBlock()) { |
| continue; |
| } |
| |
| // We shall reconstruct only the heap values that we need for processing loads and stores. |
| local_heap_values.clear(); |
| local_heap_values.resize(num_heap_locations, Value::Invalid()); |
| |
| for (; loads_and_stores_index != loads_and_stores_size; ++loads_and_stores_index) { |
| HInstruction* load_or_store = loads_and_stores_[loads_and_stores_index].load_or_store; |
| size_t idx = loads_and_stores_[loads_and_stores_index].heap_location_index; |
| if (load_or_store->GetBlock() != block) { |
| break; // End of instructions from the current block. |
| } |
| bool is_store = load_or_store->GetSideEffects().DoesAnyWrite(); |
| DCHECK_EQ(is_store, IsStore(load_or_store)); |
| HInstruction* stored_value = nullptr; |
| if (is_store) { |
| auto it = store_records_.find(load_or_store); |
| DCHECK(it != store_records_.end()); |
| stored_value = it->second.stored_value; |
| } |
| auto it = loads_requiring_loop_phi_.find( |
| stored_value != nullptr ? stored_value : load_or_store); |
| if (it == loads_requiring_loop_phi_.end()) { |
| continue; // This load or store never needed a loop Phi. |
| } |
| ValueRecord& record = it->second; |
| if (is_store) { |
| // Process the store by updating `local_heap_values[idx]`. The last update shall |
| // be propagated to the `heap_values[idx].value` if it previously needed a loop Phi |
| // at the end of the block. |
| Value replacement = ReplacementOrValue(record.value); |
| if (replacement.NeedsLoopPhi()) { |
| // No replacement yet, use the Phi placeholder from the load. |
| DCHECK(record.value.NeedsLoopPhi()); |
| local_heap_values[idx] = record.value; |
| } else { |
| // If the load fetched a known value, use it, otherwise use the load. |
| local_heap_values[idx] = Value::ForInstruction( |
| replacement.IsUnknown() ? stored_value : replacement.GetInstruction()); |
| } |
| } else { |
| // Process the load unless it has previously been marked unreplaceable. |
| if (record.value.NeedsLoopPhi()) { |
| if (local_heap_values[idx].IsInvalid()) { |
| local_heap_values[idx] = get_initial_value(block, idx); |
| } |
| if (local_heap_values[idx].IsUnknown()) { |
| // This load cannot be replaced. Keep stores that feed the Phi placeholder |
| // (no aliasing since then, otherwise the Phi placeholder would not have been |
| // propagated as a value to this load) and store the load as the new heap value. |
| found_unreplaceable_load = true; |
| KeepStores(record.value); |
| record.value = Value::MergedUnknown(record.value.GetPhiPlaceholder()); |
| local_heap_values[idx] = Value::ForInstruction(load_or_store); |
| } else if (local_heap_values[idx].NeedsLoopPhi()) { |
| // The load may still be replaced with a Phi later. |
| DCHECK(local_heap_values[idx].Equals(record.value)); |
| } else { |
| // This load can be eliminated but we may need to construct non-loop Phis. |
| if (local_heap_values[idx].NeedsNonLoopPhi()) { |
| MaterializeNonLoopPhis(local_heap_values[idx].GetPhiPlaceholder(), |
| load_or_store->GetType()); |
| local_heap_values[idx] = Replacement(local_heap_values[idx]); |
| } |
| record.value = local_heap_values[idx]; |
| HInstruction* heap_value = local_heap_values[idx].GetInstruction(); |
| AddRemovedLoad(load_or_store, heap_value); |
| } |
| } |
| } |
| } |
| |
| // All heap values that previously needed a loop Phi at the end of the block |
| // need to be updated for processing successors. |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| for (size_t idx = 0; idx != num_heap_locations; ++idx) { |
| if (heap_values[idx].value.NeedsLoopPhi()) { |
| if (local_heap_values[idx].IsValid()) { |
| heap_values[idx].value = local_heap_values[idx]; |
| } else { |
| heap_values[idx].value = get_initial_value(block, idx); |
| } |
| if (heap_values[idx].value.IsUnknown()) { |
| replaced_heap_value_with_unknown = true; |
| } |
| } |
| } |
| } |
| DCHECK(found_unreplaceable_load || replaced_heap_value_with_unknown); |
| } |
| |
| void LSEVisitor::ProcessLoadsRequiringLoopPhis() { |
| // Note: The vector operations carve-out (see `IsDefaultOrPhiAllowedForLoad()`) can possibly |
| // make the result of the processing depend on the order in which we process these loads. |
| // To make sure the result is deterministic, iterate over `loads_and_stores_` instead of the |
| // `loads_requiring_loop_phi_` indexed by non-deterministic pointers. |
| for (const LoadStoreRecord& load_store_record : loads_and_stores_) { |
| auto it = loads_requiring_loop_phi_.find(load_store_record.load_or_store); |
| if (it == loads_requiring_loop_phi_.end()) { |
| continue; |
| } |
| HInstruction* load = it->first; |
| ValueRecord& record = it->second; |
| while (record.value.NeedsLoopPhi() && |
| phi_placeholder_replacements_[PhiPlaceholderIndex(record.value)].IsInvalid()) { |
| std::optional<PhiPlaceholder> loop_phi_with_unknown_input = |
| TryToMaterializeLoopPhis(record.value.GetPhiPlaceholder(), load); |
| DCHECK_EQ(loop_phi_with_unknown_input.has_value(), |
| phi_placeholder_replacements_[PhiPlaceholderIndex(record.value)].IsInvalid()); |
| if (loop_phi_with_unknown_input) { |
| DCHECK_GE(GetGraph() |
| ->GetBlocks()[loop_phi_with_unknown_input->GetBlockId()] |
| ->GetPredecessors() |
| .size(), |
| 2u); |
| ProcessLoopPhiWithUnknownInput(*loop_phi_with_unknown_input); |
| } |
| } |
| // The load could have been marked as unreplaceable (and stores marked for keeping) |
| // or marked for replacement with an instruction in ProcessLoopPhiWithUnknownInput(). |
| DCHECK(record.value.IsUnknown() || record.value.IsInstruction() || record.value.NeedsLoopPhi()); |
| if (record.value.NeedsLoopPhi()) { |
| record.value = Replacement(record.value); |
| HInstruction* heap_value = record.value.GetInstruction(); |
| AddRemovedLoad(load, heap_value); |
| } |
| } |
| } |
| |
| void LSEVisitor::SearchPhiPlaceholdersForKeptStores() { |
| ScopedArenaVector<uint32_t> work_queue(allocator_.Adapter(kArenaAllocLSE)); |
| size_t start_size = phi_placeholders_to_search_for_kept_stores_.NumSetBits(); |
| work_queue.reserve(((start_size * 3u) + 1u) / 2u); // Reserve 1.5x start size, rounded up. |
| for (uint32_t index : phi_placeholders_to_search_for_kept_stores_.Indexes()) { |
| work_queue.push_back(index); |
| } |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| std::optional<ArenaBitVector> not_kept_stores; |
| if (stats_) { |
| not_kept_stores.emplace(GetGraph()->GetAllocator(), |
| kept_stores_.GetBitSizeOf(), |
| false, |
| ArenaAllocKind::kArenaAllocLSE); |
| } |
| while (!work_queue.empty()) { |
| uint32_t cur_phi_idx = work_queue.back(); |
| PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(cur_phi_idx); |
| // Only writes to partial-escapes need to be specifically kept. |
| bool is_partial_kept_merged_unknown = |
| kept_merged_unknowns_.IsBitSet(cur_phi_idx) && |
| heap_location_collector_.GetHeapLocation(phi_placeholder.GetHeapLocation()) |
| ->GetReferenceInfo() |
| ->IsPartialSingleton(); |
| work_queue.pop_back(); |
| size_t idx = phi_placeholder.GetHeapLocation(); |
| HBasicBlock* block = blocks[phi_placeholder.GetBlockId()]; |
| DCHECK(block != nullptr) << cur_phi_idx << " phi: " << phi_placeholder |
| << " (blocks: " << blocks.size() << ")"; |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[predecessor->GetBlockId()]; |
| // For loop back-edges we must also preserve all stores to locations that |
| // may alias with the location `idx`. |
| // TODO: Add tests cases around this. |
| bool is_back_edge = |
| block->IsLoopHeader() && predecessor != block->GetLoopInformation()->GetPreHeader(); |
| size_t start = is_back_edge ? 0u : idx; |
| size_t end = is_back_edge ? heap_values.size() : idx + 1u; |
| for (size_t i = start; i != end; ++i) { |
| Value stored_by = heap_values[i].stored_by; |
| if (!stored_by.IsUnknown() && (i == idx || MayAliasOnBackEdge(block, idx, i))) { |
| if (stored_by.NeedsPhi()) { |
| size_t phi_placeholder_index = PhiPlaceholderIndex(stored_by); |
| if (is_partial_kept_merged_unknown) { |
| // Propagate merged-unknown keep since otherwise this might look |
| // like a partial escape we can remove. |
| kept_merged_unknowns_.SetBit(phi_placeholder_index); |
| } |
| if (!phi_placeholders_to_search_for_kept_stores_.IsBitSet(phi_placeholder_index)) { |
| phi_placeholders_to_search_for_kept_stores_.SetBit(phi_placeholder_index); |
| work_queue.push_back(phi_placeholder_index); |
| } |
| } else { |
| DCHECK(IsStore(stored_by.GetInstruction())); |
| ReferenceInfo* ri = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| DCHECK(ri != nullptr) << "No heap value for " << stored_by.GetInstruction()->DebugName() |
| << " id: " << stored_by.GetInstruction()->GetId() << " block: " |
| << stored_by.GetInstruction()->GetBlock()->GetBlockId(); |
| if (!is_partial_kept_merged_unknown && IsPartialNoEscape(predecessor, idx)) { |
| if (not_kept_stores) { |
| not_kept_stores->SetBit(stored_by.GetInstruction()->GetId()); |
| } |
| } else { |
| kept_stores_.SetBit(stored_by.GetInstruction()->GetId()); |
| } |
| } |
| } |
| } |
| } |
| } |
| if (not_kept_stores) { |
| // a - b := (a & ~b) |
| not_kept_stores->Subtract(&kept_stores_); |
| auto num_removed = not_kept_stores->NumSetBits(); |
| MaybeRecordStat(stats_, MethodCompilationStat::kPartialStoreRemoved, num_removed); |
| } |
| } |
| |
| void LSEVisitor::UpdateValueRecordForStoreElimination(/*inout*/ValueRecord* value_record) { |
| while (value_record->stored_by.IsInstruction() && |
| !kept_stores_.IsBitSet(value_record->stored_by.GetInstruction()->GetId())) { |
| auto it = store_records_.find(value_record->stored_by.GetInstruction()); |
| DCHECK(it != store_records_.end()); |
| *value_record = it->second.old_value_record; |
| } |
| if (value_record->stored_by.NeedsPhi() && |
| !phi_placeholders_to_search_for_kept_stores_.IsBitSet( |
| PhiPlaceholderIndex(value_record->stored_by))) { |
| // Some stores feeding this heap location may have been eliminated. Use the `stored_by` |
| // Phi placeholder to recalculate the actual value. |
| value_record->value = value_record->stored_by; |
| } |
| value_record->value = ReplacementOrValue(value_record->value); |
| if (value_record->value.NeedsNonLoopPhi()) { |
| // Treat all Phi placeholders as requiring loop Phis at this point. |
| // We do not want MaterializeLoopPhis() to call MaterializeNonLoopPhis(). |
| value_record->value = Value::ForLoopPhiPlaceholder(value_record->value.GetPhiPlaceholder()); |
| } |
| } |
| |
| void LSEVisitor::FindOldValueForPhiPlaceholder(PhiPlaceholder phi_placeholder, |
| DataType::Type type) { |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| ArenaBitVector visited(&allocator, |
| /*start_bits=*/ num_phi_placeholders_, |
| /*expandable=*/ false, |
| kArenaAllocLSE); |
| visited.ClearAllBits(); |
| |
| // Find Phi placeholders to try and match against existing Phis or other replacement values. |
| ArenaBitVector phi_placeholders_to_materialize( |
| &allocator, num_phi_placeholders_, /*expandable=*/ false, kArenaAllocLSE); |
| phi_placeholders_to_materialize.ClearAllBits(); |
| std::optional<PhiPlaceholder> loop_phi_with_unknown_input = FindLoopPhisToMaterialize( |
| phi_placeholder, &phi_placeholders_to_materialize, type, /*can_use_default_or_phi=*/true); |
| if (loop_phi_with_unknown_input) { |
| DCHECK_GE(GetGraph() |
| ->GetBlocks()[loop_phi_with_unknown_input->GetBlockId()] |
| ->GetPredecessors() |
| .size(), |
| 2u); |
| // Mark the unreplacable placeholder as well as the input Phi placeholder as unreplaceable. |
| phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)] = Value::PureUnknown(); |
| phi_placeholder_replacements_[PhiPlaceholderIndex(*loop_phi_with_unknown_input)] = |
| Value::PureUnknown(); |
| return; |
| } |
| |
| DCHECK_EQ(current_phase_, Phase::kStoreElimination); |
| bool success = MaterializeLoopPhis(phi_placeholders_to_materialize, type); |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsValid()); |
| DCHECK_EQ(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsUnknown(), |
| !success); |
| } |
| |
| struct ScopedRestoreHeapValues { |
| public: |
| ScopedRestoreHeapValues(ArenaStack* alloc, |
| size_t num_heap_locs, |
| ScopedArenaVector<ScopedArenaVector<LSEVisitor::ValueRecord>>& to_restore) |
| : alloc_(alloc), |
| updated_values_(alloc_.Adapter(kArenaAllocLSE)), |
| to_restore_(to_restore) { |
| updated_values_.reserve(num_heap_locs * to_restore_.size()); |
| } |
| |
| ~ScopedRestoreHeapValues() { |
| for (const auto& rec : updated_values_) { |
| to_restore_[rec.blk_id][rec.heap_loc].value = rec.val_; |
| } |
| } |
| |
| template<typename Func> |
| void ForEachRecord(Func func) { |
| for (size_t blk_id : Range(to_restore_.size())) { |
| for (size_t heap_loc : Range(to_restore_[blk_id].size())) { |
| LSEVisitor::ValueRecord* vr = &to_restore_[blk_id][heap_loc]; |
| LSEVisitor::Value initial = vr->value; |
| func(vr); |
| if (!vr->value.ExactEquals(initial)) { |
| updated_values_.push_back({blk_id, heap_loc, initial}); |
| } |
| } |
| } |
| } |
| |
| private: |
| struct UpdateRecord { |
| size_t blk_id; |
| size_t heap_loc; |
| LSEVisitor::Value val_; |
| }; |
| ScopedArenaAllocator alloc_; |
| ScopedArenaVector<UpdateRecord> updated_values_; |
| ScopedArenaVector<ScopedArenaVector<LSEVisitor::ValueRecord>>& to_restore_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ScopedRestoreHeapValues); |
| }; |
| |
| void LSEVisitor::FindStoresWritingOldValues() { |
| // Partial LSE relies on knowing the real heap-values not the |
| // store-replacement versions so we need to restore the map after removing |
| // stores. |
| ScopedRestoreHeapValues heap_vals(allocator_.GetArenaStack(), |
| heap_location_collector_.GetNumberOfHeapLocations(), |
| heap_values_for_); |
| // The Phi placeholder replacements have so far been used for eliminating loads, |
| // tracking values that would be stored if all stores were kept. As we want to |
| // compare actual old values after removing unmarked stores, prune the Phi |
| // placeholder replacements that can be fed by values we may not actually store. |
| // Replacements marked as unknown can be kept as they are fed by some unknown |
| // value and would end up as unknown again if we recalculated them. |
| for (size_t i = 0, size = phi_placeholder_replacements_.size(); i != size; ++i) { |
| if (!phi_placeholder_replacements_[i].IsUnknown() && |
| !phi_placeholders_to_search_for_kept_stores_.IsBitSet(i)) { |
| phi_placeholder_replacements_[i] = Value::Invalid(); |
| } |
| } |
| |
| // Update heap values at end of blocks. |
| heap_vals.ForEachRecord([&](ValueRecord* rec) { |
| UpdateValueRecordForStoreElimination(rec); |
| }); |
| |
| if (kIsDebugBuild) { |
| heap_vals.ForEachRecord([](ValueRecord* rec) { |
| DCHECK(!rec->value.NeedsNonLoopPhi()) << rec->value; |
| }); |
| } |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| // Mark the stores we want to eliminate in a separate bit vector. |
| ArenaBitVector eliminated_stores(&allocator, |
| /*start_bits=*/ GetGraph()->GetCurrentInstructionId(), |
| /*expandable=*/ false, |
| kArenaAllocLSE); |
| eliminated_stores.ClearAllBits(); |
| |
| for (auto& entry : store_records_) { |
| HInstruction* store = entry.first; |
| StoreRecord& store_record = entry.second; |
| if (!kept_stores_.IsBitSet(store->GetId())) { |
| continue; // Ignore stores that are not kept. |
| } |
| UpdateValueRecordForStoreElimination(&store_record.old_value_record); |
| if (store_record.old_value_record.value.NeedsPhi()) { |
| DataType::Type type = store_record.stored_value->GetType(); |
| FindOldValueForPhiPlaceholder(store_record.old_value_record.value.GetPhiPlaceholder(), type); |
| store_record.old_value_record.value = ReplacementOrValue(store_record.old_value_record.value); |
| } |
| DCHECK(!store_record.old_value_record.value.NeedsPhi()); |
| HInstruction* stored_value = FindSubstitute(store_record.stored_value); |
| if (store_record.old_value_record.value.Equals(stored_value)) { |
| eliminated_stores.SetBit(store->GetId()); |
| } |
| } |
| |
| // Commit the stores to eliminate by removing them from `kept_stores_`. |
| kept_stores_.Subtract(&eliminated_stores); |
| } |
| |
| void LSEVisitor::Run() { |
| // 1. Process blocks and instructions in reverse post order. |
| for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) { |
| VisitBasicBlock(block); |
| } |
| |
| // 2. Process loads that require loop Phis, trying to find/create replacements. |
| current_phase_ = Phase::kLoadElimination; |
| ProcessLoadsRequiringLoopPhis(); |
| |
| // 3. Determine which stores to keep and which to eliminate. |
| current_phase_ = Phase::kStoreElimination; |
| // Finish marking stores for keeping. |
| SearchPhiPlaceholdersForKeptStores(); |
| |
| // Find stores that write the same value as is already present in the location. |
| FindStoresWritingOldValues(); |
| |
| // 4. Replace loads and remove unnecessary stores and singleton allocations. |
| FinishFullLSE(); |
| |
| // 5. Move partial escapes down and fixup with PHIs. |
| current_phase_ = Phase::kPartialElimination; |
| MovePartialEscapes(); |
| } |
| |
| // Clear unknown loop-phi results. Here we'll be able to use partial-unknowns so we need to |
| // retry all of them with more information about where they come from. |
| void LSEVisitor::PrepareForPartialPhiComputation() { |
| std::replace_if( |
| phi_placeholder_replacements_.begin(), |
| phi_placeholder_replacements_.end(), |
| [](const Value& val) { return !val.IsDefault() && !val.IsInstruction(); }, |
| Value::Invalid()); |
| } |
| |
| class PartialLoadStoreEliminationHelper { |
| public: |
| PartialLoadStoreEliminationHelper(LSEVisitor* lse, ScopedArenaAllocator* alloc) |
| : lse_(lse), |
| alloc_(alloc), |
| new_ref_phis_(alloc_->Adapter(kArenaAllocLSE)), |
| heap_refs_(alloc_->Adapter(kArenaAllocLSE)), |
| max_preds_per_block_((*std::max_element(GetGraph()->GetActiveBlocks().begin(), |
| GetGraph()->GetActiveBlocks().end(), |
| [](HBasicBlock* a, HBasicBlock* b) { |
| return a->GetNumberOfPredecessors() < |
| b->GetNumberOfPredecessors(); |
| })) |
| ->GetNumberOfPredecessors()), |
| materialization_blocks_(GetGraph()->GetBlocks().size() * max_preds_per_block_, |
| nullptr, |
| alloc_->Adapter(kArenaAllocLSE)), |
| first_materialization_block_id_(GetGraph()->GetBlocks().size()) { |
| size_t num_partial_singletons = lse_->heap_location_collector_.CountPartialSingletons(); |
| heap_refs_.reserve(num_partial_singletons); |
| new_ref_phis_.reserve(num_partial_singletons * GetGraph()->GetBlocks().size()); |
| CollectInterestingHeapRefs(); |
| } |
| |
| ~PartialLoadStoreEliminationHelper() { |
| if (heap_refs_.empty()) { |
| return; |
| } |
| ReferenceTypePropagation rtp_fixup(GetGraph(), |
| Handle<mirror::DexCache>(), |
| /* is_first_run= */ false); |
| rtp_fixup.Visit(ArrayRef<HInstruction* const>(new_ref_phis_)); |
| GetGraph()->ClearLoopInformation(); |
| GetGraph()->ClearDominanceInformation(); |
| GetGraph()->ClearReachabilityInformation(); |
| GetGraph()->BuildDominatorTree(); |
| GetGraph()->ComputeReachabilityInformation(); |
| } |
| |
| class IdxToHeapLoc { |
| public: |
| explicit IdxToHeapLoc(const HeapLocationCollector* hlc) : collector_(hlc) {} |
| HeapLocation* operator()(size_t idx) const { |
| return collector_->GetHeapLocation(idx); |
| } |
| |
| private: |
| const HeapLocationCollector* collector_; |
| }; |
| |
| |
| class HeapReferenceData { |
| public: |
| using LocIterator = IterationRange<TransformIterator<BitVector::IndexIterator, IdxToHeapLoc>>; |
| HeapReferenceData(PartialLoadStoreEliminationHelper* helper, |
| HNewInstance* new_inst, |
| const ExecutionSubgraph* subgraph, |
| ScopedArenaAllocator* alloc) |
| : new_instance_(new_inst), |
| helper_(helper), |
| heap_locs_(alloc, |
| helper->lse_->heap_location_collector_.GetNumberOfHeapLocations(), |
| /* expandable= */ false, |
| kArenaAllocLSE), |
| materializations_( |
| // We generally won't need to create too many materialization blocks and we can expand |
| // this as needed so just start off with 2x. |
| 2 * helper->lse_->GetGraph()->GetBlocks().size(), |
| nullptr, |
| alloc->Adapter(kArenaAllocLSE)), |
| collector_(helper->lse_->heap_location_collector_), |
| subgraph_(subgraph) {} |
| |
| LocIterator IterateLocations() { |
| auto idxs = heap_locs_.Indexes(); |
| return MakeTransformRange(idxs, IdxToHeapLoc(&collector_)); |
| } |
| |
| void AddHeapLocation(size_t idx) { |
| heap_locs_.SetBit(idx); |
| } |
| |
| const ExecutionSubgraph* GetNoEscapeSubgraph() const { |
| return subgraph_; |
| } |
| |
| bool IsPostEscape(HBasicBlock* blk) { |
| return std::any_of( |
| subgraph_->GetExcludedCohorts().cbegin(), |
| subgraph_->GetExcludedCohorts().cend(), |
| [&](const ExecutionSubgraph::ExcludedCohort& ec) { return ec.PrecedesBlock(blk); }); |
| } |
| |
| bool InEscapeCohort(HBasicBlock* blk) { |
| return std::any_of( |
| subgraph_->GetExcludedCohorts().cbegin(), |
| subgraph_->GetExcludedCohorts().cend(), |
| [&](const ExecutionSubgraph::ExcludedCohort& ec) { return ec.ContainsBlock(blk); }); |
| } |
| |
| bool BeforeAllEscapes(HBasicBlock* b) { |
| return std::none_of(subgraph_->GetExcludedCohorts().cbegin(), |
| subgraph_->GetExcludedCohorts().cend(), |
| [&](const ExecutionSubgraph::ExcludedCohort& ec) { |
| return ec.PrecedesBlock(b) || ec.ContainsBlock(b); |
| }); |
| } |
| |
| HNewInstance* OriginalNewInstance() const { |
| return new_instance_; |
| } |
| |
| // Collect and replace all uses. We need to perform this twice since we will |
| // generate PHIs and additional uses as we create the default-values for |
| // pred-gets. These values might be other references that are also being |
| // partially eliminated. By running just the replacement part again we are |
| // able to avoid having to keep another whole in-progress partial map |
| // around. Since we will have already handled all the other uses in the |
| // first pass the second one will be quite fast. |
| void FixupUses(bool first_pass) { |
| ScopedArenaAllocator saa(GetGraph()->GetArenaStack()); |
| // Replace uses with materialized values. |
| ScopedArenaVector<InstructionUse<HInstruction>> to_replace(saa.Adapter(kArenaAllocLSE)); |
| ScopedArenaVector<HInstruction*> to_remove(saa.Adapter(kArenaAllocLSE)); |
| // Do we need to add a constructor-fence. |
| ScopedArenaVector<InstructionUse<HConstructorFence>> constructor_fences( |
| saa.Adapter(kArenaAllocLSE)); |
| ScopedArenaVector<InstructionUse<HInstruction>> to_predicate(saa.Adapter(kArenaAllocLSE)); |
| |
| CollectReplacements(to_replace, to_remove, constructor_fences, to_predicate); |
| |
| if (!first_pass) { |
| // If another partial creates new references they can only be in Phis or pred-get defaults |
| // so they must be in the to_replace group. |
| DCHECK(to_predicate.empty()); |
| DCHECK(constructor_fences.empty()); |
| DCHECK(to_remove.empty()); |
| } |
| |
| ReplaceInput(to_replace); |
| RemoveAndReplaceInputs(to_remove); |
| CreateConstructorFences(constructor_fences); |
| PredicateInstructions(to_predicate); |
| |
| CHECK(OriginalNewInstance()->GetUses().empty()) |
| << OriginalNewInstance()->GetUses() << ", " << OriginalNewInstance()->GetEnvUses(); |
| } |
| |
| void AddMaterialization(HBasicBlock* blk, HInstruction* ins) { |
| if (blk->GetBlockId() >= materializations_.size()) { |
| // Make sure the materialization array is large enough, try to avoid |
| // re-sizing too many times by giving extra space. |
| materializations_.resize(blk->GetBlockId() * 2, nullptr); |
| } |
| DCHECK(materializations_[blk->GetBlockId()] == nullptr) |
| << "Already have a materialization in block " << blk->GetBlockId() << ": " |
| << *materializations_[blk->GetBlockId()] << " when trying to set materialization to " |
| << *ins; |
| materializations_[blk->GetBlockId()] = ins; |
| LSE_VLOG << "In block " << blk->GetBlockId() << " materialization is " << *ins; |
| helper_->NotifyNewMaterialization(ins); |
| } |
| |
| bool HasMaterialization(HBasicBlock* blk) const { |
| return blk->GetBlockId() < materializations_.size() && |
| materializations_[blk->GetBlockId()] != nullptr; |
| } |
| |
| HInstruction* GetMaterialization(HBasicBlock* blk) const { |
| if (materializations_.size() <= blk->GetBlockId() || |
| materializations_[blk->GetBlockId()] == nullptr) { |
| // This must be a materialization block added after the partial LSE of |
| // the current reference finished. Since every edge can only have at |
| // most one materialization block added to it we can just check the |
| // blocks predecessor. |
| DCHECK(helper_->IsMaterializationBlock(blk)); |
| blk = helper_->FindDominatingNonMaterializationBlock(blk); |
| DCHECK(!helper_->IsMaterializationBlock(blk)); |
| } |
| DCHECK_GT(materializations_.size(), blk->GetBlockId()); |
| DCHECK(materializations_[blk->GetBlockId()] != nullptr); |
| return materializations_[blk->GetBlockId()]; |
| } |
| |
| void GenerateMaterializationValueFromPredecessors(HBasicBlock* blk) { |
| DCHECK(std::none_of(GetNoEscapeSubgraph()->GetExcludedCohorts().begin(), |
| GetNoEscapeSubgraph()->GetExcludedCohorts().end(), |
| [&](const ExecutionSubgraph::ExcludedCohort& cohort) { |
| return cohort.IsEntryBlock(blk); |
| })); |
| DCHECK(!HasMaterialization(blk)); |
| if (blk->IsExitBlock()) { |
| return; |
| } else if (blk->IsLoopHeader()) { |
| // See comment in execution_subgraph.h. Currently we act as though every |
| // allocation for partial elimination takes place in the entry block. |
| // This simplifies the analysis by making it so any escape cohort |
| // expands to contain any loops it is a part of. This is something that |
| // we should rectify at some point. In either case however we can still |
| // special case the loop-header since (1) currently the loop can't have |
| // any merges between different cohort entries since the pre-header will |
| // be the earliest place entry can happen and (2) even if the analysis |
| // is improved to consider lifetime of the object WRT loops any values |
| // which would require loop-phis would have to make the whole loop |
| // escape anyway. |
| // This all means we can always use value from the pre-header when the |
| // block is the loop-header and we didn't already create a |
| // materialization block. (NB when we do improve the analysis we will |
| // need to modify the materialization creation code to deal with this |
| // correctly.) |
| HInstruction* pre_header_val = |
| GetMaterialization(blk->GetLoopInformation()->GetPreHeader()); |
| AddMaterialization(blk, pre_header_val); |
| return; |
| } |
| ScopedArenaAllocator saa(GetGraph()->GetArenaStack()); |
| ScopedArenaVector<HInstruction*> pred_vals(saa.Adapter(kArenaAllocLSE)); |
| pred_vals.reserve(blk->GetNumberOfPredecessors()); |
| for (HBasicBlock* pred : blk->GetPredecessors()) { |
| DCHECK(HasMaterialization(pred)); |
| pred_vals.push_back(GetMaterialization(pred)); |
| } |
| GenerateMaterializationValueFromPredecessorsDirect(blk, pred_vals); |
| } |
| |
| void GenerateMaterializationValueFromPredecessorsForEntry( |
| HBasicBlock* entry, const ScopedArenaVector<HInstruction*>& pred_vals) { |
| DCHECK(std::any_of(GetNoEscapeSubgraph()->GetExcludedCohorts().begin(), |
| GetNoEscapeSubgraph()->GetExcludedCohorts().end(), |
| [&](const ExecutionSubgraph::ExcludedCohort& cohort) { |
| return cohort.IsEntryBlock(entry); |
| })); |
| GenerateMaterializationValueFromPredecessorsDirect(entry, pred_vals); |
| } |
| |
| private: |
| template <typename InstructionType> |
| struct InstructionUse { |
| InstructionType* instruction_; |
| size_t index_; |
| }; |
| |
| void ReplaceInput(const ScopedArenaVector<InstructionUse<HInstruction>>& to_replace) { |
| for (auto& [ins, idx] : to_replace) { |
| HInstruction* merged_inst = GetMaterialization(ins->GetBlock()); |
| if (ins->IsPhi() && merged_inst->IsPhi() && ins->GetBlock() == merged_inst->GetBlock()) { |
| // Phis we just pass through the appropriate inputs. |
| ins->ReplaceInput(merged_inst->InputAt(idx), idx); |
| } else { |
| ins->ReplaceInput(merged_inst, idx); |
| } |
| } |
| } |
| |
| void RemoveAndReplaceInputs(const ScopedArenaVector<HInstruction*>& to_remove) { |
| for (HInstruction* ins : to_remove) { |
| if (ins->GetBlock() == nullptr) { |
| // Already dealt with. |
| continue; |
| } |
| DCHECK(BeforeAllEscapes(ins->GetBlock())) << *ins; |
| if (ins->IsInstanceFieldGet() || ins->IsInstanceFieldSet()) { |
| bool instruction_has_users = |
| ins->IsInstanceFieldGet() && (!ins->GetUses().empty() || !ins->GetEnvUses().empty()); |
| if (instruction_has_users) { |
| // Make sure any remaining users of read are replaced. |
| HInstruction* replacement = |
| helper_->lse_->GetPartialValueAt(OriginalNewInstance(), ins); |
| // NB ReplaceInput will remove a use from the list so this is |
| // guaranteed to finish eventually. |
| while (!ins->GetUses().empty()) { |
| const HUseListNode<HInstruction*>& use = ins->GetUses().front(); |
| use.GetUser()->ReplaceInput(replacement, use.GetIndex()); |
| } |
| while (!ins->GetEnvUses().empty()) { |
| const HUseListNode<HEnvironment*>& use = ins->GetEnvUses().front(); |
| use.GetUser()->ReplaceInput(replacement, use.GetIndex()); |
| } |
| } else { |
| DCHECK(ins->GetUses().empty()) |
| << "Instruction has users!\n" |
| << ins->DumpWithArgs() << "\nUsers are " << ins->GetUses(); |
| DCHECK(ins->GetEnvUses().empty()) |
| << "Instruction has users!\n" |
| << ins->DumpWithArgs() << "\nUsers are " << ins->GetEnvUses(); |
| } |
| ins->GetBlock()->RemoveInstruction(ins); |
| } else { |
| // Can only be obj == other, obj != other, obj == obj (!?) or, obj != obj (!?) |
| // Since PHIs are escapes as far as LSE is concerned and we are before |
| // any escapes these are the only 4 options. |
| DCHECK(ins->IsEqual() || ins->IsNotEqual()) << *ins; |
| HInstruction* replacement; |
| if (UNLIKELY(ins->InputAt(0) == ins->InputAt(1))) { |
| replacement = ins->IsEqual() ? GetGraph()->GetIntConstant(1) |
| : GetGraph()->GetIntConstant(0); |
| } else { |
| replacement = ins->IsEqual() ? GetGraph()->GetIntConstant(0) |
| : GetGraph()->GetIntConstant(1); |
| } |
| ins->ReplaceWith(replacement); |
| ins->GetBlock()->RemoveInstruction(ins); |
| } |
| } |
| } |
| |
| void CreateConstructorFences( |
| const ScopedArenaVector<InstructionUse<HConstructorFence>>& constructor_fences) { |
| if (!constructor_fences.empty()) { |
| uint32_t pc = constructor_fences.front().instruction_->GetDexPc(); |
| for (auto& [cf, idx] : constructor_fences) { |
| if (cf->GetInputs().size() == 1) { |
| cf->GetBlock()->RemoveInstruction(cf); |
| } else { |
| cf->RemoveInputAt(idx); |
| } |
| } |
| for (const ExecutionSubgraph::ExcludedCohort& ec : |
| GetNoEscapeSubgraph()->GetExcludedCohorts()) { |
| for (HBasicBlock* blk : ec.EntryBlocks()) { |
| for (HBasicBlock* materializer : |
| Filter(MakeIterationRange(blk->GetPredecessors()), |
| [&](HBasicBlock* blk) { return helper_->IsMaterializationBlock(blk); })) { |
| HInstruction* new_cf = new (GetGraph()->GetAllocator()) HConstructorFence( |
| GetMaterialization(materializer), pc, GetGraph()->GetAllocator()); |
| materializer->InsertInstructionBefore(new_cf, materializer->GetLastInstruction()); |
| } |
| } |
| } |
| } |
| } |
| |
| void PredicateInstructions( |
| const ScopedArenaVector<InstructionUse<HInstruction>>& to_predicate) { |
| for (auto& [ins, idx] : to_predicate) { |
| if (UNLIKELY(ins->GetBlock() == nullptr)) { |
| // Already handled due to obj == obj; |
| continue; |
| } else if (ins->IsInstanceFieldGet()) { |
| // IFieldGet[obj] => PredicatedIFieldGet[PartialValue, obj] |
| HInstruction* new_fget = new (GetGraph()->GetAllocator()) HPredicatedInstanceFieldGet( |
| ins->AsInstanceFieldGet(), |
| GetMaterialization(ins->GetBlock()), |
| helper_->lse_->GetPartialValueAt(OriginalNewInstance(), ins)); |
| MaybeRecordStat(helper_->lse_->stats_, MethodCompilationStat::kPredicatedLoadAdded); |
| ins->GetBlock()->InsertInstructionBefore(new_fget, ins); |
| if (ins->GetType() == DataType::Type::kReference) { |
| // Reference info is the same |
| new_fget->SetReferenceTypeInfo(ins->GetReferenceTypeInfo()); |
| } |
| // In this phase, substitute instructions are used only for the predicated get |
| // default values which are used only if the partial singleton did not escape, |
| // so the out value of the `new_fget` for the relevant cases is the same as |
| // the default value. |
| // TODO: Use the default value for materializing default values used by |
| // other predicated loads to avoid some unnecessary Phis. (This shall |
| // complicate the search for replacement in `ReplacementOrValue()`.) |
| DCHECK(helper_->lse_->substitute_instructions_for_loads_[ins->GetId()] == nullptr); |
| helper_->lse_->substitute_instructions_for_loads_[ins->GetId()] = new_fget; |
| ins->ReplaceWith(new_fget); |
| ins->ReplaceEnvUsesDominatedBy(ins, new_fget); |
| CHECK(ins->GetEnvUses().empty() && ins->GetUses().empty()) |
| << "Instruction: " << *ins << " uses: " << ins->GetUses() |
| << ", env: " << ins->GetEnvUses(); |
| ins->GetBlock()->RemoveInstruction(ins); |
| } else if (ins->IsInstanceFieldSet()) { |
| // Any predicated sets shouldn't require movement. |
| ins->AsInstanceFieldSet()->SetIsPredicatedSet(); |
| MaybeRecordStat(helper_->lse_->stats_, MethodCompilationStat::kPredicatedStoreAdded); |
| HInstruction* merged_inst = GetMaterialization(ins->GetBlock()); |
| ins->ReplaceInput(merged_inst, idx); |
| } else { |
| // comparisons need to be split into 2. |
| DCHECK(ins->IsEqual() || ins->IsNotEqual()) << "bad instruction " << *ins; |
| bool this_is_first = idx == 0; |
| if (ins->InputAt(0) == ins->InputAt(1)) { |
| // This is a obj == obj or obj != obj. |
| // No idea why anyone would do this but whatever. |
| ins->ReplaceWith(GetGraph()->GetIntConstant(ins->IsEqual() ? 1 : 0)); |
| ins->GetBlock()->RemoveInstruction(ins); |
| continue; |
| } else { |
| HInstruction* is_escaped = new (GetGraph()->GetAllocator()) |
| HNotEqual(GetMaterialization(ins->GetBlock()), GetGraph()->GetNullConstant()); |
| HInstruction* combine_inst = |
| ins->IsEqual() ? static_cast<HInstruction*>(new (GetGraph()->GetAllocator()) HAnd( |
| DataType::Type::kBool, is_escaped, ins)) |
| : static_cast<HInstruction*>(new (GetGraph()->GetAllocator()) HOr( |
| DataType::Type::kBool, is_escaped, ins)); |
| ins->ReplaceInput(GetMaterialization(ins->GetBlock()), this_is_first ? 0 : 1); |
| ins->GetBlock()->InsertInstructionBefore(is_escaped, ins); |
| ins->GetBlock()->InsertInstructionAfter(combine_inst, ins); |
| ins->ReplaceWith(combine_inst); |
| combine_inst->ReplaceInput(ins, 1); |
| } |
| } |
| } |
| } |
| |
| // Figure out all the instructions we need to |
| // fixup/replace/remove/duplicate. Since this requires an iteration of an |
| // intrusive linked list we want to do it only once and collect all the data |
| // here. |
| void CollectReplacements( |
| ScopedArenaVector<InstructionUse<HInstruction>>& to_replace, |
| ScopedArenaVector<HInstruction*>& to_remove, |
| ScopedArenaVector<InstructionUse<HConstructorFence>>& constructor_fences, |
| ScopedArenaVector<InstructionUse<HInstruction>>& to_predicate) { |
| size_t size = new_instance_->GetUses().SizeSlow(); |
| to_replace.reserve(size); |
| to_remove.reserve(size); |
| constructor_fences.reserve(size); |
| to_predicate.reserve(size); |
| for (auto& use : new_instance_->GetUses()) { |
| HBasicBlock* blk = |
| helper_->FindDominatingNonMaterializationBlock(use.GetUser()->GetBlock()); |
| if (InEscapeCohort(blk)) { |
| LSE_VLOG << "Replacing " << *new_instance_ << " use in " << *use.GetUser() << " with " |
| << *GetMaterialization(blk); |
| to_replace.push_back({use.GetUser(), use.GetIndex()}); |
| } else if (IsPostEscape(blk)) { |
| LSE_VLOG << "User " << *use.GetUser() << " after escapes!"; |
| // The fields + cmp are normal uses. Phi can only be here if it was |
| // generated by full LSE so whatever store+load that created the phi |
| // is the escape. |
| if (use.GetUser()->IsPhi()) { |
| to_replace.push_back({use.GetUser(), use.GetIndex()}); |
| } else { |
| DCHECK(use.GetUser()->IsFieldAccess() || |
| use.GetUser()->IsEqual() || |
| use.GetUser()->IsNotEqual()) |
| << *use.GetUser() << "@" << use.GetIndex(); |
| to_predicate.push_back({use.GetUser(), use.GetIndex()}); |
| } |
| } else if (use.GetUser()->IsConstructorFence()) { |
| LSE_VLOG << "User " << *use.GetUser() << " being moved to materialization!"; |
| constructor_fences.push_back({use.GetUser()->AsConstructorFence(), use.GetIndex()}); |
| } else { |
| LSE_VLOG << "User " << *use.GetUser() << " not contained in cohort!"; |
| to_remove.push_back(use.GetUser()); |
| } |
| } |
| DCHECK_EQ( |
| to_replace.size() + to_remove.size() + constructor_fences.size() + to_predicate.size(), |
| size); |
| } |
| |
| void GenerateMaterializationValueFromPredecessorsDirect( |
| HBasicBlock* blk, const ScopedArenaVector<HInstruction*>& pred_vals) { |
| DCHECK(!pred_vals.empty()); |
| bool all_equal = std::all_of(pred_vals.begin() + 1, pred_vals.end(), [&](HInstruction* val) { |
| return val == pred_vals.front(); |
| }); |
| if (LIKELY(all_equal)) { |
| AddMaterialization(blk, pred_vals.front()); |
| } else { |
| // Make a PHI for the predecessors. |
| HPhi* phi = new (GetGraph()->GetAllocator()) HPhi( |
| GetGraph()->GetAllocator(), kNoRegNumber, pred_vals.size(), DataType::Type::kReference); |
| for (const auto& [ins, off] : ZipCount(MakeIterationRange(pred_vals))) { |
| phi->SetRawInputAt(off, ins); |
| } |
| blk->AddPhi(phi); |
| AddMaterialization(blk, phi); |
| } |
| } |
| |
| HGraph* GetGraph() const { |
| return helper_->GetGraph(); |
| } |
| |
| HNewInstance* new_instance_; |
| PartialLoadStoreEliminationHelper* helper_; |
| ArenaBitVector heap_locs_; |
| ScopedArenaVector<HInstruction*> materializations_; |
| const HeapLocationCollector& collector_; |
| const ExecutionSubgraph* subgraph_; |
| }; |
| |
| ArrayRef<HeapReferenceData> GetHeapRefs() { |
| return ArrayRef<HeapReferenceData>(heap_refs_); |
| } |
| |
| bool IsMaterializationBlock(HBasicBlock* blk) const { |
| return blk->GetBlockId() >= first_materialization_block_id_; |
| } |
| |
| HBasicBlock* GetOrCreateMaterializationBlock(HBasicBlock* entry, size_t pred_num) { |
| size_t idx = GetMaterializationBlockIndex(entry, pred_num); |
| HBasicBlock* blk = materialization_blocks_[idx]; |
| if (blk == nullptr) { |
| blk = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph()); |
| GetGraph()->AddBlock(blk); |
| LSE_VLOG << "creating materialization block " << blk->GetBlockId() << " on edge " |
| << entry->GetPredecessors()[pred_num]->GetBlockId() << "->" << entry->GetBlockId(); |
| blk->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); |
| materialization_blocks_[idx] = blk; |
| } |
| return blk; |
| } |
| |
| HBasicBlock* GetMaterializationBlock(HBasicBlock* entry, size_t pred_num) { |
| HBasicBlock* out = materialization_blocks_[GetMaterializationBlockIndex(entry, pred_num)]; |
| DCHECK(out != nullptr) << "No materialization block for edge " << entry->GetBlockId() << "->" |
| << entry->GetPredecessors()[pred_num]->GetBlockId(); |
| return out; |
| } |
| |
| IterationRange<ArenaVector<HBasicBlock*>::const_iterator> IterateMaterializationBlocks() { |
| return MakeIterationRange(GetGraph()->GetBlocks().begin() + first_materialization_block_id_, |
| GetGraph()->GetBlocks().end()); |
| } |
| |
| void FixupPartialObjectUsers() { |
| for (PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data : GetHeapRefs()) { |
| // Use the materialized instances to replace original instance |
| ref_data.FixupUses(/*first_pass=*/true); |
| CHECK(ref_data.OriginalNewInstance()->GetUses().empty()) |
| << ref_data.OriginalNewInstance()->GetUses() << ", " |
| << ref_data.OriginalNewInstance()->GetEnvUses(); |
| } |
| // This can cause new uses to be created due to the creation of phis/pred-get defaults |
| for (PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data : GetHeapRefs()) { |
| // Only need to handle new phis/pred-get defaults. DCHECK that's all we find. |
| ref_data.FixupUses(/*first_pass=*/false); |
| CHECK(ref_data.OriginalNewInstance()->GetUses().empty()) |
| << ref_data.OriginalNewInstance()->GetUses() << ", " |
| << ref_data.OriginalNewInstance()->GetEnvUses(); |
| } |
| } |
| |
| // Finds the first block which either is or dominates the given block which is |
| // not a materialization block |
| HBasicBlock* FindDominatingNonMaterializationBlock(HBasicBlock* blk) { |
| if (LIKELY(!IsMaterializationBlock(blk))) { |
| // Not a materialization block so itself. |
| return blk; |
| } else if (blk->GetNumberOfPredecessors() != 0) { |
| // We're far enough along that the materialization blocks have been |
| // inserted into the graph so no need to go searching. |
| return blk->GetSinglePredecessor(); |
| } |
| // Search through the materialization blocks to find where it will be |
| // inserted. |
| for (auto [mat, idx] : ZipCount(MakeIterationRange(materialization_blocks_))) { |
| if (mat == blk) { |
| size_t cur_pred_idx = idx % max_preds_per_block_; |
| HBasicBlock* entry = GetGraph()->GetBlocks()[idx / max_preds_per_block_]; |
| return entry->GetPredecessors()[cur_pred_idx]; |
| } |
| } |
| LOG(FATAL) << "Unable to find materialization block position for " << blk->GetBlockId() << "!"; |
| return nullptr; |
| } |
| |
| void InsertMaterializationBlocks() { |
| for (auto [mat, idx] : ZipCount(MakeIterationRange(materialization_blocks_))) { |
| if (mat == nullptr) { |
| continue; |
| } |
| size_t cur_pred_idx = idx % max_preds_per_block_; |
| HBasicBlock* entry = GetGraph()->GetBlocks()[idx / max_preds_per_block_]; |
| HBasicBlock* pred = entry->GetPredecessors()[cur_pred_idx]; |
| mat->InsertBetween(pred, entry); |
| LSE_VLOG << "Adding materialization block " << mat->GetBlockId() << " on edge " |
| << pred->GetBlockId() << "->" << entry->GetBlockId(); |
| } |
| } |
| |
| // Replace any env-uses remaining of the partial singletons with the |
| // appropriate phis and remove the instructions. |
| void RemoveReplacedInstructions() { |
| for (HeapReferenceData& ref_data : GetHeapRefs()) { |
| CHECK(ref_data.OriginalNewInstance()->GetUses().empty()) |
| << ref_data.OriginalNewInstance()->GetUses() << ", " |
| << ref_data.OriginalNewInstance()->GetEnvUses() |
| << " inst is: " << ref_data.OriginalNewInstance(); |
| const auto& env_uses = ref_data.OriginalNewInstance()->GetEnvUses(); |
| while (!env_uses.empty()) { |
| const HUseListNode<HEnvironment*>& use = env_uses.front(); |
| HInstruction* merged_inst = |
| ref_data.GetMaterialization(use.GetUser()->GetHolder()->GetBlock()); |
| LSE_VLOG << "Replacing env use of " << *use.GetUser()->GetHolder() << "@" << use.GetIndex() |
| << " with " << *merged_inst; |
| use.GetUser()->ReplaceInput(merged_inst, use.GetIndex()); |
| } |
| ref_data.OriginalNewInstance()->GetBlock()->RemoveInstruction(ref_data.OriginalNewInstance()); |
| } |
| } |
| |
| // We need to make sure any allocations dominate their environment uses. |
| // Technically we could probably remove the env-uses and be fine but this is easy. |
| void ReorderMaterializationsForEnvDominance() { |
| for (HBasicBlock* blk : IterateMaterializationBlocks()) { |
| ScopedArenaAllocator alloc(alloc_->GetArenaStack()); |
| ArenaBitVector still_unsorted( |
| &alloc, GetGraph()->GetCurrentInstructionId(), false, kArenaAllocLSE); |
| // This is guaranteed to be very short (since we will abandon LSE if there |
| // are >= kMaxNumberOfHeapLocations (32) heap locations so that is the |
| // absolute maximum size this list can be) so doing a selection sort is |
| // fine. This avoids the need to do a complicated recursive check to |
| // ensure transitivity for std::sort. |
| ScopedArenaVector<HNewInstance*> materializations(alloc.Adapter(kArenaAllocLSE)); |
| materializations.reserve(GetHeapRefs().size()); |
| for (HInstruction* ins : |
| MakeSTLInstructionIteratorRange(HInstructionIterator(blk->GetInstructions()))) { |
| if (ins->IsNewInstance()) { |
| materializations.push_back(ins->AsNewInstance()); |
| still_unsorted.SetBit(ins->GetId()); |
| } |
| } |
| using Iter = ScopedArenaVector<HNewInstance*>::iterator; |
| Iter unsorted_start = materializations.begin(); |
| Iter unsorted_end = materializations.end(); |
| // selection sort. Required since the only check we can easily perform a |
| // is-before-all-unsorted check. |
| while (unsorted_start != unsorted_end) { |
| bool found_instruction = false; |
| for (Iter candidate = unsorted_start; candidate != unsorted_end; ++candidate) { |
| HNewInstance* ni = *candidate; |
| if (std::none_of(ni->GetAllEnvironments().cbegin(), |
| ni->GetAllEnvironments().cend(), |
| [&](const HEnvironment* env) { |
| return std::any_of( |
| env->GetEnvInputs().cbegin(), |
| env->GetEnvInputs().cend(), |
| [&](const HInstruction* env_element) { |
| return env_element != nullptr && |
| still_unsorted.IsBitSet(env_element->GetId()); |
| }); |
| })) { |
| still_unsorted.ClearBit(ni->GetId()); |
| std::swap(*unsorted_start, *candidate); |
| ++unsorted_start; |
| found_instruction = true; |
| break; |
| } |
| } |
| CHECK(found_instruction) << "Unable to select next materialization instruction." |
| << " Environments have a dependency loop!"; |
| } |
| // Reverse so we as we prepend them we end up with the correct order. |
| auto reverse_iter = MakeIterationRange(materializations.rbegin(), materializations.rend()); |
| for (HNewInstance* ins : reverse_iter) { |
| if (blk->GetFirstInstruction() != ins) { |
| // Don't do checks since that makes sure the move is safe WRT |
| // ins->CanBeMoved which for NewInstance is false. |
| ins->MoveBefore(blk->GetFirstInstruction(), /*do_checks=*/false); |
| } |
| } |
| } |
| } |
| |
| private: |
| void CollectInterestingHeapRefs() { |
| // Get all the partials we need to move around. |
| for (size_t i = 0; i < lse_->heap_location_collector_.GetNumberOfHeapLocations(); ++i) { |
| ReferenceInfo* ri = lse_->heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| if (ri->IsPartialSingleton() && |
| ri->GetReference()->GetBlock() != nullptr && |
| ri->GetNoEscapeSubgraph()->ContainsBlock(ri->GetReference()->GetBlock())) { |
| RecordHeapRefField(ri->GetReference()->AsNewInstance(), i); |
| } |
| } |
| } |
| |
| void RecordHeapRefField(HNewInstance* ni, size_t loc) { |
| DCHECK(ni != nullptr); |
| // This is likely to be very short so just do a linear search. |
| auto it = std::find_if(heap_refs_.begin(), heap_refs_.end(), [&](HeapReferenceData& data) { |
| return data.OriginalNewInstance() == ni; |
| }); |
| HeapReferenceData& cur_ref = |
| (it == heap_refs_.end()) |
| ? heap_refs_.emplace_back(this, |
| ni, |
| lse_->heap_location_collector_.GetHeapLocation(loc) |
| ->GetReferenceInfo() |
| ->GetNoEscapeSubgraph(), |
| alloc_) |
| : *it; |
| cur_ref.AddHeapLocation(loc); |
| } |
| |
| |
| void NotifyNewMaterialization(HInstruction* ins) { |
| if (ins->IsPhi()) { |
| new_ref_phis_.push_back(ins->AsPhi()); |
| } |
| } |
| |
| size_t GetMaterializationBlockIndex(HBasicBlock* blk, size_t pred_num) const { |
| DCHECK_LT(blk->GetBlockId(), first_materialization_block_id_) |
| << "block is a materialization block!"; |
| DCHECK_LT(pred_num, max_preds_per_block_); |
| return blk->GetBlockId() * max_preds_per_block_ + pred_num; |
| } |
| |
| HGraph* GetGraph() const { |
| return lse_->GetGraph(); |
| } |
| |
| LSEVisitor* lse_; |
| ScopedArenaAllocator* alloc_; |
| ScopedArenaVector<HInstruction*> new_ref_phis_; |
| ScopedArenaVector<HeapReferenceData> heap_refs_; |
| size_t max_preds_per_block_; |
| // An array of (# of non-materialization blocks) * max_preds_per_block |
| // arranged in block-id major order. Since we can only have at most one |
| // materialization block on each edge this is the maximum possible number of |
| // materialization blocks. |
| ScopedArenaVector<HBasicBlock*> materialization_blocks_; |
| size_t first_materialization_block_id_; |
| |
| friend void LSEVisitor::MovePartialEscapes(); |
| }; |
| |
| // Work around c++ type checking annoyances with not being able to forward-declare inner types. |
| class HeapRefHolder |
| : public std::reference_wrapper<PartialLoadStoreEliminationHelper::HeapReferenceData> {}; |
| |
| HInstruction* LSEVisitor::SetupPartialMaterialization(PartialLoadStoreEliminationHelper& helper, |
| HeapRefHolder&& holder, |
| size_t pred_idx, |
| HBasicBlock* entry) { |
| PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data = holder.get(); |
| HBasicBlock* old_pred = entry->GetPredecessors()[pred_idx]; |
| HInstruction* new_inst = ref_data.OriginalNewInstance(); |
| if (UNLIKELY(!new_inst->GetBlock()->Dominates(entry))) { |
| LSE_VLOG << "Initial materialization in non-dominating block " << entry->GetBlockId() |
| << " is null!"; |
| return GetGraph()->GetNullConstant(); |
| } |
| HBasicBlock* bb = helper.GetOrCreateMaterializationBlock(entry, pred_idx); |
| CHECK(bb != nullptr) << "entry " << entry->GetBlockId() << " -> " << old_pred->GetBlockId(); |
| HNewInstance* repl_create = new_inst->Clone(GetGraph()->GetAllocator())->AsNewInstance(); |
| repl_create->SetPartialMaterialization(); |
| bb->InsertInstructionBefore(repl_create, bb->GetLastInstruction()); |
| repl_create->CopyEnvironmentFrom(new_inst->GetEnvironment()); |
| MaybeRecordStat(stats_, MethodCompilationStat::kPartialAllocationMoved); |
| LSE_VLOG << "In blk " << bb->GetBlockId() << " initial materialization is " << *repl_create; |
| ref_data.AddMaterialization(bb, repl_create); |
| const FieldInfo* info = nullptr; |
| for (const HeapLocation* loc : ref_data.IterateLocations()) { |
| size_t loc_off = heap_location_collector_.GetHeapLocationIndex(loc); |
| info = field_infos_[loc_off]; |
| DCHECK(loc->GetIndex() == nullptr); |
| Value value = ReplacementOrValue(heap_values_for_[old_pred->GetBlockId()][loc_off].value); |
| if (value.NeedsLoopPhi() || value.IsMergedUnknown()) { |
| Value repl = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())]; |
| DCHECK(repl.IsDefault() || repl.IsInvalid() || repl.IsInstruction()) |
| << repl << " from " << value << " pred is " << old_pred->GetBlockId(); |
| if (!repl.IsInvalid()) { |
| value = repl; |
| } else { |
| FullyMaterializePhi(value.GetPhiPlaceholder(), info->GetFieldType()); |
| value = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())]; |
| } |
| } else if (value.NeedsNonLoopPhi()) { |
| Value repl = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())]; |
| DCHECK(repl.IsDefault() || repl.IsInvalid() || repl.IsInstruction()) |
| << repl << " from " << value << " pred is " << old_pred->GetBlockId(); |
| if (!repl.IsInvalid()) { |
| value = repl; |
| } else { |
| MaterializeNonLoopPhis(value.GetPhiPlaceholder(), info->GetFieldType()); |
| value = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())]; |
| } |
| } |
| DCHECK(value.IsDefault() || value.IsInstruction()) |
| << GetGraph()->PrettyMethod() << ": " << value; |
| |
| if (!value.IsDefault() && |
| // shadow$_klass_ doesn't need to be manually initialized. |
| MemberOffset(loc->GetOffset()) != mirror::Object::ClassOffset()) { |
| CHECK(info != nullptr); |
| HInstruction* set_value = |
| new (GetGraph()->GetAllocator()) HInstanceFieldSet(repl_create, |
| value.GetInstruction(), |
| field_infos_[loc_off]->GetField(), |
| loc->GetType(), |
| MemberOffset(loc->GetOffset()), |
| false, |
| field_infos_[loc_off]->GetFieldIndex(), |
| loc->GetDeclaringClassDefIndex(), |
| field_infos_[loc_off]->GetDexFile(), |
| 0u); |
| bb->InsertInstructionAfter(set_value, repl_create); |
| LSE_VLOG << "Adding " << *set_value << " for materialization setup!"; |
| } |
| } |
| return repl_create; |
| } |
| |
| HInstruction* LSEVisitor::GetPartialValueAt(HNewInstance* orig_new_inst, HInstruction* read) { |
| size_t loc = heap_location_collector_.GetFieldHeapLocation(orig_new_inst, &read->GetFieldInfo()); |
| Value pred = ReplacementOrValue(intermediate_values_.find(read)->second); |
| LSE_VLOG << "using " << pred << " as default value for " << *read; |
| if (pred.IsInstruction()) { |
| return pred.GetInstruction(); |
| } else if (pred.IsMergedUnknown() || pred.NeedsPhi()) { |
| FullyMaterializePhi(pred.GetPhiPlaceholder(), |
| heap_location_collector_.GetHeapLocation(loc)->GetType()); |
| HInstruction* res = Replacement(pred).GetInstruction(); |
| LSE_VLOG << pred << " materialized to " << res->DumpWithArgs(); |
| return res; |
| } else if (pred.IsDefault()) { |
| HInstruction* res = GetDefaultValue(read->GetType()); |
| LSE_VLOG << pred << " materialized to " << res->DumpWithArgs(); |
| return res; |
| } |
| LOG(FATAL) << "Unable to find unescaped value at " << read->DumpWithArgs() |
| << "! This should be impossible! Value is " << pred; |
| UNREACHABLE(); |
| } |
| |
| void LSEVisitor::MovePartialEscapes() { |
| if (!ShouldPerformPartialLSE()) { |
| return; |
| } |
| |
| ScopedArenaAllocator saa(allocator_.GetArenaStack()); |
| PartialLoadStoreEliminationHelper helper(this, &saa); |
| |
| // Since for PHIs we now will have more information (since we know the object |
| // hasn't escaped) we need to clear the old phi-replacements where we weren't |
| // able to find the value. |
| PrepareForPartialPhiComputation(); |
| |
| for (PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data : helper.GetHeapRefs()) { |
| LSE_VLOG << "Creating materializations for " << *ref_data.OriginalNewInstance(); |
| // Setup entry and exit blocks. |
| for (const auto& excluded_cohort : ref_data.GetNoEscapeSubgraph()->GetExcludedCohorts()) { |
| // Setup materialization blocks. |
| for (HBasicBlock* entry : excluded_cohort.EntryBlocksReversePostOrder()) { |
| // Setup entries. |
| // TODO Assuming we correctly break critical edges every entry block |
| // must have only a single predecessor so we could just put all this |
| // stuff in there. OTOH simplifier can do it for us and this is simpler |
| // to implement - giving clean separation between the original graph and |
| // materialization blocks - so for now we might as well have these new |
| // blocks. |
| ScopedArenaAllocator pred_alloc(saa.GetArenaStack()); |
| ScopedArenaVector<HInstruction*> pred_vals(pred_alloc.Adapter(kArenaAllocLSE)); |
| pred_vals.reserve(entry->GetNumberOfPredecessors()); |
| for (const auto& [pred, pred_idx] : |
| ZipCount(MakeIterationRange(entry->GetPredecessors()))) { |
| DCHECK(!helper.IsMaterializationBlock(pred)); |
| if (excluded_cohort.IsEntryBlock(pred)) { |
| pred_vals.push_back(ref_data.GetMaterialization(pred)); |
| continue; |
| } else { |
| pred_vals.push_back(SetupPartialMaterialization(helper, {ref_data}, pred_idx, entry)); |
| } |
| } |
| ref_data.GenerateMaterializationValueFromPredecessorsForEntry(entry, pred_vals); |
| } |
| |
| // Setup exit block heap-values for later phi-generation. |
| for (HBasicBlock* exit : excluded_cohort.ExitBlocks()) { |
| // mark every exit of cohorts as having a value so we can easily |
| // materialize the PHIs. |
| // TODO By setting this we can easily use the normal MaterializeLoopPhis |
| // (via FullyMaterializePhis) in order to generate the default-values |
| // for predicated-gets. This has the unfortunate side effect of creating |
| // somewhat more phis than are really needed (in some cases). We really |
| // should try to eventually know that we can lower these PHIs to only |
| // the non-escaping value in cases where it is possible. Currently this |
| // is done to some extent in instruction_simplifier but we have more |
| // information here to do the right thing. |
| for (const HeapLocation* loc : ref_data.IterateLocations()) { |
| size_t loc_off = heap_location_collector_.GetHeapLocationIndex(loc); |
| // This Value::Default() is only used to fill in PHIs used as the |
| // default value for PredicatedInstanceFieldGets. The actual value |
| // stored there is meaningless since the Predicated-iget will use the |
| // actual field value instead on these paths. |
| heap_values_for_[exit->GetBlockId()][loc_off].value = Value::Default(); |
| } |
| } |
| } |
| |
| // string materialization through the graph. |
| // // Visit RPO to PHI the materialized object through the cohort. |
| for (HBasicBlock* blk : GetGraph()->GetReversePostOrder()) { |
| // NB This doesn't include materialization blocks. |
| DCHECK(!helper.IsMaterializationBlock(blk)) |
| << "Materialization blocks should not be in RPO yet."; |
| if (ref_data.HasMaterialization(blk)) { |
| continue; |
| } else if (ref_data.BeforeAllEscapes(blk)) { |
| ref_data.AddMaterialization(blk, GetGraph()->GetNullConstant()); |
| continue; |
| } else { |
| ref_data.GenerateMaterializationValueFromPredecessors(blk); |
| } |
| } |
| } |
| |
| // Once we've generated all the materializations we can update the users. |
| helper.FixupPartialObjectUsers(); |
| |
| // Actually put materialization blocks into the graph |
| helper.InsertMaterializationBlocks(); |
| |
| // Get rid of the original instructions. |
| helper.RemoveReplacedInstructions(); |
| |
| // Ensure everything is ordered correctly in the materialization blocks. This |
| // involves moving every NewInstance to the top and ordering them so that any |
| // required env-uses are correctly ordered. |
| helper.ReorderMaterializationsForEnvDominance(); |
| } |
| |
| void LSEVisitor::FinishFullLSE() { |
| // Remove recorded load instructions that should be eliminated. |
| for (const LoadStoreRecord& record : loads_and_stores_) { |
| size_t id = dchecked_integral_cast<size_t>(record.load_or_store->GetId()); |
| HInstruction* substitute = substitute_instructions_for_loads_[id]; |
| if (substitute == nullptr) { |
| continue; |
| } |
| HInstruction* load = record.load_or_store; |
| DCHECK(load != nullptr); |
| DCHECK(IsLoad(load)); |
| DCHECK(load->GetBlock() != nullptr) << load->DebugName() << "@" << load->GetDexPc(); |
| // We proactively retrieve the substitute for a removed load, so |
| // a load that has a substitute should not be observed as a heap |
| // location value. |
| DCHECK_EQ(FindSubstitute(substitute), substitute); |
| |
| load->ReplaceWith(substitute); |
| load->GetBlock()->RemoveInstruction(load); |
| } |
| |
| // Remove all the stores we can. |
| for (const LoadStoreRecord& record : loads_and_stores_) { |
| bool is_store = record.load_or_store->GetSideEffects().DoesAnyWrite(); |
| DCHECK_EQ(is_store, IsStore(record.load_or_store)); |
| if (is_store && !kept_stores_.IsBitSet(record.load_or_store->GetId())) { |
| record.load_or_store->GetBlock()->RemoveInstruction(record.load_or_store); |
| } |
| } |
| |
| // Eliminate singleton-classified instructions: |
| // * - Constructor fences (they never escape this thread). |
| // * - Allocations (if they are unused). |
| for (HInstruction* new_instance : singleton_new_instances_) { |
| size_t removed = HConstructorFence::RemoveConstructorFences(new_instance); |
| MaybeRecordStat(stats_, |
| MethodCompilationStat::kConstructorFenceRemovedLSE, |
| removed); |
| |
| if (!new_instance->HasNonEnvironmentUses()) { |
| new_instance->RemoveEnvironmentUsers(); |
| new_instance->GetBlock()->RemoveInstruction(new_instance); |
| MaybeRecordStat(stats_, MethodCompilationStat::kFullLSEAllocationRemoved); |
| } |
| } |
| } |
| |
| // The LSEVisitor is a ValueObject (indirectly through base classes) and therefore |
| // cannot be directly allocated with an arena allocator, so we need to wrap it. |
| class LSEVisitorWrapper : public DeletableArenaObject<kArenaAllocLSE> { |
| public: |
| LSEVisitorWrapper(HGraph* graph, |
| const HeapLocationCollector& heap_location_collector, |
| bool perform_partial_lse, |
| OptimizingCompilerStats* stats) |
| : lse_visitor_(graph, heap_location_collector, perform_partial_lse, stats) {} |
| |
| void Run() { |
| lse_visitor_.Run(); |
| } |
| |
| private: |
| LSEVisitor lse_visitor_; |
| }; |
| |
| bool LoadStoreElimination::Run(bool enable_partial_lse) { |
| if (graph_->IsDebuggable()) { |
| // Debugger may set heap values or trigger deoptimization of callers. |
| // Skip this optimization. |
| return false; |
| } |
| // We need to be able to determine reachability. Clear it just to be safe but |
| // this should initially be empty. |
| graph_->ClearReachabilityInformation(); |
| // This is O(blocks^3) time complexity. It means we can query reachability in |
| // O(1) though. |
| graph_->ComputeReachabilityInformation(); |
| ScopedArenaAllocator allocator(graph_->GetArenaStack()); |
| LoadStoreAnalysis lsa(graph_, |
| stats_, |
| &allocator, |
| enable_partial_lse ? LoadStoreAnalysisType::kFull |
| : LoadStoreAnalysisType::kBasic); |
| lsa.Run(); |
| const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector(); |
| if (heap_location_collector.GetNumberOfHeapLocations() == 0) { |
| // No HeapLocation information from LSA, skip this optimization. |
| return false; |
| } |
| |
| std::unique_ptr<LSEVisitorWrapper> lse_visitor(new (&allocator) LSEVisitorWrapper( |
| graph_, heap_location_collector, enable_partial_lse, stats_)); |
| lse_visitor->Run(); |
| return true; |
| } |
| |
| #undef LSE_VLOG |
| |
| } // namespace art |