Merge "Bounds check elimination."
diff --git a/build/Android.gtest.mk b/build/Android.gtest.mk
index 380174e..340304a 100644
--- a/build/Android.gtest.mk
+++ b/build/Android.gtest.mk
@@ -144,6 +144,7 @@
compiler/image_test.cc \
compiler/jni/jni_compiler_test.cc \
compiler/oat_test.cc \
+ compiler/optimizing/bounds_check_elimination_test.cc \
compiler/optimizing/codegen_test.cc \
compiler/optimizing/dead_code_elimination_test.cc \
compiler/optimizing/constant_folding_test.cc \
diff --git a/compiler/Android.mk b/compiler/Android.mk
index 70c7e52..a75417b 100644
--- a/compiler/Android.mk
+++ b/compiler/Android.mk
@@ -86,6 +86,7 @@
jni/quick/jni_compiler.cc \
llvm/llvm_compiler.cc \
optimizing/builder.cc \
+ optimizing/bounds_check_elimination.cc \
optimizing/code_generator.cc \
optimizing/code_generator_arm.cc \
optimizing/code_generator_arm64.cc \
diff --git a/compiler/optimizing/bounds_check_elimination.cc b/compiler/optimizing/bounds_check_elimination.cc
new file mode 100644
index 0000000..91455bc
--- /dev/null
+++ b/compiler/optimizing/bounds_check_elimination.cc
@@ -0,0 +1,691 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "bounds_check_elimination.h"
+#include "nodes.h"
+#include "utils/arena_containers.h"
+
+namespace art {
+
+class MonotonicValueRange;
+
+/**
+ * A value bound is represented as a pair of value and constant,
+ * e.g. array.length - 1.
+ */
+class ValueBound : public ValueObject {
+ public:
+ static ValueBound Create(HInstruction* instruction, int constant) {
+ if (instruction == nullptr) {
+ return ValueBound(nullptr, constant);
+ }
+ if (instruction->IsIntConstant()) {
+ return ValueBound(nullptr, instruction->AsIntConstant()->GetValue() + constant);
+ }
+ return ValueBound(instruction, constant);
+ }
+
+ HInstruction* GetInstruction() const { return instruction_; }
+ int GetConstant() const { return constant_; }
+
+ bool IsRelativeToArrayLength() const {
+ return instruction_ != nullptr && instruction_->IsArrayLength();
+ }
+
+ bool IsConstant() const {
+ return instruction_ == nullptr;
+ }
+
+ static ValueBound Min() { return ValueBound(nullptr, INT_MIN); }
+ static ValueBound Max() { return ValueBound(nullptr, INT_MAX); }
+
+ bool Equals(ValueBound bound) const {
+ return instruction_ == bound.instruction_ && constant_ == bound.constant_;
+ }
+
+ // Returns if it's certain bound1 >= bound2.
+ bool GreaterThanOrEqual(ValueBound bound) const {
+ if (instruction_ == bound.instruction_) {
+ if (instruction_ == nullptr) {
+ // Pure constant.
+ return constant_ >= bound.constant_;
+ }
+ // There might be overflow/underflow. Be conservative for now.
+ return false;
+ }
+ // Not comparable. Just return false.
+ return false;
+ }
+
+ // Returns if it's certain bound1 <= bound2.
+ bool LessThanOrEqual(ValueBound bound) const {
+ if (instruction_ == bound.instruction_) {
+ if (instruction_ == nullptr) {
+ // Pure constant.
+ return constant_ <= bound.constant_;
+ }
+ if (IsRelativeToArrayLength()) {
+ // Array length is guaranteed to be no less than 0.
+ // No overflow/underflow can happen if both constants are negative.
+ if (constant_ <= 0 && bound.constant_ <= 0) {
+ return constant_ <= bound.constant_;
+ }
+ // There might be overflow/underflow. Be conservative for now.
+ return false;
+ }
+ }
+
+ // In case the array length is some constant, we can
+ // still compare.
+ if (IsConstant() && bound.IsRelativeToArrayLength()) {
+ HInstruction* array = bound.GetInstruction()->AsArrayLength()->InputAt(0);
+ if (array->IsNullCheck()) {
+ array = array->AsNullCheck()->InputAt(0);
+ }
+ if (array->IsNewArray()) {
+ HInstruction* len = array->InputAt(0);
+ if (len->IsIntConstant()) {
+ int len_const = len->AsIntConstant()->GetValue();
+ return constant_ <= len_const + bound.GetConstant();
+ }
+ }
+ }
+
+ // Not comparable. Just return false.
+ return false;
+ }
+
+ // Try to narrow lower bound. Returns the greatest of the two if possible.
+ // Pick one if they are not comparable.
+ static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) {
+ if (bound1.instruction_ == bound2.instruction_) {
+ // Same instruction, compare the constant part.
+ return ValueBound(bound1.instruction_,
+ std::max(bound1.constant_, bound2.constant_));
+ }
+
+ // Not comparable. Just pick one. We may lose some info, but that's ok.
+ // Favor constant as lower bound.
+ return bound1.IsConstant() ? bound1 : bound2;
+ }
+
+ // Try to narrow upper bound. Returns the lowest of the two if possible.
+ // Pick one if they are not comparable.
+ static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) {
+ if (bound1.instruction_ == bound2.instruction_) {
+ // Same instruction, compare the constant part.
+ return ValueBound(bound1.instruction_,
+ std::min(bound1.constant_, bound2.constant_));
+ }
+
+ // Not comparable. Just pick one. We may lose some info, but that's ok.
+ // Favor array length as upper bound.
+ return bound1.IsRelativeToArrayLength() ? bound1 : bound2;
+ }
+
+ // Add a constant to a ValueBound. If the constant part of the ValueBound
+ // overflows/underflows, then we can't accurately represent it. For correctness,
+ // just return Max/Min() depending on whether the returned ValueBound is used for
+ // lower/upper bound.
+ ValueBound Add(int c, bool for_lower_bound, bool* overflow_or_underflow) const {
+ *overflow_or_underflow = false;
+ if (c == 0) {
+ return *this;
+ }
+
+ int new_constant;
+ if (c > 0) {
+ if (constant_ > INT_MAX - c) {
+ // Constant part overflows.
+ *overflow_or_underflow = true;
+ return for_lower_bound ? Min() : Max();
+ } else {
+ new_constant = constant_ + c;
+ }
+ } else {
+ if (constant_ < INT_MIN - c) {
+ // Constant part underflows.
+ *overflow_or_underflow = true;
+ return for_lower_bound ? Min() : Max();
+ } else {
+ new_constant = constant_ + c;
+ }
+ }
+ return ValueBound(instruction_, new_constant);
+ }
+
+ private:
+ ValueBound(HInstruction* instruction, int constant)
+ : instruction_(instruction), constant_(constant) {}
+
+ HInstruction* instruction_;
+ int constant_;
+};
+
+/**
+ * Represent a range of lower bound and upper bound, both being inclusive.
+ * Currently a ValueRange may be generated as a result of the following:
+ * comparisons related to array bounds, array bounds check, add/sub on top
+ * of an existing value range, or a loop phi corresponding to an
+ * incrementing/decrementing array index (MonotonicValueRange).
+ */
+class ValueRange : public ArenaObject<kArenaAllocMisc> {
+ public:
+ ValueRange(ArenaAllocator* allocator, ValueBound lower, ValueBound upper)
+ : allocator_(allocator), lower_(lower), upper_(upper) {}
+
+ virtual ~ValueRange() {}
+
+ virtual const MonotonicValueRange* AsMonotonicValueRange() const { return nullptr; }
+ bool IsMonotonicValueRange() const {
+ return AsMonotonicValueRange() != nullptr;
+ }
+
+ ArenaAllocator* GetAllocator() const { return allocator_; }
+ ValueBound GetLower() const { return lower_; }
+ ValueBound GetUpper() const { return upper_; }
+
+ // If it's certain that this value range fits in other_range.
+ virtual bool FitsIn(ValueRange* other_range) const {
+ if (other_range == nullptr) {
+ return true;
+ }
+ DCHECK(!other_range->IsMonotonicValueRange());
+ return lower_.GreaterThanOrEqual(other_range->lower_) &&
+ upper_.LessThanOrEqual(other_range->upper_);
+ }
+
+ // Returns the intersection of this and range.
+ // If it's not possible to do intersection because some
+ // bounds are not comparable, it's ok to pick either bound.
+ virtual ValueRange* Narrow(ValueRange* range) {
+ if (range == nullptr) {
+ return this;
+ }
+
+ if (range->IsMonotonicValueRange()) {
+ return this;
+ }
+
+ return new (allocator_) ValueRange(
+ allocator_,
+ ValueBound::NarrowLowerBound(lower_, range->lower_),
+ ValueBound::NarrowUpperBound(upper_, range->upper_));
+ }
+
+ // Shift a range by a constant. If either bound can't be represented
+ // as (instruction+c) format due to possible overflow/underflow,
+ // return the full integer range.
+ ValueRange* Add(int constant) const {
+ bool overflow_or_underflow;
+ ValueBound lower = lower_.Add(constant, true, &overflow_or_underflow);
+ if (overflow_or_underflow) {
+ // We can't accurately represent the bounds anymore.
+ return FullIntRange();
+ }
+ ValueBound upper = upper_.Add(constant, false, &overflow_or_underflow);
+ if (overflow_or_underflow) {
+ // We can't accurately represent the bounds anymore.
+ return FullIntRange();
+ }
+ return new (allocator_) ValueRange(allocator_, lower, upper);
+ }
+
+ // Return [INT_MIN, INT_MAX].
+ ValueRange* FullIntRange() const {
+ return new (allocator_) ValueRange(allocator_, ValueBound::Min(), ValueBound::Max());
+ }
+
+ private:
+ ArenaAllocator* const allocator_;
+ const ValueBound lower_; // inclusive
+ const ValueBound upper_; // inclusive
+
+ DISALLOW_COPY_AND_ASSIGN(ValueRange);
+};
+
+/**
+ * A monotonically incrementing/decrementing value range, e.g.
+ * the variable i in "for (int i=0; i<array.length; i++)".
+ * Special care needs to be taken to account for overflow/underflow
+ * of such value ranges.
+ */
+class MonotonicValueRange : public ValueRange {
+ public:
+ static MonotonicValueRange* Create(ArenaAllocator* allocator,
+ HInstruction* initial, int increment) {
+ DCHECK_NE(increment, 0);
+ // To be conservative, give it full range [INT_MIN, INT_MAX] in case it's
+ // used as a regular value range, due to possible overflow/underflow.
+ return new (allocator) MonotonicValueRange(
+ allocator, ValueBound::Min(), ValueBound::Max(), initial, increment);
+ }
+
+ virtual ~MonotonicValueRange() {}
+
+ const MonotonicValueRange* AsMonotonicValueRange() const OVERRIDE { return this; }
+
+ // If it's certain that this value range fits in other_range.
+ bool FitsIn(ValueRange* other_range) const OVERRIDE {
+ if (other_range == nullptr) {
+ return true;
+ }
+ DCHECK(!other_range->IsMonotonicValueRange());
+ return false;
+ }
+
+ // Try to narrow this MonotonicValueRange given another range.
+ // Ideally it will return a normal ValueRange. But due to
+ // possible overflow/underflow, that may not be possible.
+ ValueRange* Narrow(ValueRange* range) OVERRIDE {
+ if (range == nullptr) {
+ return this;
+ }
+ DCHECK(!range->IsMonotonicValueRange());
+
+ if (increment_ > 0) {
+ // Monotonically increasing.
+ ValueBound lower = ValueBound::NarrowLowerBound(
+ ValueBound::Create(initial_, 0), range->GetLower());
+
+ // We currently conservatively assume max array length is INT_MAX. If we can
+ // make assumptions about the max array length, e.g. due to the max heap size,
+ // divided by the element size (such as 4 bytes for each integer array), we can
+ // lower this number and rule out some possible overflows.
+ int max_array_len = INT_MAX;
+
+ int upper = INT_MAX;
+ if (range->GetUpper().IsConstant()) {
+ upper = range->GetUpper().GetConstant();
+ } else if (range->GetUpper().IsRelativeToArrayLength()) {
+ int constant = range->GetUpper().GetConstant();
+ if (constant <= 0) {
+ // Normal case. e.g. <= array.length - 1, <= array.length - 2, etc.
+ upper = max_array_len + constant;
+ } else {
+ // There might be overflow. Give up narrowing.
+ return this;
+ }
+ } else {
+ // There might be overflow. Give up narrowing.
+ return this;
+ }
+
+ // If we can prove for the last number in sequence of initial_,
+ // initial_ + increment_, initial_ + 2 x increment_, ...
+ // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow,
+ // then this MonoticValueRange is narrowed to a normal value range.
+
+ // Be conservative first, assume last number in the sequence hits upper.
+ int last_num_in_sequence = upper;
+ if (initial_->IsIntConstant()) {
+ int initial_constant = initial_->AsIntConstant()->GetValue();
+ if (upper <= initial_constant) {
+ last_num_in_sequence = upper;
+ } else {
+ // Cast to int64_t for the substraction part to avoid int overflow.
+ last_num_in_sequence = initial_constant +
+ ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_;
+ }
+ }
+ if (last_num_in_sequence <= INT_MAX - increment_) {
+ // No overflow. The sequence will be stopped by the upper bound test as expected.
+ return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper());
+ }
+
+ // There might be overflow. Give up narrowing.
+ return this;
+ } else {
+ DCHECK_NE(increment_, 0);
+ // Monotonically decreasing.
+ ValueBound upper = ValueBound::NarrowUpperBound(
+ ValueBound::Create(initial_, 0), range->GetUpper());
+
+ // Need to take care of underflow. Try to prove underflow won't happen
+ // for common cases. Basically need to be able to prove for any value
+ // that's >= range->GetLower(), it won't be positive with value+increment.
+ if (range->GetLower().IsConstant()) {
+ int constant = range->GetLower().GetConstant();
+ if (constant >= INT_MIN - increment_) {
+ return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper);
+ }
+ }
+
+ // There might be underflow. Give up narrowing.
+ return this;
+ }
+ }
+
+ private:
+ MonotonicValueRange(ArenaAllocator* allocator, ValueBound lower,
+ ValueBound upper, HInstruction* initial, int increment)
+ : ValueRange(allocator, lower, upper),
+ initial_(initial),
+ increment_(increment) {}
+
+ HInstruction* const initial_;
+ const int increment_;
+
+ DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange);
+};
+
+class BCEVisitor : public HGraphVisitor {
+ public:
+ BCEVisitor(HGraph* graph)
+ : HGraphVisitor(graph),
+ maps_(graph->GetBlocks().Size()) {}
+
+ private:
+ // Return the map of proven value ranges at the beginning of a basic block.
+ ArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) {
+ int block_id = basic_block->GetBlockId();
+ if (maps_.at(block_id) == nullptr) {
+ std::unique_ptr<ArenaSafeMap<int, ValueRange*>> map(
+ new ArenaSafeMap<int, ValueRange*>(
+ std::less<int>(), GetGraph()->GetArena()->Adapter()));
+ maps_.at(block_id) = std::move(map);
+ }
+ return maps_.at(block_id).get();
+ }
+
+ // Traverse up the dominator tree to look for value range info.
+ ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) {
+ while (basic_block != nullptr) {
+ ArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block);
+ if (map->find(instruction->GetId()) != map->end()) {
+ return map->Get(instruction->GetId());
+ }
+ basic_block = basic_block->GetDominator();
+ }
+ // Didn't find any.
+ return nullptr;
+ }
+
+ // Try to detect useful value bound format from an instruction, e.g.
+ // a constant or array length related value.
+ ValueBound DetectValueBoundFromValue(HInstruction* instruction) {
+ if (instruction->IsIntConstant()) {
+ return ValueBound::Create(nullptr, instruction->AsIntConstant()->GetValue());
+ }
+
+ if (instruction->IsArrayLength()) {
+ return ValueBound::Create(instruction, 0);
+ }
+ // Try to detect (array.length + c) format.
+ if (instruction->IsAdd()) {
+ HAdd* add = instruction->AsAdd();
+ HInstruction* left = add->GetLeft();
+ HInstruction* right = add->GetRight();
+ if (left->IsArrayLength() && right->IsIntConstant()) {
+ return ValueBound::Create(left, right->AsIntConstant()->GetValue());
+ }
+ }
+
+ // No useful bound detected.
+ return ValueBound::Max();
+ }
+
+ // Narrow the value range of 'instruction' at the end of 'basic_block' with 'range',
+ // and push the narrowed value range to 'successor'.
+ void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block,
+ HBasicBlock* successor, ValueRange* range) {
+ ValueRange* existing_range = LookupValueRange(instruction, basic_block);
+ ValueRange* narrowed_range = (existing_range == nullptr) ?
+ range : existing_range->Narrow(range);
+ if (narrowed_range != nullptr) {
+ GetValueRangeMap(successor)->Overwrite(instruction->GetId(), narrowed_range);
+ }
+ }
+
+ // Handle "if (left cmp_cond right)".
+ void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) {
+ HBasicBlock* block = instruction->GetBlock();
+
+ HBasicBlock* true_successor = instruction->IfTrueSuccessor();
+ // There should be no critical edge at this point.
+ DCHECK_EQ(true_successor->GetPredecessors().Size(), 1u);
+
+ HBasicBlock* false_successor = instruction->IfFalseSuccessor();
+ // There should be no critical edge at this point.
+ DCHECK_EQ(false_successor->GetPredecessors().Size(), 1u);
+
+ ValueBound bound = DetectValueBoundFromValue(right);
+ bool found = !bound.Equals(ValueBound::Max());
+
+ ValueBound lower = bound;
+ ValueBound upper = bound;
+ if (!found) {
+ // No constant or array.length+c bound found.
+ // For i<j, we can still use j's upper bound as i's upper bound. Same for lower.
+ ValueRange* range = LookupValueRange(right, block);
+ if (range != nullptr) {
+ lower = range->GetLower();
+ upper = range->GetUpper();
+ } else {
+ lower = ValueBound::Min();
+ upper = ValueBound::Max();
+ }
+ }
+
+ bool overflow_or_underflow;
+ if (cond == kCondLT || cond == kCondLE) {
+ if (!upper.Equals(ValueBound::Max())) {
+ int compensation = (cond == kCondLT) ? -1 : 0; // upper bound is inclusive
+ ValueBound new_upper = upper.Add(compensation, false, &overflow_or_underflow);
+ // overflow_or_underflow is ignored here since we already use ValueBound::Min()
+ // for lower bound.
+ ValueRange* new_range = new (GetGraph()->GetArena())
+ ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper);
+ ApplyRangeFromComparison(left, block, true_successor, new_range);
+ }
+
+ // array.length as a lower bound isn't considered useful.
+ if (!lower.Equals(ValueBound::Min()) && !lower.IsRelativeToArrayLength()) {
+ int compensation = (cond == kCondLE) ? 1 : 0; // lower bound is inclusive
+ ValueBound new_lower = lower.Add(compensation, true, &overflow_or_underflow);
+ // overflow_or_underflow is ignored here since we already use ValueBound::Max()
+ // for upper bound.
+ ValueRange* new_range = new (GetGraph()->GetArena())
+ ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max());
+ ApplyRangeFromComparison(left, block, false_successor, new_range);
+ }
+ } else if (cond == kCondGT || cond == kCondGE) {
+ // array.length as a lower bound isn't considered useful.
+ if (!lower.Equals(ValueBound::Min()) && !lower.IsRelativeToArrayLength()) {
+ int compensation = (cond == kCondGT) ? 1 : 0; // lower bound is inclusive
+ ValueBound new_lower = lower.Add(compensation, true, &overflow_or_underflow);
+ // overflow_or_underflow is ignored here since we already use ValueBound::Max()
+ // for upper bound.
+ ValueRange* new_range = new (GetGraph()->GetArena())
+ ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max());
+ ApplyRangeFromComparison(left, block, true_successor, new_range);
+ }
+
+ if (!upper.Equals(ValueBound::Max())) {
+ int compensation = (cond == kCondGE) ? -1 : 0; // upper bound is inclusive
+ ValueBound new_upper = upper.Add(compensation, false, &overflow_or_underflow);
+ // overflow_or_underflow is ignored here since we already use ValueBound::Min()
+ // for lower bound.
+ ValueRange* new_range = new (GetGraph()->GetArena())
+ ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper);
+ ApplyRangeFromComparison(left, block, false_successor, new_range);
+ }
+ }
+ }
+
+ void VisitBoundsCheck(HBoundsCheck* bounds_check) {
+ HBasicBlock* block = bounds_check->GetBlock();
+ HInstruction* index = bounds_check->InputAt(0);
+ HInstruction* array_length = bounds_check->InputAt(1);
+ ValueRange* index_range = LookupValueRange(index, block);
+
+ if (index_range != nullptr) {
+ ValueBound lower = ValueBound::Create(nullptr, 0); // constant 0
+ ValueBound upper = ValueBound::Create(array_length, -1); // array_length - 1
+ ValueRange* array_range = new (GetGraph()->GetArena())
+ ValueRange(GetGraph()->GetArena(), lower, upper);
+ if (index_range->FitsIn(array_range)) {
+ ReplaceBoundsCheck(bounds_check, index);
+ return;
+ }
+ }
+
+ if (index->IsIntConstant()) {
+ ValueRange* array_length_range = LookupValueRange(array_length, block);
+ int constant = index->AsIntConstant()->GetValue();
+ if (array_length_range != nullptr &&
+ array_length_range->GetLower().IsConstant()) {
+ if (constant < array_length_range->GetLower().GetConstant()) {
+ ReplaceBoundsCheck(bounds_check, index);
+ return;
+ }
+ }
+
+ // Once we have an array access like 'array[5] = 1', we record array.length >= 6.
+ ValueBound lower = ValueBound::Create(nullptr, constant + 1);
+ ValueBound upper = ValueBound::Max();
+ ValueRange* range = new (GetGraph()->GetArena())
+ ValueRange(GetGraph()->GetArena(), lower, upper);
+ ValueRange* existing_range = LookupValueRange(array_length, block);
+ ValueRange* new_range = range;
+ if (existing_range != nullptr) {
+ new_range = range->Narrow(existing_range);
+ }
+ GetValueRangeMap(block)->Overwrite(array_length->GetId(), new_range);
+ }
+ }
+
+ void ReplaceBoundsCheck(HInstruction* bounds_check, HInstruction* index) {
+ bounds_check->ReplaceWith(index);
+ bounds_check->GetBlock()->RemoveInstruction(bounds_check);
+ }
+
+ void VisitPhi(HPhi* phi) {
+ if (phi->IsLoopHeaderPhi() && phi->GetType() == Primitive::kPrimInt) {
+ DCHECK(phi->InputCount() == 2);
+ HInstruction* instruction = phi->InputAt(1);
+ if (instruction->IsAdd()) {
+ HAdd* add = instruction->AsAdd();
+ HInstruction* left = add->GetLeft();
+ HInstruction* right = add->GetRight();
+ if (left == phi && right->IsIntConstant()) {
+ HInstruction* initial_value = phi->InputAt(0);
+ ValueRange* range = nullptr;
+ if (right->AsIntConstant()->GetValue() == 0) {
+ // Add constant 0. It's really a fixed value.
+ range = new (GetGraph()->GetArena()) ValueRange(
+ GetGraph()->GetArena(),
+ ValueBound::Create(initial_value, 0),
+ ValueBound::Create(initial_value, 0));
+ } else {
+ // Monotonically increasing/decreasing.
+ range = MonotonicValueRange::Create(
+ GetGraph()->GetArena(),
+ initial_value,
+ right->AsIntConstant()->GetValue());
+ }
+ GetValueRangeMap(phi->GetBlock())->Overwrite(phi->GetId(), range);
+ }
+ }
+ }
+ }
+
+ void VisitIf(HIf* instruction) {
+ if (instruction->InputAt(0)->IsCondition()) {
+ HCondition* cond = instruction->InputAt(0)->AsCondition();
+ IfCondition cmp = cond->GetCondition();
+ if (cmp == kCondGT || cmp == kCondGE ||
+ cmp == kCondLT || cmp == kCondLE) {
+ HInstruction* left = cond->GetLeft();
+ HInstruction* right = cond->GetRight();
+ HandleIf(instruction, left, right, cmp);
+ }
+ }
+ }
+
+ void VisitAdd(HAdd* add) {
+ HInstruction* right = add->GetRight();
+ if (right->IsIntConstant()) {
+ ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock());
+ if (left_range == nullptr) {
+ return;
+ }
+ ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue());
+ if (range != nullptr) {
+ GetValueRangeMap(add->GetBlock())->Overwrite(add->GetId(), range);
+ }
+ }
+ }
+
+ void VisitSub(HSub* sub) {
+ HInstruction* left = sub->GetLeft();
+ HInstruction* right = sub->GetRight();
+ if (right->IsIntConstant()) {
+ ValueRange* left_range = LookupValueRange(left, sub->GetBlock());
+ if (left_range == nullptr) {
+ return;
+ }
+ ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue());
+ if (range != nullptr) {
+ GetValueRangeMap(sub->GetBlock())->Overwrite(sub->GetId(), range);
+ return;
+ }
+ }
+
+ // Here we are interested in the typical triangular case of nested loops,
+ // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i
+ // is the index for outer loop. In this case, we know j is bounded by array.length-1.
+ if (left->IsArrayLength()) {
+ HInstruction* array_length = left->AsArrayLength();
+ ValueRange* right_range = LookupValueRange(right, sub->GetBlock());
+ if (right_range != nullptr) {
+ ValueBound lower = right_range->GetLower();
+ ValueBound upper = right_range->GetUpper();
+ if (lower.IsConstant() && upper.IsRelativeToArrayLength()) {
+ HInstruction* upper_inst = upper.GetInstruction();
+ if (upper_inst->IsArrayLength() &&
+ upper_inst->AsArrayLength() == array_length) {
+ // (array.length - v) where v is in [c1, array.length + c2]
+ // gets [-c2, array.length - c1] as its value range.
+ ValueRange* range = new (GetGraph()->GetArena()) ValueRange(
+ GetGraph()->GetArena(),
+ ValueBound::Create(nullptr, - upper.GetConstant()),
+ ValueBound::Create(array_length, - lower.GetConstant()));
+ GetValueRangeMap(sub->GetBlock())->Overwrite(sub->GetId(), range);
+ }
+ }
+ }
+ }
+ }
+
+ std::vector<std::unique_ptr<ArenaSafeMap<int, ValueRange*>>> maps_;
+
+ DISALLOW_COPY_AND_ASSIGN(BCEVisitor);
+};
+
+void BoundsCheckElimination::Run() {
+ BCEVisitor visitor(graph_);
+ // Reverse post order guarantees a node's dominators are visited first.
+ // We want to visit in the dominator-based order since if a value is known to
+ // be bounded by a range at one instruction, it must be true that all uses of
+ // that value dominated by that instruction fits in that range. Range of that
+ // value can be narrowed further down in the dominator tree.
+ //
+ // TODO: only visit blocks that dominate some array accesses.
+ visitor.VisitReversePostOrder();
+}
+
+} // namespace art
diff --git a/compiler/optimizing/bounds_check_elimination.h b/compiler/optimizing/bounds_check_elimination.h
new file mode 100644
index 0000000..25551d5
--- /dev/null
+++ b/compiler/optimizing/bounds_check_elimination.h
@@ -0,0 +1,36 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_COMPILER_OPTIMIZING_BOUNDS_CHECK_ELIMINATION_H_
+#define ART_COMPILER_OPTIMIZING_BOUNDS_CHECK_ELIMINATION_H_
+
+#include "optimization.h"
+
+namespace art {
+
+class BoundsCheckElimination : public HOptimization {
+ public:
+ BoundsCheckElimination(HGraph* graph) : HOptimization(graph, true, "BCE") {}
+
+ void Run() OVERRIDE;
+
+ private:
+ DISALLOW_COPY_AND_ASSIGN(BoundsCheckElimination);
+};
+
+} // namespace art
+
+#endif // ART_COMPILER_OPTIMIZING_BOUNDS_CHECK_ELIMINATION_H_
diff --git a/compiler/optimizing/bounds_check_elimination_test.cc b/compiler/optimizing/bounds_check_elimination_test.cc
new file mode 100644
index 0000000..5e2e62c
--- /dev/null
+++ b/compiler/optimizing/bounds_check_elimination_test.cc
@@ -0,0 +1,1045 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "bounds_check_elimination.h"
+#include "builder.h"
+#include "gvn.h"
+#include "nodes.h"
+#include "optimizing_unit_test.h"
+#include "utils/arena_allocator.h"
+
+#include "gtest/gtest.h"
+
+namespace art {
+
+// if (i < 0) { array[i] = 1; // Can't eliminate. }
+// else if (i >= array.length) { array[i] = 1; // Can't eliminate. }
+// else { array[i] = 1; // Can eliminate. }
+TEST(BoundsCheckEliminationTest, NarrowingRangeArrayBoundsElimination) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+
+ HBasicBlock* entry = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(entry);
+ graph->SetEntryBlock(entry);
+ HInstruction* parameter1 = new (&allocator)
+ HParameterValue(0, Primitive::kPrimNot); // array
+ HInstruction* parameter2 = new (&allocator)
+ HParameterValue(0, Primitive::kPrimInt); // i
+ HInstruction* constant_1 = new (&allocator) HIntConstant(1);
+ HInstruction* constant_0 = new (&allocator) HIntConstant(0);
+ entry->AddInstruction(parameter1);
+ entry->AddInstruction(parameter2);
+ entry->AddInstruction(constant_1);
+ entry->AddInstruction(constant_0);
+
+ HBasicBlock* block1 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block1);
+ HInstruction* cmp = new (&allocator) HGreaterThanOrEqual(parameter2, constant_0);
+ HIf* if_inst = new (&allocator) HIf(cmp);
+ block1->AddInstruction(cmp);
+ block1->AddInstruction(if_inst);
+ entry->AddSuccessor(block1);
+
+ HBasicBlock* block2 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block2);
+ HNullCheck* null_check = new (&allocator) HNullCheck(parameter1, 0);
+ HArrayLength* array_length = new (&allocator) HArrayLength(null_check);
+ HBoundsCheck* bounds_check2 = new (&allocator)
+ HBoundsCheck(parameter2, array_length, 0);
+ HArraySet* array_set = new (&allocator) HArraySet(
+ null_check, bounds_check2, constant_1, Primitive::kPrimInt, 0);
+ block2->AddInstruction(null_check);
+ block2->AddInstruction(array_length);
+ block2->AddInstruction(bounds_check2);
+ block2->AddInstruction(array_set);
+
+ HBasicBlock* block3 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block3);
+ null_check = new (&allocator) HNullCheck(parameter1, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ cmp = new (&allocator) HLessThan(parameter2, array_length);
+ if_inst = new (&allocator) HIf(cmp);
+ block3->AddInstruction(null_check);
+ block3->AddInstruction(array_length);
+ block3->AddInstruction(cmp);
+ block3->AddInstruction(if_inst);
+
+ HBasicBlock* block4 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block4);
+ null_check = new (&allocator) HNullCheck(parameter1, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HBoundsCheck* bounds_check4 = new (&allocator)
+ HBoundsCheck(parameter2, array_length, 0);
+ array_set = new (&allocator) HArraySet(
+ null_check, bounds_check4, constant_1, Primitive::kPrimInt, 0);
+ block4->AddInstruction(null_check);
+ block4->AddInstruction(array_length);
+ block4->AddInstruction(bounds_check4);
+ block4->AddInstruction(array_set);
+
+ HBasicBlock* block5 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block5);
+ null_check = new (&allocator) HNullCheck(parameter1, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HBoundsCheck* bounds_check5 = new (&allocator)
+ HBoundsCheck(parameter2, array_length, 0);
+ array_set = new (&allocator) HArraySet(
+ null_check, bounds_check5, constant_1, Primitive::kPrimInt, 0);
+ block5->AddInstruction(null_check);
+ block5->AddInstruction(array_length);
+ block5->AddInstruction(bounds_check5);
+ block5->AddInstruction(array_set);
+
+ HBasicBlock* exit = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(exit);
+ block2->AddSuccessor(exit);
+ block4->AddSuccessor(exit);
+ block5->AddSuccessor(exit);
+ exit->AddInstruction(new (&allocator) HExit());
+
+ block1->AddSuccessor(block3); // True successor
+ block1->AddSuccessor(block2); // False successor
+
+ block3->AddSuccessor(block5); // True successor
+ block3->AddSuccessor(block4); // False successor
+
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination(graph);
+ bounds_check_elimination.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check2));
+ ASSERT_FALSE(IsRemoved(bounds_check4));
+ ASSERT_TRUE(IsRemoved(bounds_check5));
+}
+
+// if (i > 0) {
+// // Positive number plus MAX_INT will overflow and be negative.
+// int j = i + Integer.MAX_VALUE;
+// if (j < array.length) array[j] = 1; // Can't eliminate.
+// }
+TEST(BoundsCheckEliminationTest, OverflowArrayBoundsElimination) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+
+ HBasicBlock* entry = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(entry);
+ graph->SetEntryBlock(entry);
+ HInstruction* parameter1 = new (&allocator)
+ HParameterValue(0, Primitive::kPrimNot); // array
+ HInstruction* parameter2 = new (&allocator)
+ HParameterValue(0, Primitive::kPrimInt); // i
+ HInstruction* constant_1 = new (&allocator) HIntConstant(1);
+ HInstruction* constant_0 = new (&allocator) HIntConstant(0);
+ HInstruction* constant_max_int = new (&allocator) HIntConstant(INT_MAX);
+ entry->AddInstruction(parameter1);
+ entry->AddInstruction(parameter2);
+ entry->AddInstruction(constant_1);
+ entry->AddInstruction(constant_0);
+ entry->AddInstruction(constant_max_int);
+
+ HBasicBlock* block1 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block1);
+ HInstruction* cmp = new (&allocator) HLessThanOrEqual(parameter2, constant_0);
+ HIf* if_inst = new (&allocator) HIf(cmp);
+ block1->AddInstruction(cmp);
+ block1->AddInstruction(if_inst);
+ entry->AddSuccessor(block1);
+
+ HBasicBlock* block2 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block2);
+ HInstruction* add = new (&allocator) HAdd(Primitive::kPrimInt, parameter2, constant_max_int);
+ HNullCheck* null_check = new (&allocator) HNullCheck(parameter1, 0);
+ HArrayLength* array_length = new (&allocator) HArrayLength(null_check);
+ HInstruction* cmp2 = new (&allocator) HGreaterThanOrEqual(add, array_length);
+ if_inst = new (&allocator) HIf(cmp2);
+ block2->AddInstruction(add);
+ block2->AddInstruction(null_check);
+ block2->AddInstruction(array_length);
+ block2->AddInstruction(cmp2);
+ block2->AddInstruction(if_inst);
+
+ HBasicBlock* block3 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block3);
+ HBoundsCheck* bounds_check = new (&allocator)
+ HBoundsCheck(add, array_length, 0);
+ HArraySet* array_set = new (&allocator) HArraySet(
+ null_check, bounds_check, constant_1, Primitive::kPrimInt, 0);
+ block3->AddInstruction(bounds_check);
+ block3->AddInstruction(array_set);
+
+ HBasicBlock* exit = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(exit);
+ exit->AddInstruction(new (&allocator) HExit());
+ block1->AddSuccessor(exit); // true successor
+ block1->AddSuccessor(block2); // false successor
+ block2->AddSuccessor(exit); // true successor
+ block2->AddSuccessor(block3); // false successor
+ block3->AddSuccessor(exit);
+
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination(graph);
+ bounds_check_elimination.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+}
+
+// if (i < array.length) {
+// int j = i - Integer.MAX_VALUE;
+// j = j - Integer.MAX_VALUE; // j is (i+2) after substracting MAX_INT twice
+// if (j > 0) array[j] = 1; // Can't eliminate.
+// }
+TEST(BoundsCheckEliminationTest, UnderflowArrayBoundsElimination) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+
+ HBasicBlock* entry = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(entry);
+ graph->SetEntryBlock(entry);
+ HInstruction* parameter1 = new (&allocator)
+ HParameterValue(0, Primitive::kPrimNot); // array
+ HInstruction* parameter2 = new (&allocator)
+ HParameterValue(0, Primitive::kPrimInt); // i
+ HInstruction* constant_1 = new (&allocator) HIntConstant(1);
+ HInstruction* constant_0 = new (&allocator) HIntConstant(0);
+ HInstruction* constant_max_int = new (&allocator) HIntConstant(INT_MAX);
+ entry->AddInstruction(parameter1);
+ entry->AddInstruction(parameter2);
+ entry->AddInstruction(constant_1);
+ entry->AddInstruction(constant_0);
+ entry->AddInstruction(constant_max_int);
+
+ HBasicBlock* block1 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block1);
+ HNullCheck* null_check = new (&allocator) HNullCheck(parameter1, 0);
+ HArrayLength* array_length = new (&allocator) HArrayLength(null_check);
+ HInstruction* cmp = new (&allocator) HGreaterThanOrEqual(parameter2, array_length);
+ HIf* if_inst = new (&allocator) HIf(cmp);
+ block1->AddInstruction(null_check);
+ block1->AddInstruction(array_length);
+ block1->AddInstruction(cmp);
+ block1->AddInstruction(if_inst);
+ entry->AddSuccessor(block1);
+
+ HBasicBlock* block2 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block2);
+ HInstruction* sub1 = new (&allocator) HSub(Primitive::kPrimInt, parameter2, constant_max_int);
+ HInstruction* sub2 = new (&allocator) HSub(Primitive::kPrimInt, sub1, constant_max_int);
+ HInstruction* cmp2 = new (&allocator) HLessThanOrEqual(sub2, constant_0);
+ if_inst = new (&allocator) HIf(cmp2);
+ block2->AddInstruction(sub1);
+ block2->AddInstruction(sub2);
+ block2->AddInstruction(cmp2);
+ block2->AddInstruction(if_inst);
+
+ HBasicBlock* block3 = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block3);
+ HBoundsCheck* bounds_check = new (&allocator)
+ HBoundsCheck(sub2, array_length, 0);
+ HArraySet* array_set = new (&allocator) HArraySet(
+ null_check, bounds_check, constant_1, Primitive::kPrimInt, 0);
+ block3->AddInstruction(bounds_check);
+ block3->AddInstruction(array_set);
+
+ HBasicBlock* exit = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(exit);
+ exit->AddInstruction(new (&allocator) HExit());
+ block1->AddSuccessor(exit); // true successor
+ block1->AddSuccessor(block2); // false successor
+ block2->AddSuccessor(exit); // true successor
+ block2->AddSuccessor(block3); // false successor
+ block3->AddSuccessor(exit);
+
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination(graph);
+ bounds_check_elimination.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+}
+
+// array[5] = 1; // Can't eliminate.
+// array[4] = 1; // Can eliminate.
+// array[6] = 1; // Can't eliminate.
+TEST(BoundsCheckEliminationTest, ConstantArrayBoundsElimination) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+
+ HBasicBlock* entry = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(entry);
+ graph->SetEntryBlock(entry);
+ HInstruction* parameter = new (&allocator) HParameterValue(0, Primitive::kPrimNot);
+ HInstruction* constant_5 = new (&allocator) HIntConstant(5);
+ HInstruction* constant_4 = new (&allocator) HIntConstant(4);
+ HInstruction* constant_6 = new (&allocator) HIntConstant(6);
+ HInstruction* constant_1 = new (&allocator) HIntConstant(1);
+ entry->AddInstruction(parameter);
+ entry->AddInstruction(constant_5);
+ entry->AddInstruction(constant_4);
+ entry->AddInstruction(constant_6);
+ entry->AddInstruction(constant_1);
+
+ HBasicBlock* block = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block);
+ entry->AddSuccessor(block);
+
+ HNullCheck* null_check = new (&allocator) HNullCheck(parameter, 0);
+ HArrayLength* array_length = new (&allocator) HArrayLength(null_check);
+ HBoundsCheck* bounds_check5 = new (&allocator)
+ HBoundsCheck(constant_5, array_length, 0);
+ HInstruction* array_set = new (&allocator) HArraySet(
+ null_check, bounds_check5, constant_1, Primitive::kPrimInt, 0);
+ block->AddInstruction(null_check);
+ block->AddInstruction(array_length);
+ block->AddInstruction(bounds_check5);
+ block->AddInstruction(array_set);
+
+ null_check = new (&allocator) HNullCheck(parameter, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HBoundsCheck* bounds_check4 = new (&allocator)
+ HBoundsCheck(constant_4, array_length, 0);
+ array_set = new (&allocator) HArraySet(
+ null_check, bounds_check4, constant_1, Primitive::kPrimInt, 0);
+ block->AddInstruction(null_check);
+ block->AddInstruction(array_length);
+ block->AddInstruction(bounds_check4);
+ block->AddInstruction(array_set);
+
+ null_check = new (&allocator) HNullCheck(parameter, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HBoundsCheck* bounds_check6 = new (&allocator)
+ HBoundsCheck(constant_6, array_length, 0);
+ array_set = new (&allocator) HArraySet(
+ null_check, bounds_check6, constant_1, Primitive::kPrimInt, 0);
+ block->AddInstruction(null_check);
+ block->AddInstruction(array_length);
+ block->AddInstruction(bounds_check6);
+ block->AddInstruction(array_set);
+
+ block->AddInstruction(new (&allocator) HGoto());
+
+ HBasicBlock* exit = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(exit);
+ block->AddSuccessor(exit);
+ exit->AddInstruction(new (&allocator) HExit());
+
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination(graph);
+ bounds_check_elimination.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check5));
+ ASSERT_TRUE(IsRemoved(bounds_check4));
+ ASSERT_FALSE(IsRemoved(bounds_check6));
+}
+
+// for (int i=initial; i<array.length; i+=increment) { array[i] = 10; }
+static HGraph* BuildSSAGraph1(ArenaAllocator* allocator,
+ HInstruction** bounds_check,
+ int initial,
+ int increment,
+ IfCondition cond = kCondGE) {
+ HGraph* graph = new (allocator) HGraph(allocator);
+
+ HBasicBlock* entry = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(entry);
+ graph->SetEntryBlock(entry);
+ HInstruction* parameter = new (allocator) HParameterValue(0, Primitive::kPrimNot);
+ HInstruction* constant_initial = new (allocator) HIntConstant(initial);
+ HInstruction* constant_increment = new (allocator) HIntConstant(increment);
+ HInstruction* constant_10 = new (allocator) HIntConstant(10);
+ entry->AddInstruction(parameter);
+ entry->AddInstruction(constant_initial);
+ entry->AddInstruction(constant_increment);
+ entry->AddInstruction(constant_10);
+
+ HBasicBlock* block = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(block);
+ entry->AddSuccessor(block);
+ block->AddInstruction(new (allocator) HGoto());
+
+ HBasicBlock* loop_header = new (allocator) HBasicBlock(graph);
+ HBasicBlock* loop_body = new (allocator) HBasicBlock(graph);
+ HBasicBlock* exit = new (allocator) HBasicBlock(graph);
+
+ graph->AddBlock(loop_header);
+ graph->AddBlock(loop_body);
+ graph->AddBlock(exit);
+ block->AddSuccessor(loop_header);
+ loop_header->AddSuccessor(exit); // true successor
+ loop_header->AddSuccessor(loop_body); // false successor
+ loop_body->AddSuccessor(loop_header);
+
+ HPhi* phi = new (allocator) HPhi(allocator, 0, 0, Primitive::kPrimInt);
+ phi->AddInput(constant_initial);
+ HInstruction* null_check = new (allocator) HNullCheck(parameter, 0);
+ HInstruction* array_length = new (allocator) HArrayLength(null_check);
+ HInstruction* cmp = nullptr;
+ if (cond == kCondGE) {
+ cmp = new (allocator) HGreaterThanOrEqual(phi, array_length);
+ } else {
+ DCHECK(cond == kCondGT);
+ cmp = new (allocator) HGreaterThan(phi, array_length);
+ }
+ HInstruction* if_inst = new (allocator) HIf(cmp);
+ loop_header->AddPhi(phi);
+ loop_header->AddInstruction(null_check);
+ loop_header->AddInstruction(array_length);
+ loop_header->AddInstruction(cmp);
+ loop_header->AddInstruction(if_inst);
+
+ null_check = new (allocator) HNullCheck(parameter, 0);
+ array_length = new (allocator) HArrayLength(null_check);
+ *bounds_check = new (allocator) HBoundsCheck(phi, array_length, 0);
+ HInstruction* array_set = new (allocator) HArraySet(
+ null_check, *bounds_check, constant_10, Primitive::kPrimInt, 0);
+
+ HInstruction* add = new (allocator) HAdd(Primitive::kPrimInt, phi, constant_increment);
+ loop_body->AddInstruction(null_check);
+ loop_body->AddInstruction(array_length);
+ loop_body->AddInstruction(*bounds_check);
+ loop_body->AddInstruction(array_set);
+ loop_body->AddInstruction(add);
+ loop_body->AddInstruction(new (allocator) HGoto());
+ phi->AddInput(add);
+
+ exit->AddInstruction(new (allocator) HExit());
+
+ return graph;
+}
+
+TEST(BoundsCheckEliminationTest, LoopArrayBoundsElimination1) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ // for (int i=0; i<array.length; i++) { array[i] = 10; // Can eliminate with gvn. }
+ HInstruction* bounds_check = nullptr;
+ HGraph* graph = BuildSSAGraph1(&allocator, &bounds_check, 0, 1);
+ graph->BuildDominatorTree();
+ BoundsCheckElimination bounds_check_elimination(graph);
+ bounds_check_elimination.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+
+ // This time add gvn. Need gvn to eliminate the second
+ // HArrayLength which uses the null check as its input.
+ graph = BuildSSAGraph1(&allocator, &bounds_check, 0, 1);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_after_gvn(graph);
+ bounds_check_elimination_after_gvn.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+
+ // for (int i=1; i<array.length; i++) { array[i] = 10; // Can eliminate. }
+ graph = BuildSSAGraph1(&allocator, &bounds_check, 1, 1);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_initial_1(graph);
+ bounds_check_elimination_with_initial_1.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+
+ // for (int i=-1; i<array.length; i++) { array[i] = 10; // Can't eliminate. }
+ graph = BuildSSAGraph1(&allocator, &bounds_check, -1, 1);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_initial_minus_1(graph);
+ bounds_check_elimination_with_initial_minus_1.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+
+ // for (int i=0; i<=array.length; i++) { array[i] = 10; // Can't eliminate. }
+ graph = BuildSSAGraph1(&allocator, &bounds_check, 0, 1, kCondGT);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_greater_than(graph);
+ bounds_check_elimination_with_greater_than.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+
+ // for (int i=0; i<array.length; i += 2) {
+ // array[i] = 10; // Can't eliminate due to overflow concern. }
+ graph = BuildSSAGraph1(&allocator, &bounds_check, 0, 2);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_increment_2(graph);
+ bounds_check_elimination_with_increment_2.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+
+ // for (int i=1; i<array.length; i += 2) { array[i] = 10; // Can eliminate. }
+ graph = BuildSSAGraph1(&allocator, &bounds_check, 1, 2);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_increment_2_from_1(graph);
+ bounds_check_elimination_with_increment_2_from_1.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+}
+
+// for (int i=array.length; i>0; i+=increment) { array[i-1] = 10; }
+static HGraph* BuildSSAGraph2(ArenaAllocator* allocator,
+ HInstruction** bounds_check,
+ int initial,
+ int increment = -1,
+ IfCondition cond = kCondLE) {
+ HGraph* graph = new (allocator) HGraph(allocator);
+
+ HBasicBlock* entry = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(entry);
+ graph->SetEntryBlock(entry);
+ HInstruction* parameter = new (allocator) HParameterValue(0, Primitive::kPrimNot);
+ HInstruction* constant_initial = new (allocator) HIntConstant(initial);
+ HInstruction* constant_increment = new (allocator) HIntConstant(increment);
+ HInstruction* constant_minus_1 = new (allocator) HIntConstant(-1);
+ HInstruction* constant_10 = new (allocator) HIntConstant(10);
+ entry->AddInstruction(parameter);
+ entry->AddInstruction(constant_initial);
+ entry->AddInstruction(constant_increment);
+ entry->AddInstruction(constant_minus_1);
+ entry->AddInstruction(constant_10);
+
+ HBasicBlock* block = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(block);
+ entry->AddSuccessor(block);
+ HInstruction* null_check = new (allocator) HNullCheck(parameter, 0);
+ HInstruction* array_length = new (allocator) HArrayLength(null_check);
+ block->AddInstruction(null_check);
+ block->AddInstruction(array_length);
+ block->AddInstruction(new (allocator) HGoto());
+
+ HBasicBlock* loop_header = new (allocator) HBasicBlock(graph);
+ HBasicBlock* loop_body = new (allocator) HBasicBlock(graph);
+ HBasicBlock* exit = new (allocator) HBasicBlock(graph);
+
+ graph->AddBlock(loop_header);
+ graph->AddBlock(loop_body);
+ graph->AddBlock(exit);
+ block->AddSuccessor(loop_header);
+ loop_header->AddSuccessor(exit); // true successor
+ loop_header->AddSuccessor(loop_body); // false successor
+ loop_body->AddSuccessor(loop_header);
+
+ HPhi* phi = new (allocator) HPhi(allocator, 0, 0, Primitive::kPrimInt);
+ phi->AddInput(array_length);
+ HInstruction* cmp = nullptr;
+ if (cond == kCondLE) {
+ cmp = new (allocator) HLessThanOrEqual(phi, constant_initial);
+ } else {
+ DCHECK(cond == kCondLT);
+ cmp = new (allocator) HLessThan(phi, constant_initial);
+ }
+ HInstruction* if_inst = new (allocator) HIf(cmp);
+ loop_header->AddPhi(phi);
+ loop_header->AddInstruction(cmp);
+ loop_header->AddInstruction(if_inst);
+
+ HInstruction* add = new (allocator) HAdd(Primitive::kPrimInt, phi, constant_minus_1);
+ null_check = new (allocator) HNullCheck(parameter, 0);
+ array_length = new (allocator) HArrayLength(null_check);
+ *bounds_check = new (allocator) HBoundsCheck(add, array_length, 0);
+ HInstruction* array_set = new (allocator) HArraySet(
+ null_check, *bounds_check, constant_10, Primitive::kPrimInt, 0);
+ HInstruction* add_phi = new (allocator) HAdd(Primitive::kPrimInt, phi, constant_increment);
+ loop_body->AddInstruction(add);
+ loop_body->AddInstruction(null_check);
+ loop_body->AddInstruction(array_length);
+ loop_body->AddInstruction(*bounds_check);
+ loop_body->AddInstruction(array_set);
+ loop_body->AddInstruction(add_phi);
+ loop_body->AddInstruction(new (allocator) HGoto());
+ phi->AddInput(add);
+
+ exit->AddInstruction(new (allocator) HExit());
+
+ return graph;
+}
+
+TEST(BoundsCheckEliminationTest, LoopArrayBoundsElimination2) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ // for (int i=array.length; i>0; i--) { array[i-1] = 10; // Can eliminate with gvn. }
+ HInstruction* bounds_check = nullptr;
+ HGraph* graph = BuildSSAGraph2(&allocator, &bounds_check, 0);
+ graph->BuildDominatorTree();
+ BoundsCheckElimination bounds_check_elimination(graph);
+ bounds_check_elimination.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+
+ // This time add gvn. Need gvn to eliminate the second
+ // HArrayLength which uses the null check as its input.
+ graph = BuildSSAGraph2(&allocator, &bounds_check, 0);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_after_gvn(graph);
+ bounds_check_elimination_after_gvn.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+
+ // for (int i=array.length; i>1; i--) { array[i-1] = 10; // Can eliminate. }
+ graph = BuildSSAGraph2(&allocator, &bounds_check, 1);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_initial_1(graph);
+ bounds_check_elimination_with_initial_1.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+
+ // for (int i=array.length; i>-1; i--) { array[i-1] = 10; // Can't eliminate. }
+ graph = BuildSSAGraph2(&allocator, &bounds_check, -1);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_initial_minus_1(graph);
+ bounds_check_elimination_with_initial_minus_1.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+
+ // for (int i=array.length; i>=0; i--) { array[i-1] = 10; // Can't eliminate. }
+ graph = BuildSSAGraph2(&allocator, &bounds_check, 0, -1, kCondLT);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_less_than(graph);
+ bounds_check_elimination_with_less_than.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+
+ // for (int i=array.length; i>0; i-=2) { array[i-1] = 10; // Can eliminate. }
+ graph = BuildSSAGraph2(&allocator, &bounds_check, 0, -2);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_increment_minus_2(graph);
+ bounds_check_elimination_increment_minus_2.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+}
+
+// int[] array = new array[10];
+// for (int i=0; i<10; i+=increment) { array[i] = 10; }
+static HGraph* BuildSSAGraph3(ArenaAllocator* allocator,
+ HInstruction** bounds_check,
+ int initial,
+ int increment,
+ IfCondition cond) {
+ HGraph* graph = new (allocator) HGraph(allocator);
+
+ HBasicBlock* entry = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(entry);
+ graph->SetEntryBlock(entry);
+ HInstruction* constant_10 = new (allocator) HIntConstant(10);
+ HInstruction* constant_initial = new (allocator) HIntConstant(initial);
+ HInstruction* constant_increment = new (allocator) HIntConstant(increment);
+ entry->AddInstruction(constant_10);
+ entry->AddInstruction(constant_initial);
+ entry->AddInstruction(constant_increment);
+
+ HBasicBlock* block = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(block);
+ entry->AddSuccessor(block);
+ HInstruction* new_array = new (allocator)
+ HNewArray(constant_10, 0, Primitive::kPrimInt);
+ block->AddInstruction(new_array);
+ block->AddInstruction(new (allocator) HGoto());
+
+ HBasicBlock* loop_header = new (allocator) HBasicBlock(graph);
+ HBasicBlock* loop_body = new (allocator) HBasicBlock(graph);
+ HBasicBlock* exit = new (allocator) HBasicBlock(graph);
+
+ graph->AddBlock(loop_header);
+ graph->AddBlock(loop_body);
+ graph->AddBlock(exit);
+ block->AddSuccessor(loop_header);
+ loop_header->AddSuccessor(exit); // true successor
+ loop_header->AddSuccessor(loop_body); // false successor
+ loop_body->AddSuccessor(loop_header);
+
+ HPhi* phi = new (allocator) HPhi(allocator, 0, 0, Primitive::kPrimInt);
+ phi->AddInput(constant_initial);
+ HInstruction* cmp = nullptr;
+ if (cond == kCondGE) {
+ cmp = new (allocator) HGreaterThanOrEqual(phi, constant_10);
+ } else {
+ DCHECK(cond == kCondGT);
+ cmp = new (allocator) HGreaterThan(phi, constant_10);
+ }
+ HInstruction* if_inst = new (allocator) HIf(cmp);
+ loop_header->AddPhi(phi);
+ loop_header->AddInstruction(cmp);
+ loop_header->AddInstruction(if_inst);
+
+ HNullCheck* null_check = new (allocator) HNullCheck(new_array, 0);
+ HArrayLength* array_length = new (allocator) HArrayLength(null_check);
+ *bounds_check = new (allocator) HBoundsCheck(phi, array_length, 0);
+ HInstruction* array_set = new (allocator) HArraySet(
+ null_check, *bounds_check, constant_10, Primitive::kPrimInt, 0);
+ HInstruction* add = new (allocator) HAdd(Primitive::kPrimInt, phi, constant_increment);
+ loop_body->AddInstruction(null_check);
+ loop_body->AddInstruction(array_length);
+ loop_body->AddInstruction(*bounds_check);
+ loop_body->AddInstruction(array_set);
+ loop_body->AddInstruction(add);
+ loop_body->AddInstruction(new (allocator) HGoto());
+ phi->AddInput(add);
+
+ exit->AddInstruction(new (allocator) HExit());
+
+ return graph;
+}
+
+TEST(BoundsCheckEliminationTest, LoopArrayBoundsElimination3) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ // int[] array = new array[10];
+ // for (int i=0; i<10; i++) { array[i] = 10; // Can eliminate. }
+ HInstruction* bounds_check = nullptr;
+ HGraph* graph = BuildSSAGraph3(&allocator, &bounds_check, 0, 1, kCondGE);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_after_gvn(graph);
+ bounds_check_elimination_after_gvn.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+
+ // int[] array = new array[10];
+ // for (int i=1; i<10; i++) { array[i] = 10; // Can eliminate. }
+ graph = BuildSSAGraph3(&allocator, &bounds_check, 1, 1, kCondGE);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_initial_1(graph);
+ bounds_check_elimination_with_initial_1.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+
+ // int[] array = new array[10];
+ // for (int i=0; i<=10; i++) { array[i] = 10; // Can't eliminate. }
+ graph = BuildSSAGraph3(&allocator, &bounds_check, 0, 1, kCondGT);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_greater_than(graph);
+ bounds_check_elimination_with_greater_than.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+
+ // int[] array = new array[10];
+ // for (int i=1; i<10; i+=8) { array[i] = 10; // Can eliminate. }
+ graph = BuildSSAGraph3(&allocator, &bounds_check, 1, 8, kCondGE);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_increment_8(graph);
+ bounds_check_elimination_increment_8.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+}
+
+// for (int i=initial; i<array.length; i++) { array[array.length-i-1] = 10; }
+static HGraph* BuildSSAGraph4(ArenaAllocator* allocator,
+ HInstruction** bounds_check,
+ int initial,
+ IfCondition cond = kCondGE) {
+ HGraph* graph = new (allocator) HGraph(allocator);
+
+ HBasicBlock* entry = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(entry);
+ graph->SetEntryBlock(entry);
+ HInstruction* parameter = new (allocator) HParameterValue(0, Primitive::kPrimNot);
+ HInstruction* constant_initial = new (allocator) HIntConstant(initial);
+ HInstruction* constant_1 = new (allocator) HIntConstant(1);
+ HInstruction* constant_10 = new (allocator) HIntConstant(10);
+ HInstruction* constant_minus_1 = new (allocator) HIntConstant(-1);
+ entry->AddInstruction(parameter);
+ entry->AddInstruction(constant_initial);
+ entry->AddInstruction(constant_1);
+ entry->AddInstruction(constant_10);
+ entry->AddInstruction(constant_minus_1);
+
+ HBasicBlock* block = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(block);
+ entry->AddSuccessor(block);
+ block->AddInstruction(new (allocator) HGoto());
+
+ HBasicBlock* loop_header = new (allocator) HBasicBlock(graph);
+ HBasicBlock* loop_body = new (allocator) HBasicBlock(graph);
+ HBasicBlock* exit = new (allocator) HBasicBlock(graph);
+
+ graph->AddBlock(loop_header);
+ graph->AddBlock(loop_body);
+ graph->AddBlock(exit);
+ block->AddSuccessor(loop_header);
+ loop_header->AddSuccessor(exit); // true successor
+ loop_header->AddSuccessor(loop_body); // false successor
+ loop_body->AddSuccessor(loop_header);
+
+ HPhi* phi = new (allocator) HPhi(allocator, 0, 0, Primitive::kPrimInt);
+ phi->AddInput(constant_initial);
+ HInstruction* null_check = new (allocator) HNullCheck(parameter, 0);
+ HInstruction* array_length = new (allocator) HArrayLength(null_check);
+ HInstruction* cmp = nullptr;
+ if (cond == kCondGE) {
+ cmp = new (allocator) HGreaterThanOrEqual(phi, array_length);
+ } else if (cond == kCondGT) {
+ cmp = new (allocator) HGreaterThan(phi, array_length);
+ }
+ HInstruction* if_inst = new (allocator) HIf(cmp);
+ loop_header->AddPhi(phi);
+ loop_header->AddInstruction(null_check);
+ loop_header->AddInstruction(array_length);
+ loop_header->AddInstruction(cmp);
+ loop_header->AddInstruction(if_inst);
+
+ null_check = new (allocator) HNullCheck(parameter, 0);
+ array_length = new (allocator) HArrayLength(null_check);
+ HInstruction* sub = new (allocator) HSub(Primitive::kPrimInt, array_length, phi);
+ HInstruction* add_minus_1 = new (allocator)
+ HAdd(Primitive::kPrimInt, sub, constant_minus_1);
+ *bounds_check = new (allocator) HBoundsCheck(add_minus_1, array_length, 0);
+ HInstruction* array_set = new (allocator) HArraySet(
+ null_check, *bounds_check, constant_10, Primitive::kPrimInt, 0);
+ HInstruction* add = new (allocator) HAdd(Primitive::kPrimInt, phi, constant_1);
+ loop_body->AddInstruction(null_check);
+ loop_body->AddInstruction(array_length);
+ loop_body->AddInstruction(sub);
+ loop_body->AddInstruction(add_minus_1);
+ loop_body->AddInstruction(*bounds_check);
+ loop_body->AddInstruction(array_set);
+ loop_body->AddInstruction(add);
+ loop_body->AddInstruction(new (allocator) HGoto());
+ phi->AddInput(add);
+
+ exit->AddInstruction(new (allocator) HExit());
+
+ return graph;
+}
+
+TEST(BoundsCheckEliminationTest, LoopArrayBoundsElimination4) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ // for (int i=0; i<array.length; i++) { array[array.length-i-1] = 10; // Can eliminate with gvn. }
+ HInstruction* bounds_check = nullptr;
+ HGraph* graph = BuildSSAGraph4(&allocator, &bounds_check, 0);
+ graph->BuildDominatorTree();
+ BoundsCheckElimination bounds_check_elimination(graph);
+ bounds_check_elimination.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+
+ // This time add gvn. Need gvn to eliminate the second
+ // HArrayLength which uses the null check as its input.
+ graph = BuildSSAGraph4(&allocator, &bounds_check, 0);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_after_gvn(graph);
+ bounds_check_elimination_after_gvn.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+
+ // for (int i=1; i<array.length; i++) { array[array.length-i-1] = 10; // Can eliminate. }
+ graph = BuildSSAGraph4(&allocator, &bounds_check, 1);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_initial_1(graph);
+ bounds_check_elimination_with_initial_1.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check));
+
+ // for (int i=0; i<=array.length; i++) { array[array.length-i] = 10; // Can't eliminate. }
+ graph = BuildSSAGraph4(&allocator, &bounds_check, 0, kCondGT);
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ BoundsCheckElimination bounds_check_elimination_with_greater_than(graph);
+ bounds_check_elimination_with_greater_than.Run();
+ ASSERT_FALSE(IsRemoved(bounds_check));
+}
+
+// Bubble sort:
+// (Every array access bounds-check can be eliminated.)
+// for (int i=0; i<array.length-1; i++) {
+// for (int j=0; j<array.length-i-1; j++) {
+// if (array[j] > array[j+1]) {
+// int temp = array[j+1];
+// array[j+1] = array[j];
+// array[j] = temp;
+// }
+// }
+// }
+TEST(BoundsCheckEliminationTest, BubbleSortArrayBoundsElimination) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+
+ HBasicBlock* entry = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(entry);
+ graph->SetEntryBlock(entry);
+ HInstruction* parameter = new (&allocator) HParameterValue(0, Primitive::kPrimNot);
+ HInstruction* constant_0 = new (&allocator) HIntConstant(0);
+ HInstruction* constant_minus_1 = new (&allocator) HIntConstant(-1);
+ HInstruction* constant_1 = new (&allocator) HIntConstant(1);
+ entry->AddInstruction(parameter);
+ entry->AddInstruction(constant_0);
+ entry->AddInstruction(constant_minus_1);
+ entry->AddInstruction(constant_1);
+
+ HBasicBlock* block = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(block);
+ entry->AddSuccessor(block);
+ block->AddInstruction(new (&allocator) HGoto());
+
+ HBasicBlock* exit = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(exit);
+ exit->AddInstruction(new (&allocator) HExit());
+
+ HBasicBlock* outer_header = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(outer_header);
+ HPhi* phi_i = new (&allocator) HPhi(&allocator, 0, 0, Primitive::kPrimInt);
+ phi_i->AddInput(constant_0);
+ HNullCheck* null_check = new (&allocator) HNullCheck(parameter, 0);
+ HArrayLength* array_length = new (&allocator) HArrayLength(null_check);
+ HAdd* add = new (&allocator) HAdd(Primitive::kPrimInt, array_length, constant_minus_1);
+ HInstruction* cmp = new (&allocator) HGreaterThanOrEqual(phi_i, add);
+ HIf* if_inst = new (&allocator) HIf(cmp);
+ outer_header->AddPhi(phi_i);
+ outer_header->AddInstruction(null_check);
+ outer_header->AddInstruction(array_length);
+ outer_header->AddInstruction(add);
+ outer_header->AddInstruction(cmp);
+ outer_header->AddInstruction(if_inst);
+
+ HBasicBlock* inner_header = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(inner_header);
+ HPhi* phi_j = new (&allocator) HPhi(&allocator, 0, 0, Primitive::kPrimInt);
+ phi_j->AddInput(constant_0);
+ null_check = new (&allocator) HNullCheck(parameter, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HSub* sub = new (&allocator) HSub(Primitive::kPrimInt, array_length, phi_i);
+ add = new (&allocator) HAdd(Primitive::kPrimInt, sub, constant_minus_1);
+ cmp = new (&allocator) HGreaterThanOrEqual(phi_j, add);
+ if_inst = new (&allocator) HIf(cmp);
+ inner_header->AddPhi(phi_j);
+ inner_header->AddInstruction(null_check);
+ inner_header->AddInstruction(array_length);
+ inner_header->AddInstruction(sub);
+ inner_header->AddInstruction(add);
+ inner_header->AddInstruction(cmp);
+ inner_header->AddInstruction(if_inst);
+
+ HBasicBlock* inner_body_compare = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(inner_body_compare);
+ null_check = new (&allocator) HNullCheck(parameter, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HBoundsCheck* bounds_check1 = new (&allocator) HBoundsCheck(phi_j, array_length, 0);
+ HArrayGet* array_get_j = new (&allocator)
+ HArrayGet(null_check, bounds_check1, Primitive::kPrimInt);
+ inner_body_compare->AddInstruction(null_check);
+ inner_body_compare->AddInstruction(array_length);
+ inner_body_compare->AddInstruction(bounds_check1);
+ inner_body_compare->AddInstruction(array_get_j);
+ HInstruction* j_plus_1 = new (&allocator) HAdd(Primitive::kPrimInt, phi_j, constant_1);
+ null_check = new (&allocator) HNullCheck(parameter, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HBoundsCheck* bounds_check2 = new (&allocator) HBoundsCheck(j_plus_1, array_length, 0);
+ HArrayGet* array_get_j_plus_1 = new (&allocator)
+ HArrayGet(null_check, bounds_check2, Primitive::kPrimInt);
+ cmp = new (&allocator) HGreaterThanOrEqual(array_get_j, array_get_j_plus_1);
+ if_inst = new (&allocator) HIf(cmp);
+ inner_body_compare->AddInstruction(j_plus_1);
+ inner_body_compare->AddInstruction(null_check);
+ inner_body_compare->AddInstruction(array_length);
+ inner_body_compare->AddInstruction(bounds_check2);
+ inner_body_compare->AddInstruction(array_get_j_plus_1);
+ inner_body_compare->AddInstruction(cmp);
+ inner_body_compare->AddInstruction(if_inst);
+
+ HBasicBlock* inner_body_swap = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(inner_body_swap);
+ j_plus_1 = new (&allocator) HAdd(Primitive::kPrimInt, phi_j, constant_1);
+ // temp = array[j+1]
+ null_check = new (&allocator) HNullCheck(parameter, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HInstruction* bounds_check3 = new (&allocator) HBoundsCheck(j_plus_1, array_length, 0);
+ array_get_j_plus_1 = new (&allocator)
+ HArrayGet(null_check, bounds_check3, Primitive::kPrimInt);
+ inner_body_swap->AddInstruction(j_plus_1);
+ inner_body_swap->AddInstruction(null_check);
+ inner_body_swap->AddInstruction(array_length);
+ inner_body_swap->AddInstruction(bounds_check3);
+ inner_body_swap->AddInstruction(array_get_j_plus_1);
+ // array[j+1] = array[j]
+ null_check = new (&allocator) HNullCheck(parameter, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HInstruction* bounds_check4 = new (&allocator) HBoundsCheck(phi_j, array_length, 0);
+ array_get_j = new (&allocator)
+ HArrayGet(null_check, bounds_check4, Primitive::kPrimInt);
+ inner_body_swap->AddInstruction(null_check);
+ inner_body_swap->AddInstruction(array_length);
+ inner_body_swap->AddInstruction(bounds_check4);
+ inner_body_swap->AddInstruction(array_get_j);
+ null_check = new (&allocator) HNullCheck(parameter, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HInstruction* bounds_check5 = new (&allocator) HBoundsCheck(j_plus_1, array_length, 0);
+ HArraySet* array_set_j_plus_1 = new (&allocator)
+ HArraySet(null_check, bounds_check5, array_get_j, Primitive::kPrimInt, 0);
+ inner_body_swap->AddInstruction(null_check);
+ inner_body_swap->AddInstruction(array_length);
+ inner_body_swap->AddInstruction(bounds_check5);
+ inner_body_swap->AddInstruction(array_set_j_plus_1);
+ // array[j] = temp
+ null_check = new (&allocator) HNullCheck(parameter, 0);
+ array_length = new (&allocator) HArrayLength(null_check);
+ HInstruction* bounds_check6 = new (&allocator) HBoundsCheck(phi_j, array_length, 0);
+ HArraySet* array_set_j = new (&allocator)
+ HArraySet(null_check, bounds_check6, array_get_j_plus_1, Primitive::kPrimInt, 0);
+ inner_body_swap->AddInstruction(null_check);
+ inner_body_swap->AddInstruction(array_length);
+ inner_body_swap->AddInstruction(bounds_check6);
+ inner_body_swap->AddInstruction(array_set_j);
+ inner_body_swap->AddInstruction(new (&allocator) HGoto());
+
+ HBasicBlock* inner_body_add = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(inner_body_add);
+ add = new (&allocator) HAdd(Primitive::kPrimInt, phi_j, constant_1);
+ inner_body_add->AddInstruction(add);
+ inner_body_add->AddInstruction(new (&allocator) HGoto());
+ phi_j->AddInput(add);
+
+ HBasicBlock* outer_body_add = new (&allocator) HBasicBlock(graph);
+ graph->AddBlock(outer_body_add);
+ add = new (&allocator) HAdd(Primitive::kPrimInt, phi_i, constant_1);
+ outer_body_add->AddInstruction(add);
+ outer_body_add->AddInstruction(new (&allocator) HGoto());
+ phi_i->AddInput(add);
+
+ block->AddSuccessor(outer_header);
+ outer_header->AddSuccessor(exit);
+ outer_header->AddSuccessor(inner_header);
+ inner_header->AddSuccessor(outer_body_add);
+ inner_header->AddSuccessor(inner_body_compare);
+ inner_body_compare->AddSuccessor(inner_body_add);
+ inner_body_compare->AddSuccessor(inner_body_swap);
+ inner_body_swap->AddSuccessor(inner_body_add);
+ inner_body_add->AddSuccessor(inner_header);
+ outer_body_add->AddSuccessor(outer_header);
+
+ graph->BuildDominatorTree();
+ GlobalValueNumberer(&allocator, graph).Run();
+ // gvn should remove the same bounds check.
+ ASSERT_FALSE(IsRemoved(bounds_check1));
+ ASSERT_FALSE(IsRemoved(bounds_check2));
+ ASSERT_TRUE(IsRemoved(bounds_check3));
+ ASSERT_TRUE(IsRemoved(bounds_check4));
+ ASSERT_TRUE(IsRemoved(bounds_check5));
+ ASSERT_TRUE(IsRemoved(bounds_check6));
+
+ BoundsCheckElimination bounds_check_elimination(graph);
+ bounds_check_elimination.Run();
+ ASSERT_TRUE(IsRemoved(bounds_check1));
+ ASSERT_TRUE(IsRemoved(bounds_check2));
+ ASSERT_TRUE(IsRemoved(bounds_check3));
+ ASSERT_TRUE(IsRemoved(bounds_check4));
+ ASSERT_TRUE(IsRemoved(bounds_check5));
+ ASSERT_TRUE(IsRemoved(bounds_check6));
+}
+
+} // namespace art
diff --git a/compiler/optimizing/optimizing_compiler.cc b/compiler/optimizing/optimizing_compiler.cc
index 100a6bc..11fc9bf 100644
--- a/compiler/optimizing/optimizing_compiler.cc
+++ b/compiler/optimizing/optimizing_compiler.cc
@@ -19,6 +19,7 @@
#include <fstream>
#include <stdint.h>
+#include "bounds_check_elimination.h"
#include "builder.h"
#include "code_generator.h"
#include "compiler.h"
@@ -198,7 +199,8 @@
SsaDeadPhiElimination opt4(graph);
InstructionSimplifier opt5(graph);
GVNOptimization opt6(graph);
- InstructionSimplifier opt7(graph);
+ BoundsCheckElimination bce(graph);
+ InstructionSimplifier opt8(graph);
HOptimization* optimizations[] = {
&opt1,
@@ -207,7 +209,8 @@
&opt4,
&opt5,
&opt6,
- &opt7
+ &bce,
+ &opt8
};
for (size_t i = 0; i < arraysize(optimizations); ++i) {
diff --git a/compiler/optimizing/optimizing_unit_test.h b/compiler/optimizing/optimizing_unit_test.h
index c4106b7..04b5634 100644
--- a/compiler/optimizing/optimizing_unit_test.h
+++ b/compiler/optimizing/optimizing_unit_test.h
@@ -96,6 +96,11 @@
return result;
}
+// Returns if the instruction is removed from the graph.
+inline bool IsRemoved(HInstruction* instruction) {
+ return instruction->GetBlock() == nullptr;
+}
+
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_OPTIMIZING_UNIT_TEST_H_