| /*****************************************************************************/ |
| |
| /* |
| * istallion.c -- stallion intelligent multiport serial driver. |
| * |
| * Copyright (C) 1996-1999 Stallion Technologies |
| * Copyright (C) 1994-1996 Greg Ungerer. |
| * |
| * This code is loosely based on the Linux serial driver, written by |
| * Linus Torvalds, Theodore T'so and others. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| /*****************************************************************************/ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/serial.h> |
| #include <linux/cdk.h> |
| #include <linux/comstats.h> |
| #include <linux/istallion.h> |
| #include <linux/ioport.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/wait.h> |
| |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| |
| #ifdef CONFIG_PCI |
| #include <linux/pci.h> |
| #endif |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Define different board types. Not all of the following board types |
| * are supported by this driver. But I will use the standard "assigned" |
| * board numbers. Currently supported boards are abbreviated as: |
| * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and |
| * STAL = Stallion. |
| */ |
| #define BRD_UNKNOWN 0 |
| #define BRD_STALLION 1 |
| #define BRD_BRUMBY4 2 |
| #define BRD_ONBOARD2 3 |
| #define BRD_ONBOARD 4 |
| #define BRD_BRUMBY8 5 |
| #define BRD_BRUMBY16 6 |
| #define BRD_ONBOARDE 7 |
| #define BRD_ONBOARD32 9 |
| #define BRD_ONBOARD2_32 10 |
| #define BRD_ONBOARDRS 11 |
| #define BRD_EASYIO 20 |
| #define BRD_ECH 21 |
| #define BRD_ECHMC 22 |
| #define BRD_ECP 23 |
| #define BRD_ECPE 24 |
| #define BRD_ECPMC 25 |
| #define BRD_ECHPCI 26 |
| #define BRD_ECH64PCI 27 |
| #define BRD_EASYIOPCI 28 |
| #define BRD_ECPPCI 29 |
| |
| #define BRD_BRUMBY BRD_BRUMBY4 |
| |
| /* |
| * Define a configuration structure to hold the board configuration. |
| * Need to set this up in the code (for now) with the boards that are |
| * to be configured into the system. This is what needs to be modified |
| * when adding/removing/modifying boards. Each line entry in the |
| * stli_brdconf[] array is a board. Each line contains io/irq/memory |
| * ranges for that board (as well as what type of board it is). |
| * Some examples: |
| * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 }, |
| * This line will configure an EasyConnection 8/64 at io address 2a0, |
| * and shared memory address of cc000. Multiple EasyConnection 8/64 |
| * boards can share the same shared memory address space. No interrupt |
| * is required for this board type. |
| * Another example: |
| * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 }, |
| * This line will configure an EasyConnection 8/64 EISA in slot 5 and |
| * shared memory address of 0x80000000 (2 GByte). Multiple |
| * EasyConnection 8/64 EISA boards can share the same shared memory |
| * address space. No interrupt is required for this board type. |
| * Another example: |
| * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 }, |
| * This line will configure an ONboard (ISA type) at io address 240, |
| * and shared memory address of d0000. Multiple ONboards can share |
| * the same shared memory address space. No interrupt required. |
| * Another example: |
| * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 }, |
| * This line will configure a Brumby board (any number of ports!) at |
| * io address 360 and shared memory address of c8000. All Brumby boards |
| * configured into a system must have their own separate io and memory |
| * addresses. No interrupt is required. |
| * Another example: |
| * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 }, |
| * This line will configure an original Stallion board at io address 330 |
| * and shared memory address d0000 (this would only be valid for a "V4.0" |
| * or Rev.O Stallion board). All Stallion boards configured into the |
| * system must have their own separate io and memory addresses. No |
| * interrupt is required. |
| */ |
| |
| typedef struct { |
| int brdtype; |
| int ioaddr1; |
| int ioaddr2; |
| unsigned long memaddr; |
| int irq; |
| int irqtype; |
| } stlconf_t; |
| |
| static stlconf_t stli_brdconf[] = { |
| /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/ |
| }; |
| |
| static int stli_nrbrds = ARRAY_SIZE(stli_brdconf); |
| |
| /* |
| * There is some experimental EISA board detection code in this driver. |
| * By default it is disabled, but for those that want to try it out, |
| * then set the define below to be 1. |
| */ |
| #define STLI_EISAPROBE 0 |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Define some important driver characteristics. Device major numbers |
| * allocated as per Linux Device Registry. |
| */ |
| #ifndef STL_SIOMEMMAJOR |
| #define STL_SIOMEMMAJOR 28 |
| #endif |
| #ifndef STL_SERIALMAJOR |
| #define STL_SERIALMAJOR 24 |
| #endif |
| #ifndef STL_CALLOUTMAJOR |
| #define STL_CALLOUTMAJOR 25 |
| #endif |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Define our local driver identity first. Set up stuff to deal with |
| * all the local structures required by a serial tty driver. |
| */ |
| static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver"; |
| static char *stli_drvname = "istallion"; |
| static char *stli_drvversion = "5.6.0"; |
| static char *stli_serialname = "ttyE"; |
| |
| static struct tty_driver *stli_serial; |
| |
| /* |
| * We will need to allocate a temporary write buffer for chars that |
| * come direct from user space. The problem is that a copy from user |
| * space might cause a page fault (typically on a system that is |
| * swapping!). All ports will share one buffer - since if the system |
| * is already swapping a shared buffer won't make things any worse. |
| */ |
| static char *stli_tmpwritebuf; |
| |
| #define STLI_TXBUFSIZE 4096 |
| |
| /* |
| * Use a fast local buffer for cooked characters. Typically a whole |
| * bunch of cooked characters come in for a port, 1 at a time. So we |
| * save those up into a local buffer, then write out the whole lot |
| * with a large memcpy. Just use 1 buffer for all ports, since its |
| * use it is only need for short periods of time by each port. |
| */ |
| static char *stli_txcookbuf; |
| static int stli_txcooksize; |
| static int stli_txcookrealsize; |
| static struct tty_struct *stli_txcooktty; |
| |
| /* |
| * Define a local default termios struct. All ports will be created |
| * with this termios initially. Basically all it defines is a raw port |
| * at 9600 baud, 8 data bits, no parity, 1 stop bit. |
| */ |
| static struct termios stli_deftermios = { |
| .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL), |
| .c_cc = INIT_C_CC, |
| }; |
| |
| /* |
| * Define global stats structures. Not used often, and can be |
| * re-used for each stats call. |
| */ |
| static comstats_t stli_comstats; |
| static combrd_t stli_brdstats; |
| static asystats_t stli_cdkstats; |
| static stlibrd_t stli_dummybrd; |
| static stliport_t stli_dummyport; |
| |
| /*****************************************************************************/ |
| |
| static stlibrd_t *stli_brds[STL_MAXBRDS]; |
| |
| static int stli_shared; |
| |
| /* |
| * Per board state flags. Used with the state field of the board struct. |
| * Not really much here... All we need to do is keep track of whether |
| * the board has been detected, and whether it is actually running a slave |
| * or not. |
| */ |
| #define BST_FOUND 0x1 |
| #define BST_STARTED 0x2 |
| |
| /* |
| * Define the set of port state flags. These are marked for internal |
| * state purposes only, usually to do with the state of communications |
| * with the slave. Most of them need to be updated atomically, so always |
| * use the bit setting operations (unless protected by cli/sti). |
| */ |
| #define ST_INITIALIZING 1 |
| #define ST_OPENING 2 |
| #define ST_CLOSING 3 |
| #define ST_CMDING 4 |
| #define ST_TXBUSY 5 |
| #define ST_RXING 6 |
| #define ST_DOFLUSHRX 7 |
| #define ST_DOFLUSHTX 8 |
| #define ST_DOSIGS 9 |
| #define ST_RXSTOP 10 |
| #define ST_GETSIGS 11 |
| |
| /* |
| * Define an array of board names as printable strings. Handy for |
| * referencing boards when printing trace and stuff. |
| */ |
| static char *stli_brdnames[] = { |
| "Unknown", |
| "Stallion", |
| "Brumby", |
| "ONboard-MC", |
| "ONboard", |
| "Brumby", |
| "Brumby", |
| "ONboard-EI", |
| (char *) NULL, |
| "ONboard", |
| "ONboard-MC", |
| "ONboard-MC", |
| (char *) NULL, |
| (char *) NULL, |
| (char *) NULL, |
| (char *) NULL, |
| (char *) NULL, |
| (char *) NULL, |
| (char *) NULL, |
| (char *) NULL, |
| "EasyIO", |
| "EC8/32-AT", |
| "EC8/32-MC", |
| "EC8/64-AT", |
| "EC8/64-EI", |
| "EC8/64-MC", |
| "EC8/32-PCI", |
| "EC8/64-PCI", |
| "EasyIO-PCI", |
| "EC/RA-PCI", |
| }; |
| |
| /*****************************************************************************/ |
| |
| #ifdef MODULE |
| /* |
| * Define some string labels for arguments passed from the module |
| * load line. These allow for easy board definitions, and easy |
| * modification of the io, memory and irq resoucres. |
| */ |
| |
| static char *board0[8]; |
| static char *board1[8]; |
| static char *board2[8]; |
| static char *board3[8]; |
| |
| static char **stli_brdsp[] = { |
| (char **) &board0, |
| (char **) &board1, |
| (char **) &board2, |
| (char **) &board3 |
| }; |
| |
| /* |
| * Define a set of common board names, and types. This is used to |
| * parse any module arguments. |
| */ |
| |
| typedef struct stlibrdtype { |
| char *name; |
| int type; |
| } stlibrdtype_t; |
| |
| static stlibrdtype_t stli_brdstr[] = { |
| { "stallion", BRD_STALLION }, |
| { "1", BRD_STALLION }, |
| { "brumby", BRD_BRUMBY }, |
| { "brumby4", BRD_BRUMBY }, |
| { "brumby/4", BRD_BRUMBY }, |
| { "brumby-4", BRD_BRUMBY }, |
| { "brumby8", BRD_BRUMBY }, |
| { "brumby/8", BRD_BRUMBY }, |
| { "brumby-8", BRD_BRUMBY }, |
| { "brumby16", BRD_BRUMBY }, |
| { "brumby/16", BRD_BRUMBY }, |
| { "brumby-16", BRD_BRUMBY }, |
| { "2", BRD_BRUMBY }, |
| { "onboard2", BRD_ONBOARD2 }, |
| { "onboard-2", BRD_ONBOARD2 }, |
| { "onboard/2", BRD_ONBOARD2 }, |
| { "onboard-mc", BRD_ONBOARD2 }, |
| { "onboard/mc", BRD_ONBOARD2 }, |
| { "onboard-mca", BRD_ONBOARD2 }, |
| { "onboard/mca", BRD_ONBOARD2 }, |
| { "3", BRD_ONBOARD2 }, |
| { "onboard", BRD_ONBOARD }, |
| { "onboardat", BRD_ONBOARD }, |
| { "4", BRD_ONBOARD }, |
| { "onboarde", BRD_ONBOARDE }, |
| { "onboard-e", BRD_ONBOARDE }, |
| { "onboard/e", BRD_ONBOARDE }, |
| { "onboard-ei", BRD_ONBOARDE }, |
| { "onboard/ei", BRD_ONBOARDE }, |
| { "7", BRD_ONBOARDE }, |
| { "ecp", BRD_ECP }, |
| { "ecpat", BRD_ECP }, |
| { "ec8/64", BRD_ECP }, |
| { "ec8/64-at", BRD_ECP }, |
| { "ec8/64-isa", BRD_ECP }, |
| { "23", BRD_ECP }, |
| { "ecpe", BRD_ECPE }, |
| { "ecpei", BRD_ECPE }, |
| { "ec8/64-e", BRD_ECPE }, |
| { "ec8/64-ei", BRD_ECPE }, |
| { "24", BRD_ECPE }, |
| { "ecpmc", BRD_ECPMC }, |
| { "ec8/64-mc", BRD_ECPMC }, |
| { "ec8/64-mca", BRD_ECPMC }, |
| { "25", BRD_ECPMC }, |
| { "ecppci", BRD_ECPPCI }, |
| { "ec/ra", BRD_ECPPCI }, |
| { "ec/ra-pc", BRD_ECPPCI }, |
| { "ec/ra-pci", BRD_ECPPCI }, |
| { "29", BRD_ECPPCI }, |
| }; |
| |
| /* |
| * Define the module agruments. |
| */ |
| MODULE_AUTHOR("Greg Ungerer"); |
| MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver"); |
| MODULE_LICENSE("GPL"); |
| |
| |
| module_param_array(board0, charp, NULL, 0); |
| MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]"); |
| module_param_array(board1, charp, NULL, 0); |
| MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]"); |
| module_param_array(board2, charp, NULL, 0); |
| MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]"); |
| module_param_array(board3, charp, NULL, 0); |
| MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]"); |
| |
| #endif |
| |
| /* |
| * Set up a default memory address table for EISA board probing. |
| * The default addresses are all bellow 1Mbyte, which has to be the |
| * case anyway. They should be safe, since we only read values from |
| * them, and interrupts are disabled while we do it. If the higher |
| * memory support is compiled in then we also try probing around |
| * the 1Gb, 2Gb and 3Gb areas as well... |
| */ |
| static unsigned long stli_eisamemprobeaddrs[] = { |
| 0xc0000, 0xd0000, 0xe0000, 0xf0000, |
| 0x80000000, 0x80010000, 0x80020000, 0x80030000, |
| 0x40000000, 0x40010000, 0x40020000, 0x40030000, |
| 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000, |
| 0xff000000, 0xff010000, 0xff020000, 0xff030000, |
| }; |
| |
| static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs); |
| |
| /* |
| * Define the Stallion PCI vendor and device IDs. |
| */ |
| #ifdef CONFIG_PCI |
| #ifndef PCI_VENDOR_ID_STALLION |
| #define PCI_VENDOR_ID_STALLION 0x124d |
| #endif |
| #ifndef PCI_DEVICE_ID_ECRA |
| #define PCI_DEVICE_ID_ECRA 0x0004 |
| #endif |
| |
| static struct pci_device_id istallion_pci_tbl[] = { |
| { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, |
| { 0 } |
| }; |
| MODULE_DEVICE_TABLE(pci, istallion_pci_tbl); |
| |
| #endif /* CONFIG_PCI */ |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Hardware configuration info for ECP boards. These defines apply |
| * to the directly accessible io ports of the ECP. There is a set of |
| * defines for each ECP board type, ISA, EISA, MCA and PCI. |
| */ |
| #define ECP_IOSIZE 4 |
| |
| #define ECP_MEMSIZE (128 * 1024) |
| #define ECP_PCIMEMSIZE (256 * 1024) |
| |
| #define ECP_ATPAGESIZE (4 * 1024) |
| #define ECP_MCPAGESIZE (4 * 1024) |
| #define ECP_EIPAGESIZE (64 * 1024) |
| #define ECP_PCIPAGESIZE (64 * 1024) |
| |
| #define STL_EISAID 0x8c4e |
| |
| /* |
| * Important defines for the ISA class of ECP board. |
| */ |
| #define ECP_ATIREG 0 |
| #define ECP_ATCONFR 1 |
| #define ECP_ATMEMAR 2 |
| #define ECP_ATMEMPR 3 |
| #define ECP_ATSTOP 0x1 |
| #define ECP_ATINTENAB 0x10 |
| #define ECP_ATENABLE 0x20 |
| #define ECP_ATDISABLE 0x00 |
| #define ECP_ATADDRMASK 0x3f000 |
| #define ECP_ATADDRSHFT 12 |
| |
| /* |
| * Important defines for the EISA class of ECP board. |
| */ |
| #define ECP_EIIREG 0 |
| #define ECP_EIMEMARL 1 |
| #define ECP_EICONFR 2 |
| #define ECP_EIMEMARH 3 |
| #define ECP_EIENABLE 0x1 |
| #define ECP_EIDISABLE 0x0 |
| #define ECP_EISTOP 0x4 |
| #define ECP_EIEDGE 0x00 |
| #define ECP_EILEVEL 0x80 |
| #define ECP_EIADDRMASKL 0x00ff0000 |
| #define ECP_EIADDRSHFTL 16 |
| #define ECP_EIADDRMASKH 0xff000000 |
| #define ECP_EIADDRSHFTH 24 |
| #define ECP_EIBRDENAB 0xc84 |
| |
| #define ECP_EISAID 0x4 |
| |
| /* |
| * Important defines for the Micro-channel class of ECP board. |
| * (It has a lot in common with the ISA boards.) |
| */ |
| #define ECP_MCIREG 0 |
| #define ECP_MCCONFR 1 |
| #define ECP_MCSTOP 0x20 |
| #define ECP_MCENABLE 0x80 |
| #define ECP_MCDISABLE 0x00 |
| |
| /* |
| * Important defines for the PCI class of ECP board. |
| * (It has a lot in common with the other ECP boards.) |
| */ |
| #define ECP_PCIIREG 0 |
| #define ECP_PCICONFR 1 |
| #define ECP_PCISTOP 0x01 |
| |
| /* |
| * Hardware configuration info for ONboard and Brumby boards. These |
| * defines apply to the directly accessible io ports of these boards. |
| */ |
| #define ONB_IOSIZE 16 |
| #define ONB_MEMSIZE (64 * 1024) |
| #define ONB_ATPAGESIZE (64 * 1024) |
| #define ONB_MCPAGESIZE (64 * 1024) |
| #define ONB_EIMEMSIZE (128 * 1024) |
| #define ONB_EIPAGESIZE (64 * 1024) |
| |
| /* |
| * Important defines for the ISA class of ONboard board. |
| */ |
| #define ONB_ATIREG 0 |
| #define ONB_ATMEMAR 1 |
| #define ONB_ATCONFR 2 |
| #define ONB_ATSTOP 0x4 |
| #define ONB_ATENABLE 0x01 |
| #define ONB_ATDISABLE 0x00 |
| #define ONB_ATADDRMASK 0xff0000 |
| #define ONB_ATADDRSHFT 16 |
| |
| #define ONB_MEMENABLO 0 |
| #define ONB_MEMENABHI 0x02 |
| |
| /* |
| * Important defines for the EISA class of ONboard board. |
| */ |
| #define ONB_EIIREG 0 |
| #define ONB_EIMEMARL 1 |
| #define ONB_EICONFR 2 |
| #define ONB_EIMEMARH 3 |
| #define ONB_EIENABLE 0x1 |
| #define ONB_EIDISABLE 0x0 |
| #define ONB_EISTOP 0x4 |
| #define ONB_EIEDGE 0x00 |
| #define ONB_EILEVEL 0x80 |
| #define ONB_EIADDRMASKL 0x00ff0000 |
| #define ONB_EIADDRSHFTL 16 |
| #define ONB_EIADDRMASKH 0xff000000 |
| #define ONB_EIADDRSHFTH 24 |
| #define ONB_EIBRDENAB 0xc84 |
| |
| #define ONB_EISAID 0x1 |
| |
| /* |
| * Important defines for the Brumby boards. They are pretty simple, |
| * there is not much that is programmably configurable. |
| */ |
| #define BBY_IOSIZE 16 |
| #define BBY_MEMSIZE (64 * 1024) |
| #define BBY_PAGESIZE (16 * 1024) |
| |
| #define BBY_ATIREG 0 |
| #define BBY_ATCONFR 1 |
| #define BBY_ATSTOP 0x4 |
| |
| /* |
| * Important defines for the Stallion boards. They are pretty simple, |
| * there is not much that is programmably configurable. |
| */ |
| #define STAL_IOSIZE 16 |
| #define STAL_MEMSIZE (64 * 1024) |
| #define STAL_PAGESIZE (64 * 1024) |
| |
| /* |
| * Define the set of status register values for EasyConnection panels. |
| * The signature will return with the status value for each panel. From |
| * this we can determine what is attached to the board - before we have |
| * actually down loaded any code to it. |
| */ |
| #define ECH_PNLSTATUS 2 |
| #define ECH_PNL16PORT 0x20 |
| #define ECH_PNLIDMASK 0x07 |
| #define ECH_PNLXPID 0x40 |
| #define ECH_PNLINTRPEND 0x80 |
| |
| /* |
| * Define some macros to do things to the board. Even those these boards |
| * are somewhat related there is often significantly different ways of |
| * doing some operation on it (like enable, paging, reset, etc). So each |
| * board class has a set of functions which do the commonly required |
| * operations. The macros below basically just call these functions, |
| * generally checking for a NULL function - which means that the board |
| * needs nothing done to it to achieve this operation! |
| */ |
| #define EBRDINIT(brdp) \ |
| if (brdp->init != NULL) \ |
| (* brdp->init)(brdp) |
| |
| #define EBRDENABLE(brdp) \ |
| if (brdp->enable != NULL) \ |
| (* brdp->enable)(brdp); |
| |
| #define EBRDDISABLE(brdp) \ |
| if (brdp->disable != NULL) \ |
| (* brdp->disable)(brdp); |
| |
| #define EBRDINTR(brdp) \ |
| if (brdp->intr != NULL) \ |
| (* brdp->intr)(brdp); |
| |
| #define EBRDRESET(brdp) \ |
| if (brdp->reset != NULL) \ |
| (* brdp->reset)(brdp); |
| |
| #define EBRDGETMEMPTR(brdp,offset) \ |
| (* brdp->getmemptr)(brdp, offset, __LINE__) |
| |
| /* |
| * Define the maximal baud rate, and the default baud base for ports. |
| */ |
| #define STL_MAXBAUD 460800 |
| #define STL_BAUDBASE 115200 |
| #define STL_CLOSEDELAY (5 * HZ / 10) |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Define macros to extract a brd or port number from a minor number. |
| */ |
| #define MINOR2BRD(min) (((min) & 0xc0) >> 6) |
| #define MINOR2PORT(min) ((min) & 0x3f) |
| |
| /* |
| * Define a baud rate table that converts termios baud rate selector |
| * into the actual baud rate value. All baud rate calculations are based |
| * on the actual baud rate required. |
| */ |
| static unsigned int stli_baudrates[] = { |
| 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, |
| 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600 |
| }; |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Define some handy local macros... |
| */ |
| #undef MIN |
| #define MIN(a,b) (((a) <= (b)) ? (a) : (b)) |
| |
| #undef TOLOWER |
| #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x)) |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Prototype all functions in this driver! |
| */ |
| |
| #ifdef MODULE |
| static void stli_argbrds(void); |
| static int stli_parsebrd(stlconf_t *confp, char **argp); |
| |
| static unsigned long stli_atol(char *str); |
| #endif |
| |
| int stli_init(void); |
| static int stli_open(struct tty_struct *tty, struct file *filp); |
| static void stli_close(struct tty_struct *tty, struct file *filp); |
| static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count); |
| static void stli_putchar(struct tty_struct *tty, unsigned char ch); |
| static void stli_flushchars(struct tty_struct *tty); |
| static int stli_writeroom(struct tty_struct *tty); |
| static int stli_charsinbuffer(struct tty_struct *tty); |
| static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg); |
| static void stli_settermios(struct tty_struct *tty, struct termios *old); |
| static void stli_throttle(struct tty_struct *tty); |
| static void stli_unthrottle(struct tty_struct *tty); |
| static void stli_stop(struct tty_struct *tty); |
| static void stli_start(struct tty_struct *tty); |
| static void stli_flushbuffer(struct tty_struct *tty); |
| static void stli_breakctl(struct tty_struct *tty, int state); |
| static void stli_waituntilsent(struct tty_struct *tty, int timeout); |
| static void stli_sendxchar(struct tty_struct *tty, char ch); |
| static void stli_hangup(struct tty_struct *tty); |
| static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos); |
| |
| static int stli_brdinit(stlibrd_t *brdp); |
| static int stli_startbrd(stlibrd_t *brdp); |
| static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp); |
| static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp); |
| static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg); |
| static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp); |
| static void stli_poll(unsigned long arg); |
| static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp); |
| static int stli_initopen(stlibrd_t *brdp, stliport_t *portp); |
| static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait); |
| static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait); |
| static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp); |
| static void stli_dohangup(void *arg); |
| static int stli_setport(stliport_t *portp); |
| static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback); |
| static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback); |
| static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp); |
| static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp); |
| static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts); |
| static long stli_mktiocm(unsigned long sigvalue); |
| static void stli_read(stlibrd_t *brdp, stliport_t *portp); |
| static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp); |
| static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp); |
| static int stli_getbrdstats(combrd_t __user *bp); |
| static int stli_getportstats(stliport_t *portp, comstats_t __user *cp); |
| static int stli_portcmdstats(stliport_t *portp); |
| static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp); |
| static int stli_getportstruct(stliport_t __user *arg); |
| static int stli_getbrdstruct(stlibrd_t __user *arg); |
| static stlibrd_t *stli_allocbrd(void); |
| |
| static void stli_ecpinit(stlibrd_t *brdp); |
| static void stli_ecpenable(stlibrd_t *brdp); |
| static void stli_ecpdisable(stlibrd_t *brdp); |
| static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line); |
| static void stli_ecpreset(stlibrd_t *brdp); |
| static void stli_ecpintr(stlibrd_t *brdp); |
| static void stli_ecpeiinit(stlibrd_t *brdp); |
| static void stli_ecpeienable(stlibrd_t *brdp); |
| static void stli_ecpeidisable(stlibrd_t *brdp); |
| static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line); |
| static void stli_ecpeireset(stlibrd_t *brdp); |
| static void stli_ecpmcenable(stlibrd_t *brdp); |
| static void stli_ecpmcdisable(stlibrd_t *brdp); |
| static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line); |
| static void stli_ecpmcreset(stlibrd_t *brdp); |
| static void stli_ecppciinit(stlibrd_t *brdp); |
| static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line); |
| static void stli_ecppcireset(stlibrd_t *brdp); |
| |
| static void stli_onbinit(stlibrd_t *brdp); |
| static void stli_onbenable(stlibrd_t *brdp); |
| static void stli_onbdisable(stlibrd_t *brdp); |
| static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line); |
| static void stli_onbreset(stlibrd_t *brdp); |
| static void stli_onbeinit(stlibrd_t *brdp); |
| static void stli_onbeenable(stlibrd_t *brdp); |
| static void stli_onbedisable(stlibrd_t *brdp); |
| static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line); |
| static void stli_onbereset(stlibrd_t *brdp); |
| static void stli_bbyinit(stlibrd_t *brdp); |
| static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line); |
| static void stli_bbyreset(stlibrd_t *brdp); |
| static void stli_stalinit(stlibrd_t *brdp); |
| static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line); |
| static void stli_stalreset(stlibrd_t *brdp); |
| |
| static stliport_t *stli_getport(int brdnr, int panelnr, int portnr); |
| |
| static int stli_initecp(stlibrd_t *brdp); |
| static int stli_initonb(stlibrd_t *brdp); |
| static int stli_eisamemprobe(stlibrd_t *brdp); |
| static int stli_initports(stlibrd_t *brdp); |
| |
| #ifdef CONFIG_PCI |
| static int stli_initpcibrd(int brdtype, struct pci_dev *devp); |
| #endif |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Define the driver info for a user level shared memory device. This |
| * device will work sort of like the /dev/kmem device - except that it |
| * will give access to the shared memory on the Stallion intelligent |
| * board. This is also a very useful debugging tool. |
| */ |
| static struct file_operations stli_fsiomem = { |
| .owner = THIS_MODULE, |
| .read = stli_memread, |
| .write = stli_memwrite, |
| .ioctl = stli_memioctl, |
| }; |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Define a timer_list entry for our poll routine. The slave board |
| * is polled every so often to see if anything needs doing. This is |
| * much cheaper on host cpu than using interrupts. It turns out to |
| * not increase character latency by much either... |
| */ |
| static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0); |
| |
| static int stli_timeron; |
| |
| /* |
| * Define the calculation for the timeout routine. |
| */ |
| #define STLI_TIMEOUT (jiffies + 1) |
| |
| /*****************************************************************************/ |
| |
| static struct class *istallion_class; |
| |
| #ifdef MODULE |
| |
| /* |
| * Loadable module initialization stuff. |
| */ |
| |
| static int __init istallion_module_init(void) |
| { |
| unsigned long flags; |
| |
| #ifdef DEBUG |
| printk("init_module()\n"); |
| #endif |
| |
| save_flags(flags); |
| cli(); |
| stli_init(); |
| restore_flags(flags); |
| |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void __exit istallion_module_exit(void) |
| { |
| stlibrd_t *brdp; |
| stliport_t *portp; |
| unsigned long flags; |
| int i, j; |
| |
| #ifdef DEBUG |
| printk("cleanup_module()\n"); |
| #endif |
| |
| printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle, |
| stli_drvversion); |
| |
| save_flags(flags); |
| cli(); |
| |
| /* |
| * Free up all allocated resources used by the ports. This includes |
| * memory and interrupts. |
| */ |
| if (stli_timeron) { |
| stli_timeron = 0; |
| del_timer(&stli_timerlist); |
| } |
| |
| i = tty_unregister_driver(stli_serial); |
| if (i) { |
| printk("STALLION: failed to un-register tty driver, " |
| "errno=%d\n", -i); |
| restore_flags(flags); |
| return; |
| } |
| put_tty_driver(stli_serial); |
| for (i = 0; i < 4; i++) |
| class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i)); |
| class_destroy(istallion_class); |
| if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem"))) |
| printk("STALLION: failed to un-register serial memory device, " |
| "errno=%d\n", -i); |
| |
| kfree(stli_tmpwritebuf); |
| kfree(stli_txcookbuf); |
| |
| for (i = 0; (i < stli_nrbrds); i++) { |
| if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL) |
| continue; |
| for (j = 0; (j < STL_MAXPORTS); j++) { |
| portp = brdp->ports[j]; |
| if (portp != (stliport_t *) NULL) { |
| if (portp->tty != (struct tty_struct *) NULL) |
| tty_hangup(portp->tty); |
| kfree(portp); |
| } |
| } |
| |
| iounmap(brdp->membase); |
| if (brdp->iosize > 0) |
| release_region(brdp->iobase, brdp->iosize); |
| kfree(brdp); |
| stli_brds[i] = (stlibrd_t *) NULL; |
| } |
| |
| restore_flags(flags); |
| } |
| |
| module_init(istallion_module_init); |
| module_exit(istallion_module_exit); |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Check for any arguments passed in on the module load command line. |
| */ |
| |
| static void stli_argbrds(void) |
| { |
| stlconf_t conf; |
| stlibrd_t *brdp; |
| int i; |
| |
| #ifdef DEBUG |
| printk("stli_argbrds()\n"); |
| #endif |
| |
| for (i = stli_nrbrds; i < ARRAY_SIZE(stli_brdsp); i++) { |
| memset(&conf, 0, sizeof(conf)); |
| if (stli_parsebrd(&conf, stli_brdsp[i]) == 0) |
| continue; |
| if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL) |
| continue; |
| stli_nrbrds = i + 1; |
| brdp->brdnr = i; |
| brdp->brdtype = conf.brdtype; |
| brdp->iobase = conf.ioaddr1; |
| brdp->memaddr = conf.memaddr; |
| stli_brdinit(brdp); |
| } |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Convert an ascii string number into an unsigned long. |
| */ |
| |
| static unsigned long stli_atol(char *str) |
| { |
| unsigned long val; |
| int base, c; |
| char *sp; |
| |
| val = 0; |
| sp = str; |
| if ((*sp == '0') && (*(sp+1) == 'x')) { |
| base = 16; |
| sp += 2; |
| } else if (*sp == '0') { |
| base = 8; |
| sp++; |
| } else { |
| base = 10; |
| } |
| |
| for (; (*sp != 0); sp++) { |
| c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0'); |
| if ((c < 0) || (c >= base)) { |
| printk("STALLION: invalid argument %s\n", str); |
| val = 0; |
| break; |
| } |
| val = (val * base) + c; |
| } |
| return(val); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Parse the supplied argument string, into the board conf struct. |
| */ |
| |
| static int stli_parsebrd(stlconf_t *confp, char **argp) |
| { |
| char *sp; |
| int i; |
| |
| #ifdef DEBUG |
| printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp); |
| #endif |
| |
| if ((argp[0] == (char *) NULL) || (*argp[0] == 0)) |
| return(0); |
| |
| for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++) |
| *sp = TOLOWER(*sp); |
| |
| for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) { |
| if (strcmp(stli_brdstr[i].name, argp[0]) == 0) |
| break; |
| } |
| if (i == ARRAY_SIZE(stli_brdstr)) { |
| printk("STALLION: unknown board name, %s?\n", argp[0]); |
| return 0; |
| } |
| |
| confp->brdtype = stli_brdstr[i].type; |
| if ((argp[1] != (char *) NULL) && (*argp[1] != 0)) |
| confp->ioaddr1 = stli_atol(argp[1]); |
| if ((argp[2] != (char *) NULL) && (*argp[2] != 0)) |
| confp->memaddr = stli_atol(argp[2]); |
| return(1); |
| } |
| |
| #endif |
| |
| /*****************************************************************************/ |
| |
| static int stli_open(struct tty_struct *tty, struct file *filp) |
| { |
| stlibrd_t *brdp; |
| stliport_t *portp; |
| unsigned int minordev; |
| int brdnr, portnr, rc; |
| |
| #ifdef DEBUG |
| printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty, |
| (int) filp, tty->name); |
| #endif |
| |
| minordev = tty->index; |
| brdnr = MINOR2BRD(minordev); |
| if (brdnr >= stli_nrbrds) |
| return(-ENODEV); |
| brdp = stli_brds[brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(-ENODEV); |
| if ((brdp->state & BST_STARTED) == 0) |
| return(-ENODEV); |
| portnr = MINOR2PORT(minordev); |
| if ((portnr < 0) || (portnr > brdp->nrports)) |
| return(-ENODEV); |
| |
| portp = brdp->ports[portnr]; |
| if (portp == (stliport_t *) NULL) |
| return(-ENODEV); |
| if (portp->devnr < 1) |
| return(-ENODEV); |
| |
| |
| /* |
| * Check if this port is in the middle of closing. If so then wait |
| * until it is closed then return error status based on flag settings. |
| * The sleep here does not need interrupt protection since the wakeup |
| * for it is done with the same context. |
| */ |
| if (portp->flags & ASYNC_CLOSING) { |
| interruptible_sleep_on(&portp->close_wait); |
| if (portp->flags & ASYNC_HUP_NOTIFY) |
| return(-EAGAIN); |
| return(-ERESTARTSYS); |
| } |
| |
| /* |
| * On the first open of the device setup the port hardware, and |
| * initialize the per port data structure. Since initializing the port |
| * requires several commands to the board we will need to wait for any |
| * other open that is already initializing the port. |
| */ |
| portp->tty = tty; |
| tty->driver_data = portp; |
| portp->refcount++; |
| |
| wait_event_interruptible(portp->raw_wait, |
| !test_bit(ST_INITIALIZING, &portp->state)); |
| if (signal_pending(current)) |
| return(-ERESTARTSYS); |
| |
| if ((portp->flags & ASYNC_INITIALIZED) == 0) { |
| set_bit(ST_INITIALIZING, &portp->state); |
| if ((rc = stli_initopen(brdp, portp)) >= 0) { |
| portp->flags |= ASYNC_INITIALIZED; |
| clear_bit(TTY_IO_ERROR, &tty->flags); |
| } |
| clear_bit(ST_INITIALIZING, &portp->state); |
| wake_up_interruptible(&portp->raw_wait); |
| if (rc < 0) |
| return(rc); |
| } |
| |
| /* |
| * Check if this port is in the middle of closing. If so then wait |
| * until it is closed then return error status, based on flag settings. |
| * The sleep here does not need interrupt protection since the wakeup |
| * for it is done with the same context. |
| */ |
| if (portp->flags & ASYNC_CLOSING) { |
| interruptible_sleep_on(&portp->close_wait); |
| if (portp->flags & ASYNC_HUP_NOTIFY) |
| return(-EAGAIN); |
| return(-ERESTARTSYS); |
| } |
| |
| /* |
| * Based on type of open being done check if it can overlap with any |
| * previous opens still in effect. If we are a normal serial device |
| * then also we might have to wait for carrier. |
| */ |
| if (!(filp->f_flags & O_NONBLOCK)) { |
| if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0) |
| return(rc); |
| } |
| portp->flags |= ASYNC_NORMAL_ACTIVE; |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_close(struct tty_struct *tty, struct file *filp) |
| { |
| stlibrd_t *brdp; |
| stliport_t *portp; |
| unsigned long flags; |
| |
| #ifdef DEBUG |
| printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp); |
| #endif |
| |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| |
| save_flags(flags); |
| cli(); |
| if (tty_hung_up_p(filp)) { |
| restore_flags(flags); |
| return; |
| } |
| if ((tty->count == 1) && (portp->refcount != 1)) |
| portp->refcount = 1; |
| if (portp->refcount-- > 1) { |
| restore_flags(flags); |
| return; |
| } |
| |
| portp->flags |= ASYNC_CLOSING; |
| |
| /* |
| * May want to wait for data to drain before closing. The BUSY flag |
| * keeps track of whether we are still transmitting or not. It is |
| * updated by messages from the slave - indicating when all chars |
| * really have drained. |
| */ |
| if (tty == stli_txcooktty) |
| stli_flushchars(tty); |
| tty->closing = 1; |
| if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE) |
| tty_wait_until_sent(tty, portp->closing_wait); |
| |
| portp->flags &= ~ASYNC_INITIALIZED; |
| brdp = stli_brds[portp->brdnr]; |
| stli_rawclose(brdp, portp, 0, 0); |
| if (tty->termios->c_cflag & HUPCL) { |
| stli_mkasysigs(&portp->asig, 0, 0); |
| if (test_bit(ST_CMDING, &portp->state)) |
| set_bit(ST_DOSIGS, &portp->state); |
| else |
| stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig, |
| sizeof(asysigs_t), 0); |
| } |
| clear_bit(ST_TXBUSY, &portp->state); |
| clear_bit(ST_RXSTOP, &portp->state); |
| set_bit(TTY_IO_ERROR, &tty->flags); |
| if (tty->ldisc.flush_buffer) |
| (tty->ldisc.flush_buffer)(tty); |
| set_bit(ST_DOFLUSHRX, &portp->state); |
| stli_flushbuffer(tty); |
| |
| tty->closing = 0; |
| portp->tty = (struct tty_struct *) NULL; |
| |
| if (portp->openwaitcnt) { |
| if (portp->close_delay) |
| msleep_interruptible(jiffies_to_msecs(portp->close_delay)); |
| wake_up_interruptible(&portp->open_wait); |
| } |
| |
| portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING); |
| wake_up_interruptible(&portp->close_wait); |
| restore_flags(flags); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Carry out first open operations on a port. This involves a number of |
| * commands to be sent to the slave. We need to open the port, set the |
| * notification events, set the initial port settings, get and set the |
| * initial signal values. We sleep and wait in between each one. But |
| * this still all happens pretty quickly. |
| */ |
| |
| static int stli_initopen(stlibrd_t *brdp, stliport_t *portp) |
| { |
| struct tty_struct *tty; |
| asynotify_t nt; |
| asyport_t aport; |
| int rc; |
| |
| #ifdef DEBUG |
| printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp); |
| #endif |
| |
| if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0) |
| return(rc); |
| |
| memset(&nt, 0, sizeof(asynotify_t)); |
| nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK); |
| nt.signal = SG_DCD; |
| if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt, |
| sizeof(asynotify_t), 0)) < 0) |
| return(rc); |
| |
| tty = portp->tty; |
| if (tty == (struct tty_struct *) NULL) |
| return(-ENODEV); |
| stli_mkasyport(portp, &aport, tty->termios); |
| if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport, |
| sizeof(asyport_t), 0)) < 0) |
| return(rc); |
| |
| set_bit(ST_GETSIGS, &portp->state); |
| if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig, |
| sizeof(asysigs_t), 1)) < 0) |
| return(rc); |
| if (test_and_clear_bit(ST_GETSIGS, &portp->state)) |
| portp->sigs = stli_mktiocm(portp->asig.sigvalue); |
| stli_mkasysigs(&portp->asig, 1, 1); |
| if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig, |
| sizeof(asysigs_t), 0)) < 0) |
| return(rc); |
| |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Send an open message to the slave. This will sleep waiting for the |
| * acknowledgement, so must have user context. We need to co-ordinate |
| * with close events here, since we don't want open and close events |
| * to overlap. |
| */ |
| |
| static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait) |
| { |
| volatile cdkhdr_t *hdrp; |
| volatile cdkctrl_t *cp; |
| volatile unsigned char *bits; |
| unsigned long flags; |
| int rc; |
| |
| #ifdef DEBUG |
| printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n", |
| (int) brdp, (int) portp, (int) arg, wait); |
| #endif |
| |
| /* |
| * Send a message to the slave to open this port. |
| */ |
| save_flags(flags); |
| cli(); |
| |
| /* |
| * Slave is already closing this port. This can happen if a hangup |
| * occurs on this port. So we must wait until it is complete. The |
| * order of opens and closes may not be preserved across shared |
| * memory, so we must wait until it is complete. |
| */ |
| wait_event_interruptible(portp->raw_wait, |
| !test_bit(ST_CLOSING, &portp->state)); |
| if (signal_pending(current)) { |
| restore_flags(flags); |
| return -ERESTARTSYS; |
| } |
| |
| /* |
| * Everything is ready now, so write the open message into shared |
| * memory. Once the message is in set the service bits to say that |
| * this port wants service. |
| */ |
| EBRDENABLE(brdp); |
| cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl; |
| cp->openarg = arg; |
| cp->open = 1; |
| hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR); |
| bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset + |
| portp->portidx; |
| *bits |= portp->portbit; |
| EBRDDISABLE(brdp); |
| |
| if (wait == 0) { |
| restore_flags(flags); |
| return(0); |
| } |
| |
| /* |
| * Slave is in action, so now we must wait for the open acknowledgment |
| * to come back. |
| */ |
| rc = 0; |
| set_bit(ST_OPENING, &portp->state); |
| wait_event_interruptible(portp->raw_wait, |
| !test_bit(ST_OPENING, &portp->state)); |
| if (signal_pending(current)) |
| rc = -ERESTARTSYS; |
| restore_flags(flags); |
| |
| if ((rc == 0) && (portp->rc != 0)) |
| rc = -EIO; |
| return(rc); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Send a close message to the slave. Normally this will sleep waiting |
| * for the acknowledgement, but if wait parameter is 0 it will not. If |
| * wait is true then must have user context (to sleep). |
| */ |
| |
| static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait) |
| { |
| volatile cdkhdr_t *hdrp; |
| volatile cdkctrl_t *cp; |
| volatile unsigned char *bits; |
| unsigned long flags; |
| int rc; |
| |
| #ifdef DEBUG |
| printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n", |
| (int) brdp, (int) portp, (int) arg, wait); |
| #endif |
| |
| save_flags(flags); |
| cli(); |
| |
| /* |
| * Slave is already closing this port. This can happen if a hangup |
| * occurs on this port. |
| */ |
| if (wait) { |
| wait_event_interruptible(portp->raw_wait, |
| !test_bit(ST_CLOSING, &portp->state)); |
| if (signal_pending(current)) { |
| restore_flags(flags); |
| return -ERESTARTSYS; |
| } |
| } |
| |
| /* |
| * Write the close command into shared memory. |
| */ |
| EBRDENABLE(brdp); |
| cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl; |
| cp->closearg = arg; |
| cp->close = 1; |
| hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR); |
| bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset + |
| portp->portidx; |
| *bits |= portp->portbit; |
| EBRDDISABLE(brdp); |
| |
| set_bit(ST_CLOSING, &portp->state); |
| if (wait == 0) { |
| restore_flags(flags); |
| return(0); |
| } |
| |
| /* |
| * Slave is in action, so now we must wait for the open acknowledgment |
| * to come back. |
| */ |
| rc = 0; |
| wait_event_interruptible(portp->raw_wait, |
| !test_bit(ST_CLOSING, &portp->state)); |
| if (signal_pending(current)) |
| rc = -ERESTARTSYS; |
| restore_flags(flags); |
| |
| if ((rc == 0) && (portp->rc != 0)) |
| rc = -EIO; |
| return(rc); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Send a command to the slave and wait for the response. This must |
| * have user context (it sleeps). This routine is generic in that it |
| * can send any type of command. Its purpose is to wait for that command |
| * to complete (as opposed to initiating the command then returning). |
| */ |
| |
| static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback) |
| { |
| unsigned long flags; |
| |
| #ifdef DEBUG |
| printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d," |
| "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd, |
| (int) arg, size, copyback); |
| #endif |
| |
| save_flags(flags); |
| cli(); |
| wait_event_interruptible(portp->raw_wait, |
| !test_bit(ST_CMDING, &portp->state)); |
| if (signal_pending(current)) { |
| restore_flags(flags); |
| return -ERESTARTSYS; |
| } |
| |
| stli_sendcmd(brdp, portp, cmd, arg, size, copyback); |
| |
| wait_event_interruptible(portp->raw_wait, |
| !test_bit(ST_CMDING, &portp->state)); |
| if (signal_pending(current)) { |
| restore_flags(flags); |
| return -ERESTARTSYS; |
| } |
| restore_flags(flags); |
| |
| if (portp->rc != 0) |
| return(-EIO); |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Send the termios settings for this port to the slave. This sleeps |
| * waiting for the command to complete - so must have user context. |
| */ |
| |
| static int stli_setport(stliport_t *portp) |
| { |
| stlibrd_t *brdp; |
| asyport_t aport; |
| |
| #ifdef DEBUG |
| printk("stli_setport(portp=%x)\n", (int) portp); |
| #endif |
| |
| if (portp == (stliport_t *) NULL) |
| return(-ENODEV); |
| if (portp->tty == (struct tty_struct *) NULL) |
| return(-ENODEV); |
| if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds)) |
| return(-ENODEV); |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(-ENODEV); |
| |
| stli_mkasyport(portp, &aport, portp->tty->termios); |
| return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0)); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Possibly need to wait for carrier (DCD signal) to come high. Say |
| * maybe because if we are clocal then we don't need to wait... |
| */ |
| |
| static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp) |
| { |
| unsigned long flags; |
| int rc, doclocal; |
| |
| #ifdef DEBUG |
| printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n", |
| (int) brdp, (int) portp, (int) filp); |
| #endif |
| |
| rc = 0; |
| doclocal = 0; |
| |
| if (portp->tty->termios->c_cflag & CLOCAL) |
| doclocal++; |
| |
| save_flags(flags); |
| cli(); |
| portp->openwaitcnt++; |
| if (! tty_hung_up_p(filp)) |
| portp->refcount--; |
| |
| for (;;) { |
| stli_mkasysigs(&portp->asig, 1, 1); |
| if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, |
| &portp->asig, sizeof(asysigs_t), 0)) < 0) |
| break; |
| if (tty_hung_up_p(filp) || |
| ((portp->flags & ASYNC_INITIALIZED) == 0)) { |
| if (portp->flags & ASYNC_HUP_NOTIFY) |
| rc = -EBUSY; |
| else |
| rc = -ERESTARTSYS; |
| break; |
| } |
| if (((portp->flags & ASYNC_CLOSING) == 0) && |
| (doclocal || (portp->sigs & TIOCM_CD))) { |
| break; |
| } |
| if (signal_pending(current)) { |
| rc = -ERESTARTSYS; |
| break; |
| } |
| interruptible_sleep_on(&portp->open_wait); |
| } |
| |
| if (! tty_hung_up_p(filp)) |
| portp->refcount++; |
| portp->openwaitcnt--; |
| restore_flags(flags); |
| |
| return(rc); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Write routine. Take the data and put it in the shared memory ring |
| * queue. If port is not already sending chars then need to mark the |
| * service bits for this port. |
| */ |
| |
| static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count) |
| { |
| volatile cdkasy_t *ap; |
| volatile cdkhdr_t *hdrp; |
| volatile unsigned char *bits; |
| unsigned char *shbuf, *chbuf; |
| stliport_t *portp; |
| stlibrd_t *brdp; |
| unsigned int len, stlen, head, tail, size; |
| unsigned long flags; |
| |
| #ifdef DEBUG |
| printk("stli_write(tty=%x,buf=%x,count=%d)\n", |
| (int) tty, (int) buf, count); |
| #endif |
| |
| if ((tty == (struct tty_struct *) NULL) || |
| (stli_tmpwritebuf == (char *) NULL)) |
| return(0); |
| if (tty == stli_txcooktty) |
| stli_flushchars(tty); |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return(0); |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return(0); |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(0); |
| chbuf = (unsigned char *) buf; |
| |
| /* |
| * All data is now local, shove as much as possible into shared memory. |
| */ |
| save_flags(flags); |
| cli(); |
| EBRDENABLE(brdp); |
| ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr); |
| head = (unsigned int) ap->txq.head; |
| tail = (unsigned int) ap->txq.tail; |
| if (tail != ((unsigned int) ap->txq.tail)) |
| tail = (unsigned int) ap->txq.tail; |
| size = portp->txsize; |
| if (head >= tail) { |
| len = size - (head - tail) - 1; |
| stlen = size - head; |
| } else { |
| len = tail - head - 1; |
| stlen = len; |
| } |
| |
| len = MIN(len, count); |
| count = 0; |
| shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset); |
| |
| while (len > 0) { |
| stlen = MIN(len, stlen); |
| memcpy((shbuf + head), chbuf, stlen); |
| chbuf += stlen; |
| len -= stlen; |
| count += stlen; |
| head += stlen; |
| if (head >= size) { |
| head = 0; |
| stlen = tail; |
| } |
| } |
| |
| ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr); |
| ap->txq.head = head; |
| if (test_bit(ST_TXBUSY, &portp->state)) { |
| if (ap->changed.data & DT_TXEMPTY) |
| ap->changed.data &= ~DT_TXEMPTY; |
| } |
| hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR); |
| bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset + |
| portp->portidx; |
| *bits |= portp->portbit; |
| set_bit(ST_TXBUSY, &portp->state); |
| EBRDDISABLE(brdp); |
| |
| restore_flags(flags); |
| |
| return(count); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Output a single character. We put it into a temporary local buffer |
| * (for speed) then write out that buffer when the flushchars routine |
| * is called. There is a safety catch here so that if some other port |
| * writes chars before the current buffer has been, then we write them |
| * first them do the new ports. |
| */ |
| |
| static void stli_putchar(struct tty_struct *tty, unsigned char ch) |
| { |
| #ifdef DEBUG |
| printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| if (tty != stli_txcooktty) { |
| if (stli_txcooktty != (struct tty_struct *) NULL) |
| stli_flushchars(stli_txcooktty); |
| stli_txcooktty = tty; |
| } |
| |
| stli_txcookbuf[stli_txcooksize++] = ch; |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Transfer characters from the local TX cooking buffer to the board. |
| * We sort of ignore the tty that gets passed in here. We rely on the |
| * info stored with the TX cook buffer to tell us which port to flush |
| * the data on. In any case we clean out the TX cook buffer, for re-use |
| * by someone else. |
| */ |
| |
| static void stli_flushchars(struct tty_struct *tty) |
| { |
| volatile cdkhdr_t *hdrp; |
| volatile unsigned char *bits; |
| volatile cdkasy_t *ap; |
| struct tty_struct *cooktty; |
| stliport_t *portp; |
| stlibrd_t *brdp; |
| unsigned int len, stlen, head, tail, size, count, cooksize; |
| unsigned char *buf, *shbuf; |
| unsigned long flags; |
| |
| #ifdef DEBUG |
| printk("stli_flushchars(tty=%x)\n", (int) tty); |
| #endif |
| |
| cooksize = stli_txcooksize; |
| cooktty = stli_txcooktty; |
| stli_txcooksize = 0; |
| stli_txcookrealsize = 0; |
| stli_txcooktty = (struct tty_struct *) NULL; |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| if (cooktty == (struct tty_struct *) NULL) |
| return; |
| if (tty != cooktty) |
| tty = cooktty; |
| if (cooksize == 0) |
| return; |
| |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return; |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return; |
| |
| save_flags(flags); |
| cli(); |
| EBRDENABLE(brdp); |
| |
| ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr); |
| head = (unsigned int) ap->txq.head; |
| tail = (unsigned int) ap->txq.tail; |
| if (tail != ((unsigned int) ap->txq.tail)) |
| tail = (unsigned int) ap->txq.tail; |
| size = portp->txsize; |
| if (head >= tail) { |
| len = size - (head - tail) - 1; |
| stlen = size - head; |
| } else { |
| len = tail - head - 1; |
| stlen = len; |
| } |
| |
| len = MIN(len, cooksize); |
| count = 0; |
| shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset); |
| buf = stli_txcookbuf; |
| |
| while (len > 0) { |
| stlen = MIN(len, stlen); |
| memcpy((shbuf + head), buf, stlen); |
| buf += stlen; |
| len -= stlen; |
| count += stlen; |
| head += stlen; |
| if (head >= size) { |
| head = 0; |
| stlen = tail; |
| } |
| } |
| |
| ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr); |
| ap->txq.head = head; |
| |
| if (test_bit(ST_TXBUSY, &portp->state)) { |
| if (ap->changed.data & DT_TXEMPTY) |
| ap->changed.data &= ~DT_TXEMPTY; |
| } |
| hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR); |
| bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset + |
| portp->portidx; |
| *bits |= portp->portbit; |
| set_bit(ST_TXBUSY, &portp->state); |
| |
| EBRDDISABLE(brdp); |
| restore_flags(flags); |
| } |
| |
| /*****************************************************************************/ |
| |
| static int stli_writeroom(struct tty_struct *tty) |
| { |
| volatile cdkasyrq_t *rp; |
| stliport_t *portp; |
| stlibrd_t *brdp; |
| unsigned int head, tail, len; |
| unsigned long flags; |
| |
| #ifdef DEBUG |
| printk("stli_writeroom(tty=%x)\n", (int) tty); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return(0); |
| if (tty == stli_txcooktty) { |
| if (stli_txcookrealsize != 0) { |
| len = stli_txcookrealsize - stli_txcooksize; |
| return(len); |
| } |
| } |
| |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return(0); |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return(0); |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(0); |
| |
| save_flags(flags); |
| cli(); |
| EBRDENABLE(brdp); |
| rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq; |
| head = (unsigned int) rp->head; |
| tail = (unsigned int) rp->tail; |
| if (tail != ((unsigned int) rp->tail)) |
| tail = (unsigned int) rp->tail; |
| len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head); |
| len--; |
| EBRDDISABLE(brdp); |
| restore_flags(flags); |
| |
| if (tty == stli_txcooktty) { |
| stli_txcookrealsize = len; |
| len -= stli_txcooksize; |
| } |
| return(len); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Return the number of characters in the transmit buffer. Normally we |
| * will return the number of chars in the shared memory ring queue. |
| * We need to kludge around the case where the shared memory buffer is |
| * empty but not all characters have drained yet, for this case just |
| * return that there is 1 character in the buffer! |
| */ |
| |
| static int stli_charsinbuffer(struct tty_struct *tty) |
| { |
| volatile cdkasyrq_t *rp; |
| stliport_t *portp; |
| stlibrd_t *brdp; |
| unsigned int head, tail, len; |
| unsigned long flags; |
| |
| #ifdef DEBUG |
| printk("stli_charsinbuffer(tty=%x)\n", (int) tty); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return(0); |
| if (tty == stli_txcooktty) |
| stli_flushchars(tty); |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return(0); |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return(0); |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(0); |
| |
| save_flags(flags); |
| cli(); |
| EBRDENABLE(brdp); |
| rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq; |
| head = (unsigned int) rp->head; |
| tail = (unsigned int) rp->tail; |
| if (tail != ((unsigned int) rp->tail)) |
| tail = (unsigned int) rp->tail; |
| len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head)); |
| if ((len == 0) && test_bit(ST_TXBUSY, &portp->state)) |
| len = 1; |
| EBRDDISABLE(brdp); |
| restore_flags(flags); |
| |
| return(len); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Generate the serial struct info. |
| */ |
| |
| static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp) |
| { |
| struct serial_struct sio; |
| stlibrd_t *brdp; |
| |
| #ifdef DEBUG |
| printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp); |
| #endif |
| |
| memset(&sio, 0, sizeof(struct serial_struct)); |
| sio.type = PORT_UNKNOWN; |
| sio.line = portp->portnr; |
| sio.irq = 0; |
| sio.flags = portp->flags; |
| sio.baud_base = portp->baud_base; |
| sio.close_delay = portp->close_delay; |
| sio.closing_wait = portp->closing_wait; |
| sio.custom_divisor = portp->custom_divisor; |
| sio.xmit_fifo_size = 0; |
| sio.hub6 = 0; |
| |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp != (stlibrd_t *) NULL) |
| sio.port = brdp->iobase; |
| |
| return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? |
| -EFAULT : 0; |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Set port according to the serial struct info. |
| * At this point we do not do any auto-configure stuff, so we will |
| * just quietly ignore any requests to change irq, etc. |
| */ |
| |
| static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp) |
| { |
| struct serial_struct sio; |
| int rc; |
| |
| #ifdef DEBUG |
| printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp); |
| #endif |
| |
| if (copy_from_user(&sio, sp, sizeof(struct serial_struct))) |
| return -EFAULT; |
| if (!capable(CAP_SYS_ADMIN)) { |
| if ((sio.baud_base != portp->baud_base) || |
| (sio.close_delay != portp->close_delay) || |
| ((sio.flags & ~ASYNC_USR_MASK) != |
| (portp->flags & ~ASYNC_USR_MASK))) |
| return(-EPERM); |
| } |
| |
| portp->flags = (portp->flags & ~ASYNC_USR_MASK) | |
| (sio.flags & ASYNC_USR_MASK); |
| portp->baud_base = sio.baud_base; |
| portp->close_delay = sio.close_delay; |
| portp->closing_wait = sio.closing_wait; |
| portp->custom_divisor = sio.custom_divisor; |
| |
| if ((rc = stli_setport(portp)) < 0) |
| return(rc); |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| static int stli_tiocmget(struct tty_struct *tty, struct file *file) |
| { |
| stliport_t *portp = tty->driver_data; |
| stlibrd_t *brdp; |
| int rc; |
| |
| if (portp == (stliport_t *) NULL) |
| return(-ENODEV); |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return(0); |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(0); |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return(-EIO); |
| |
| if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, |
| &portp->asig, sizeof(asysigs_t), 1)) < 0) |
| return(rc); |
| |
| return stli_mktiocm(portp->asig.sigvalue); |
| } |
| |
| static int stli_tiocmset(struct tty_struct *tty, struct file *file, |
| unsigned int set, unsigned int clear) |
| { |
| stliport_t *portp = tty->driver_data; |
| stlibrd_t *brdp; |
| int rts = -1, dtr = -1; |
| |
| if (portp == (stliport_t *) NULL) |
| return(-ENODEV); |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return(0); |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(0); |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return(-EIO); |
| |
| if (set & TIOCM_RTS) |
| rts = 1; |
| if (set & TIOCM_DTR) |
| dtr = 1; |
| if (clear & TIOCM_RTS) |
| rts = 0; |
| if (clear & TIOCM_DTR) |
| dtr = 0; |
| |
| stli_mkasysigs(&portp->asig, dtr, rts); |
| |
| return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig, |
| sizeof(asysigs_t), 0); |
| } |
| |
| static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| stliport_t *portp; |
| stlibrd_t *brdp; |
| unsigned int ival; |
| int rc; |
| void __user *argp = (void __user *)arg; |
| |
| #ifdef DEBUG |
| printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n", |
| (int) tty, (int) file, cmd, (int) arg); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return(-ENODEV); |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return(-ENODEV); |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return(0); |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(0); |
| |
| if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && |
| (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) { |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return(-EIO); |
| } |
| |
| rc = 0; |
| |
| switch (cmd) { |
| case TIOCGSOFTCAR: |
| rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0), |
| (unsigned __user *) arg); |
| break; |
| case TIOCSSOFTCAR: |
| if ((rc = get_user(ival, (unsigned __user *) arg)) == 0) |
| tty->termios->c_cflag = |
| (tty->termios->c_cflag & ~CLOCAL) | |
| (ival ? CLOCAL : 0); |
| break; |
| case TIOCGSERIAL: |
| rc = stli_getserial(portp, argp); |
| break; |
| case TIOCSSERIAL: |
| rc = stli_setserial(portp, argp); |
| break; |
| case STL_GETPFLAG: |
| rc = put_user(portp->pflag, (unsigned __user *)argp); |
| break; |
| case STL_SETPFLAG: |
| if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0) |
| stli_setport(portp); |
| break; |
| case COM_GETPORTSTATS: |
| rc = stli_getportstats(portp, argp); |
| break; |
| case COM_CLRPORTSTATS: |
| rc = stli_clrportstats(portp, argp); |
| break; |
| case TIOCSERCONFIG: |
| case TIOCSERGWILD: |
| case TIOCSERSWILD: |
| case TIOCSERGETLSR: |
| case TIOCSERGSTRUCT: |
| case TIOCSERGETMULTI: |
| case TIOCSERSETMULTI: |
| default: |
| rc = -ENOIOCTLCMD; |
| break; |
| } |
| |
| return(rc); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * This routine assumes that we have user context and can sleep. |
| * Looks like it is true for the current ttys implementation..!! |
| */ |
| |
| static void stli_settermios(struct tty_struct *tty, struct termios *old) |
| { |
| stliport_t *portp; |
| stlibrd_t *brdp; |
| struct termios *tiosp; |
| asyport_t aport; |
| |
| #ifdef DEBUG |
| printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return; |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return; |
| |
| tiosp = tty->termios; |
| if ((tiosp->c_cflag == old->c_cflag) && |
| (tiosp->c_iflag == old->c_iflag)) |
| return; |
| |
| stli_mkasyport(portp, &aport, tiosp); |
| stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0); |
| stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1); |
| stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig, |
| sizeof(asysigs_t), 0); |
| if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) |
| tty->hw_stopped = 0; |
| if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL)) |
| wake_up_interruptible(&portp->open_wait); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Attempt to flow control who ever is sending us data. We won't really |
| * do any flow control action here. We can't directly, and even if we |
| * wanted to we would have to send a command to the slave. The slave |
| * knows how to flow control, and will do so when its buffers reach its |
| * internal high water marks. So what we will do is set a local state |
| * bit that will stop us sending any RX data up from the poll routine |
| * (which is the place where RX data from the slave is handled). |
| */ |
| |
| static void stli_throttle(struct tty_struct *tty) |
| { |
| stliport_t *portp; |
| |
| #ifdef DEBUG |
| printk("stli_throttle(tty=%x)\n", (int) tty); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| |
| set_bit(ST_RXSTOP, &portp->state); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Unflow control the device sending us data... That means that all |
| * we have to do is clear the RXSTOP state bit. The next poll call |
| * will then be able to pass the RX data back up. |
| */ |
| |
| static void stli_unthrottle(struct tty_struct *tty) |
| { |
| stliport_t *portp; |
| |
| #ifdef DEBUG |
| printk("stli_unthrottle(tty=%x)\n", (int) tty); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| |
| clear_bit(ST_RXSTOP, &portp->state); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Stop the transmitter. Basically to do this we will just turn TX |
| * interrupts off. |
| */ |
| |
| static void stli_stop(struct tty_struct *tty) |
| { |
| stlibrd_t *brdp; |
| stliport_t *portp; |
| asyctrl_t actrl; |
| |
| #ifdef DEBUG |
| printk("stli_stop(tty=%x)\n", (int) tty); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return; |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return; |
| |
| memset(&actrl, 0, sizeof(asyctrl_t)); |
| actrl.txctrl = CT_STOPFLOW; |
| #if 0 |
| stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0); |
| #endif |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Start the transmitter again. Just turn TX interrupts back on. |
| */ |
| |
| static void stli_start(struct tty_struct *tty) |
| { |
| stliport_t *portp; |
| stlibrd_t *brdp; |
| asyctrl_t actrl; |
| |
| #ifdef DEBUG |
| printk("stli_start(tty=%x)\n", (int) tty); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return; |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return; |
| |
| memset(&actrl, 0, sizeof(asyctrl_t)); |
| actrl.txctrl = CT_STARTFLOW; |
| #if 0 |
| stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0); |
| #endif |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Scheduler called hang up routine. This is called from the scheduler, |
| * not direct from the driver "poll" routine. We can't call it there |
| * since the real local hangup code will enable/disable the board and |
| * other things that we can't do while handling the poll. Much easier |
| * to deal with it some time later (don't really care when, hangups |
| * aren't that time critical). |
| */ |
| |
| static void stli_dohangup(void *arg) |
| { |
| stliport_t *portp; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg); |
| #endif |
| |
| /* |
| * FIXME: There's a module removal race here: tty_hangup |
| * calls schedule_work which will call into this |
| * driver later. |
| */ |
| portp = (stliport_t *) arg; |
| if (portp != (stliport_t *) NULL) { |
| if (portp->tty != (struct tty_struct *) NULL) { |
| tty_hangup(portp->tty); |
| } |
| } |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Hangup this port. This is pretty much like closing the port, only |
| * a little more brutal. No waiting for data to drain. Shutdown the |
| * port and maybe drop signals. This is rather tricky really. We want |
| * to close the port as well. |
| */ |
| |
| static void stli_hangup(struct tty_struct *tty) |
| { |
| stliport_t *portp; |
| stlibrd_t *brdp; |
| unsigned long flags; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return; |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return; |
| |
| portp->flags &= ~ASYNC_INITIALIZED; |
| |
| save_flags(flags); |
| cli(); |
| if (! test_bit(ST_CLOSING, &portp->state)) |
| stli_rawclose(brdp, portp, 0, 0); |
| if (tty->termios->c_cflag & HUPCL) { |
| stli_mkasysigs(&portp->asig, 0, 0); |
| if (test_bit(ST_CMDING, &portp->state)) { |
| set_bit(ST_DOSIGS, &portp->state); |
| set_bit(ST_DOFLUSHTX, &portp->state); |
| set_bit(ST_DOFLUSHRX, &portp->state); |
| } else { |
| stli_sendcmd(brdp, portp, A_SETSIGNALSF, |
| &portp->asig, sizeof(asysigs_t), 0); |
| } |
| } |
| restore_flags(flags); |
| |
| clear_bit(ST_TXBUSY, &portp->state); |
| clear_bit(ST_RXSTOP, &portp->state); |
| set_bit(TTY_IO_ERROR, &tty->flags); |
| portp->tty = (struct tty_struct *) NULL; |
| portp->flags &= ~ASYNC_NORMAL_ACTIVE; |
| portp->refcount = 0; |
| wake_up_interruptible(&portp->open_wait); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Flush characters from the lower buffer. We may not have user context |
| * so we cannot sleep waiting for it to complete. Also we need to check |
| * if there is chars for this port in the TX cook buffer, and flush them |
| * as well. |
| */ |
| |
| static void stli_flushbuffer(struct tty_struct *tty) |
| { |
| stliport_t *portp; |
| stlibrd_t *brdp; |
| unsigned long ftype, flags; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return; |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return; |
| |
| save_flags(flags); |
| cli(); |
| if (tty == stli_txcooktty) { |
| stli_txcooktty = (struct tty_struct *) NULL; |
| stli_txcooksize = 0; |
| stli_txcookrealsize = 0; |
| } |
| if (test_bit(ST_CMDING, &portp->state)) { |
| set_bit(ST_DOFLUSHTX, &portp->state); |
| } else { |
| ftype = FLUSHTX; |
| if (test_bit(ST_DOFLUSHRX, &portp->state)) { |
| ftype |= FLUSHRX; |
| clear_bit(ST_DOFLUSHRX, &portp->state); |
| } |
| stli_sendcmd(brdp, portp, A_FLUSH, &ftype, |
| sizeof(unsigned long), 0); |
| } |
| restore_flags(flags); |
| |
| wake_up_interruptible(&tty->write_wait); |
| if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && |
| tty->ldisc.write_wakeup) |
| (tty->ldisc.write_wakeup)(tty); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_breakctl(struct tty_struct *tty, int state) |
| { |
| stlibrd_t *brdp; |
| stliport_t *portp; |
| long arg; |
| /* long savestate, savetime; */ |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return; |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return; |
| |
| /* |
| * Due to a bug in the tty send_break() code we need to preserve |
| * the current process state and timeout... |
| savetime = current->timeout; |
| savestate = current->state; |
| */ |
| |
| arg = (state == -1) ? BREAKON : BREAKOFF; |
| stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0); |
| |
| /* |
| * |
| current->timeout = savetime; |
| current->state = savestate; |
| */ |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_waituntilsent(struct tty_struct *tty, int timeout) |
| { |
| stliport_t *portp; |
| unsigned long tend; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| |
| if (timeout == 0) |
| timeout = HZ; |
| tend = jiffies + timeout; |
| |
| while (test_bit(ST_TXBUSY, &portp->state)) { |
| if (signal_pending(current)) |
| break; |
| msleep_interruptible(20); |
| if (time_after_eq(jiffies, tend)) |
| break; |
| } |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_sendxchar(struct tty_struct *tty, char ch) |
| { |
| stlibrd_t *brdp; |
| stliport_t *portp; |
| asyctrl_t actrl; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch); |
| #endif |
| |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| portp = tty->driver_data; |
| if (portp == (stliport_t *) NULL) |
| return; |
| if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds)) |
| return; |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return; |
| |
| memset(&actrl, 0, sizeof(asyctrl_t)); |
| if (ch == STOP_CHAR(tty)) { |
| actrl.rxctrl = CT_STOPFLOW; |
| } else if (ch == START_CHAR(tty)) { |
| actrl.rxctrl = CT_STARTFLOW; |
| } else { |
| actrl.txctrl = CT_SENDCHR; |
| actrl.tximdch = ch; |
| } |
| |
| stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0); |
| } |
| |
| /*****************************************************************************/ |
| |
| #define MAXLINE 80 |
| |
| /* |
| * Format info for a specified port. The line is deliberately limited |
| * to 80 characters. (If it is too long it will be truncated, if too |
| * short then padded with spaces). |
| */ |
| |
| static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos) |
| { |
| char *sp, *uart; |
| int rc, cnt; |
| |
| rc = stli_portcmdstats(portp); |
| |
| uart = "UNKNOWN"; |
| if (brdp->state & BST_STARTED) { |
| switch (stli_comstats.hwid) { |
| case 0: uart = "2681"; break; |
| case 1: uart = "SC26198"; break; |
| default: uart = "CD1400"; break; |
| } |
| } |
| |
| sp = pos; |
| sp += sprintf(sp, "%d: uart:%s ", portnr, uart); |
| |
| if ((brdp->state & BST_STARTED) && (rc >= 0)) { |
| sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal, |
| (int) stli_comstats.rxtotal); |
| |
| if (stli_comstats.rxframing) |
| sp += sprintf(sp, " fe:%d", |
| (int) stli_comstats.rxframing); |
| if (stli_comstats.rxparity) |
| sp += sprintf(sp, " pe:%d", |
| (int) stli_comstats.rxparity); |
| if (stli_comstats.rxbreaks) |
| sp += sprintf(sp, " brk:%d", |
| (int) stli_comstats.rxbreaks); |
| if (stli_comstats.rxoverrun) |
| sp += sprintf(sp, " oe:%d", |
| (int) stli_comstats.rxoverrun); |
| |
| cnt = sprintf(sp, "%s%s%s%s%s ", |
| (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "", |
| (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "", |
| (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "", |
| (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "", |
| (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : ""); |
| *sp = ' '; |
| sp += cnt; |
| } |
| |
| for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++) |
| *sp++ = ' '; |
| if (cnt >= MAXLINE) |
| pos[(MAXLINE - 2)] = '+'; |
| pos[(MAXLINE - 1)] = '\n'; |
| |
| return(MAXLINE); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Port info, read from the /proc file system. |
| */ |
| |
| static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data) |
| { |
| stlibrd_t *brdp; |
| stliport_t *portp; |
| int brdnr, portnr, totalport; |
| int curoff, maxoff; |
| char *pos; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x," |
| "data=%x\n", (int) page, (int) start, (int) off, count, |
| (int) eof, (int) data); |
| #endif |
| |
| pos = page; |
| totalport = 0; |
| curoff = 0; |
| |
| if (off == 0) { |
| pos += sprintf(pos, "%s: version %s", stli_drvtitle, |
| stli_drvversion); |
| while (pos < (page + MAXLINE - 1)) |
| *pos++ = ' '; |
| *pos++ = '\n'; |
| } |
| curoff = MAXLINE; |
| |
| /* |
| * We scan through for each board, panel and port. The offset is |
| * calculated on the fly, and irrelevant ports are skipped. |
| */ |
| for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) { |
| brdp = stli_brds[brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| continue; |
| if (brdp->state == 0) |
| continue; |
| |
| maxoff = curoff + (brdp->nrports * MAXLINE); |
| if (off >= maxoff) { |
| curoff = maxoff; |
| continue; |
| } |
| |
| totalport = brdnr * STL_MAXPORTS; |
| for (portnr = 0; (portnr < brdp->nrports); portnr++, |
| totalport++) { |
| portp = brdp->ports[portnr]; |
| if (portp == (stliport_t *) NULL) |
| continue; |
| if (off >= (curoff += MAXLINE)) |
| continue; |
| if ((pos - page + MAXLINE) > count) |
| goto stli_readdone; |
| pos += stli_portinfo(brdp, portp, totalport, pos); |
| } |
| } |
| |
| *eof = 1; |
| |
| stli_readdone: |
| *start = page; |
| return(pos - page); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Generic send command routine. This will send a message to the slave, |
| * of the specified type with the specified argument. Must be very |
| * careful of data that will be copied out from shared memory - |
| * containing command results. The command completion is all done from |
| * a poll routine that does not have user context. Therefore you cannot |
| * copy back directly into user space, or to the kernel stack of a |
| * process. This routine does not sleep, so can be called from anywhere. |
| */ |
| |
| static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback) |
| { |
| volatile cdkhdr_t *hdrp; |
| volatile cdkctrl_t *cp; |
| volatile unsigned char *bits; |
| unsigned long flags; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d," |
| "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd, |
| (int) arg, size, copyback); |
| #endif |
| |
| save_flags(flags); |
| cli(); |
| |
| if (test_bit(ST_CMDING, &portp->state)) { |
| printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n", |
| (int) cmd); |
| restore_flags(flags); |
| return; |
| } |
| |
| EBRDENABLE(brdp); |
| cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl; |
| if (size > 0) { |
| memcpy((void *) &(cp->args[0]), arg, size); |
| if (copyback) { |
| portp->argp = arg; |
| portp->argsize = size; |
| } |
| } |
| cp->status = 0; |
| cp->cmd = cmd; |
| hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR); |
| bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset + |
| portp->portidx; |
| *bits |= portp->portbit; |
| set_bit(ST_CMDING, &portp->state); |
| EBRDDISABLE(brdp); |
| restore_flags(flags); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Read data from shared memory. This assumes that the shared memory |
| * is enabled and that interrupts are off. Basically we just empty out |
| * the shared memory buffer into the tty buffer. Must be careful to |
| * handle the case where we fill up the tty buffer, but still have |
| * more chars to unload. |
| */ |
| |
| static void stli_read(stlibrd_t *brdp, stliport_t *portp) |
| { |
| volatile cdkasyrq_t *rp; |
| volatile char *shbuf; |
| struct tty_struct *tty; |
| unsigned int head, tail, size; |
| unsigned int len, stlen; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n", |
| (int) brdp, (int) portp); |
| #endif |
| |
| if (test_bit(ST_RXSTOP, &portp->state)) |
| return; |
| tty = portp->tty; |
| if (tty == (struct tty_struct *) NULL) |
| return; |
| |
| rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq; |
| head = (unsigned int) rp->head; |
| if (head != ((unsigned int) rp->head)) |
| head = (unsigned int) rp->head; |
| tail = (unsigned int) rp->tail; |
| size = portp->rxsize; |
| if (head >= tail) { |
| len = head - tail; |
| stlen = len; |
| } else { |
| len = size - (tail - head); |
| stlen = size - tail; |
| } |
| |
| len = tty_buffer_request_room(tty, len); |
| /* FIXME : iomap ? */ |
| shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset); |
| |
| while (len > 0) { |
| stlen = MIN(len, stlen); |
| tty_insert_flip_string(tty, (char *)(shbuf + tail), stlen); |
| len -= stlen; |
| tail += stlen; |
| if (tail >= size) { |
| tail = 0; |
| stlen = head; |
| } |
| } |
| rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq; |
| rp->tail = tail; |
| |
| if (head != tail) |
| set_bit(ST_RXING, &portp->state); |
| |
| tty_schedule_flip(tty); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Set up and carry out any delayed commands. There is only a small set |
| * of slave commands that can be done "off-level". So it is not too |
| * difficult to deal with them here. |
| */ |
| |
| static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp) |
| { |
| int cmd; |
| |
| if (test_bit(ST_DOSIGS, &portp->state)) { |
| if (test_bit(ST_DOFLUSHTX, &portp->state) && |
| test_bit(ST_DOFLUSHRX, &portp->state)) |
| cmd = A_SETSIGNALSF; |
| else if (test_bit(ST_DOFLUSHTX, &portp->state)) |
| cmd = A_SETSIGNALSFTX; |
| else if (test_bit(ST_DOFLUSHRX, &portp->state)) |
| cmd = A_SETSIGNALSFRX; |
| else |
| cmd = A_SETSIGNALS; |
| clear_bit(ST_DOFLUSHTX, &portp->state); |
| clear_bit(ST_DOFLUSHRX, &portp->state); |
| clear_bit(ST_DOSIGS, &portp->state); |
| memcpy((void *) &(cp->args[0]), (void *) &portp->asig, |
| sizeof(asysigs_t)); |
| cp->status = 0; |
| cp->cmd = cmd; |
| set_bit(ST_CMDING, &portp->state); |
| } else if (test_bit(ST_DOFLUSHTX, &portp->state) || |
| test_bit(ST_DOFLUSHRX, &portp->state)) { |
| cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0); |
| cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0); |
| clear_bit(ST_DOFLUSHTX, &portp->state); |
| clear_bit(ST_DOFLUSHRX, &portp->state); |
| memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int)); |
| cp->status = 0; |
| cp->cmd = A_FLUSH; |
| set_bit(ST_CMDING, &portp->state); |
| } |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Host command service checking. This handles commands or messages |
| * coming from the slave to the host. Must have board shared memory |
| * enabled and interrupts off when called. Notice that by servicing the |
| * read data last we don't need to change the shared memory pointer |
| * during processing (which is a slow IO operation). |
| * Return value indicates if this port is still awaiting actions from |
| * the slave (like open, command, or even TX data being sent). If 0 |
| * then port is still busy, otherwise no longer busy. |
| */ |
| |
| static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp) |
| { |
| volatile cdkasy_t *ap; |
| volatile cdkctrl_t *cp; |
| struct tty_struct *tty; |
| asynotify_t nt; |
| unsigned long oldsigs; |
| int rc, donerx; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n", |
| (int) brdp, channr); |
| #endif |
| |
| ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr); |
| cp = &ap->ctrl; |
| |
| /* |
| * Check if we are waiting for an open completion message. |
| */ |
| if (test_bit(ST_OPENING, &portp->state)) { |
| rc = (int) cp->openarg; |
| if ((cp->open == 0) && (rc != 0)) { |
| if (rc > 0) |
| rc--; |
| cp->openarg = 0; |
| portp->rc = rc; |
| clear_bit(ST_OPENING, &portp->state); |
| wake_up_interruptible(&portp->raw_wait); |
| } |
| } |
| |
| /* |
| * Check if we are waiting for a close completion message. |
| */ |
| if (test_bit(ST_CLOSING, &portp->state)) { |
| rc = (int) cp->closearg; |
| if ((cp->close == 0) && (rc != 0)) { |
| if (rc > 0) |
| rc--; |
| cp->closearg = 0; |
| portp->rc = rc; |
| clear_bit(ST_CLOSING, &portp->state); |
| wake_up_interruptible(&portp->raw_wait); |
| } |
| } |
| |
| /* |
| * Check if we are waiting for a command completion message. We may |
| * need to copy out the command results associated with this command. |
| */ |
| if (test_bit(ST_CMDING, &portp->state)) { |
| rc = cp->status; |
| if ((cp->cmd == 0) && (rc != 0)) { |
| if (rc > 0) |
| rc--; |
| if (portp->argp != (void *) NULL) { |
| memcpy(portp->argp, (void *) &(cp->args[0]), |
| portp->argsize); |
| portp->argp = (void *) NULL; |
| } |
| cp->status = 0; |
| portp->rc = rc; |
| clear_bit(ST_CMDING, &portp->state); |
| stli_dodelaycmd(portp, cp); |
| wake_up_interruptible(&portp->raw_wait); |
| } |
| } |
| |
| /* |
| * Check for any notification messages ready. This includes lots of |
| * different types of events - RX chars ready, RX break received, |
| * TX data low or empty in the slave, modem signals changed state. |
| */ |
| donerx = 0; |
| |
| if (ap->notify) { |
| nt = ap->changed; |
| ap->notify = 0; |
| tty = portp->tty; |
| |
| if (nt.signal & SG_DCD) { |
| oldsigs = portp->sigs; |
| portp->sigs = stli_mktiocm(nt.sigvalue); |
| clear_bit(ST_GETSIGS, &portp->state); |
| if ((portp->sigs & TIOCM_CD) && |
| ((oldsigs & TIOCM_CD) == 0)) |
| wake_up_interruptible(&portp->open_wait); |
| if ((oldsigs & TIOCM_CD) && |
| ((portp->sigs & TIOCM_CD) == 0)) { |
| if (portp->flags & ASYNC_CHECK_CD) { |
| if (tty) |
| schedule_work(&portp->tqhangup); |
| } |
| } |
| } |
| |
| if (nt.data & DT_TXEMPTY) |
| clear_bit(ST_TXBUSY, &portp->state); |
| if (nt.data & (DT_TXEMPTY | DT_TXLOW)) { |
| if (tty != (struct tty_struct *) NULL) { |
| if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && |
| tty->ldisc.write_wakeup) { |
| (tty->ldisc.write_wakeup)(tty); |
| EBRDENABLE(brdp); |
| } |
| wake_up_interruptible(&tty->write_wait); |
| } |
| } |
| |
| if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) { |
| if (tty != (struct tty_struct *) NULL) { |
| tty_insert_flip_char(tty, 0, TTY_BREAK); |
| if (portp->flags & ASYNC_SAK) { |
| do_SAK(tty); |
| EBRDENABLE(brdp); |
| } |
| tty_schedule_flip(tty); |
| } |
| } |
| |
| if (nt.data & DT_RXBUSY) { |
| donerx++; |
| stli_read(brdp, portp); |
| } |
| } |
| |
| /* |
| * It might seem odd that we are checking for more RX chars here. |
| * But, we need to handle the case where the tty buffer was previously |
| * filled, but we had more characters to pass up. The slave will not |
| * send any more RX notify messages until the RX buffer has been emptied. |
| * But it will leave the service bits on (since the buffer is not empty). |
| * So from here we can try to process more RX chars. |
| */ |
| if ((!donerx) && test_bit(ST_RXING, &portp->state)) { |
| clear_bit(ST_RXING, &portp->state); |
| stli_read(brdp, portp); |
| } |
| |
| return((test_bit(ST_OPENING, &portp->state) || |
| test_bit(ST_CLOSING, &portp->state) || |
| test_bit(ST_CMDING, &portp->state) || |
| test_bit(ST_TXBUSY, &portp->state) || |
| test_bit(ST_RXING, &portp->state)) ? 0 : 1); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Service all ports on a particular board. Assumes that the boards |
| * shared memory is enabled, and that the page pointer is pointed |
| * at the cdk header structure. |
| */ |
| |
| static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp) |
| { |
| stliport_t *portp; |
| unsigned char hostbits[(STL_MAXCHANS / 8) + 1]; |
| unsigned char slavebits[(STL_MAXCHANS / 8) + 1]; |
| unsigned char *slavep; |
| int bitpos, bitat, bitsize; |
| int channr, nrdevs, slavebitchange; |
| |
| bitsize = brdp->bitsize; |
| nrdevs = brdp->nrdevs; |
| |
| /* |
| * Check if slave wants any service. Basically we try to do as |
| * little work as possible here. There are 2 levels of service |
| * bits. So if there is nothing to do we bail early. We check |
| * 8 service bits at a time in the inner loop, so we can bypass |
| * the lot if none of them want service. |
| */ |
| memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset), |
| bitsize); |
| |
| memset(&slavebits[0], 0, bitsize); |
| slavebitchange = 0; |
| |
| for (bitpos = 0; (bitpos < bitsize); bitpos++) { |
| if (hostbits[bitpos] == 0) |
| continue; |
| channr = bitpos * 8; |
| for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) { |
| if (hostbits[bitpos] & bitat) { |
| portp = brdp->ports[(channr - 1)]; |
| if (stli_hostcmd(brdp, portp)) { |
| slavebitchange++; |
| slavebits[bitpos] |= bitat; |
| } |
| } |
| } |
| } |
| |
| /* |
| * If any of the ports are no longer busy then update them in the |
| * slave request bits. We need to do this after, since a host port |
| * service may initiate more slave requests. |
| */ |
| if (slavebitchange) { |
| hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR); |
| slavep = ((unsigned char *) hdrp) + brdp->slaveoffset; |
| for (bitpos = 0; (bitpos < bitsize); bitpos++) { |
| if (slavebits[bitpos]) |
| slavep[bitpos] &= ~slavebits[bitpos]; |
| } |
| } |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Driver poll routine. This routine polls the boards in use and passes |
| * messages back up to host when necessary. This is actually very |
| * CPU efficient, since we will always have the kernel poll clock, it |
| * adds only a few cycles when idle (since board service can be |
| * determined very easily), but when loaded generates no interrupts |
| * (with their expensive associated context change). |
| */ |
| |
| static void stli_poll(unsigned long arg) |
| { |
| volatile cdkhdr_t *hdrp; |
| stlibrd_t *brdp; |
| int brdnr; |
| |
| stli_timerlist.expires = STLI_TIMEOUT; |
| add_timer(&stli_timerlist); |
| |
| /* |
| * Check each board and do any servicing required. |
| */ |
| for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) { |
| brdp = stli_brds[brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| continue; |
| if ((brdp->state & BST_STARTED) == 0) |
| continue; |
| |
| EBRDENABLE(brdp); |
| hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR); |
| if (hdrp->hostreq) |
| stli_brdpoll(brdp, hdrp); |
| EBRDDISABLE(brdp); |
| } |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Translate the termios settings into the port setting structure of |
| * the slave. |
| */ |
| |
| static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n", |
| (int) portp, (int) pp, (int) tiosp); |
| #endif |
| |
| memset(pp, 0, sizeof(asyport_t)); |
| |
| /* |
| * Start of by setting the baud, char size, parity and stop bit info. |
| */ |
| pp->baudout = tiosp->c_cflag & CBAUD; |
| if (pp->baudout & CBAUDEX) { |
| pp->baudout &= ~CBAUDEX; |
| if ((pp->baudout < 1) || (pp->baudout > 4)) |
| tiosp->c_cflag &= ~CBAUDEX; |
| else |
| pp->baudout += 15; |
| } |
| pp->baudout = stli_baudrates[pp->baudout]; |
| if ((tiosp->c_cflag & CBAUD) == B38400) { |
| if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) |
| pp->baudout = 57600; |
| else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) |
| pp->baudout = 115200; |
| else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI) |
| pp->baudout = 230400; |
| else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP) |
| pp->baudout = 460800; |
| else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST) |
| pp->baudout = (portp->baud_base / portp->custom_divisor); |
| } |
| if (pp->baudout > STL_MAXBAUD) |
| pp->baudout = STL_MAXBAUD; |
| pp->baudin = pp->baudout; |
| |
| switch (tiosp->c_cflag & CSIZE) { |
| case CS5: |
| pp->csize = 5; |
| break; |
| case CS6: |
| pp->csize = 6; |
| break; |
| case CS7: |
| pp->csize = 7; |
| break; |
| default: |
| pp->csize = 8; |
| break; |
| } |
| |
| if (tiosp->c_cflag & CSTOPB) |
| pp->stopbs = PT_STOP2; |
| else |
| pp->stopbs = PT_STOP1; |
| |
| if (tiosp->c_cflag & PARENB) { |
| if (tiosp->c_cflag & PARODD) |
| pp->parity = PT_ODDPARITY; |
| else |
| pp->parity = PT_EVENPARITY; |
| } else { |
| pp->parity = PT_NOPARITY; |
| } |
| |
| /* |
| * Set up any flow control options enabled. |
| */ |
| if (tiosp->c_iflag & IXON) { |
| pp->flow |= F_IXON; |
| if (tiosp->c_iflag & IXANY) |
| pp->flow |= F_IXANY; |
| } |
| if (tiosp->c_cflag & CRTSCTS) |
| pp->flow |= (F_RTSFLOW | F_CTSFLOW); |
| |
| pp->startin = tiosp->c_cc[VSTART]; |
| pp->stopin = tiosp->c_cc[VSTOP]; |
| pp->startout = tiosp->c_cc[VSTART]; |
| pp->stopout = tiosp->c_cc[VSTOP]; |
| |
| /* |
| * Set up the RX char marking mask with those RX error types we must |
| * catch. We can get the slave to help us out a little here, it will |
| * ignore parity errors and breaks for us, and mark parity errors in |
| * the data stream. |
| */ |
| if (tiosp->c_iflag & IGNPAR) |
| pp->iflag |= FI_IGNRXERRS; |
| if (tiosp->c_iflag & IGNBRK) |
| pp->iflag |= FI_IGNBREAK; |
| |
| portp->rxmarkmsk = 0; |
| if (tiosp->c_iflag & (INPCK | PARMRK)) |
| pp->iflag |= FI_1MARKRXERRS; |
| if (tiosp->c_iflag & BRKINT) |
| portp->rxmarkmsk |= BRKINT; |
| |
| /* |
| * Set up clocal processing as required. |
| */ |
| if (tiosp->c_cflag & CLOCAL) |
| portp->flags &= ~ASYNC_CHECK_CD; |
| else |
| portp->flags |= ASYNC_CHECK_CD; |
| |
| /* |
| * Transfer any persistent flags into the asyport structure. |
| */ |
| pp->pflag = (portp->pflag & 0xffff); |
| pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0; |
| pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0; |
| pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0; |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Construct a slave signals structure for setting the DTR and RTS |
| * signals as specified. |
| */ |
| |
| static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n", |
| (int) sp, dtr, rts); |
| #endif |
| |
| memset(sp, 0, sizeof(asysigs_t)); |
| if (dtr >= 0) { |
| sp->signal |= SG_DTR; |
| sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0); |
| } |
| if (rts >= 0) { |
| sp->signal |= SG_RTS; |
| sp->sigvalue |= ((rts > 0) ? SG_RTS : 0); |
| } |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Convert the signals returned from the slave into a local TIOCM type |
| * signals value. We keep them locally in TIOCM format. |
| */ |
| |
| static long stli_mktiocm(unsigned long sigvalue) |
| { |
| long tiocm; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue); |
| #endif |
| |
| tiocm = 0; |
| tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0); |
| tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0); |
| tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0); |
| tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0); |
| tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0); |
| tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0); |
| return(tiocm); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * All panels and ports actually attached have been worked out. All |
| * we need to do here is set up the appropriate per port data structures. |
| */ |
| |
| static int stli_initports(stlibrd_t *brdp) |
| { |
| stliport_t *portp; |
| int i, panelnr, panelport; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) { |
| portp = kzalloc(sizeof(stliport_t), GFP_KERNEL); |
| if (!portp) { |
| printk("STALLION: failed to allocate port structure\n"); |
| continue; |
| } |
| |
| portp->magic = STLI_PORTMAGIC; |
| portp->portnr = i; |
| portp->brdnr = brdp->brdnr; |
| portp->panelnr = panelnr; |
| portp->baud_base = STL_BAUDBASE; |
| portp->close_delay = STL_CLOSEDELAY; |
| portp->closing_wait = 30 * HZ; |
| INIT_WORK(&portp->tqhangup, stli_dohangup, portp); |
| init_waitqueue_head(&portp->open_wait); |
| init_waitqueue_head(&portp->close_wait); |
| init_waitqueue_head(&portp->raw_wait); |
| panelport++; |
| if (panelport >= brdp->panels[panelnr]) { |
| panelport = 0; |
| panelnr++; |
| } |
| brdp->ports[i] = portp; |
| } |
| |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * All the following routines are board specific hardware operations. |
| */ |
| |
| static void stli_ecpinit(stlibrd_t *brdp) |
| { |
| unsigned long memconf; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp); |
| #endif |
| |
| outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR)); |
| udelay(10); |
| outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR)); |
| udelay(100); |
| |
| memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT; |
| outb(memconf, (brdp->iobase + ECP_ATMEMAR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_ecpenable(stlibrd_t *brdp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp); |
| #endif |
| outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_ecpdisable(stlibrd_t *brdp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp); |
| #endif |
| outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line) |
| { |
| void *ptr; |
| unsigned char val; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp, |
| (int) offset); |
| #endif |
| |
| if (offset > brdp->memsize) { |
| printk(KERN_ERR "STALLION: shared memory pointer=%x out of " |
| "range at line=%d(%d), brd=%d\n", |
| (int) offset, line, __LINE__, brdp->brdnr); |
| ptr = NULL; |
| val = 0; |
| } else { |
| ptr = brdp->membase + (offset % ECP_ATPAGESIZE); |
| val = (unsigned char) (offset / ECP_ATPAGESIZE); |
| } |
| outb(val, (brdp->iobase + ECP_ATMEMPR)); |
| return(ptr); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_ecpreset(stlibrd_t *brdp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR)); |
| udelay(10); |
| outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR)); |
| udelay(500); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_ecpintr(stlibrd_t *brdp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp); |
| #endif |
| outb(0x1, brdp->iobase); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * The following set of functions act on ECP EISA boards. |
| */ |
| |
| static void stli_ecpeiinit(stlibrd_t *brdp) |
| { |
| unsigned long memconf; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| outb(0x1, (brdp->iobase + ECP_EIBRDENAB)); |
| outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR)); |
| udelay(10); |
| outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR)); |
| udelay(500); |
| |
| memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL; |
| outb(memconf, (brdp->iobase + ECP_EIMEMARL)); |
| memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH; |
| outb(memconf, (brdp->iobase + ECP_EIMEMARH)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_ecpeienable(stlibrd_t *brdp) |
| { |
| outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_ecpeidisable(stlibrd_t *brdp) |
| { |
| outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line) |
| { |
| void *ptr; |
| unsigned char val; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n", |
| (int) brdp, (int) offset, line); |
| #endif |
| |
| if (offset > brdp->memsize) { |
| printk(KERN_ERR "STALLION: shared memory pointer=%x out of " |
| "range at line=%d(%d), brd=%d\n", |
| (int) offset, line, __LINE__, brdp->brdnr); |
| ptr = NULL; |
| val = 0; |
| } else { |
| ptr = brdp->membase + (offset % ECP_EIPAGESIZE); |
| if (offset < ECP_EIPAGESIZE) |
| val = ECP_EIENABLE; |
| else |
| val = ECP_EIENABLE | 0x40; |
| } |
| outb(val, (brdp->iobase + ECP_EICONFR)); |
| return(ptr); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_ecpeireset(stlibrd_t *brdp) |
| { |
| outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR)); |
| udelay(10); |
| outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR)); |
| udelay(500); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * The following set of functions act on ECP MCA boards. |
| */ |
| |
| static void stli_ecpmcenable(stlibrd_t *brdp) |
| { |
| outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_ecpmcdisable(stlibrd_t *brdp) |
| { |
| outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line) |
| { |
| void *ptr; |
| unsigned char val; |
| |
| if (offset > brdp->memsize) { |
| printk(KERN_ERR "STALLION: shared memory pointer=%x out of " |
| "range at line=%d(%d), brd=%d\n", |
| (int) offset, line, __LINE__, brdp->brdnr); |
| ptr = NULL; |
| val = 0; |
| } else { |
| ptr = brdp->membase + (offset % ECP_MCPAGESIZE); |
| val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE; |
| } |
| outb(val, (brdp->iobase + ECP_MCCONFR)); |
| return(ptr); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_ecpmcreset(stlibrd_t *brdp) |
| { |
| outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR)); |
| udelay(10); |
| outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR)); |
| udelay(500); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * The following set of functions act on ECP PCI boards. |
| */ |
| |
| static void stli_ecppciinit(stlibrd_t *brdp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR)); |
| udelay(10); |
| outb(0, (brdp->iobase + ECP_PCICONFR)); |
| udelay(500); |
| } |
| |
| /*****************************************************************************/ |
| |
| static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line) |
| { |
| void *ptr; |
| unsigned char val; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n", |
| (int) brdp, (int) offset, line); |
| #endif |
| |
| if (offset > brdp->memsize) { |
| printk(KERN_ERR "STALLION: shared memory pointer=%x out of " |
| "range at line=%d(%d), board=%d\n", |
| (int) offset, line, __LINE__, brdp->brdnr); |
| ptr = NULL; |
| val = 0; |
| } else { |
| ptr = brdp->membase + (offset % ECP_PCIPAGESIZE); |
| val = (offset / ECP_PCIPAGESIZE) << 1; |
| } |
| outb(val, (brdp->iobase + ECP_PCICONFR)); |
| return(ptr); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_ecppcireset(stlibrd_t *brdp) |
| { |
| outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR)); |
| udelay(10); |
| outb(0, (brdp->iobase + ECP_PCICONFR)); |
| udelay(500); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * The following routines act on ONboards. |
| */ |
| |
| static void stli_onbinit(stlibrd_t *brdp) |
| { |
| unsigned long memconf; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp); |
| #endif |
| |
| outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR)); |
| udelay(10); |
| outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR)); |
| mdelay(1000); |
| |
| memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT; |
| outb(memconf, (brdp->iobase + ONB_ATMEMAR)); |
| outb(0x1, brdp->iobase); |
| mdelay(1); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_onbenable(stlibrd_t *brdp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp); |
| #endif |
| outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_onbdisable(stlibrd_t *brdp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp); |
| #endif |
| outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line) |
| { |
| void *ptr; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp, |
| (int) offset); |
| #endif |
| |
| if (offset > brdp->memsize) { |
| printk(KERN_ERR "STALLION: shared memory pointer=%x out of " |
| "range at line=%d(%d), brd=%d\n", |
| (int) offset, line, __LINE__, brdp->brdnr); |
| ptr = NULL; |
| } else { |
| ptr = brdp->membase + (offset % ONB_ATPAGESIZE); |
| } |
| return(ptr); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_onbreset(stlibrd_t *brdp) |
| { |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR)); |
| udelay(10); |
| outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR)); |
| mdelay(1000); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * The following routines act on ONboard EISA. |
| */ |
| |
| static void stli_onbeinit(stlibrd_t *brdp) |
| { |
| unsigned long memconf; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp); |
| #endif |
| |
| outb(0x1, (brdp->iobase + ONB_EIBRDENAB)); |
| outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR)); |
| udelay(10); |
| outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR)); |
| mdelay(1000); |
| |
| memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL; |
| outb(memconf, (brdp->iobase + ONB_EIMEMARL)); |
| memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH; |
| outb(memconf, (brdp->iobase + ONB_EIMEMARH)); |
| outb(0x1, brdp->iobase); |
| mdelay(1); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_onbeenable(stlibrd_t *brdp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp); |
| #endif |
| outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_onbedisable(stlibrd_t *brdp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp); |
| #endif |
| outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR)); |
| } |
| |
| /*****************************************************************************/ |
| |
| static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line) |
| { |
| void *ptr; |
| unsigned char val; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n", |
| (int) brdp, (int) offset, line); |
| #endif |
| |
| if (offset > brdp->memsize) { |
| printk(KERN_ERR "STALLION: shared memory pointer=%x out of " |
| "range at line=%d(%d), brd=%d\n", |
| (int) offset, line, __LINE__, brdp->brdnr); |
| ptr = NULL; |
| val = 0; |
| } else { |
| ptr = brdp->membase + (offset % ONB_EIPAGESIZE); |
| if (offset < ONB_EIPAGESIZE) |
| val = ONB_EIENABLE; |
| else |
| val = ONB_EIENABLE | 0x40; |
| } |
| outb(val, (brdp->iobase + ONB_EICONFR)); |
| return(ptr); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_onbereset(stlibrd_t *brdp) |
| { |
| |
| #ifdef DEBUG |
| printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR)); |
| udelay(10); |
| outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR)); |
| mdelay(1000); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * The following routines act on Brumby boards. |
| */ |
| |
| static void stli_bbyinit(stlibrd_t *brdp) |
| { |
| |
| #ifdef DEBUG |
| printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp); |
| #endif |
| |
| outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR)); |
| udelay(10); |
| outb(0, (brdp->iobase + BBY_ATCONFR)); |
| mdelay(1000); |
| outb(0x1, brdp->iobase); |
| mdelay(1); |
| } |
| |
| /*****************************************************************************/ |
| |
| static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line) |
| { |
| void *ptr; |
| unsigned char val; |
| |
| #ifdef DEBUG |
| printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp, |
| (int) offset); |
| #endif |
| |
| if (offset > brdp->memsize) { |
| printk(KERN_ERR "STALLION: shared memory pointer=%x out of " |
| "range at line=%d(%d), brd=%d\n", |
| (int) offset, line, __LINE__, brdp->brdnr); |
| ptr = NULL; |
| val = 0; |
| } else { |
| ptr = brdp->membase + (offset % BBY_PAGESIZE); |
| val = (unsigned char) (offset / BBY_PAGESIZE); |
| } |
| outb(val, (brdp->iobase + BBY_ATCONFR)); |
| return(ptr); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_bbyreset(stlibrd_t *brdp) |
| { |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR)); |
| udelay(10); |
| outb(0, (brdp->iobase + BBY_ATCONFR)); |
| mdelay(1000); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * The following routines act on original old Stallion boards. |
| */ |
| |
| static void stli_stalinit(stlibrd_t *brdp) |
| { |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp); |
| #endif |
| |
| outb(0x1, brdp->iobase); |
| mdelay(1000); |
| } |
| |
| /*****************************************************************************/ |
| |
| static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line) |
| { |
| void *ptr; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp, |
| (int) offset); |
| #endif |
| |
| if (offset > brdp->memsize) { |
| printk(KERN_ERR "STALLION: shared memory pointer=%x out of " |
| "range at line=%d(%d), brd=%d\n", |
| (int) offset, line, __LINE__, brdp->brdnr); |
| ptr = NULL; |
| } else { |
| ptr = brdp->membase + (offset % STAL_PAGESIZE); |
| } |
| return(ptr); |
| } |
| |
| /*****************************************************************************/ |
| |
| static void stli_stalreset(stlibrd_t *brdp) |
| { |
| volatile unsigned long *vecp; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| vecp = (volatile unsigned long *) (brdp->membase + 0x30); |
| *vecp = 0xffff0000; |
| outb(0, brdp->iobase); |
| mdelay(1000); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Try to find an ECP board and initialize it. This handles only ECP |
| * board types. |
| */ |
| |
| static int stli_initecp(stlibrd_t *brdp) |
| { |
| cdkecpsig_t sig; |
| cdkecpsig_t *sigsp; |
| unsigned int status, nxtid; |
| char *name; |
| int panelnr, nrports; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| if (!request_region(brdp->iobase, brdp->iosize, "istallion")) |
| return -EIO; |
| |
| if ((brdp->iobase == 0) || (brdp->memaddr == 0)) |
| { |
| release_region(brdp->iobase, brdp->iosize); |
| return(-ENODEV); |
| } |
| |
| brdp->iosize = ECP_IOSIZE; |
| |
| /* |
| * Based on the specific board type setup the common vars to access |
| * and enable shared memory. Set all board specific information now |
| * as well. |
| */ |
| switch (brdp->brdtype) { |
| case BRD_ECP: |
| brdp->membase = (void *) brdp->memaddr; |
| brdp->memsize = ECP_MEMSIZE; |
| brdp->pagesize = ECP_ATPAGESIZE; |
| brdp->init = stli_ecpinit; |
| brdp->enable = stli_ecpenable; |
| brdp->reenable = stli_ecpenable; |
| brdp->disable = stli_ecpdisable; |
| brdp->getmemptr = stli_ecpgetmemptr; |
| brdp->intr = stli_ecpintr; |
| brdp->reset = stli_ecpreset; |
| name = "serial(EC8/64)"; |
| break; |
| |
| case BRD_ECPE: |
| brdp->membase = (void *) brdp->memaddr; |
| brdp->memsize = ECP_MEMSIZE; |
| brdp->pagesize = ECP_EIPAGESIZE; |
| brdp->init = stli_ecpeiinit; |
| brdp->enable = stli_ecpeienable; |
| brdp->reenable = stli_ecpeienable; |
| brdp->disable = stli_ecpeidisable; |
| brdp->getmemptr = stli_ecpeigetmemptr; |
| brdp->intr = stli_ecpintr; |
| brdp->reset = stli_ecpeireset; |
| name = "serial(EC8/64-EI)"; |
| break; |
| |
| case BRD_ECPMC: |
| brdp->membase = (void *) brdp->memaddr; |
| brdp->memsize = ECP_MEMSIZE; |
| brdp->pagesize = ECP_MCPAGESIZE; |
| brdp->init = NULL; |
| brdp->enable = stli_ecpmcenable; |
| brdp->reenable = stli_ecpmcenable; |
| brdp->disable = stli_ecpmcdisable; |
| brdp->getmemptr = stli_ecpmcgetmemptr; |
| brdp->intr = stli_ecpintr; |
| brdp->reset = stli_ecpmcreset; |
| name = "serial(EC8/64-MCA)"; |
| break; |
| |
| case BRD_ECPPCI: |
| brdp->membase = (void *) brdp->memaddr; |
| brdp->memsize = ECP_PCIMEMSIZE; |
| brdp->pagesize = ECP_PCIPAGESIZE; |
| brdp->init = stli_ecppciinit; |
| brdp->enable = NULL; |
| brdp->reenable = NULL; |
| brdp->disable = NULL; |
| brdp->getmemptr = stli_ecppcigetmemptr; |
| brdp->intr = stli_ecpintr; |
| brdp->reset = stli_ecppcireset; |
| name = "serial(EC/RA-PCI)"; |
| break; |
| |
| default: |
| release_region(brdp->iobase, brdp->iosize); |
| return(-EINVAL); |
| } |
| |
| /* |
| * The per-board operations structure is all set up, so now let's go |
| * and get the board operational. Firstly initialize board configuration |
| * registers. Set the memory mapping info so we can get at the boards |
| * shared memory. |
| */ |
| EBRDINIT(brdp); |
| |
| brdp->membase = ioremap(brdp->memaddr, brdp->memsize); |
| if (brdp->membase == (void *) NULL) |
| { |
| release_region(brdp->iobase, brdp->iosize); |
| return(-ENOMEM); |
| } |
| |
| /* |
| * Now that all specific code is set up, enable the shared memory and |
| * look for the a signature area that will tell us exactly what board |
| * this is, and what it is connected to it. |
| */ |
| EBRDENABLE(brdp); |
| sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR); |
| memcpy(&sig, sigsp, sizeof(cdkecpsig_t)); |
| EBRDDISABLE(brdp); |
| |
| #if 0 |
| printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n", |
| __FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0], |
| (int) sig.panelid[1], (int) sig.panelid[2], |
| (int) sig.panelid[3], (int) sig.panelid[4], |
| (int) sig.panelid[5], (int) sig.panelid[6], |
| (int) sig.panelid[7]); |
| #endif |
| |
| if (sig.magic != ECP_MAGIC) |
| { |
| release_region(brdp->iobase, brdp->iosize); |
| return(-ENODEV); |
| } |
| |
| /* |
| * Scan through the signature looking at the panels connected to the |
| * board. Calculate the total number of ports as we go. |
| */ |
| for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) { |
| status = sig.panelid[nxtid]; |
| if ((status & ECH_PNLIDMASK) != nxtid) |
| break; |
| |
| brdp->panelids[panelnr] = status; |
| nrports = (status & ECH_PNL16PORT) ? 16 : 8; |
| if ((nrports == 16) && ((status & ECH_PNLXPID) == 0)) |
| nxtid++; |
| brdp->panels[panelnr] = nrports; |
| brdp->nrports += nrports; |
| nxtid++; |
| brdp->nrpanels++; |
| } |
| |
| |
| brdp->state |= BST_FOUND; |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Try to find an ONboard, Brumby or Stallion board and initialize it. |
| * This handles only these board types. |
| */ |
| |
| static int stli_initonb(stlibrd_t *brdp) |
| { |
| cdkonbsig_t sig; |
| cdkonbsig_t *sigsp; |
| char *name; |
| int i; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| /* |
| * Do a basic sanity check on the IO and memory addresses. |
| */ |
| if ((brdp->iobase == 0) || (brdp->memaddr == 0)) |
| return(-ENODEV); |
| |
| brdp->iosize = ONB_IOSIZE; |
| |
| if (!request_region(brdp->iobase, brdp->iosize, "istallion")) |
| return -EIO; |
| |
| /* |
| * Based on the specific board type setup the common vars to access |
| * and enable shared memory. Set all board specific information now |
| * as well. |
| */ |
| switch (brdp->brdtype) { |
| case BRD_ONBOARD: |
| case BRD_ONBOARD32: |
| case BRD_ONBOARD2: |
| case BRD_ONBOARD2_32: |
| case BRD_ONBOARDRS: |
| brdp->membase = (void *) brdp->memaddr; |
| brdp->memsize = ONB_MEMSIZE; |
| brdp->pagesize = ONB_ATPAGESIZE; |
| brdp->init = stli_onbinit; |
| brdp->enable = stli_onbenable; |
| brdp->reenable = stli_onbenable; |
| brdp->disable = stli_onbdisable; |
| brdp->getmemptr = stli_onbgetmemptr; |
| brdp->intr = stli_ecpintr; |
| brdp->reset = stli_onbreset; |
| if (brdp->memaddr > 0x100000) |
| brdp->enabval = ONB_MEMENABHI; |
| else |
| brdp->enabval = ONB_MEMENABLO; |
| name = "serial(ONBoard)"; |
| break; |
| |
| case BRD_ONBOARDE: |
| brdp->membase = (void *) brdp->memaddr; |
| brdp->memsize = ONB_EIMEMSIZE; |
| brdp->pagesize = ONB_EIPAGESIZE; |
| brdp->init = stli_onbeinit; |
| brdp->enable = stli_onbeenable; |
| brdp->reenable = stli_onbeenable; |
| brdp->disable = stli_onbedisable; |
| brdp->getmemptr = stli_onbegetmemptr; |
| brdp->intr = stli_ecpintr; |
| brdp->reset = stli_onbereset; |
| name = "serial(ONBoard/E)"; |
| break; |
| |
| case BRD_BRUMBY4: |
| case BRD_BRUMBY8: |
| case BRD_BRUMBY16: |
| brdp->membase = (void *) brdp->memaddr; |
| brdp->memsize = BBY_MEMSIZE; |
| brdp->pagesize = BBY_PAGESIZE; |
| brdp->init = stli_bbyinit; |
| brdp->enable = NULL; |
| brdp->reenable = NULL; |
| brdp->disable = NULL; |
| brdp->getmemptr = stli_bbygetmemptr; |
| brdp->intr = stli_ecpintr; |
| brdp->reset = stli_bbyreset; |
| name = "serial(Brumby)"; |
| break; |
| |
| case BRD_STALLION: |
| brdp->membase = (void *) brdp->memaddr; |
| brdp->memsize = STAL_MEMSIZE; |
| brdp->pagesize = STAL_PAGESIZE; |
| brdp->init = stli_stalinit; |
| brdp->enable = NULL; |
| brdp->reenable = NULL; |
| brdp->disable = NULL; |
| brdp->getmemptr = stli_stalgetmemptr; |
| brdp->intr = stli_ecpintr; |
| brdp->reset = stli_stalreset; |
| name = "serial(Stallion)"; |
| break; |
| |
| default: |
| release_region(brdp->iobase, brdp->iosize); |
| return(-EINVAL); |
| } |
| |
| /* |
| * The per-board operations structure is all set up, so now let's go |
| * and get the board operational. Firstly initialize board configuration |
| * registers. Set the memory mapping info so we can get at the boards |
| * shared memory. |
| */ |
| EBRDINIT(brdp); |
| |
| brdp->membase = ioremap(brdp->memaddr, brdp->memsize); |
| if (brdp->membase == (void *) NULL) |
| { |
| release_region(brdp->iobase, brdp->iosize); |
| return(-ENOMEM); |
| } |
| |
| /* |
| * Now that all specific code is set up, enable the shared memory and |
| * look for the a signature area that will tell us exactly what board |
| * this is, and how many ports. |
| */ |
| EBRDENABLE(brdp); |
| sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR); |
| memcpy(&sig, sigsp, sizeof(cdkonbsig_t)); |
| EBRDDISABLE(brdp); |
| |
| #if 0 |
| printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n", |
| __FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2, |
| sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2); |
| #endif |
| |
| if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) || |
| (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3)) |
| { |
| release_region(brdp->iobase, brdp->iosize); |
| return(-ENODEV); |
| } |
| |
| /* |
| * Scan through the signature alive mask and calculate how many ports |
| * there are on this board. |
| */ |
| brdp->nrpanels = 1; |
| if (sig.amask1) { |
| brdp->nrports = 32; |
| } else { |
| for (i = 0; (i < 16); i++) { |
| if (((sig.amask0 << i) & 0x8000) == 0) |
| break; |
| } |
| brdp->nrports = i; |
| } |
| brdp->panels[0] = brdp->nrports; |
| |
| |
| brdp->state |= BST_FOUND; |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Start up a running board. This routine is only called after the |
| * code has been down loaded to the board and is operational. It will |
| * read in the memory map, and get the show on the road... |
| */ |
| |
| static int stli_startbrd(stlibrd_t *brdp) |
| { |
| volatile cdkhdr_t *hdrp; |
| volatile cdkmem_t *memp; |
| volatile cdkasy_t *ap; |
| unsigned long flags; |
| stliport_t *portp; |
| int portnr, nrdevs, i, rc; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| rc = 0; |
| |
| save_flags(flags); |
| cli(); |
| EBRDENABLE(brdp); |
| hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR); |
| nrdevs = hdrp->nrdevs; |
| |
| #if 0 |
| printk("%s(%d): CDK version %d.%d.%d --> " |
| "nrdevs=%d memp=%x hostp=%x slavep=%x\n", |
| __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification, |
| hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp, |
| (int) hdrp->slavep); |
| #endif |
| |
| if (nrdevs < (brdp->nrports + 1)) { |
| printk(KERN_ERR "STALLION: slave failed to allocate memory for " |
| "all devices, devices=%d\n", nrdevs); |
| brdp->nrports = nrdevs - 1; |
| } |
| brdp->nrdevs = nrdevs; |
| brdp->hostoffset = hdrp->hostp - CDK_CDKADDR; |
| brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR; |
| brdp->bitsize = (nrdevs + 7) / 8; |
| memp = (volatile cdkmem_t *) hdrp->memp; |
| if (((unsigned long) memp) > brdp->memsize) { |
| printk(KERN_ERR "STALLION: corrupted shared memory region?\n"); |
| rc = -EIO; |
| goto stli_donestartup; |
| } |
| memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp); |
| if (memp->dtype != TYP_ASYNCTRL) { |
| printk(KERN_ERR "STALLION: no slave control device found\n"); |
| goto stli_donestartup; |
| } |
| memp++; |
| |
| /* |
| * Cycle through memory allocation of each port. We are guaranteed to |
| * have all ports inside the first page of slave window, so no need to |
| * change pages while reading memory map. |
| */ |
| for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) { |
| if (memp->dtype != TYP_ASYNC) |
| break; |
| portp = brdp->ports[portnr]; |
| if (portp == (stliport_t *) NULL) |
| break; |
| portp->devnr = i; |
| portp->addr = memp->offset; |
| portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs)); |
| portp->portidx = (unsigned char) (i / 8); |
| portp->portbit = (unsigned char) (0x1 << (i % 8)); |
| } |
| |
| hdrp->slavereq = 0xff; |
| |
| /* |
| * For each port setup a local copy of the RX and TX buffer offsets |
| * and sizes. We do this separate from the above, because we need to |
| * move the shared memory page... |
| */ |
| for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) { |
| portp = brdp->ports[portnr]; |
| if (portp == (stliport_t *) NULL) |
| break; |
| if (portp->addr == 0) |
| break; |
| ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr); |
| if (ap != (volatile cdkasy_t *) NULL) { |
| portp->rxsize = ap->rxq.size; |
| portp->txsize = ap->txq.size; |
| portp->rxoffset = ap->rxq.offset; |
| portp->txoffset = ap->txq.offset; |
| } |
| } |
| |
| stli_donestartup: |
| EBRDDISABLE(brdp); |
| restore_flags(flags); |
| |
| if (rc == 0) |
| brdp->state |= BST_STARTED; |
| |
| if (! stli_timeron) { |
| stli_timeron++; |
| stli_timerlist.expires = STLI_TIMEOUT; |
| add_timer(&stli_timerlist); |
| } |
| |
| return(rc); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Probe and initialize the specified board. |
| */ |
| |
| static int __init stli_brdinit(stlibrd_t *brdp) |
| { |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| stli_brds[brdp->brdnr] = brdp; |
| |
| switch (brdp->brdtype) { |
| case BRD_ECP: |
| case BRD_ECPE: |
| case BRD_ECPMC: |
| case BRD_ECPPCI: |
| stli_initecp(brdp); |
| break; |
| case BRD_ONBOARD: |
| case BRD_ONBOARDE: |
| case BRD_ONBOARD2: |
| case BRD_ONBOARD32: |
| case BRD_ONBOARD2_32: |
| case BRD_ONBOARDRS: |
| case BRD_BRUMBY4: |
| case BRD_BRUMBY8: |
| case BRD_BRUMBY16: |
| case BRD_STALLION: |
| stli_initonb(brdp); |
| break; |
| case BRD_EASYIO: |
| case BRD_ECH: |
| case BRD_ECHMC: |
| case BRD_ECHPCI: |
| printk(KERN_ERR "STALLION: %s board type not supported in " |
| "this driver\n", stli_brdnames[brdp->brdtype]); |
| return(ENODEV); |
| default: |
| printk(KERN_ERR "STALLION: board=%d is unknown board " |
| "type=%d\n", brdp->brdnr, brdp->brdtype); |
| return(ENODEV); |
| } |
| |
| if ((brdp->state & BST_FOUND) == 0) { |
| printk(KERN_ERR "STALLION: %s board not found, board=%d " |
| "io=%x mem=%x\n", |
| stli_brdnames[brdp->brdtype], brdp->brdnr, |
| brdp->iobase, (int) brdp->memaddr); |
| return(ENODEV); |
| } |
| |
| stli_initports(brdp); |
| printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x " |
| "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype], |
| brdp->brdnr, brdp->iobase, (int) brdp->memaddr, |
| brdp->nrpanels, brdp->nrports); |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Probe around trying to find where the EISA boards shared memory |
| * might be. This is a bit if hack, but it is the best we can do. |
| */ |
| |
| static int stli_eisamemprobe(stlibrd_t *brdp) |
| { |
| cdkecpsig_t ecpsig, *ecpsigp; |
| cdkonbsig_t onbsig, *onbsigp; |
| int i, foundit; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp); |
| #endif |
| |
| /* |
| * First up we reset the board, to get it into a known state. There |
| * is only 2 board types here we need to worry about. Don;t use the |
| * standard board init routine here, it programs up the shared |
| * memory address, and we don't know it yet... |
| */ |
| if (brdp->brdtype == BRD_ECPE) { |
| outb(0x1, (brdp->iobase + ECP_EIBRDENAB)); |
| outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR)); |
| udelay(10); |
| outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR)); |
| udelay(500); |
| stli_ecpeienable(brdp); |
| } else if (brdp->brdtype == BRD_ONBOARDE) { |
| outb(0x1, (brdp->iobase + ONB_EIBRDENAB)); |
| outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR)); |
| udelay(10); |
| outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR)); |
| mdelay(100); |
| outb(0x1, brdp->iobase); |
| mdelay(1); |
| stli_onbeenable(brdp); |
| } else { |
| return(-ENODEV); |
| } |
| |
| foundit = 0; |
| brdp->memsize = ECP_MEMSIZE; |
| |
| /* |
| * Board shared memory is enabled, so now we have a poke around and |
| * see if we can find it. |
| */ |
| for (i = 0; (i < stli_eisamempsize); i++) { |
| brdp->memaddr = stli_eisamemprobeaddrs[i]; |
| brdp->membase = (void *) brdp->memaddr; |
| brdp->membase = ioremap(brdp->memaddr, brdp->memsize); |
| if (brdp->membase == (void *) NULL) |
| continue; |
| |
| if (brdp->brdtype == BRD_ECPE) { |
| ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp, |
| CDK_SIGADDR, __LINE__); |
| memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t)); |
| if (ecpsig.magic == ECP_MAGIC) |
| foundit = 1; |
| } else { |
| onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp, |
| CDK_SIGADDR, __LINE__); |
| memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t)); |
| if ((onbsig.magic0 == ONB_MAGIC0) && |
| (onbsig.magic1 == ONB_MAGIC1) && |
| (onbsig.magic2 == ONB_MAGIC2) && |
| (onbsig.magic3 == ONB_MAGIC3)) |
| foundit = 1; |
| } |
| |
| iounmap(brdp->membase); |
| if (foundit) |
| break; |
| } |
| |
| /* |
| * Regardless of whether we found the shared memory or not we must |
| * disable the region. After that return success or failure. |
| */ |
| if (brdp->brdtype == BRD_ECPE) |
| stli_ecpeidisable(brdp); |
| else |
| stli_onbedisable(brdp); |
| |
| if (! foundit) { |
| brdp->memaddr = 0; |
| brdp->membase = NULL; |
| printk(KERN_ERR "STALLION: failed to probe shared memory " |
| "region for %s in EISA slot=%d\n", |
| stli_brdnames[brdp->brdtype], (brdp->iobase >> 12)); |
| return(-ENODEV); |
| } |
| return(0); |
| } |
| |
| static int stli_getbrdnr(void) |
| { |
| int i; |
| |
| for (i = 0; i < STL_MAXBRDS; i++) { |
| if (!stli_brds[i]) { |
| if (i >= stli_nrbrds) |
| stli_nrbrds = i + 1; |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Probe around and try to find any EISA boards in system. The biggest |
| * problem here is finding out what memory address is associated with |
| * an EISA board after it is found. The registers of the ECPE and |
| * ONboardE are not readable - so we can't read them from there. We |
| * don't have access to the EISA CMOS (or EISA BIOS) so we don't |
| * actually have any way to find out the real value. The best we can |
| * do is go probing around in the usual places hoping we can find it. |
| */ |
| |
| static int stli_findeisabrds(void) |
| { |
| stlibrd_t *brdp; |
| unsigned int iobase, eid; |
| int i; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_findeisabrds()\n"); |
| #endif |
| |
| /* |
| * Firstly check if this is an EISA system. Do this by probing for |
| * the system board EISA ID. If this is not an EISA system then |
| * don't bother going any further! |
| */ |
| outb(0xff, 0xc80); |
| if (inb(0xc80) == 0xff) |
| return(0); |
| |
| /* |
| * Looks like an EISA system, so go searching for EISA boards. |
| */ |
| for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) { |
| outb(0xff, (iobase + 0xc80)); |
| eid = inb(iobase + 0xc80); |
| eid |= inb(iobase + 0xc81) << 8; |
| if (eid != STL_EISAID) |
| continue; |
| |
| /* |
| * We have found a board. Need to check if this board was |
| * statically configured already (just in case!). |
| */ |
| for (i = 0; (i < STL_MAXBRDS); i++) { |
| brdp = stli_brds[i]; |
| if (brdp == (stlibrd_t *) NULL) |
| continue; |
| if (brdp->iobase == iobase) |
| break; |
| } |
| if (i < STL_MAXBRDS) |
| continue; |
| |
| /* |
| * We have found a Stallion board and it is not configured already. |
| * Allocate a board structure and initialize it. |
| */ |
| if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL) |
| return(-ENOMEM); |
| if ((brdp->brdnr = stli_getbrdnr()) < 0) |
| return(-ENOMEM); |
| eid = inb(iobase + 0xc82); |
| if (eid == ECP_EISAID) |
| brdp->brdtype = BRD_ECPE; |
| else if (eid == ONB_EISAID) |
| brdp->brdtype = BRD_ONBOARDE; |
| else |
| brdp->brdtype = BRD_UNKNOWN; |
| brdp->iobase = iobase; |
| outb(0x1, (iobase + 0xc84)); |
| if (stli_eisamemprobe(brdp)) |
| outb(0, (iobase + 0xc84)); |
| stli_brdinit(brdp); |
| } |
| |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Find the next available board number that is free. |
| */ |
| |
| /*****************************************************************************/ |
| |
| #ifdef CONFIG_PCI |
| |
| /* |
| * We have a Stallion board. Allocate a board structure and |
| * initialize it. Read its IO and MEMORY resources from PCI |
| * configuration space. |
| */ |
| |
| static int stli_initpcibrd(int brdtype, struct pci_dev *devp) |
| { |
| stlibrd_t *brdp; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", |
| brdtype, dev->bus->number, dev->devfn); |
| #endif |
| |
| if (pci_enable_device(devp)) |
| return(-EIO); |
| if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL) |
| return(-ENOMEM); |
| if ((brdp->brdnr = stli_getbrdnr()) < 0) { |
| printk(KERN_INFO "STALLION: too many boards found, " |
| "maximum supported %d\n", STL_MAXBRDS); |
| return(0); |
| } |
| brdp->brdtype = brdtype; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__, |
| pci_resource_start(devp, 0), |
| pci_resource_start(devp, 1), |
| pci_resource_start(devp, 2), |
| pci_resource_start(devp, 3)); |
| #endif |
| |
| /* |
| * We have all resources from the board, so lets setup the actual |
| * board structure now. |
| */ |
| brdp->iobase = pci_resource_start(devp, 3); |
| brdp->memaddr = pci_resource_start(devp, 2); |
| stli_brdinit(brdp); |
| |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Find all Stallion PCI boards that might be installed. Initialize each |
| * one as it is found. |
| */ |
| |
| static int stli_findpcibrds(void) |
| { |
| struct pci_dev *dev = NULL; |
| int rc; |
| |
| #ifdef DEBUG |
| printk("stli_findpcibrds()\n"); |
| #endif |
| |
| while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION, |
| PCI_DEVICE_ID_ECRA, dev))) { |
| if ((rc = stli_initpcibrd(BRD_ECPPCI, dev))) |
| return(rc); |
| } |
| |
| return(0); |
| } |
| |
| #endif |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Allocate a new board structure. Fill out the basic info in it. |
| */ |
| |
| static stlibrd_t *stli_allocbrd(void) |
| { |
| stlibrd_t *brdp; |
| |
| brdp = kzalloc(sizeof(stlibrd_t), GFP_KERNEL); |
| if (!brdp) { |
| printk(KERN_ERR "STALLION: failed to allocate memory " |
| "(size=%d)\n", sizeof(stlibrd_t)); |
| return NULL; |
| } |
| |
| brdp->magic = STLI_BOARDMAGIC; |
| return(brdp); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Scan through all the boards in the configuration and see what we |
| * can find. |
| */ |
| |
| static int stli_initbrds(void) |
| { |
| stlibrd_t *brdp, *nxtbrdp; |
| stlconf_t *confp; |
| int i, j; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_initbrds()\n"); |
| #endif |
| |
| if (stli_nrbrds > STL_MAXBRDS) { |
| printk(KERN_INFO "STALLION: too many boards in configuration " |
| "table, truncating to %d\n", STL_MAXBRDS); |
| stli_nrbrds = STL_MAXBRDS; |
| } |
| |
| /* |
| * Firstly scan the list of static boards configured. Allocate |
| * resources and initialize the boards as found. If this is a |
| * module then let the module args override static configuration. |
| */ |
| for (i = 0; (i < stli_nrbrds); i++) { |
| confp = &stli_brdconf[i]; |
| #ifdef MODULE |
| stli_parsebrd(confp, stli_brdsp[i]); |
| #endif |
| if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL) |
| return(-ENOMEM); |
| brdp->brdnr = i; |
| brdp->brdtype = confp->brdtype; |
| brdp->iobase = confp->ioaddr1; |
| brdp->memaddr = confp->memaddr; |
| stli_brdinit(brdp); |
| } |
| |
| /* |
| * Static configuration table done, so now use dynamic methods to |
| * see if any more boards should be configured. |
| */ |
| #ifdef MODULE |
| stli_argbrds(); |
| #endif |
| if (STLI_EISAPROBE) |
| stli_findeisabrds(); |
| #ifdef CONFIG_PCI |
| stli_findpcibrds(); |
| #endif |
| |
| /* |
| * All found boards are initialized. Now for a little optimization, if |
| * no boards are sharing the "shared memory" regions then we can just |
| * leave them all enabled. This is in fact the usual case. |
| */ |
| stli_shared = 0; |
| if (stli_nrbrds > 1) { |
| for (i = 0; (i < stli_nrbrds); i++) { |
| brdp = stli_brds[i]; |
| if (brdp == (stlibrd_t *) NULL) |
| continue; |
| for (j = i + 1; (j < stli_nrbrds); j++) { |
| nxtbrdp = stli_brds[j]; |
| if (nxtbrdp == (stlibrd_t *) NULL) |
| continue; |
| if ((brdp->membase >= nxtbrdp->membase) && |
| (brdp->membase <= (nxtbrdp->membase + |
| nxtbrdp->memsize - 1))) { |
| stli_shared++; |
| break; |
| } |
| } |
| } |
| } |
| |
| if (stli_shared == 0) { |
| for (i = 0; (i < stli_nrbrds); i++) { |
| brdp = stli_brds[i]; |
| if (brdp == (stlibrd_t *) NULL) |
| continue; |
| if (brdp->state & BST_FOUND) { |
| EBRDENABLE(brdp); |
| brdp->enable = NULL; |
| brdp->disable = NULL; |
| } |
| } |
| } |
| |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Code to handle an "staliomem" read operation. This device is the |
| * contents of the board shared memory. It is used for down loading |
| * the slave image (and debugging :-) |
| */ |
| |
| static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp) |
| { |
| unsigned long flags; |
| void *memptr; |
| stlibrd_t *brdp; |
| int brdnr, size, n; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n", |
| (int) fp, (int) buf, count, (int) offp); |
| #endif |
| |
| brdnr = iminor(fp->f_dentry->d_inode); |
| if (brdnr >= stli_nrbrds) |
| return(-ENODEV); |
| brdp = stli_brds[brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(-ENODEV); |
| if (brdp->state == 0) |
| return(-ENODEV); |
| if (fp->f_pos >= brdp->memsize) |
| return(0); |
| |
| size = MIN(count, (brdp->memsize - fp->f_pos)); |
| |
| save_flags(flags); |
| cli(); |
| EBRDENABLE(brdp); |
| while (size > 0) { |
| memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos); |
| n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize))); |
| if (copy_to_user(buf, memptr, n)) { |
| count = -EFAULT; |
| goto out; |
| } |
| fp->f_pos += n; |
| buf += n; |
| size -= n; |
| } |
| out: |
| EBRDDISABLE(brdp); |
| restore_flags(flags); |
| |
| return(count); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Code to handle an "staliomem" write operation. This device is the |
| * contents of the board shared memory. It is used for down loading |
| * the slave image (and debugging :-) |
| */ |
| |
| static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp) |
| { |
| unsigned long flags; |
| void *memptr; |
| stlibrd_t *brdp; |
| char __user *chbuf; |
| int brdnr, size, n; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n", |
| (int) fp, (int) buf, count, (int) offp); |
| #endif |
| |
| brdnr = iminor(fp->f_dentry->d_inode); |
| if (brdnr >= stli_nrbrds) |
| return(-ENODEV); |
| brdp = stli_brds[brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(-ENODEV); |
| if (brdp->state == 0) |
| return(-ENODEV); |
| if (fp->f_pos >= brdp->memsize) |
| return(0); |
| |
| chbuf = (char __user *) buf; |
| size = MIN(count, (brdp->memsize - fp->f_pos)); |
| |
| save_flags(flags); |
| cli(); |
| EBRDENABLE(brdp); |
| while (size > 0) { |
| memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos); |
| n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize))); |
| if (copy_from_user(memptr, chbuf, n)) { |
| count = -EFAULT; |
| goto out; |
| } |
| fp->f_pos += n; |
| chbuf += n; |
| size -= n; |
| } |
| out: |
| EBRDDISABLE(brdp); |
| restore_flags(flags); |
| |
| return(count); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Return the board stats structure to user app. |
| */ |
| |
| static int stli_getbrdstats(combrd_t __user *bp) |
| { |
| stlibrd_t *brdp; |
| int i; |
| |
| if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t))) |
| return -EFAULT; |
| if (stli_brdstats.brd >= STL_MAXBRDS) |
| return(-ENODEV); |
| brdp = stli_brds[stli_brdstats.brd]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(-ENODEV); |
| |
| memset(&stli_brdstats, 0, sizeof(combrd_t)); |
| stli_brdstats.brd = brdp->brdnr; |
| stli_brdstats.type = brdp->brdtype; |
| stli_brdstats.hwid = 0; |
| stli_brdstats.state = brdp->state; |
| stli_brdstats.ioaddr = brdp->iobase; |
| stli_brdstats.memaddr = brdp->memaddr; |
| stli_brdstats.nrpanels = brdp->nrpanels; |
| stli_brdstats.nrports = brdp->nrports; |
| for (i = 0; (i < brdp->nrpanels); i++) { |
| stli_brdstats.panels[i].panel = i; |
| stli_brdstats.panels[i].hwid = brdp->panelids[i]; |
| stli_brdstats.panels[i].nrports = brdp->panels[i]; |
| } |
| |
| if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t))) |
| return -EFAULT; |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Resolve the referenced port number into a port struct pointer. |
| */ |
| |
| static stliport_t *stli_getport(int brdnr, int panelnr, int portnr) |
| { |
| stlibrd_t *brdp; |
| int i; |
| |
| if ((brdnr < 0) || (brdnr >= STL_MAXBRDS)) |
| return((stliport_t *) NULL); |
| brdp = stli_brds[brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return((stliport_t *) NULL); |
| for (i = 0; (i < panelnr); i++) |
| portnr += brdp->panels[i]; |
| if ((portnr < 0) || (portnr >= brdp->nrports)) |
| return((stliport_t *) NULL); |
| return(brdp->ports[portnr]); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Return the port stats structure to user app. A NULL port struct |
| * pointer passed in means that we need to find out from the app |
| * what port to get stats for (used through board control device). |
| */ |
| |
| static int stli_portcmdstats(stliport_t *portp) |
| { |
| unsigned long flags; |
| stlibrd_t *brdp; |
| int rc; |
| |
| memset(&stli_comstats, 0, sizeof(comstats_t)); |
| |
| if (portp == (stliport_t *) NULL) |
| return(-ENODEV); |
| brdp = stli_brds[portp->brdnr]; |
| if (brdp == (stlibrd_t *) NULL) |
| return(-ENODEV); |
| |
| if (brdp->state & BST_STARTED) { |
| if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS, |
| &stli_cdkstats, sizeof(asystats_t), 1)) < 0) |
| return(rc); |
| } else { |
| memset(&stli_cdkstats, 0, sizeof(asystats_t)); |
| } |
| |
| stli_comstats.brd = portp->brdnr; |
| stli_comstats.panel = portp->panelnr; |
| stli_comstats.port = portp->portnr; |
| stli_comstats.state = portp->state; |
| stli_comstats.flags = portp->flags; |
| |
| save_flags(flags); |
| cli(); |
| if (portp->tty != (struct tty_struct *) NULL) { |
| if (portp->tty->driver_data == portp) { |
| stli_comstats.ttystate = portp->tty->flags; |
| stli_comstats.rxbuffered = -1 /*portp->tty->flip.count*/; |
| if (portp->tty->termios != (struct termios *) NULL) { |
| stli_comstats.cflags = portp->tty->termios->c_cflag; |
| stli_comstats.iflags = portp->tty->termios->c_iflag; |
| stli_comstats.oflags = portp->tty->termios->c_oflag; |
| stli_comstats.lflags = portp->tty->termios->c_lflag; |
| } |
| } |
| } |
| restore_flags(flags); |
| |
| stli_comstats.txtotal = stli_cdkstats.txchars; |
| stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover; |
| stli_comstats.txbuffered = stli_cdkstats.txringq; |
| stli_comstats.rxbuffered += stli_cdkstats.rxringq; |
| stli_comstats.rxoverrun = stli_cdkstats.overruns; |
| stli_comstats.rxparity = stli_cdkstats.parity; |
| stli_comstats.rxframing = stli_cdkstats.framing; |
| stli_comstats.rxlost = stli_cdkstats.ringover; |
| stli_comstats.rxbreaks = stli_cdkstats.rxbreaks; |
| stli_comstats.txbreaks = stli_cdkstats.txbreaks; |
| stli_comstats.txxon = stli_cdkstats.txstart; |
| stli_comstats.txxoff = stli_cdkstats.txstop; |
| stli_comstats.rxxon = stli_cdkstats.rxstart; |
| stli_comstats.rxxoff = stli_cdkstats.rxstop; |
| stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2; |
| stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff; |
| stli_comstats.modem = stli_cdkstats.dcdcnt; |
| stli_comstats.hwid = stli_cdkstats.hwid; |
| stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals); |
| |
| return(0); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Return the port stats structure to user app. A NULL port struct |
| * pointer passed in means that we need to find out from the app |
| * what port to get stats for (used through board control device). |
| */ |
| |
| static int stli_getportstats(stliport_t *portp, comstats_t __user *cp) |
| { |
| stlibrd_t *brdp; |
| int rc; |
| |
| if (!portp) { |
| if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t))) |
| return -EFAULT; |
| portp = stli_getport(stli_comstats.brd, stli_comstats.panel, |
| stli_comstats.port); |
| if (!portp) |
| return -ENODEV; |
| } |
| |
| brdp = stli_brds[portp->brdnr]; |
| if (!brdp) |
| return -ENODEV; |
| |
| if ((rc = stli_portcmdstats(portp)) < 0) |
| return rc; |
| |
| return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ? |
| -EFAULT : 0; |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Clear the port stats structure. We also return it zeroed out... |
| */ |
| |
| static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp) |
| { |
| stlibrd_t *brdp; |
| int rc; |
| |
| if (!portp) { |
| if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t))) |
| return -EFAULT; |
| portp = stli_getport(stli_comstats.brd, stli_comstats.panel, |
| stli_comstats.port); |
| if (!portp) |
| return -ENODEV; |
| } |
| |
| brdp = stli_brds[portp->brdnr]; |
| if (!brdp) |
| return -ENODEV; |
| |
| if (brdp->state & BST_STARTED) { |
| if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0) |
| return rc; |
| } |
| |
| memset(&stli_comstats, 0, sizeof(comstats_t)); |
| stli_comstats.brd = portp->brdnr; |
| stli_comstats.panel = portp->panelnr; |
| stli_comstats.port = portp->portnr; |
| |
| if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Return the entire driver ports structure to a user app. |
| */ |
| |
| static int stli_getportstruct(stliport_t __user *arg) |
| { |
| stliport_t *portp; |
| |
| if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t))) |
| return -EFAULT; |
| portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr, |
| stli_dummyport.portnr); |
| if (!portp) |
| return -ENODEV; |
| if (copy_to_user(arg, portp, sizeof(stliport_t))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Return the entire driver board structure to a user app. |
| */ |
| |
| static int stli_getbrdstruct(stlibrd_t __user *arg) |
| { |
| stlibrd_t *brdp; |
| |
| if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t))) |
| return -EFAULT; |
| if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS)) |
| return -ENODEV; |
| brdp = stli_brds[stli_dummybrd.brdnr]; |
| if (!brdp) |
| return -ENODEV; |
| if (copy_to_user(arg, brdp, sizeof(stlibrd_t))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * The "staliomem" device is also required to do some special operations on |
| * the board. We need to be able to send an interrupt to the board, |
| * reset it, and start/stop it. |
| */ |
| |
| static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg) |
| { |
| stlibrd_t *brdp; |
| int brdnr, rc, done; |
| void __user *argp = (void __user *)arg; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n", |
| (int) ip, (int) fp, cmd, (int) arg); |
| #endif |
| |
| /* |
| * First up handle the board independent ioctls. |
| */ |
| done = 0; |
| rc = 0; |
| |
| switch (cmd) { |
| case COM_GETPORTSTATS: |
| rc = stli_getportstats(NULL, argp); |
| done++; |
| break; |
| case COM_CLRPORTSTATS: |
| rc = stli_clrportstats(NULL, argp); |
| done++; |
| break; |
| case COM_GETBRDSTATS: |
| rc = stli_getbrdstats(argp); |
| done++; |
| break; |
| case COM_READPORT: |
| rc = stli_getportstruct(argp); |
| done++; |
| break; |
| case COM_READBOARD: |
| rc = stli_getbrdstruct(argp); |
| done++; |
| break; |
| } |
| |
| if (done) |
| return(rc); |
| |
| /* |
| * Now handle the board specific ioctls. These all depend on the |
| * minor number of the device they were called from. |
| */ |
| brdnr = iminor(ip); |
| if (brdnr >= STL_MAXBRDS) |
| return(-ENODEV); |
| brdp = stli_brds[brdnr]; |
| if (!brdp) |
| return(-ENODEV); |
| if (brdp->state == 0) |
| return(-ENODEV); |
| |
| switch (cmd) { |
| case STL_BINTR: |
| EBRDINTR(brdp); |
| break; |
| case STL_BSTART: |
| rc = stli_startbrd(brdp); |
| break; |
| case STL_BSTOP: |
| brdp->state &= ~BST_STARTED; |
| break; |
| case STL_BRESET: |
| brdp->state &= ~BST_STARTED; |
| EBRDRESET(brdp); |
| if (stli_shared == 0) { |
| if (brdp->reenable != NULL) |
| (* brdp->reenable)(brdp); |
| } |
| break; |
| default: |
| rc = -ENOIOCTLCMD; |
| break; |
| } |
| |
| return(rc); |
| } |
| |
| static struct tty_operations stli_ops = { |
| .open = stli_open, |
| .close = stli_close, |
| .write = stli_write, |
| .put_char = stli_putchar, |
| .flush_chars = stli_flushchars, |
| .write_room = stli_writeroom, |
| .chars_in_buffer = stli_charsinbuffer, |
| .ioctl = stli_ioctl, |
| .set_termios = stli_settermios, |
| .throttle = stli_throttle, |
| .unthrottle = stli_unthrottle, |
| .stop = stli_stop, |
| .start = stli_start, |
| .hangup = stli_hangup, |
| .flush_buffer = stli_flushbuffer, |
| .break_ctl = stli_breakctl, |
| .wait_until_sent = stli_waituntilsent, |
| .send_xchar = stli_sendxchar, |
| .read_proc = stli_readproc, |
| .tiocmget = stli_tiocmget, |
| .tiocmset = stli_tiocmset, |
| }; |
| |
| /*****************************************************************************/ |
| |
| int __init stli_init(void) |
| { |
| int i; |
| printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion); |
| |
| stli_initbrds(); |
| |
| stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS); |
| if (!stli_serial) |
| return -ENOMEM; |
| |
| /* |
| * Allocate a temporary write buffer. |
| */ |
| stli_tmpwritebuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL); |
| if (!stli_tmpwritebuf) |
| printk(KERN_ERR "STALLION: failed to allocate memory " |
| "(size=%d)\n", STLI_TXBUFSIZE); |
| stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL); |
| if (!stli_txcookbuf) |
| printk(KERN_ERR "STALLION: failed to allocate memory " |
| "(size=%d)\n", STLI_TXBUFSIZE); |
| |
| /* |
| * Set up a character driver for the shared memory region. We need this |
| * to down load the slave code image. Also it is a useful debugging tool. |
| */ |
| if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem)) |
| printk(KERN_ERR "STALLION: failed to register serial memory " |
| "device\n"); |
| |
| istallion_class = class_create(THIS_MODULE, "staliomem"); |
| for (i = 0; i < 4; i++) |
| class_device_create(istallion_class, NULL, |
| MKDEV(STL_SIOMEMMAJOR, i), |
| NULL, "staliomem%d", i); |
| |
| /* |
| * Set up the tty driver structure and register us as a driver. |
| */ |
| stli_serial->owner = THIS_MODULE; |
| stli_serial->driver_name = stli_drvname; |
| stli_serial->name = stli_serialname; |
| stli_serial->major = STL_SERIALMAJOR; |
| stli_serial->minor_start = 0; |
| stli_serial->type = TTY_DRIVER_TYPE_SERIAL; |
| stli_serial->subtype = SERIAL_TYPE_NORMAL; |
| stli_serial->init_termios = stli_deftermios; |
| stli_serial->flags = TTY_DRIVER_REAL_RAW; |
| tty_set_operations(stli_serial, &stli_ops); |
| |
| if (tty_register_driver(stli_serial)) { |
| put_tty_driver(stli_serial); |
| printk(KERN_ERR "STALLION: failed to register serial driver\n"); |
| return -EBUSY; |
| } |
| return(0); |
| } |
| |
| /*****************************************************************************/ |