| /* |
| * Squashfs - a compressed read only filesystem for Linux |
| * |
| * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
| * Phillip Lougher <phillip@squashfs.org.uk> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2, |
| * or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| * |
| * file.c |
| */ |
| |
| /* |
| * This file contains code for handling regular files. A regular file |
| * consists of a sequence of contiguous compressed blocks, and/or a |
| * compressed fragment block (tail-end packed block). The compressed size |
| * of each datablock is stored in a block list contained within the |
| * file inode (itself stored in one or more compressed metadata blocks). |
| * |
| * To speed up access to datablocks when reading 'large' files (256 Mbytes or |
| * larger), the code implements an index cache that caches the mapping from |
| * block index to datablock location on disk. |
| * |
| * The index cache allows Squashfs to handle large files (up to 1.75 TiB) while |
| * retaining a simple and space-efficient block list on disk. The cache |
| * is split into slots, caching up to eight 224 GiB files (128 KiB blocks). |
| * Larger files use multiple slots, with 1.75 TiB files using all 8 slots. |
| * The index cache is designed to be memory efficient, and by default uses |
| * 16 KiB. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/vfs.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/pagemap.h> |
| #include <linux/mutex.h> |
| |
| #include "squashfs_fs.h" |
| #include "squashfs_fs_sb.h" |
| #include "squashfs_fs_i.h" |
| #include "squashfs.h" |
| |
| /* |
| * Locate cache slot in range [offset, index] for specified inode. If |
| * there's more than one return the slot closest to index. |
| */ |
| static struct meta_index *locate_meta_index(struct inode *inode, int offset, |
| int index) |
| { |
| struct meta_index *meta = NULL; |
| struct squashfs_sb_info *msblk = inode->i_sb->s_fs_info; |
| int i; |
| |
| mutex_lock(&msblk->meta_index_mutex); |
| |
| TRACE("locate_meta_index: index %d, offset %d\n", index, offset); |
| |
| if (msblk->meta_index == NULL) |
| goto not_allocated; |
| |
| for (i = 0; i < SQUASHFS_META_SLOTS; i++) { |
| if (msblk->meta_index[i].inode_number == inode->i_ino && |
| msblk->meta_index[i].offset >= offset && |
| msblk->meta_index[i].offset <= index && |
| msblk->meta_index[i].locked == 0) { |
| TRACE("locate_meta_index: entry %d, offset %d\n", i, |
| msblk->meta_index[i].offset); |
| meta = &msblk->meta_index[i]; |
| offset = meta->offset; |
| } |
| } |
| |
| if (meta) |
| meta->locked = 1; |
| |
| not_allocated: |
| mutex_unlock(&msblk->meta_index_mutex); |
| |
| return meta; |
| } |
| |
| |
| /* |
| * Find and initialise an empty cache slot for index offset. |
| */ |
| static struct meta_index *empty_meta_index(struct inode *inode, int offset, |
| int skip) |
| { |
| struct squashfs_sb_info *msblk = inode->i_sb->s_fs_info; |
| struct meta_index *meta = NULL; |
| int i; |
| |
| mutex_lock(&msblk->meta_index_mutex); |
| |
| TRACE("empty_meta_index: offset %d, skip %d\n", offset, skip); |
| |
| if (msblk->meta_index == NULL) { |
| /* |
| * First time cache index has been used, allocate and |
| * initialise. The cache index could be allocated at |
| * mount time but doing it here means it is allocated only |
| * if a 'large' file is read. |
| */ |
| msblk->meta_index = kcalloc(SQUASHFS_META_SLOTS, |
| sizeof(*(msblk->meta_index)), GFP_KERNEL); |
| if (msblk->meta_index == NULL) { |
| ERROR("Failed to allocate meta_index\n"); |
| goto failed; |
| } |
| for (i = 0; i < SQUASHFS_META_SLOTS; i++) { |
| msblk->meta_index[i].inode_number = 0; |
| msblk->meta_index[i].locked = 0; |
| } |
| msblk->next_meta_index = 0; |
| } |
| |
| for (i = SQUASHFS_META_SLOTS; i && |
| msblk->meta_index[msblk->next_meta_index].locked; i--) |
| msblk->next_meta_index = (msblk->next_meta_index + 1) % |
| SQUASHFS_META_SLOTS; |
| |
| if (i == 0) { |
| TRACE("empty_meta_index: failed!\n"); |
| goto failed; |
| } |
| |
| TRACE("empty_meta_index: returned meta entry %d, %p\n", |
| msblk->next_meta_index, |
| &msblk->meta_index[msblk->next_meta_index]); |
| |
| meta = &msblk->meta_index[msblk->next_meta_index]; |
| msblk->next_meta_index = (msblk->next_meta_index + 1) % |
| SQUASHFS_META_SLOTS; |
| |
| meta->inode_number = inode->i_ino; |
| meta->offset = offset; |
| meta->skip = skip; |
| meta->entries = 0; |
| meta->locked = 1; |
| |
| failed: |
| mutex_unlock(&msblk->meta_index_mutex); |
| return meta; |
| } |
| |
| |
| static void release_meta_index(struct inode *inode, struct meta_index *meta) |
| { |
| struct squashfs_sb_info *msblk = inode->i_sb->s_fs_info; |
| mutex_lock(&msblk->meta_index_mutex); |
| meta->locked = 0; |
| mutex_unlock(&msblk->meta_index_mutex); |
| } |
| |
| |
| /* |
| * Read the next n blocks from the block list, starting from |
| * metadata block <start_block, offset>. |
| */ |
| static long long read_indexes(struct super_block *sb, int n, |
| u64 *start_block, int *offset) |
| { |
| int err, i; |
| long long block = 0; |
| __le32 *blist = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL); |
| |
| if (blist == NULL) { |
| ERROR("read_indexes: Failed to allocate block_list\n"); |
| return -ENOMEM; |
| } |
| |
| while (n) { |
| int blocks = min_t(int, n, PAGE_CACHE_SIZE >> 2); |
| |
| err = squashfs_read_metadata(sb, blist, start_block, |
| offset, blocks << 2); |
| if (err < 0) { |
| ERROR("read_indexes: reading block [%llx:%x]\n", |
| *start_block, *offset); |
| goto failure; |
| } |
| |
| for (i = 0; i < blocks; i++) { |
| int size = squashfs_block_size(blist[i]); |
| if (size < 0) { |
| err = size; |
| goto failure; |
| } |
| block += SQUASHFS_COMPRESSED_SIZE_BLOCK(size); |
| } |
| n -= blocks; |
| } |
| |
| kfree(blist); |
| return block; |
| |
| failure: |
| kfree(blist); |
| return err; |
| } |
| |
| |
| /* |
| * Each cache index slot has SQUASHFS_META_ENTRIES, each of which |
| * can cache one index -> datablock/blocklist-block mapping. We wish |
| * to distribute these over the length of the file, entry[0] maps index x, |
| * entry[1] maps index x + skip, entry[2] maps index x + 2 * skip, and so on. |
| * The larger the file, the greater the skip factor. The skip factor is |
| * limited to the size of the metadata cache (SQUASHFS_CACHED_BLKS) to ensure |
| * the number of metadata blocks that need to be read fits into the cache. |
| * If the skip factor is limited in this way then the file will use multiple |
| * slots. |
| */ |
| static inline int calculate_skip(int blocks) |
| { |
| int skip = blocks / ((SQUASHFS_META_ENTRIES + 1) |
| * SQUASHFS_META_INDEXES); |
| return min(SQUASHFS_CACHED_BLKS - 1, skip + 1); |
| } |
| |
| |
| /* |
| * Search and grow the index cache for the specified inode, returning the |
| * on-disk locations of the datablock and block list metadata block |
| * <index_block, index_offset> for index (scaled to nearest cache index). |
| */ |
| static int fill_meta_index(struct inode *inode, int index, |
| u64 *index_block, int *index_offset, u64 *data_block) |
| { |
| struct squashfs_sb_info *msblk = inode->i_sb->s_fs_info; |
| int skip = calculate_skip(i_size_read(inode) >> msblk->block_log); |
| int offset = 0; |
| struct meta_index *meta; |
| struct meta_entry *meta_entry; |
| u64 cur_index_block = squashfs_i(inode)->block_list_start; |
| int cur_offset = squashfs_i(inode)->offset; |
| u64 cur_data_block = squashfs_i(inode)->start; |
| int err, i; |
| |
| /* |
| * Scale index to cache index (cache slot entry) |
| */ |
| index /= SQUASHFS_META_INDEXES * skip; |
| |
| while (offset < index) { |
| meta = locate_meta_index(inode, offset + 1, index); |
| |
| if (meta == NULL) { |
| meta = empty_meta_index(inode, offset + 1, skip); |
| if (meta == NULL) |
| goto all_done; |
| } else { |
| offset = index < meta->offset + meta->entries ? index : |
| meta->offset + meta->entries - 1; |
| meta_entry = &meta->meta_entry[offset - meta->offset]; |
| cur_index_block = meta_entry->index_block + |
| msblk->inode_table; |
| cur_offset = meta_entry->offset; |
| cur_data_block = meta_entry->data_block; |
| TRACE("get_meta_index: offset %d, meta->offset %d, " |
| "meta->entries %d\n", offset, meta->offset, |
| meta->entries); |
| TRACE("get_meta_index: index_block 0x%llx, offset 0x%x" |
| " data_block 0x%llx\n", cur_index_block, |
| cur_offset, cur_data_block); |
| } |
| |
| /* |
| * If necessary grow cache slot by reading block list. Cache |
| * slot is extended up to index or to the end of the slot, in |
| * which case further slots will be used. |
| */ |
| for (i = meta->offset + meta->entries; i <= index && |
| i < meta->offset + SQUASHFS_META_ENTRIES; i++) { |
| int blocks = skip * SQUASHFS_META_INDEXES; |
| long long res = read_indexes(inode->i_sb, blocks, |
| &cur_index_block, &cur_offset); |
| |
| if (res < 0) { |
| if (meta->entries == 0) |
| /* |
| * Don't leave an empty slot on read |
| * error allocated to this inode... |
| */ |
| meta->inode_number = 0; |
| err = res; |
| goto failed; |
| } |
| |
| cur_data_block += res; |
| meta_entry = &meta->meta_entry[i - meta->offset]; |
| meta_entry->index_block = cur_index_block - |
| msblk->inode_table; |
| meta_entry->offset = cur_offset; |
| meta_entry->data_block = cur_data_block; |
| meta->entries++; |
| offset++; |
| } |
| |
| TRACE("get_meta_index: meta->offset %d, meta->entries %d\n", |
| meta->offset, meta->entries); |
| |
| release_meta_index(inode, meta); |
| } |
| |
| all_done: |
| *index_block = cur_index_block; |
| *index_offset = cur_offset; |
| *data_block = cur_data_block; |
| |
| /* |
| * Scale cache index (cache slot entry) to index |
| */ |
| return offset * SQUASHFS_META_INDEXES * skip; |
| |
| failed: |
| release_meta_index(inode, meta); |
| return err; |
| } |
| |
| |
| /* |
| * Get the on-disk location and compressed size of the datablock |
| * specified by index. Fill_meta_index() does most of the work. |
| */ |
| static int read_blocklist(struct inode *inode, int index, u64 *block) |
| { |
| u64 start; |
| long long blks; |
| int offset; |
| __le32 size; |
| int res = fill_meta_index(inode, index, &start, &offset, block); |
| |
| TRACE("read_blocklist: res %d, index %d, start 0x%llx, offset" |
| " 0x%x, block 0x%llx\n", res, index, start, offset, |
| *block); |
| |
| if (res < 0) |
| return res; |
| |
| /* |
| * res contains the index of the mapping returned by fill_meta_index(), |
| * this will likely be less than the desired index (because the |
| * meta_index cache works at a higher granularity). Read any |
| * extra block indexes needed. |
| */ |
| if (res < index) { |
| blks = read_indexes(inode->i_sb, index - res, &start, &offset); |
| if (blks < 0) |
| return (int) blks; |
| *block += blks; |
| } |
| |
| /* |
| * Read length of block specified by index. |
| */ |
| res = squashfs_read_metadata(inode->i_sb, &size, &start, &offset, |
| sizeof(size)); |
| if (res < 0) |
| return res; |
| return squashfs_block_size(size); |
| } |
| |
| /* Copy data into page cache */ |
| void squashfs_copy_cache(struct page *page, struct squashfs_cache_entry *buffer, |
| int bytes, int offset) |
| { |
| struct inode *inode = page->mapping->host; |
| struct squashfs_sb_info *msblk = inode->i_sb->s_fs_info; |
| void *pageaddr; |
| int i, mask = (1 << (msblk->block_log - PAGE_CACHE_SHIFT)) - 1; |
| int start_index = page->index & ~mask, end_index = start_index | mask; |
| |
| /* |
| * Loop copying datablock into pages. As the datablock likely covers |
| * many PAGE_CACHE_SIZE pages (default block size is 128 KiB) explicitly |
| * grab the pages from the page cache, except for the page that we've |
| * been called to fill. |
| */ |
| for (i = start_index; i <= end_index && bytes > 0; i++, |
| bytes -= PAGE_CACHE_SIZE, offset += PAGE_CACHE_SIZE) { |
| struct page *push_page; |
| int avail = buffer ? min_t(int, bytes, PAGE_CACHE_SIZE) : 0; |
| |
| TRACE("bytes %d, i %d, available_bytes %d\n", bytes, i, avail); |
| |
| push_page = (i == page->index) ? page : |
| grab_cache_page_nowait(page->mapping, i); |
| |
| if (!push_page) |
| continue; |
| |
| if (PageUptodate(push_page)) |
| goto skip_page; |
| |
| pageaddr = kmap_atomic(push_page); |
| squashfs_copy_data(pageaddr, buffer, offset, avail); |
| memset(pageaddr + avail, 0, PAGE_CACHE_SIZE - avail); |
| kunmap_atomic(pageaddr); |
| flush_dcache_page(push_page); |
| SetPageUptodate(push_page); |
| skip_page: |
| unlock_page(push_page); |
| if (i != page->index) |
| page_cache_release(push_page); |
| } |
| } |
| |
| /* Read datablock stored packed inside a fragment (tail-end packed block) */ |
| static int squashfs_readpage_fragment(struct page *page) |
| { |
| struct inode *inode = page->mapping->host; |
| struct squashfs_sb_info *msblk = inode->i_sb->s_fs_info; |
| struct squashfs_cache_entry *buffer = squashfs_get_fragment(inode->i_sb, |
| squashfs_i(inode)->fragment_block, |
| squashfs_i(inode)->fragment_size); |
| int res = buffer->error; |
| |
| if (res) |
| ERROR("Unable to read page, block %llx, size %x\n", |
| squashfs_i(inode)->fragment_block, |
| squashfs_i(inode)->fragment_size); |
| else |
| squashfs_copy_cache(page, buffer, i_size_read(inode) & |
| (msblk->block_size - 1), |
| squashfs_i(inode)->fragment_offset); |
| |
| squashfs_cache_put(buffer); |
| return res; |
| } |
| |
| static int squashfs_readpage_sparse(struct page *page, int index, int file_end) |
| { |
| struct inode *inode = page->mapping->host; |
| struct squashfs_sb_info *msblk = inode->i_sb->s_fs_info; |
| int bytes = index == file_end ? |
| (i_size_read(inode) & (msblk->block_size - 1)) : |
| msblk->block_size; |
| |
| squashfs_copy_cache(page, NULL, bytes, 0); |
| return 0; |
| } |
| |
| static int squashfs_readpage(struct file *file, struct page *page) |
| { |
| struct inode *inode = page->mapping->host; |
| struct squashfs_sb_info *msblk = inode->i_sb->s_fs_info; |
| int index = page->index >> (msblk->block_log - PAGE_CACHE_SHIFT); |
| int file_end = i_size_read(inode) >> msblk->block_log; |
| int res; |
| void *pageaddr; |
| |
| TRACE("Entered squashfs_readpage, page index %lx, start block %llx\n", |
| page->index, squashfs_i(inode)->start); |
| |
| if (page->index >= ((i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> |
| PAGE_CACHE_SHIFT)) |
| goto out; |
| |
| if (index < file_end || squashfs_i(inode)->fragment_block == |
| SQUASHFS_INVALID_BLK) { |
| u64 block = 0; |
| int bsize = read_blocklist(inode, index, &block); |
| if (bsize < 0) |
| goto error_out; |
| |
| if (bsize == 0) |
| res = squashfs_readpage_sparse(page, index, file_end); |
| else |
| res = squashfs_readpage_block(page, block, bsize); |
| } else |
| res = squashfs_readpage_fragment(page); |
| |
| if (!res) |
| return 0; |
| |
| error_out: |
| SetPageError(page); |
| out: |
| pageaddr = kmap_atomic(page); |
| memset(pageaddr, 0, PAGE_CACHE_SIZE); |
| kunmap_atomic(pageaddr); |
| flush_dcache_page(page); |
| if (!PageError(page)) |
| SetPageUptodate(page); |
| unlock_page(page); |
| |
| return 0; |
| } |
| |
| |
| const struct address_space_operations squashfs_aops = { |
| .readpage = squashfs_readpage |
| }; |