| /* |
| * Main bcache entry point - handle a read or a write request and decide what to |
| * do with it; the make_request functions are called by the block layer. |
| * |
| * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> |
| * Copyright 2012 Google, Inc. |
| */ |
| |
| #include "bcache.h" |
| #include "btree.h" |
| #include "debug.h" |
| #include "request.h" |
| #include "writeback.h" |
| |
| #include <linux/module.h> |
| #include <linux/hash.h> |
| #include <linux/random.h> |
| #include <linux/backing-dev.h> |
| |
| #include <trace/events/bcache.h> |
| |
| #define CUTOFF_CACHE_ADD 95 |
| #define CUTOFF_CACHE_READA 90 |
| |
| struct kmem_cache *bch_search_cache; |
| |
| static void bch_data_insert_start(struct closure *); |
| |
| static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) |
| { |
| return BDEV_CACHE_MODE(&dc->sb); |
| } |
| |
| static bool verify(struct cached_dev *dc, struct bio *bio) |
| { |
| return dc->verify; |
| } |
| |
| static void bio_csum(struct bio *bio, struct bkey *k) |
| { |
| struct bio_vec bv; |
| struct bvec_iter iter; |
| uint64_t csum = 0; |
| |
| bio_for_each_segment(bv, bio, iter) { |
| void *d = kmap(bv.bv_page) + bv.bv_offset; |
| csum = bch_crc64_update(csum, d, bv.bv_len); |
| kunmap(bv.bv_page); |
| } |
| |
| k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); |
| } |
| |
| /* Insert data into cache */ |
| |
| static void bch_data_insert_keys(struct closure *cl) |
| { |
| struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| atomic_t *journal_ref = NULL; |
| struct bkey *replace_key = op->replace ? &op->replace_key : NULL; |
| int ret; |
| |
| /* |
| * If we're looping, might already be waiting on |
| * another journal write - can't wait on more than one journal write at |
| * a time |
| * |
| * XXX: this looks wrong |
| */ |
| #if 0 |
| while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) |
| closure_sync(&s->cl); |
| #endif |
| |
| if (!op->replace) |
| journal_ref = bch_journal(op->c, &op->insert_keys, |
| op->flush_journal ? cl : NULL); |
| |
| ret = bch_btree_insert(op->c, &op->insert_keys, |
| journal_ref, replace_key); |
| if (ret == -ESRCH) { |
| op->replace_collision = true; |
| } else if (ret) { |
| op->error = -ENOMEM; |
| op->insert_data_done = true; |
| } |
| |
| if (journal_ref) |
| atomic_dec_bug(journal_ref); |
| |
| if (!op->insert_data_done) { |
| continue_at(cl, bch_data_insert_start, op->wq); |
| return; |
| } |
| |
| bch_keylist_free(&op->insert_keys); |
| closure_return(cl); |
| } |
| |
| static int bch_keylist_realloc(struct keylist *l, unsigned u64s, |
| struct cache_set *c) |
| { |
| size_t oldsize = bch_keylist_nkeys(l); |
| size_t newsize = oldsize + u64s; |
| |
| /* |
| * The journalling code doesn't handle the case where the keys to insert |
| * is bigger than an empty write: If we just return -ENOMEM here, |
| * bio_insert() and bio_invalidate() will insert the keys created so far |
| * and finish the rest when the keylist is empty. |
| */ |
| if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) |
| return -ENOMEM; |
| |
| return __bch_keylist_realloc(l, u64s); |
| } |
| |
| static void bch_data_invalidate(struct closure *cl) |
| { |
| struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| struct bio *bio = op->bio; |
| |
| pr_debug("invalidating %i sectors from %llu", |
| bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); |
| |
| while (bio_sectors(bio)) { |
| unsigned sectors = min(bio_sectors(bio), |
| 1U << (KEY_SIZE_BITS - 1)); |
| |
| if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) |
| goto out; |
| |
| bio->bi_iter.bi_sector += sectors; |
| bio->bi_iter.bi_size -= sectors << 9; |
| |
| bch_keylist_add(&op->insert_keys, |
| &KEY(op->inode, bio->bi_iter.bi_sector, sectors)); |
| } |
| |
| op->insert_data_done = true; |
| bio_put(bio); |
| out: |
| continue_at(cl, bch_data_insert_keys, op->wq); |
| } |
| |
| static void bch_data_insert_error(struct closure *cl) |
| { |
| struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| |
| /* |
| * Our data write just errored, which means we've got a bunch of keys to |
| * insert that point to data that wasn't succesfully written. |
| * |
| * We don't have to insert those keys but we still have to invalidate |
| * that region of the cache - so, if we just strip off all the pointers |
| * from the keys we'll accomplish just that. |
| */ |
| |
| struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; |
| |
| while (src != op->insert_keys.top) { |
| struct bkey *n = bkey_next(src); |
| |
| SET_KEY_PTRS(src, 0); |
| memmove(dst, src, bkey_bytes(src)); |
| |
| dst = bkey_next(dst); |
| src = n; |
| } |
| |
| op->insert_keys.top = dst; |
| |
| bch_data_insert_keys(cl); |
| } |
| |
| static void bch_data_insert_endio(struct bio *bio) |
| { |
| struct closure *cl = bio->bi_private; |
| struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| |
| if (bio->bi_error) { |
| /* TODO: We could try to recover from this. */ |
| if (op->writeback) |
| op->error = bio->bi_error; |
| else if (!op->replace) |
| set_closure_fn(cl, bch_data_insert_error, op->wq); |
| else |
| set_closure_fn(cl, NULL, NULL); |
| } |
| |
| bch_bbio_endio(op->c, bio, bio->bi_error, "writing data to cache"); |
| } |
| |
| static void bch_data_insert_start(struct closure *cl) |
| { |
| struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| struct bio *bio = op->bio, *n; |
| |
| if (op->bypass) |
| return bch_data_invalidate(cl); |
| |
| if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) |
| wake_up_gc(op->c); |
| |
| /* |
| * Journal writes are marked REQ_FLUSH; if the original write was a |
| * flush, it'll wait on the journal write. |
| */ |
| bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA); |
| |
| do { |
| unsigned i; |
| struct bkey *k; |
| struct bio_set *split = op->c->bio_split; |
| |
| /* 1 for the device pointer and 1 for the chksum */ |
| if (bch_keylist_realloc(&op->insert_keys, |
| 3 + (op->csum ? 1 : 0), |
| op->c)) { |
| continue_at(cl, bch_data_insert_keys, op->wq); |
| return; |
| } |
| |
| k = op->insert_keys.top; |
| bkey_init(k); |
| SET_KEY_INODE(k, op->inode); |
| SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); |
| |
| if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), |
| op->write_point, op->write_prio, |
| op->writeback)) |
| goto err; |
| |
| n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); |
| |
| n->bi_end_io = bch_data_insert_endio; |
| n->bi_private = cl; |
| |
| if (op->writeback) { |
| SET_KEY_DIRTY(k, true); |
| |
| for (i = 0; i < KEY_PTRS(k); i++) |
| SET_GC_MARK(PTR_BUCKET(op->c, k, i), |
| GC_MARK_DIRTY); |
| } |
| |
| SET_KEY_CSUM(k, op->csum); |
| if (KEY_CSUM(k)) |
| bio_csum(n, k); |
| |
| trace_bcache_cache_insert(k); |
| bch_keylist_push(&op->insert_keys); |
| |
| n->bi_rw |= REQ_WRITE; |
| bch_submit_bbio(n, op->c, k, 0); |
| } while (n != bio); |
| |
| op->insert_data_done = true; |
| continue_at(cl, bch_data_insert_keys, op->wq); |
| return; |
| err: |
| /* bch_alloc_sectors() blocks if s->writeback = true */ |
| BUG_ON(op->writeback); |
| |
| /* |
| * But if it's not a writeback write we'd rather just bail out if |
| * there aren't any buckets ready to write to - it might take awhile and |
| * we might be starving btree writes for gc or something. |
| */ |
| |
| if (!op->replace) { |
| /* |
| * Writethrough write: We can't complete the write until we've |
| * updated the index. But we don't want to delay the write while |
| * we wait for buckets to be freed up, so just invalidate the |
| * rest of the write. |
| */ |
| op->bypass = true; |
| return bch_data_invalidate(cl); |
| } else { |
| /* |
| * From a cache miss, we can just insert the keys for the data |
| * we have written or bail out if we didn't do anything. |
| */ |
| op->insert_data_done = true; |
| bio_put(bio); |
| |
| if (!bch_keylist_empty(&op->insert_keys)) |
| continue_at(cl, bch_data_insert_keys, op->wq); |
| else |
| closure_return(cl); |
| } |
| } |
| |
| /** |
| * bch_data_insert - stick some data in the cache |
| * |
| * This is the starting point for any data to end up in a cache device; it could |
| * be from a normal write, or a writeback write, or a write to a flash only |
| * volume - it's also used by the moving garbage collector to compact data in |
| * mostly empty buckets. |
| * |
| * It first writes the data to the cache, creating a list of keys to be inserted |
| * (if the data had to be fragmented there will be multiple keys); after the |
| * data is written it calls bch_journal, and after the keys have been added to |
| * the next journal write they're inserted into the btree. |
| * |
| * It inserts the data in s->cache_bio; bi_sector is used for the key offset, |
| * and op->inode is used for the key inode. |
| * |
| * If s->bypass is true, instead of inserting the data it invalidates the |
| * region of the cache represented by s->cache_bio and op->inode. |
| */ |
| void bch_data_insert(struct closure *cl) |
| { |
| struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| |
| trace_bcache_write(op->c, op->inode, op->bio, |
| op->writeback, op->bypass); |
| |
| bch_keylist_init(&op->insert_keys); |
| bio_get(op->bio); |
| bch_data_insert_start(cl); |
| } |
| |
| /* Congested? */ |
| |
| unsigned bch_get_congested(struct cache_set *c) |
| { |
| int i; |
| long rand; |
| |
| if (!c->congested_read_threshold_us && |
| !c->congested_write_threshold_us) |
| return 0; |
| |
| i = (local_clock_us() - c->congested_last_us) / 1024; |
| if (i < 0) |
| return 0; |
| |
| i += atomic_read(&c->congested); |
| if (i >= 0) |
| return 0; |
| |
| i += CONGESTED_MAX; |
| |
| if (i > 0) |
| i = fract_exp_two(i, 6); |
| |
| rand = get_random_int(); |
| i -= bitmap_weight(&rand, BITS_PER_LONG); |
| |
| return i > 0 ? i : 1; |
| } |
| |
| static void add_sequential(struct task_struct *t) |
| { |
| ewma_add(t->sequential_io_avg, |
| t->sequential_io, 8, 0); |
| |
| t->sequential_io = 0; |
| } |
| |
| static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) |
| { |
| return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; |
| } |
| |
| static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) |
| { |
| struct cache_set *c = dc->disk.c; |
| unsigned mode = cache_mode(dc, bio); |
| unsigned sectors, congested = bch_get_congested(c); |
| struct task_struct *task = current; |
| struct io *i; |
| |
| if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || |
| c->gc_stats.in_use > CUTOFF_CACHE_ADD || |
| (bio->bi_rw & REQ_DISCARD)) |
| goto skip; |
| |
| if (mode == CACHE_MODE_NONE || |
| (mode == CACHE_MODE_WRITEAROUND && |
| (bio->bi_rw & REQ_WRITE))) |
| goto skip; |
| |
| if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || |
| bio_sectors(bio) & (c->sb.block_size - 1)) { |
| pr_debug("skipping unaligned io"); |
| goto skip; |
| } |
| |
| if (bypass_torture_test(dc)) { |
| if ((get_random_int() & 3) == 3) |
| goto skip; |
| else |
| goto rescale; |
| } |
| |
| if (!congested && !dc->sequential_cutoff) |
| goto rescale; |
| |
| if (!congested && |
| mode == CACHE_MODE_WRITEBACK && |
| (bio->bi_rw & REQ_WRITE) && |
| (bio->bi_rw & REQ_SYNC)) |
| goto rescale; |
| |
| spin_lock(&dc->io_lock); |
| |
| hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) |
| if (i->last == bio->bi_iter.bi_sector && |
| time_before(jiffies, i->jiffies)) |
| goto found; |
| |
| i = list_first_entry(&dc->io_lru, struct io, lru); |
| |
| add_sequential(task); |
| i->sequential = 0; |
| found: |
| if (i->sequential + bio->bi_iter.bi_size > i->sequential) |
| i->sequential += bio->bi_iter.bi_size; |
| |
| i->last = bio_end_sector(bio); |
| i->jiffies = jiffies + msecs_to_jiffies(5000); |
| task->sequential_io = i->sequential; |
| |
| hlist_del(&i->hash); |
| hlist_add_head(&i->hash, iohash(dc, i->last)); |
| list_move_tail(&i->lru, &dc->io_lru); |
| |
| spin_unlock(&dc->io_lock); |
| |
| sectors = max(task->sequential_io, |
| task->sequential_io_avg) >> 9; |
| |
| if (dc->sequential_cutoff && |
| sectors >= dc->sequential_cutoff >> 9) { |
| trace_bcache_bypass_sequential(bio); |
| goto skip; |
| } |
| |
| if (congested && sectors >= congested) { |
| trace_bcache_bypass_congested(bio); |
| goto skip; |
| } |
| |
| rescale: |
| bch_rescale_priorities(c, bio_sectors(bio)); |
| return false; |
| skip: |
| bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); |
| return true; |
| } |
| |
| /* Cache lookup */ |
| |
| struct search { |
| /* Stack frame for bio_complete */ |
| struct closure cl; |
| |
| struct bbio bio; |
| struct bio *orig_bio; |
| struct bio *cache_miss; |
| struct bcache_device *d; |
| |
| unsigned insert_bio_sectors; |
| unsigned recoverable:1; |
| unsigned write:1; |
| unsigned read_dirty_data:1; |
| unsigned cache_missed:1; |
| |
| unsigned long start_time; |
| |
| struct btree_op op; |
| struct data_insert_op iop; |
| }; |
| |
| static void bch_cache_read_endio(struct bio *bio) |
| { |
| struct bbio *b = container_of(bio, struct bbio, bio); |
| struct closure *cl = bio->bi_private; |
| struct search *s = container_of(cl, struct search, cl); |
| |
| /* |
| * If the bucket was reused while our bio was in flight, we might have |
| * read the wrong data. Set s->error but not error so it doesn't get |
| * counted against the cache device, but we'll still reread the data |
| * from the backing device. |
| */ |
| |
| if (bio->bi_error) |
| s->iop.error = bio->bi_error; |
| else if (!KEY_DIRTY(&b->key) && |
| ptr_stale(s->iop.c, &b->key, 0)) { |
| atomic_long_inc(&s->iop.c->cache_read_races); |
| s->iop.error = -EINTR; |
| } |
| |
| bch_bbio_endio(s->iop.c, bio, bio->bi_error, "reading from cache"); |
| } |
| |
| /* |
| * Read from a single key, handling the initial cache miss if the key starts in |
| * the middle of the bio |
| */ |
| static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) |
| { |
| struct search *s = container_of(op, struct search, op); |
| struct bio *n, *bio = &s->bio.bio; |
| struct bkey *bio_key; |
| unsigned ptr; |
| |
| if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) |
| return MAP_CONTINUE; |
| |
| if (KEY_INODE(k) != s->iop.inode || |
| KEY_START(k) > bio->bi_iter.bi_sector) { |
| unsigned bio_sectors = bio_sectors(bio); |
| unsigned sectors = KEY_INODE(k) == s->iop.inode |
| ? min_t(uint64_t, INT_MAX, |
| KEY_START(k) - bio->bi_iter.bi_sector) |
| : INT_MAX; |
| |
| int ret = s->d->cache_miss(b, s, bio, sectors); |
| if (ret != MAP_CONTINUE) |
| return ret; |
| |
| /* if this was a complete miss we shouldn't get here */ |
| BUG_ON(bio_sectors <= sectors); |
| } |
| |
| if (!KEY_SIZE(k)) |
| return MAP_CONTINUE; |
| |
| /* XXX: figure out best pointer - for multiple cache devices */ |
| ptr = 0; |
| |
| PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; |
| |
| if (KEY_DIRTY(k)) |
| s->read_dirty_data = true; |
| |
| n = bio_next_split(bio, min_t(uint64_t, INT_MAX, |
| KEY_OFFSET(k) - bio->bi_iter.bi_sector), |
| GFP_NOIO, s->d->bio_split); |
| |
| bio_key = &container_of(n, struct bbio, bio)->key; |
| bch_bkey_copy_single_ptr(bio_key, k, ptr); |
| |
| bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); |
| bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); |
| |
| n->bi_end_io = bch_cache_read_endio; |
| n->bi_private = &s->cl; |
| |
| /* |
| * The bucket we're reading from might be reused while our bio |
| * is in flight, and we could then end up reading the wrong |
| * data. |
| * |
| * We guard against this by checking (in cache_read_endio()) if |
| * the pointer is stale again; if so, we treat it as an error |
| * and reread from the backing device (but we don't pass that |
| * error up anywhere). |
| */ |
| |
| __bch_submit_bbio(n, b->c); |
| return n == bio ? MAP_DONE : MAP_CONTINUE; |
| } |
| |
| static void cache_lookup(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, iop.cl); |
| struct bio *bio = &s->bio.bio; |
| int ret; |
| |
| bch_btree_op_init(&s->op, -1); |
| |
| ret = bch_btree_map_keys(&s->op, s->iop.c, |
| &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), |
| cache_lookup_fn, MAP_END_KEY); |
| if (ret == -EAGAIN) { |
| continue_at(cl, cache_lookup, bcache_wq); |
| return; |
| } |
| |
| closure_return(cl); |
| } |
| |
| /* Common code for the make_request functions */ |
| |
| static void request_endio(struct bio *bio) |
| { |
| struct closure *cl = bio->bi_private; |
| |
| if (bio->bi_error) { |
| struct search *s = container_of(cl, struct search, cl); |
| s->iop.error = bio->bi_error; |
| /* Only cache read errors are recoverable */ |
| s->recoverable = false; |
| } |
| |
| bio_put(bio); |
| closure_put(cl); |
| } |
| |
| static void bio_complete(struct search *s) |
| { |
| if (s->orig_bio) { |
| generic_end_io_acct(bio_data_dir(s->orig_bio), |
| &s->d->disk->part0, s->start_time); |
| |
| trace_bcache_request_end(s->d, s->orig_bio); |
| s->orig_bio->bi_error = s->iop.error; |
| bio_endio(s->orig_bio); |
| s->orig_bio = NULL; |
| } |
| } |
| |
| static void do_bio_hook(struct search *s, struct bio *orig_bio) |
| { |
| struct bio *bio = &s->bio.bio; |
| |
| bio_init(bio); |
| __bio_clone_fast(bio, orig_bio); |
| bio->bi_end_io = request_endio; |
| bio->bi_private = &s->cl; |
| |
| bio_cnt_set(bio, 3); |
| } |
| |
| static void search_free(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| |
| if (s->iop.bio) |
| bio_put(s->iop.bio); |
| |
| bio_complete(s); |
| closure_debug_destroy(cl); |
| mempool_free(s, s->d->c->search); |
| } |
| |
| static inline struct search *search_alloc(struct bio *bio, |
| struct bcache_device *d) |
| { |
| struct search *s; |
| |
| s = mempool_alloc(d->c->search, GFP_NOIO); |
| |
| closure_init(&s->cl, NULL); |
| do_bio_hook(s, bio); |
| |
| s->orig_bio = bio; |
| s->cache_miss = NULL; |
| s->cache_missed = 0; |
| s->d = d; |
| s->recoverable = 1; |
| s->write = (bio->bi_rw & REQ_WRITE) != 0; |
| s->read_dirty_data = 0; |
| s->start_time = jiffies; |
| |
| s->iop.c = d->c; |
| s->iop.bio = NULL; |
| s->iop.inode = d->id; |
| s->iop.write_point = hash_long((unsigned long) current, 16); |
| s->iop.write_prio = 0; |
| s->iop.error = 0; |
| s->iop.flags = 0; |
| s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0; |
| s->iop.wq = bcache_wq; |
| |
| return s; |
| } |
| |
| /* Cached devices */ |
| |
| static void cached_dev_bio_complete(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| |
| search_free(cl); |
| cached_dev_put(dc); |
| } |
| |
| /* Process reads */ |
| |
| static void cached_dev_cache_miss_done(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| |
| if (s->iop.replace_collision) |
| bch_mark_cache_miss_collision(s->iop.c, s->d); |
| |
| if (s->iop.bio) { |
| int i; |
| struct bio_vec *bv; |
| |
| bio_for_each_segment_all(bv, s->iop.bio, i) |
| __free_page(bv->bv_page); |
| } |
| |
| cached_dev_bio_complete(cl); |
| } |
| |
| static void cached_dev_read_error(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct bio *bio = &s->bio.bio; |
| |
| /* |
| * If read request hit dirty data (s->read_dirty_data is true), |
| * then recovery a failed read request from cached device may |
| * get a stale data back. So read failure recovery is only |
| * permitted when read request hit clean data in cache device, |
| * or when cache read race happened. |
| */ |
| if (s->recoverable && !s->read_dirty_data) { |
| /* Retry from the backing device: */ |
| trace_bcache_read_retry(s->orig_bio); |
| |
| s->iop.error = 0; |
| do_bio_hook(s, s->orig_bio); |
| |
| /* XXX: invalidate cache */ |
| |
| closure_bio_submit(bio, cl); |
| } |
| |
| continue_at(cl, cached_dev_cache_miss_done, NULL); |
| } |
| |
| static void cached_dev_read_done(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| |
| /* |
| * We had a cache miss; cache_bio now contains data ready to be inserted |
| * into the cache. |
| * |
| * First, we copy the data we just read from cache_bio's bounce buffers |
| * to the buffers the original bio pointed to: |
| */ |
| |
| if (s->iop.bio) { |
| bio_reset(s->iop.bio); |
| s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector; |
| s->iop.bio->bi_bdev = s->cache_miss->bi_bdev; |
| s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; |
| bch_bio_map(s->iop.bio, NULL); |
| |
| bio_copy_data(s->cache_miss, s->iop.bio); |
| |
| bio_put(s->cache_miss); |
| s->cache_miss = NULL; |
| } |
| |
| if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data) |
| bch_data_verify(dc, s->orig_bio); |
| |
| bio_complete(s); |
| |
| if (s->iop.bio && |
| !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { |
| BUG_ON(!s->iop.replace); |
| closure_call(&s->iop.cl, bch_data_insert, NULL, cl); |
| } |
| |
| continue_at(cl, cached_dev_cache_miss_done, NULL); |
| } |
| |
| static void cached_dev_read_done_bh(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| |
| bch_mark_cache_accounting(s->iop.c, s->d, |
| !s->cache_missed, s->iop.bypass); |
| trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass); |
| |
| if (s->iop.error) |
| continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); |
| else if (s->iop.bio || verify(dc, &s->bio.bio)) |
| continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); |
| else |
| continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); |
| } |
| |
| static int cached_dev_cache_miss(struct btree *b, struct search *s, |
| struct bio *bio, unsigned sectors) |
| { |
| int ret = MAP_CONTINUE; |
| unsigned reada = 0; |
| struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| struct bio *miss, *cache_bio; |
| |
| s->cache_missed = 1; |
| |
| if (s->cache_miss || s->iop.bypass) { |
| miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); |
| ret = miss == bio ? MAP_DONE : MAP_CONTINUE; |
| goto out_submit; |
| } |
| |
| if (!(bio->bi_rw & REQ_RAHEAD) && |
| !(bio->bi_rw & REQ_META) && |
| s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) |
| reada = min_t(sector_t, dc->readahead >> 9, |
| bdev_sectors(bio->bi_bdev) - bio_end_sector(bio)); |
| |
| s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); |
| |
| s->iop.replace_key = KEY(s->iop.inode, |
| bio->bi_iter.bi_sector + s->insert_bio_sectors, |
| s->insert_bio_sectors); |
| |
| ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); |
| if (ret) |
| return ret; |
| |
| s->iop.replace = true; |
| |
| miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); |
| |
| /* btree_search_recurse()'s btree iterator is no good anymore */ |
| ret = miss == bio ? MAP_DONE : -EINTR; |
| |
| cache_bio = bio_alloc_bioset(GFP_NOWAIT, |
| DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), |
| dc->disk.bio_split); |
| if (!cache_bio) |
| goto out_submit; |
| |
| cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; |
| cache_bio->bi_bdev = miss->bi_bdev; |
| cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; |
| |
| cache_bio->bi_end_io = request_endio; |
| cache_bio->bi_private = &s->cl; |
| |
| bch_bio_map(cache_bio, NULL); |
| if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) |
| goto out_put; |
| |
| if (reada) |
| bch_mark_cache_readahead(s->iop.c, s->d); |
| |
| s->cache_miss = miss; |
| s->iop.bio = cache_bio; |
| bio_get(cache_bio); |
| closure_bio_submit(cache_bio, &s->cl); |
| |
| return ret; |
| out_put: |
| bio_put(cache_bio); |
| out_submit: |
| miss->bi_end_io = request_endio; |
| miss->bi_private = &s->cl; |
| closure_bio_submit(miss, &s->cl); |
| return ret; |
| } |
| |
| static void cached_dev_read(struct cached_dev *dc, struct search *s) |
| { |
| struct closure *cl = &s->cl; |
| |
| closure_call(&s->iop.cl, cache_lookup, NULL, cl); |
| continue_at(cl, cached_dev_read_done_bh, NULL); |
| } |
| |
| /* Process writes */ |
| |
| static void cached_dev_write_complete(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| |
| up_read_non_owner(&dc->writeback_lock); |
| cached_dev_bio_complete(cl); |
| } |
| |
| static void cached_dev_write(struct cached_dev *dc, struct search *s) |
| { |
| struct closure *cl = &s->cl; |
| struct bio *bio = &s->bio.bio; |
| struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); |
| struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); |
| |
| bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); |
| |
| down_read_non_owner(&dc->writeback_lock); |
| if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { |
| /* |
| * We overlap with some dirty data undergoing background |
| * writeback, force this write to writeback |
| */ |
| s->iop.bypass = false; |
| s->iop.writeback = true; |
| } |
| |
| /* |
| * Discards aren't _required_ to do anything, so skipping if |
| * check_overlapping returned true is ok |
| * |
| * But check_overlapping drops dirty keys for which io hasn't started, |
| * so we still want to call it. |
| */ |
| if (bio->bi_rw & REQ_DISCARD) |
| s->iop.bypass = true; |
| |
| if (should_writeback(dc, s->orig_bio, |
| cache_mode(dc, bio), |
| s->iop.bypass)) { |
| s->iop.bypass = false; |
| s->iop.writeback = true; |
| } |
| |
| if (s->iop.bypass) { |
| s->iop.bio = s->orig_bio; |
| bio_get(s->iop.bio); |
| |
| if (!(bio->bi_rw & REQ_DISCARD) || |
| blk_queue_discard(bdev_get_queue(dc->bdev))) |
| closure_bio_submit(bio, cl); |
| } else if (s->iop.writeback) { |
| bch_writeback_add(dc); |
| s->iop.bio = bio; |
| |
| if (bio->bi_rw & REQ_FLUSH) { |
| /* Also need to send a flush to the backing device */ |
| struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0, |
| dc->disk.bio_split); |
| |
| flush->bi_rw = WRITE_FLUSH; |
| flush->bi_bdev = bio->bi_bdev; |
| flush->bi_end_io = request_endio; |
| flush->bi_private = cl; |
| |
| closure_bio_submit(flush, cl); |
| } |
| } else { |
| s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split); |
| |
| closure_bio_submit(bio, cl); |
| } |
| |
| closure_call(&s->iop.cl, bch_data_insert, NULL, cl); |
| continue_at(cl, cached_dev_write_complete, NULL); |
| } |
| |
| static void cached_dev_nodata(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct bio *bio = &s->bio.bio; |
| |
| if (s->iop.flush_journal) |
| bch_journal_meta(s->iop.c, cl); |
| |
| /* If it's a flush, we send the flush to the backing device too */ |
| closure_bio_submit(bio, cl); |
| |
| continue_at(cl, cached_dev_bio_complete, NULL); |
| } |
| |
| /* Cached devices - read & write stuff */ |
| |
| static blk_qc_t cached_dev_make_request(struct request_queue *q, |
| struct bio *bio) |
| { |
| struct search *s; |
| struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; |
| struct cached_dev *dc = container_of(d, struct cached_dev, disk); |
| int rw = bio_data_dir(bio); |
| |
| generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0); |
| |
| bio->bi_bdev = dc->bdev; |
| bio->bi_iter.bi_sector += dc->sb.data_offset; |
| |
| if (cached_dev_get(dc)) { |
| s = search_alloc(bio, d); |
| trace_bcache_request_start(s->d, bio); |
| |
| if (!bio->bi_iter.bi_size) { |
| /* |
| * can't call bch_journal_meta from under |
| * generic_make_request |
| */ |
| continue_at_nobarrier(&s->cl, |
| cached_dev_nodata, |
| bcache_wq); |
| } else { |
| s->iop.bypass = check_should_bypass(dc, bio); |
| |
| if (rw) |
| cached_dev_write(dc, s); |
| else |
| cached_dev_read(dc, s); |
| } |
| } else { |
| if ((bio->bi_rw & REQ_DISCARD) && |
| !blk_queue_discard(bdev_get_queue(dc->bdev))) |
| bio_endio(bio); |
| else |
| generic_make_request(bio); |
| } |
| |
| return BLK_QC_T_NONE; |
| } |
| |
| static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct cached_dev *dc = container_of(d, struct cached_dev, disk); |
| return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); |
| } |
| |
| static int cached_dev_congested(void *data, int bits) |
| { |
| struct bcache_device *d = data; |
| struct cached_dev *dc = container_of(d, struct cached_dev, disk); |
| struct request_queue *q = bdev_get_queue(dc->bdev); |
| int ret = 0; |
| |
| if (bdi_congested(&q->backing_dev_info, bits)) |
| return 1; |
| |
| if (cached_dev_get(dc)) { |
| unsigned i; |
| struct cache *ca; |
| |
| for_each_cache(ca, d->c, i) { |
| q = bdev_get_queue(ca->bdev); |
| ret |= bdi_congested(&q->backing_dev_info, bits); |
| } |
| |
| cached_dev_put(dc); |
| } |
| |
| return ret; |
| } |
| |
| void bch_cached_dev_request_init(struct cached_dev *dc) |
| { |
| struct gendisk *g = dc->disk.disk; |
| |
| g->queue->make_request_fn = cached_dev_make_request; |
| g->queue->backing_dev_info.congested_fn = cached_dev_congested; |
| dc->disk.cache_miss = cached_dev_cache_miss; |
| dc->disk.ioctl = cached_dev_ioctl; |
| } |
| |
| /* Flash backed devices */ |
| |
| static int flash_dev_cache_miss(struct btree *b, struct search *s, |
| struct bio *bio, unsigned sectors) |
| { |
| unsigned bytes = min(sectors, bio_sectors(bio)) << 9; |
| |
| swap(bio->bi_iter.bi_size, bytes); |
| zero_fill_bio(bio); |
| swap(bio->bi_iter.bi_size, bytes); |
| |
| bio_advance(bio, bytes); |
| |
| if (!bio->bi_iter.bi_size) |
| return MAP_DONE; |
| |
| return MAP_CONTINUE; |
| } |
| |
| static void flash_dev_nodata(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| |
| if (s->iop.flush_journal) |
| bch_journal_meta(s->iop.c, cl); |
| |
| continue_at(cl, search_free, NULL); |
| } |
| |
| static blk_qc_t flash_dev_make_request(struct request_queue *q, |
| struct bio *bio) |
| { |
| struct search *s; |
| struct closure *cl; |
| struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; |
| int rw = bio_data_dir(bio); |
| |
| generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0); |
| |
| s = search_alloc(bio, d); |
| cl = &s->cl; |
| bio = &s->bio.bio; |
| |
| trace_bcache_request_start(s->d, bio); |
| |
| if (!bio->bi_iter.bi_size) { |
| /* |
| * can't call bch_journal_meta from under |
| * generic_make_request |
| */ |
| continue_at_nobarrier(&s->cl, |
| flash_dev_nodata, |
| bcache_wq); |
| return BLK_QC_T_NONE; |
| } else if (rw) { |
| bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, |
| &KEY(d->id, bio->bi_iter.bi_sector, 0), |
| &KEY(d->id, bio_end_sector(bio), 0)); |
| |
| s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0; |
| s->iop.writeback = true; |
| s->iop.bio = bio; |
| |
| closure_call(&s->iop.cl, bch_data_insert, NULL, cl); |
| } else { |
| closure_call(&s->iop.cl, cache_lookup, NULL, cl); |
| } |
| |
| continue_at(cl, search_free, NULL); |
| return BLK_QC_T_NONE; |
| } |
| |
| static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| return -ENOTTY; |
| } |
| |
| static int flash_dev_congested(void *data, int bits) |
| { |
| struct bcache_device *d = data; |
| struct request_queue *q; |
| struct cache *ca; |
| unsigned i; |
| int ret = 0; |
| |
| for_each_cache(ca, d->c, i) { |
| q = bdev_get_queue(ca->bdev); |
| ret |= bdi_congested(&q->backing_dev_info, bits); |
| } |
| |
| return ret; |
| } |
| |
| void bch_flash_dev_request_init(struct bcache_device *d) |
| { |
| struct gendisk *g = d->disk; |
| |
| g->queue->make_request_fn = flash_dev_make_request; |
| g->queue->backing_dev_info.congested_fn = flash_dev_congested; |
| d->cache_miss = flash_dev_cache_miss; |
| d->ioctl = flash_dev_ioctl; |
| } |
| |
| void bch_request_exit(void) |
| { |
| if (bch_search_cache) |
| kmem_cache_destroy(bch_search_cache); |
| } |
| |
| int __init bch_request_init(void) |
| { |
| bch_search_cache = KMEM_CACHE(search, 0); |
| if (!bch_search_cache) |
| return -ENOMEM; |
| |
| return 0; |
| } |