| /* |
| * Copyright 2013 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Alex Deucher |
| */ |
| #include <linux/firmware.h> |
| #include <drm/drmP.h> |
| #include "radeon.h" |
| #include "radeon_ucode.h" |
| #include "radeon_asic.h" |
| #include "radeon_trace.h" |
| #include "cikd.h" |
| |
| /* sdma */ |
| #define CIK_SDMA_UCODE_SIZE 1050 |
| #define CIK_SDMA_UCODE_VERSION 64 |
| |
| u32 cik_gpu_check_soft_reset(struct radeon_device *rdev); |
| |
| /* |
| * sDMA - System DMA |
| * Starting with CIK, the GPU has new asynchronous |
| * DMA engines. These engines are used for compute |
| * and gfx. There are two DMA engines (SDMA0, SDMA1) |
| * and each one supports 1 ring buffer used for gfx |
| * and 2 queues used for compute. |
| * |
| * The programming model is very similar to the CP |
| * (ring buffer, IBs, etc.), but sDMA has it's own |
| * packet format that is different from the PM4 format |
| * used by the CP. sDMA supports copying data, writing |
| * embedded data, solid fills, and a number of other |
| * things. It also has support for tiling/detiling of |
| * buffers. |
| */ |
| |
| /** |
| * cik_sdma_get_rptr - get the current read pointer |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon ring pointer |
| * |
| * Get the current rptr from the hardware (CIK+). |
| */ |
| uint32_t cik_sdma_get_rptr(struct radeon_device *rdev, |
| struct radeon_ring *ring) |
| { |
| u32 rptr, reg; |
| |
| if (rdev->wb.enabled) { |
| rptr = rdev->wb.wb[ring->rptr_offs/4]; |
| } else { |
| if (ring->idx == R600_RING_TYPE_DMA_INDEX) |
| reg = SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET; |
| else |
| reg = SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET; |
| |
| rptr = RREG32(reg); |
| } |
| |
| return (rptr & 0x3fffc) >> 2; |
| } |
| |
| /** |
| * cik_sdma_get_wptr - get the current write pointer |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon ring pointer |
| * |
| * Get the current wptr from the hardware (CIK+). |
| */ |
| uint32_t cik_sdma_get_wptr(struct radeon_device *rdev, |
| struct radeon_ring *ring) |
| { |
| u32 reg; |
| |
| if (ring->idx == R600_RING_TYPE_DMA_INDEX) |
| reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET; |
| else |
| reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET; |
| |
| return (RREG32(reg) & 0x3fffc) >> 2; |
| } |
| |
| /** |
| * cik_sdma_set_wptr - commit the write pointer |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon ring pointer |
| * |
| * Write the wptr back to the hardware (CIK+). |
| */ |
| void cik_sdma_set_wptr(struct radeon_device *rdev, |
| struct radeon_ring *ring) |
| { |
| u32 reg; |
| |
| if (ring->idx == R600_RING_TYPE_DMA_INDEX) |
| reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET; |
| else |
| reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET; |
| |
| WREG32(reg, (ring->wptr << 2) & 0x3fffc); |
| (void)RREG32(reg); |
| } |
| |
| /** |
| * cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine |
| * |
| * @rdev: radeon_device pointer |
| * @ib: IB object to schedule |
| * |
| * Schedule an IB in the DMA ring (CIK). |
| */ |
| void cik_sdma_ring_ib_execute(struct radeon_device *rdev, |
| struct radeon_ib *ib) |
| { |
| struct radeon_ring *ring = &rdev->ring[ib->ring]; |
| u32 extra_bits = (ib->vm ? ib->vm->ids[ib->ring].id : 0) & 0xf; |
| |
| if (rdev->wb.enabled) { |
| u32 next_rptr = ring->wptr + 5; |
| while ((next_rptr & 7) != 4) |
| next_rptr++; |
| next_rptr += 4; |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); |
| radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); |
| radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr)); |
| radeon_ring_write(ring, 1); /* number of DWs to follow */ |
| radeon_ring_write(ring, next_rptr); |
| } |
| |
| /* IB packet must end on a 8 DW boundary */ |
| while ((ring->wptr & 7) != 4) |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits)); |
| radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */ |
| radeon_ring_write(ring, upper_32_bits(ib->gpu_addr)); |
| radeon_ring_write(ring, ib->length_dw); |
| |
| } |
| |
| /** |
| * cik_sdma_hdp_flush_ring_emit - emit an hdp flush on the DMA ring |
| * |
| * @rdev: radeon_device pointer |
| * @ridx: radeon ring index |
| * |
| * Emit an hdp flush packet on the requested DMA ring. |
| */ |
| static void cik_sdma_hdp_flush_ring_emit(struct radeon_device *rdev, |
| int ridx) |
| { |
| struct radeon_ring *ring = &rdev->ring[ridx]; |
| u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) | |
| SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */ |
| u32 ref_and_mask; |
| |
| if (ridx == R600_RING_TYPE_DMA_INDEX) |
| ref_and_mask = SDMA0; |
| else |
| ref_and_mask = SDMA1; |
| |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); |
| radeon_ring_write(ring, GPU_HDP_FLUSH_DONE); |
| radeon_ring_write(ring, GPU_HDP_FLUSH_REQ); |
| radeon_ring_write(ring, ref_and_mask); /* reference */ |
| radeon_ring_write(ring, ref_and_mask); /* mask */ |
| radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */ |
| } |
| |
| /** |
| * cik_sdma_fence_ring_emit - emit a fence on the DMA ring |
| * |
| * @rdev: radeon_device pointer |
| * @fence: radeon fence object |
| * |
| * Add a DMA fence packet to the ring to write |
| * the fence seq number and DMA trap packet to generate |
| * an interrupt if needed (CIK). |
| */ |
| void cik_sdma_fence_ring_emit(struct radeon_device *rdev, |
| struct radeon_fence *fence) |
| { |
| struct radeon_ring *ring = &rdev->ring[fence->ring]; |
| u64 addr = rdev->fence_drv[fence->ring].gpu_addr; |
| |
| /* write the fence */ |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0)); |
| radeon_ring_write(ring, lower_32_bits(addr)); |
| radeon_ring_write(ring, upper_32_bits(addr)); |
| radeon_ring_write(ring, fence->seq); |
| /* generate an interrupt */ |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0)); |
| /* flush HDP */ |
| cik_sdma_hdp_flush_ring_emit(rdev, fence->ring); |
| } |
| |
| /** |
| * cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * @semaphore: radeon semaphore object |
| * @emit_wait: wait or signal semaphore |
| * |
| * Add a DMA semaphore packet to the ring wait on or signal |
| * other rings (CIK). |
| */ |
| bool cik_sdma_semaphore_ring_emit(struct radeon_device *rdev, |
| struct radeon_ring *ring, |
| struct radeon_semaphore *semaphore, |
| bool emit_wait) |
| { |
| u64 addr = semaphore->gpu_addr; |
| u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S; |
| |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits)); |
| radeon_ring_write(ring, addr & 0xfffffff8); |
| radeon_ring_write(ring, upper_32_bits(addr)); |
| |
| return true; |
| } |
| |
| /** |
| * cik_sdma_gfx_stop - stop the gfx async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Stop the gfx async dma ring buffers (CIK). |
| */ |
| static void cik_sdma_gfx_stop(struct radeon_device *rdev) |
| { |
| u32 rb_cntl, reg_offset; |
| int i; |
| |
| if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) || |
| (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX)) |
| radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); |
| |
| for (i = 0; i < 2; i++) { |
| if (i == 0) |
| reg_offset = SDMA0_REGISTER_OFFSET; |
| else |
| reg_offset = SDMA1_REGISTER_OFFSET; |
| rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset); |
| rb_cntl &= ~SDMA_RB_ENABLE; |
| WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); |
| WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0); |
| } |
| rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false; |
| rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX].ready = false; |
| } |
| |
| /** |
| * cik_sdma_rlc_stop - stop the compute async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Stop the compute async dma queues (CIK). |
| */ |
| static void cik_sdma_rlc_stop(struct radeon_device *rdev) |
| { |
| /* XXX todo */ |
| } |
| |
| /** |
| * cik_sdma_enable - stop the async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * @enable: enable/disable the DMA MEs. |
| * |
| * Halt or unhalt the async dma engines (CIK). |
| */ |
| void cik_sdma_enable(struct radeon_device *rdev, bool enable) |
| { |
| u32 me_cntl, reg_offset; |
| int i; |
| |
| if (enable == false) { |
| cik_sdma_gfx_stop(rdev); |
| cik_sdma_rlc_stop(rdev); |
| } |
| |
| for (i = 0; i < 2; i++) { |
| if (i == 0) |
| reg_offset = SDMA0_REGISTER_OFFSET; |
| else |
| reg_offset = SDMA1_REGISTER_OFFSET; |
| me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset); |
| if (enable) |
| me_cntl &= ~SDMA_HALT; |
| else |
| me_cntl |= SDMA_HALT; |
| WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl); |
| } |
| } |
| |
| /** |
| * cik_sdma_gfx_resume - setup and start the async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Set up the gfx DMA ring buffers and enable them (CIK). |
| * Returns 0 for success, error for failure. |
| */ |
| static int cik_sdma_gfx_resume(struct radeon_device *rdev) |
| { |
| struct radeon_ring *ring; |
| u32 rb_cntl, ib_cntl; |
| u32 rb_bufsz; |
| u32 reg_offset, wb_offset; |
| int i, r; |
| |
| for (i = 0; i < 2; i++) { |
| if (i == 0) { |
| ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; |
| reg_offset = SDMA0_REGISTER_OFFSET; |
| wb_offset = R600_WB_DMA_RPTR_OFFSET; |
| } else { |
| ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; |
| reg_offset = SDMA1_REGISTER_OFFSET; |
| wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET; |
| } |
| |
| WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0); |
| WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0); |
| |
| /* Set ring buffer size in dwords */ |
| rb_bufsz = order_base_2(ring->ring_size / 4); |
| rb_cntl = rb_bufsz << 1; |
| #ifdef __BIG_ENDIAN |
| rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE; |
| #endif |
| WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); |
| |
| /* Initialize the ring buffer's read and write pointers */ |
| WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0); |
| WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0); |
| |
| /* set the wb address whether it's enabled or not */ |
| WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset, |
| upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); |
| WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset, |
| ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC)); |
| |
| if (rdev->wb.enabled) |
| rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE; |
| |
| WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8); |
| WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40); |
| |
| ring->wptr = 0; |
| WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2); |
| |
| /* enable DMA RB */ |
| WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE); |
| |
| ib_cntl = SDMA_IB_ENABLE; |
| #ifdef __BIG_ENDIAN |
| ib_cntl |= SDMA_IB_SWAP_ENABLE; |
| #endif |
| /* enable DMA IBs */ |
| WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl); |
| |
| ring->ready = true; |
| |
| r = radeon_ring_test(rdev, ring->idx, ring); |
| if (r) { |
| ring->ready = false; |
| return r; |
| } |
| } |
| |
| if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) || |
| (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX)) |
| radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); |
| |
| return 0; |
| } |
| |
| /** |
| * cik_sdma_rlc_resume - setup and start the async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Set up the compute DMA queues and enable them (CIK). |
| * Returns 0 for success, error for failure. |
| */ |
| static int cik_sdma_rlc_resume(struct radeon_device *rdev) |
| { |
| /* XXX todo */ |
| return 0; |
| } |
| |
| /** |
| * cik_sdma_load_microcode - load the sDMA ME ucode |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Loads the sDMA0/1 ucode. |
| * Returns 0 for success, -EINVAL if the ucode is not available. |
| */ |
| static int cik_sdma_load_microcode(struct radeon_device *rdev) |
| { |
| int i; |
| |
| if (!rdev->sdma_fw) |
| return -EINVAL; |
| |
| /* halt the MEs */ |
| cik_sdma_enable(rdev, false); |
| |
| if (rdev->new_fw) { |
| const struct sdma_firmware_header_v1_0 *hdr = |
| (const struct sdma_firmware_header_v1_0 *)rdev->sdma_fw->data; |
| const __le32 *fw_data; |
| u32 fw_size; |
| |
| radeon_ucode_print_sdma_hdr(&hdr->header); |
| |
| /* sdma0 */ |
| fw_data = (const __le32 *) |
| (rdev->sdma_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); |
| fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; |
| WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); |
| for (i = 0; i < fw_size; i++) |
| WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, le32_to_cpup(fw_data++)); |
| WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); |
| |
| /* sdma1 */ |
| fw_data = (const __le32 *) |
| (rdev->sdma_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); |
| fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; |
| WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); |
| for (i = 0; i < fw_size; i++) |
| WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, le32_to_cpup(fw_data++)); |
| WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); |
| } else { |
| const __be32 *fw_data; |
| |
| /* sdma0 */ |
| fw_data = (const __be32 *)rdev->sdma_fw->data; |
| WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); |
| for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) |
| WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++)); |
| WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); |
| |
| /* sdma1 */ |
| fw_data = (const __be32 *)rdev->sdma_fw->data; |
| WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); |
| for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) |
| WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++)); |
| WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); |
| } |
| |
| WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); |
| WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); |
| return 0; |
| } |
| |
| /** |
| * cik_sdma_resume - setup and start the async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Set up the DMA engines and enable them (CIK). |
| * Returns 0 for success, error for failure. |
| */ |
| int cik_sdma_resume(struct radeon_device *rdev) |
| { |
| int r; |
| |
| r = cik_sdma_load_microcode(rdev); |
| if (r) |
| return r; |
| |
| /* unhalt the MEs */ |
| cik_sdma_enable(rdev, true); |
| |
| /* start the gfx rings and rlc compute queues */ |
| r = cik_sdma_gfx_resume(rdev); |
| if (r) |
| return r; |
| r = cik_sdma_rlc_resume(rdev); |
| if (r) |
| return r; |
| |
| return 0; |
| } |
| |
| /** |
| * cik_sdma_fini - tear down the async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Stop the async dma engines and free the rings (CIK). |
| */ |
| void cik_sdma_fini(struct radeon_device *rdev) |
| { |
| /* halt the MEs */ |
| cik_sdma_enable(rdev, false); |
| radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]); |
| radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]); |
| /* XXX - compute dma queue tear down */ |
| } |
| |
| /** |
| * cik_copy_dma - copy pages using the DMA engine |
| * |
| * @rdev: radeon_device pointer |
| * @src_offset: src GPU address |
| * @dst_offset: dst GPU address |
| * @num_gpu_pages: number of GPU pages to xfer |
| * @resv: reservation object to sync to |
| * |
| * Copy GPU paging using the DMA engine (CIK). |
| * Used by the radeon ttm implementation to move pages if |
| * registered as the asic copy callback. |
| */ |
| struct radeon_fence *cik_copy_dma(struct radeon_device *rdev, |
| uint64_t src_offset, uint64_t dst_offset, |
| unsigned num_gpu_pages, |
| struct reservation_object *resv) |
| { |
| struct radeon_fence *fence; |
| struct radeon_sync sync; |
| int ring_index = rdev->asic->copy.dma_ring_index; |
| struct radeon_ring *ring = &rdev->ring[ring_index]; |
| u32 size_in_bytes, cur_size_in_bytes; |
| int i, num_loops; |
| int r = 0; |
| |
| radeon_sync_create(&sync); |
| |
| size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT); |
| num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff); |
| r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14); |
| if (r) { |
| DRM_ERROR("radeon: moving bo (%d).\n", r); |
| radeon_sync_free(rdev, &sync, NULL); |
| return ERR_PTR(r); |
| } |
| |
| radeon_sync_resv(rdev, &sync, resv, false); |
| radeon_sync_rings(rdev, &sync, ring->idx); |
| |
| for (i = 0; i < num_loops; i++) { |
| cur_size_in_bytes = size_in_bytes; |
| if (cur_size_in_bytes > 0x1fffff) |
| cur_size_in_bytes = 0x1fffff; |
| size_in_bytes -= cur_size_in_bytes; |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0)); |
| radeon_ring_write(ring, cur_size_in_bytes); |
| radeon_ring_write(ring, 0); /* src/dst endian swap */ |
| radeon_ring_write(ring, lower_32_bits(src_offset)); |
| radeon_ring_write(ring, upper_32_bits(src_offset)); |
| radeon_ring_write(ring, lower_32_bits(dst_offset)); |
| radeon_ring_write(ring, upper_32_bits(dst_offset)); |
| src_offset += cur_size_in_bytes; |
| dst_offset += cur_size_in_bytes; |
| } |
| |
| r = radeon_fence_emit(rdev, &fence, ring->idx); |
| if (r) { |
| radeon_ring_unlock_undo(rdev, ring); |
| radeon_sync_free(rdev, &sync, NULL); |
| return ERR_PTR(r); |
| } |
| |
| radeon_ring_unlock_commit(rdev, ring, false); |
| radeon_sync_free(rdev, &sync, fence); |
| |
| return fence; |
| } |
| |
| /** |
| * cik_sdma_ring_test - simple async dma engine test |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Test the DMA engine by writing using it to write an |
| * value to memory. (CIK). |
| * Returns 0 for success, error for failure. |
| */ |
| int cik_sdma_ring_test(struct radeon_device *rdev, |
| struct radeon_ring *ring) |
| { |
| unsigned i; |
| int r; |
| unsigned index; |
| u32 tmp; |
| u64 gpu_addr; |
| |
| if (ring->idx == R600_RING_TYPE_DMA_INDEX) |
| index = R600_WB_DMA_RING_TEST_OFFSET; |
| else |
| index = CAYMAN_WB_DMA1_RING_TEST_OFFSET; |
| |
| gpu_addr = rdev->wb.gpu_addr + index; |
| |
| tmp = 0xCAFEDEAD; |
| rdev->wb.wb[index/4] = cpu_to_le32(tmp); |
| |
| r = radeon_ring_lock(rdev, ring, 5); |
| if (r) { |
| DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r); |
| return r; |
| } |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); |
| radeon_ring_write(ring, lower_32_bits(gpu_addr)); |
| radeon_ring_write(ring, upper_32_bits(gpu_addr)); |
| radeon_ring_write(ring, 1); /* number of DWs to follow */ |
| radeon_ring_write(ring, 0xDEADBEEF); |
| radeon_ring_unlock_commit(rdev, ring, false); |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| tmp = le32_to_cpu(rdev->wb.wb[index/4]); |
| if (tmp == 0xDEADBEEF) |
| break; |
| DRM_UDELAY(1); |
| } |
| |
| if (i < rdev->usec_timeout) { |
| DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); |
| } else { |
| DRM_ERROR("radeon: ring %d test failed (0x%08X)\n", |
| ring->idx, tmp); |
| r = -EINVAL; |
| } |
| return r; |
| } |
| |
| /** |
| * cik_sdma_ib_test - test an IB on the DMA engine |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Test a simple IB in the DMA ring (CIK). |
| * Returns 0 on success, error on failure. |
| */ |
| int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| struct radeon_ib ib; |
| unsigned i; |
| unsigned index; |
| int r; |
| u32 tmp = 0; |
| u64 gpu_addr; |
| |
| if (ring->idx == R600_RING_TYPE_DMA_INDEX) |
| index = R600_WB_DMA_RING_TEST_OFFSET; |
| else |
| index = CAYMAN_WB_DMA1_RING_TEST_OFFSET; |
| |
| gpu_addr = rdev->wb.gpu_addr + index; |
| |
| tmp = 0xCAFEDEAD; |
| rdev->wb.wb[index/4] = cpu_to_le32(tmp); |
| |
| r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); |
| if (r) { |
| DRM_ERROR("radeon: failed to get ib (%d).\n", r); |
| return r; |
| } |
| |
| ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); |
| ib.ptr[1] = lower_32_bits(gpu_addr); |
| ib.ptr[2] = upper_32_bits(gpu_addr); |
| ib.ptr[3] = 1; |
| ib.ptr[4] = 0xDEADBEEF; |
| ib.length_dw = 5; |
| |
| r = radeon_ib_schedule(rdev, &ib, NULL, false); |
| if (r) { |
| radeon_ib_free(rdev, &ib); |
| DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); |
| return r; |
| } |
| r = radeon_fence_wait(ib.fence, false); |
| if (r) { |
| DRM_ERROR("radeon: fence wait failed (%d).\n", r); |
| return r; |
| } |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| tmp = le32_to_cpu(rdev->wb.wb[index/4]); |
| if (tmp == 0xDEADBEEF) |
| break; |
| DRM_UDELAY(1); |
| } |
| if (i < rdev->usec_timeout) { |
| DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); |
| } else { |
| DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp); |
| r = -EINVAL; |
| } |
| radeon_ib_free(rdev, &ib); |
| return r; |
| } |
| |
| /** |
| * cik_sdma_is_lockup - Check if the DMA engine is locked up |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Check if the async DMA engine is locked up (CIK). |
| * Returns true if the engine appears to be locked up, false if not. |
| */ |
| bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| u32 reset_mask = cik_gpu_check_soft_reset(rdev); |
| u32 mask; |
| |
| if (ring->idx == R600_RING_TYPE_DMA_INDEX) |
| mask = RADEON_RESET_DMA; |
| else |
| mask = RADEON_RESET_DMA1; |
| |
| if (!(reset_mask & mask)) { |
| radeon_ring_lockup_update(rdev, ring); |
| return false; |
| } |
| return radeon_ring_test_lockup(rdev, ring); |
| } |
| |
| /** |
| * cik_sdma_vm_copy_pages - update PTEs by copying them from the GART |
| * |
| * @rdev: radeon_device pointer |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @src: src addr to copy from |
| * @count: number of page entries to update |
| * |
| * Update PTEs by copying them from the GART using sDMA (CIK). |
| */ |
| void cik_sdma_vm_copy_pages(struct radeon_device *rdev, |
| struct radeon_ib *ib, |
| uint64_t pe, uint64_t src, |
| unsigned count) |
| { |
| while (count) { |
| unsigned bytes = count * 8; |
| if (bytes > 0x1FFFF8) |
| bytes = 0x1FFFF8; |
| |
| ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY, |
| SDMA_WRITE_SUB_OPCODE_LINEAR, 0); |
| ib->ptr[ib->length_dw++] = bytes; |
| ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ |
| ib->ptr[ib->length_dw++] = lower_32_bits(src); |
| ib->ptr[ib->length_dw++] = upper_32_bits(src); |
| ib->ptr[ib->length_dw++] = lower_32_bits(pe); |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| |
| pe += bytes; |
| src += bytes; |
| count -= bytes / 8; |
| } |
| } |
| |
| /** |
| * cik_sdma_vm_write_pages - update PTEs by writing them manually |
| * |
| * @rdev: radeon_device pointer |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @addr: dst addr to write into pe |
| * @count: number of page entries to update |
| * @incr: increase next addr by incr bytes |
| * @flags: access flags |
| * |
| * Update PTEs by writing them manually using sDMA (CIK). |
| */ |
| void cik_sdma_vm_write_pages(struct radeon_device *rdev, |
| struct radeon_ib *ib, |
| uint64_t pe, |
| uint64_t addr, unsigned count, |
| uint32_t incr, uint32_t flags) |
| { |
| uint64_t value; |
| unsigned ndw; |
| |
| while (count) { |
| ndw = count * 2; |
| if (ndw > 0xFFFFE) |
| ndw = 0xFFFFE; |
| |
| /* for non-physically contiguous pages (system) */ |
| ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE, |
| SDMA_WRITE_SUB_OPCODE_LINEAR, 0); |
| ib->ptr[ib->length_dw++] = pe; |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| ib->ptr[ib->length_dw++] = ndw; |
| for (; ndw > 0; ndw -= 2, --count, pe += 8) { |
| if (flags & R600_PTE_SYSTEM) { |
| value = radeon_vm_map_gart(rdev, addr); |
| } else if (flags & R600_PTE_VALID) { |
| value = addr; |
| } else { |
| value = 0; |
| } |
| addr += incr; |
| value |= flags; |
| ib->ptr[ib->length_dw++] = value; |
| ib->ptr[ib->length_dw++] = upper_32_bits(value); |
| } |
| } |
| } |
| |
| /** |
| * cik_sdma_vm_set_pages - update the page tables using sDMA |
| * |
| * @rdev: radeon_device pointer |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @addr: dst addr to write into pe |
| * @count: number of page entries to update |
| * @incr: increase next addr by incr bytes |
| * @flags: access flags |
| * |
| * Update the page tables using sDMA (CIK). |
| */ |
| void cik_sdma_vm_set_pages(struct radeon_device *rdev, |
| struct radeon_ib *ib, |
| uint64_t pe, |
| uint64_t addr, unsigned count, |
| uint32_t incr, uint32_t flags) |
| { |
| uint64_t value; |
| unsigned ndw; |
| |
| while (count) { |
| ndw = count; |
| if (ndw > 0x7FFFF) |
| ndw = 0x7FFFF; |
| |
| if (flags & R600_PTE_VALID) |
| value = addr; |
| else |
| value = 0; |
| |
| /* for physically contiguous pages (vram) */ |
| ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0); |
| ib->ptr[ib->length_dw++] = pe; /* dst addr */ |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| ib->ptr[ib->length_dw++] = flags; /* mask */ |
| ib->ptr[ib->length_dw++] = 0; |
| ib->ptr[ib->length_dw++] = value; /* value */ |
| ib->ptr[ib->length_dw++] = upper_32_bits(value); |
| ib->ptr[ib->length_dw++] = incr; /* increment size */ |
| ib->ptr[ib->length_dw++] = 0; |
| ib->ptr[ib->length_dw++] = ndw; /* number of entries */ |
| |
| pe += ndw * 8; |
| addr += ndw * incr; |
| count -= ndw; |
| } |
| } |
| |
| /** |
| * cik_sdma_vm_pad_ib - pad the IB to the required number of dw |
| * |
| * @ib: indirect buffer to fill with padding |
| * |
| */ |
| void cik_sdma_vm_pad_ib(struct radeon_ib *ib) |
| { |
| while (ib->length_dw & 0x7) |
| ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0); |
| } |
| |
| /** |
| * cik_dma_vm_flush - cik vm flush using sDMA |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Update the page table base and flush the VM TLB |
| * using sDMA (CIK). |
| */ |
| void cik_dma_vm_flush(struct radeon_device *rdev, struct radeon_ring *ring, |
| unsigned vm_id, uint64_t pd_addr) |
| { |
| u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(0) | |
| SDMA_POLL_REG_MEM_EXTRA_FUNC(0)); /* always */ |
| |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); |
| if (vm_id < 8) { |
| radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm_id << 2)) >> 2); |
| } else { |
| radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm_id - 8) << 2)) >> 2); |
| } |
| radeon_ring_write(ring, pd_addr >> 12); |
| |
| /* update SH_MEM_* regs */ |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); |
| radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); |
| radeon_ring_write(ring, VMID(vm_id)); |
| |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); |
| radeon_ring_write(ring, SH_MEM_BASES >> 2); |
| radeon_ring_write(ring, 0); |
| |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); |
| radeon_ring_write(ring, SH_MEM_CONFIG >> 2); |
| radeon_ring_write(ring, 0); |
| |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); |
| radeon_ring_write(ring, SH_MEM_APE1_BASE >> 2); |
| radeon_ring_write(ring, 1); |
| |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); |
| radeon_ring_write(ring, SH_MEM_APE1_LIMIT >> 2); |
| radeon_ring_write(ring, 0); |
| |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); |
| radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); |
| radeon_ring_write(ring, VMID(0)); |
| |
| /* flush HDP */ |
| cik_sdma_hdp_flush_ring_emit(rdev, ring->idx); |
| |
| /* flush TLB */ |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); |
| radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); |
| radeon_ring_write(ring, 1 << vm_id); |
| |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); |
| radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); |
| radeon_ring_write(ring, 0); |
| radeon_ring_write(ring, 0); /* reference */ |
| radeon_ring_write(ring, 0); /* mask */ |
| radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */ |
| } |
| |