blob: bc3932cd68049f2db7ab641a9f708f9cc8385ea2 [file] [log] [blame]
/*
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* EXYNOS - CPU PMU(Power Management Unit) support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/smp.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/platform_device.h>
#include <asm/smp_plat.h>
#include <soc/samsung/exynos-pmu.h>
/**
* "pmureg" has the mapped base address of PMU(Power Management Unit)
*/
static struct regmap *pmureg;
/**
* No driver refers the "pmureg" directly, through the only exported API.
*/
int exynos_pmu_read(unsigned int offset, unsigned int *val)
{
return regmap_read(pmureg, offset, val);
}
int exynos_pmu_write(unsigned int offset, unsigned int val)
{
return regmap_write(pmureg, offset, val);
}
int exynos_pmu_update(unsigned int offset, unsigned int mask, unsigned int val)
{
return regmap_update_bits(pmureg, offset, mask, val);
}
EXPORT_SYMBOL(exynos_pmu_read);
EXPORT_SYMBOL(exynos_pmu_write);
EXPORT_SYMBOL(exynos_pmu_update);
/**
* CPU power control registers in PMU are arranged at regular intervals
* (interval = 0x80). pmu_cpu_offset calculates how far cpu is from address
* of first cpu. This expression is based on cpu and cluster id in MPIDR,
* refer below.
* cpu address offset : ((cluster id << 2) | (cpu id)) * 0x80
*/
#ifndef CONFIG_SOC_EXYNOS7885
#define pmu_cpu_offset(mpidr) \
(( MPIDR_AFFINITY_LEVEL(mpidr, 1) << 2 \
| MPIDR_AFFINITY_LEVEL(mpidr, 0)) \
* 0x80)
#else
#define CLUSTER0_CORES_CNT (2)
#define CLUSTER2_CORES_CNT (2)
unsigned int pmu_cpu_offset(unsigned int mpidr)
{
unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
unsigned int offset = 0;
unsigned int cpuid = 0;
// It's base on the PMU's offset.
switch (cluster) {
case 1:
cpuid += CLUSTER2_CORES_CNT;
case 2:
cpuid += CLUSTER0_CORES_CNT;
case 0:
cpuid += MPIDR_AFFINITY_LEVEL(mpidr, 0);
break;
}
offset = 0x80 * cpuid;
return offset;
}
#endif
#define PMU_CPU_CONFIG_BASE 0x2000
#define PMU_CPU_STATUS_BASE 0x2004
#define CPU_LOCAL_PWR_CFG 0xF
static void pmu_cpu_ctrl(unsigned int cpu, int enable)
{
unsigned int mpidr = cpu_logical_map(cpu);
unsigned int offset;
offset = pmu_cpu_offset(mpidr);
regmap_update_bits(pmureg, PMU_CPU_CONFIG_BASE + offset,
CPU_LOCAL_PWR_CFG,
enable ? CPU_LOCAL_PWR_CFG : 0);
}
static int pmu_cpu_state(unsigned int cpu)
{
unsigned int mpidr = cpu_logical_map(cpu);
unsigned int offset, val = 0;
offset = pmu_cpu_offset(mpidr);
regmap_read(pmureg, PMU_CPU_STATUS_BASE + offset, &val);
return ((val & CPU_LOCAL_PWR_CFG) == CPU_LOCAL_PWR_CFG);
}
#define CLUSTER_ADDR_OFFSET 0x20
#define PMU_CPUSEQ_OPTION_BASE 0x2488
#define PMU_NONCPU_STATUS_BASE 0x2404
#define PMU_L2_STATUS_BASE 0x2604
#define NONCPU_LOCAL_PWR_CFG 0xF
#define L2_LOCAL_PWR_CFG 0x7
#define phy_cluster(cpu) MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1)
static void pmu_cpuseq_ctrl(unsigned int cpu, int enable)
{
unsigned int offset;
offset = phy_cluster(cpu) * CLUSTER_ADDR_OFFSET;
regmap_update_bits(pmureg,
PMU_CPUSEQ_OPTION_BASE + offset, 1, enable);
}
static bool pmu_noncpu_state(unsigned int cpu)
{
unsigned int noncpu_stat = 0;
unsigned int offset;
offset = phy_cluster(cpu) * CLUSTER_ADDR_OFFSET;
regmap_read(pmureg,
PMU_NONCPU_STATUS_BASE + offset, &noncpu_stat);
return !!(noncpu_stat & NONCPU_LOCAL_PWR_CFG);
}
static bool pmu_l2_state(unsigned int cpu)
{
unsigned int l2_stat = 0;
unsigned int offset;
offset = phy_cluster(cpu) * CLUSTER_ADDR_OFFSET;
regmap_read(pmureg,
PMU_L2_STATUS_BASE + offset, &l2_stat);
return !!(l2_stat & L2_LOCAL_PWR_CFG);
}
static void exynos_cpu_up(unsigned int cpu)
{
pmu_cpu_ctrl(cpu, 1);
}
static void exynos_cpu_down(unsigned int cpu)
{
pmu_cpu_ctrl(cpu, 0);
}
static int exynos_cpu_state(unsigned int cpu)
{
return pmu_cpu_state(cpu);
}
static void exynos_cluster_up(unsigned int cpu)
{
pmu_cpuseq_ctrl(cpu, false);
}
static void exynos_cluster_down(unsigned int cpu)
{
pmu_cpuseq_ctrl(cpu, true);
}
static int exynos_cluster_state(unsigned int cpu)
{
return pmu_l2_state(cpu) &&
pmu_noncpu_state(cpu);
}
struct exynos_cpu_power_ops exynos_cpu = {
.power_up = exynos_cpu_up,
.power_down = exynos_cpu_down,
.power_state = exynos_cpu_state,
.cluster_up = exynos_cluster_up,
.cluster_down = exynos_cluster_down,
.cluster_state = exynos_cluster_state,
};
#define PMU_CPU_RESET_BASE (0x200C)
#define DISABLE_WDT_CPUPORESET BIT(12)
#define DISABLE_CORERESET BIT(9)
#define DISABLE_CPUPORESET BIT(8)
#define DISABLE_RESET (DISABLE_WDT_CPUPORESET \
| DISABLE_CORERESET \
| DISABLE_CPUPORESET)
void exynos_cpu_reset_enable(unsigned int cpu)
{
unsigned int mpidr = cpu_logical_map(cpu);
unsigned int offset;
offset = pmu_cpu_offset(mpidr);
regmap_update_bits(pmureg, PMU_CPU_RESET_BASE + offset,
DISABLE_RESET, 0);
}
void exynos_cpu_reset_disable(unsigned int cpu)
{
unsigned int mpidr = cpu_logical_map(cpu);
unsigned int offset;
offset = pmu_cpu_offset(mpidr);
regmap_update_bits(pmureg, PMU_CPU_RESET_BASE + offset,
DISABLE_RESET, DISABLE_RESET);
}
static struct bus_type exynos_info_subsys = {
.name = "exynos_info",
.dev_name = "exynos_info",
};
#ifndef CONFIG_SOC_EXYNOS7885
#define NR_CPUS_PER_CLUSTER 4
static ssize_t core_status_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
ssize_t n = 0;
int cpu;
for_each_possible_cpu(cpu) {
/*
* Each cluster has four cores.
* "cpu % NR_CPUS_PER_CLUSTER == 0" means that
* the cpu is a first one of each cluster.
*/
if (!(cpu % NR_CPUS_PER_CLUSTER)) {
n += scnprintf(buf + n, 24, "%s L2 : %d\n",
(!cpu) ? "boot" : "nonboot",
pmu_l2_state(cpu));
n += scnprintf(buf + n, 24, "%s Noncpu : %d\n",
(!cpu) ? "boot" : "nonboot",
pmu_noncpu_state(cpu));
}
n += scnprintf(buf + n, 24, "CPU%d : %d\n",
cpu, pmu_cpu_state(cpu));
}
return n;
}
#else
static ssize_t core_status_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
ssize_t n = 0;
int cpu = 0;
for_each_possible_cpu(cpu) {
unsigned int mpidr = cpu_logical_map(cpu);
unsigned int phy_cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
if (!phy_cpu) {
n += scnprintf(buf + n, 24, "%s L2 : %d\n",
(!cpu) ? "boot" : "nonboot",
pmu_l2_state(cpu));
n += scnprintf(buf + n, 24, "%s Noncpu : %d\n",
(!cpu) ? "boot" : "nonboot",
pmu_noncpu_state(cpu));
}
n += scnprintf(buf + n, 24, "CPU%d : %d\n",
cpu, pmu_cpu_state(cpu));
}
return n;
}
#endif
static struct kobj_attribute cs_attr =
__ATTR(core_status, 0644, core_status_show, NULL);
static struct attribute *cs_sysfs_attrs[] = {
&cs_attr.attr,
NULL,
};
static struct attribute_group cs_sysfs_group = {
.attrs = cs_sysfs_attrs,
};
static const struct attribute_group *cs_sysfs_groups[] = {
&cs_sysfs_group,
NULL,
};
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
static int pmu_cpus_notifier(struct notifier_block *nb,
unsigned long event, void *data)
{
unsigned long timeout;
int cpu, cnt = 0;
int ret = NOTIFY_OK;
struct cpumask mask;
switch (event) {
case CPUS_DOWN_COMPLETE:
#ifdef CONFIG_SCHED_HMP
cpumask_andnot(&mask, &hmp_fast_cpu_mask, (struct cpumask *)data);
#endif
/*
* Wait for core power down
*/
timeout = jiffies + msecs_to_jiffies(2000);
while (time_before(jiffies, timeout)) {
for_each_cpu(cpu, &mask)
if (cpu_is_offline(cpu) && !exynos_cpu_state(cpu))
cnt++;
if (cnt == cpumask_weight(&mask))
break;
cnt = 0;
udelay(1);
}
if (!cnt) {
pr_err("%s: outgoing CPUs are not turned off during 2sec.\n",
__func__);
ret = NOTIFY_BAD;
}
break;
default:
break;
}
return ret;
}
static struct notifier_block exynos_pmu_cpus_nb = {
.notifier_call = pmu_cpus_notifier,
.priority = INT_MAX, /* want to be called first */
};
static int exynos_pmu_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
pmureg = syscon_regmap_lookup_by_phandle(dev->of_node,
"samsung,syscon-phandle");
if (IS_ERR(pmureg)) {
pr_err("Fail to get regmap of PMU\n");
return PTR_ERR(pmureg);
}
if (subsys_system_register(&exynos_info_subsys,
cs_sysfs_groups))
pr_err("Fail to register exynos_info subsys\n");
register_cpus_notifier(&exynos_pmu_cpus_nb);
return 0;
}
static const struct of_device_id of_exynos_pmu_match[] = {
{ .compatible = "samsung,exynos-pmu", },
{ },
};
static const struct platform_device_id exynos_pmu_ids[] = {
{ "exynos-pmu", },
{ }
};
static struct platform_driver exynos_pmu_driver = {
.driver = {
.name = "exynos-pmu",
.owner = THIS_MODULE,
.of_match_table = of_exynos_pmu_match,
},
.probe = exynos_pmu_probe,
.id_table = exynos_pmu_ids,
};
int __init exynos_pmu_init(void)
{
return platform_driver_register(&exynos_pmu_driver);
}
subsys_initcall(exynos_pmu_init);