| #include <linux/cpufreq.h> |
| #include <linux/export.h> |
| #include <linux/sched.h> |
| #include <linux/tsacct_kern.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/static_key.h> |
| #include <linux/context_tracking.h> |
| #include <linux/cpufreq_times.h> |
| #include "sched.h" |
| #include "walt.h" |
| |
| |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| |
| /* |
| * There are no locks covering percpu hardirq/softirq time. |
| * They are only modified in vtime_account, on corresponding CPU |
| * with interrupts disabled. So, writes are safe. |
| * They are read and saved off onto struct rq in update_rq_clock(). |
| * This may result in other CPU reading this CPU's irq time and can |
| * race with irq/vtime_account on this CPU. We would either get old |
| * or new value with a side effect of accounting a slice of irq time to wrong |
| * task when irq is in progress while we read rq->clock. That is a worthy |
| * compromise in place of having locks on each irq in account_system_time. |
| */ |
| DEFINE_PER_CPU(u64, cpu_hardirq_time); |
| DEFINE_PER_CPU(u64, cpu_softirq_time); |
| |
| static DEFINE_PER_CPU(u64, irq_start_time); |
| static int sched_clock_irqtime; |
| |
| void enable_sched_clock_irqtime(void) |
| { |
| sched_clock_irqtime = 1; |
| } |
| |
| void disable_sched_clock_irqtime(void) |
| { |
| sched_clock_irqtime = 0; |
| } |
| |
| #ifndef CONFIG_64BIT |
| DEFINE_PER_CPU(seqcount_t, irq_time_seq); |
| #endif /* CONFIG_64BIT */ |
| |
| /* |
| * Called before incrementing preempt_count on {soft,}irq_enter |
| * and before decrementing preempt_count on {soft,}irq_exit. |
| */ |
| void irqtime_account_irq(struct task_struct *curr) |
| { |
| unsigned long flags; |
| s64 delta; |
| int cpu; |
| #ifdef CONFIG_SCHED_WALT |
| u64 wallclock; |
| bool account = true; |
| #endif |
| |
| if (!sched_clock_irqtime) |
| return; |
| |
| local_irq_save(flags); |
| |
| cpu = smp_processor_id(); |
| #ifdef CONFIG_SCHED_WALT |
| wallclock = sched_clock_cpu(cpu); |
| #endif |
| delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); |
| __this_cpu_add(irq_start_time, delta); |
| |
| irq_time_write_begin(); |
| /* |
| * We do not account for softirq time from ksoftirqd here. |
| * We want to continue accounting softirq time to ksoftirqd thread |
| * in that case, so as not to confuse scheduler with a special task |
| * that do not consume any time, but still wants to run. |
| */ |
| if (hardirq_count()) |
| __this_cpu_add(cpu_hardirq_time, delta); |
| else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) |
| __this_cpu_add(cpu_softirq_time, delta); |
| #ifdef CONFIG_SCHED_WALT |
| else |
| account = false; |
| #endif |
| |
| irq_time_write_end(); |
| #ifdef CONFIG_SCHED_WALT |
| if (account) |
| walt_account_irqtime(cpu, curr, delta, wallclock); |
| #endif |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL_GPL(irqtime_account_irq); |
| |
| static int irqtime_account_hi_update(void) |
| { |
| u64 *cpustat = kcpustat_this_cpu->cpustat; |
| unsigned long flags; |
| u64 latest_ns; |
| int ret = 0; |
| |
| local_irq_save(flags); |
| latest_ns = this_cpu_read(cpu_hardirq_time); |
| if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) |
| ret = 1; |
| local_irq_restore(flags); |
| return ret; |
| } |
| |
| static int irqtime_account_si_update(void) |
| { |
| u64 *cpustat = kcpustat_this_cpu->cpustat; |
| unsigned long flags; |
| u64 latest_ns; |
| int ret = 0; |
| |
| local_irq_save(flags); |
| latest_ns = this_cpu_read(cpu_softirq_time); |
| if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) |
| ret = 1; |
| local_irq_restore(flags); |
| return ret; |
| } |
| |
| #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| |
| #define sched_clock_irqtime (0) |
| |
| #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ |
| |
| static inline void task_group_account_field(struct task_struct *p, int index, |
| u64 tmp) |
| { |
| /* |
| * Since all updates are sure to touch the root cgroup, we |
| * get ourselves ahead and touch it first. If the root cgroup |
| * is the only cgroup, then nothing else should be necessary. |
| * |
| */ |
| __this_cpu_add(kernel_cpustat.cpustat[index], tmp); |
| |
| cpuacct_account_field(p, index, tmp); |
| } |
| |
| /* |
| * Account user cpu time to a process. |
| * @p: the process that the cpu time gets accounted to |
| * @cputime: the cpu time spent in user space since the last update |
| * @cputime_scaled: cputime scaled by cpu frequency |
| */ |
| void account_user_time(struct task_struct *p, cputime_t cputime, |
| cputime_t cputime_scaled) |
| { |
| int index; |
| |
| /* Add user time to process. */ |
| p->utime += cputime; |
| p->utimescaled += cputime_scaled; |
| account_group_user_time(p, cputime); |
| |
| index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; |
| |
| /* Add user time to cpustat. */ |
| task_group_account_field(p, index, (__force u64) cputime); |
| |
| /* Account for user time used */ |
| acct_account_cputime(p); |
| |
| /* Account power usage for user time */ |
| acct_update_power(p, cputime); |
| |
| /* Account power usage for system time */ |
| cpufreq_acct_update_power(p, cputime); |
| } |
| |
| /* |
| * Account guest cpu time to a process. |
| * @p: the process that the cpu time gets accounted to |
| * @cputime: the cpu time spent in virtual machine since the last update |
| * @cputime_scaled: cputime scaled by cpu frequency |
| */ |
| static void account_guest_time(struct task_struct *p, cputime_t cputime, |
| cputime_t cputime_scaled) |
| { |
| u64 *cpustat = kcpustat_this_cpu->cpustat; |
| |
| /* Add guest time to process. */ |
| p->utime += cputime; |
| p->utimescaled += cputime_scaled; |
| account_group_user_time(p, cputime); |
| p->gtime += cputime; |
| |
| /* Add guest time to cpustat. */ |
| if (task_nice(p) > 0) { |
| cpustat[CPUTIME_NICE] += (__force u64) cputime; |
| cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; |
| } else { |
| cpustat[CPUTIME_USER] += (__force u64) cputime; |
| cpustat[CPUTIME_GUEST] += (__force u64) cputime; |
| } |
| } |
| |
| /* |
| * Account system cpu time to a process and desired cpustat field |
| * @p: the process that the cpu time gets accounted to |
| * @cputime: the cpu time spent in kernel space since the last update |
| * @cputime_scaled: cputime scaled by cpu frequency |
| * @target_cputime64: pointer to cpustat field that has to be updated |
| */ |
| static inline |
| void __account_system_time(struct task_struct *p, cputime_t cputime, |
| cputime_t cputime_scaled, int index) |
| { |
| /* Add system time to process. */ |
| p->stime += cputime; |
| p->stimescaled += cputime_scaled; |
| account_group_system_time(p, cputime); |
| |
| /* Add system time to cpustat. */ |
| task_group_account_field(p, index, (__force u64) cputime); |
| |
| /* Account for system time used */ |
| acct_account_cputime(p); |
| |
| /* Account power usage for user time */ |
| acct_update_power(p, cputime); |
| |
| /* Account power usage for system time */ |
| cpufreq_acct_update_power(p, cputime); |
| } |
| |
| /* |
| * Account system cpu time to a process. |
| * @p: the process that the cpu time gets accounted to |
| * @hardirq_offset: the offset to subtract from hardirq_count() |
| * @cputime: the cpu time spent in kernel space since the last update |
| * @cputime_scaled: cputime scaled by cpu frequency |
| */ |
| void account_system_time(struct task_struct *p, int hardirq_offset, |
| cputime_t cputime, cputime_t cputime_scaled) |
| { |
| int index; |
| |
| if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
| account_guest_time(p, cputime, cputime_scaled); |
| return; |
| } |
| |
| if (hardirq_count() - hardirq_offset) |
| index = CPUTIME_IRQ; |
| else if (in_serving_softirq()) |
| index = CPUTIME_SOFTIRQ; |
| else |
| index = CPUTIME_SYSTEM; |
| |
| __account_system_time(p, cputime, cputime_scaled, index); |
| } |
| |
| /* |
| * Account for involuntary wait time. |
| * @cputime: the cpu time spent in involuntary wait |
| */ |
| void account_steal_time(cputime_t cputime) |
| { |
| u64 *cpustat = kcpustat_this_cpu->cpustat; |
| |
| cpustat[CPUTIME_STEAL] += (__force u64) cputime; |
| } |
| |
| /* |
| * Account for idle time. |
| * @cputime: the cpu time spent in idle wait |
| */ |
| void account_idle_time(cputime_t cputime) |
| { |
| u64 *cpustat = kcpustat_this_cpu->cpustat; |
| struct rq *rq = this_rq(); |
| |
| if (atomic_read(&rq->nr_iowait) > 0) |
| cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; |
| else |
| cpustat[CPUTIME_IDLE] += (__force u64) cputime; |
| } |
| |
| static __always_inline bool steal_account_process_tick(void) |
| { |
| #ifdef CONFIG_PARAVIRT |
| if (static_key_false(¶virt_steal_enabled)) { |
| u64 steal; |
| unsigned long steal_jiffies; |
| |
| steal = paravirt_steal_clock(smp_processor_id()); |
| steal -= this_rq()->prev_steal_time; |
| |
| /* |
| * steal is in nsecs but our caller is expecting steal |
| * time in jiffies. Lets cast the result to jiffies |
| * granularity and account the rest on the next rounds. |
| */ |
| steal_jiffies = nsecs_to_jiffies(steal); |
| this_rq()->prev_steal_time += jiffies_to_nsecs(steal_jiffies); |
| |
| account_steal_time(jiffies_to_cputime(steal_jiffies)); |
| return steal_jiffies; |
| } |
| #endif |
| return false; |
| } |
| |
| /* |
| * Accumulate raw cputime values of dead tasks (sig->[us]time) and live |
| * tasks (sum on group iteration) belonging to @tsk's group. |
| */ |
| void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) |
| { |
| struct signal_struct *sig = tsk->signal; |
| cputime_t utime, stime; |
| struct task_struct *t; |
| unsigned int seq, nextseq; |
| unsigned long flags; |
| |
| rcu_read_lock(); |
| /* Attempt a lockless read on the first round. */ |
| nextseq = 0; |
| do { |
| seq = nextseq; |
| flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); |
| times->utime = sig->utime; |
| times->stime = sig->stime; |
| times->sum_exec_runtime = sig->sum_sched_runtime; |
| |
| for_each_thread(tsk, t) { |
| task_cputime(t, &utime, &stime); |
| times->utime += utime; |
| times->stime += stime; |
| times->sum_exec_runtime += task_sched_runtime(t); |
| } |
| /* If lockless access failed, take the lock. */ |
| nextseq = 1; |
| } while (need_seqretry(&sig->stats_lock, seq)); |
| done_seqretry_irqrestore(&sig->stats_lock, seq, flags); |
| rcu_read_unlock(); |
| } |
| |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| /* |
| * Account a tick to a process and cpustat |
| * @p: the process that the cpu time gets accounted to |
| * @user_tick: is the tick from userspace |
| * @rq: the pointer to rq |
| * |
| * Tick demultiplexing follows the order |
| * - pending hardirq update |
| * - pending softirq update |
| * - user_time |
| * - idle_time |
| * - system time |
| * - check for guest_time |
| * - else account as system_time |
| * |
| * Check for hardirq is done both for system and user time as there is |
| * no timer going off while we are on hardirq and hence we may never get an |
| * opportunity to update it solely in system time. |
| * p->stime and friends are only updated on system time and not on irq |
| * softirq as those do not count in task exec_runtime any more. |
| */ |
| static void irqtime_account_process_tick(struct task_struct *p, int user_tick, |
| struct rq *rq, int ticks) |
| { |
| cputime_t scaled = cputime_to_scaled(cputime_one_jiffy); |
| u64 cputime = (__force u64) cputime_one_jiffy; |
| u64 *cpustat = kcpustat_this_cpu->cpustat; |
| |
| if (steal_account_process_tick()) |
| return; |
| |
| cputime *= ticks; |
| scaled *= ticks; |
| |
| if (irqtime_account_hi_update()) { |
| cpustat[CPUTIME_IRQ] += cputime; |
| } else if (irqtime_account_si_update()) { |
| cpustat[CPUTIME_SOFTIRQ] += cputime; |
| } else if (this_cpu_ksoftirqd() == p) { |
| /* |
| * ksoftirqd time do not get accounted in cpu_softirq_time. |
| * So, we have to handle it separately here. |
| * Also, p->stime needs to be updated for ksoftirqd. |
| */ |
| __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ); |
| } else if (user_tick) { |
| account_user_time(p, cputime, scaled); |
| } else if (p == rq->idle) { |
| account_idle_time(cputime); |
| } else if (p->flags & PF_VCPU) { /* System time or guest time */ |
| account_guest_time(p, cputime, scaled); |
| } else { |
| __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM); |
| } |
| } |
| |
| static void irqtime_account_idle_ticks(int ticks) |
| { |
| struct rq *rq = this_rq(); |
| |
| irqtime_account_process_tick(current, 0, rq, ticks); |
| } |
| #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| static inline void irqtime_account_idle_ticks(int ticks) {} |
| static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, |
| struct rq *rq, int nr_ticks) {} |
| #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| |
| /* |
| * Use precise platform statistics if available: |
| */ |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING |
| |
| #ifndef __ARCH_HAS_VTIME_TASK_SWITCH |
| void vtime_common_task_switch(struct task_struct *prev) |
| { |
| if (is_idle_task(prev)) |
| vtime_account_idle(prev); |
| else |
| vtime_account_system(prev); |
| |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| vtime_account_user(prev); |
| #endif |
| arch_vtime_task_switch(prev); |
| } |
| #endif |
| |
| /* |
| * Archs that account the whole time spent in the idle task |
| * (outside irq) as idle time can rely on this and just implement |
| * vtime_account_system() and vtime_account_idle(). Archs that |
| * have other meaning of the idle time (s390 only includes the |
| * time spent by the CPU when it's in low power mode) must override |
| * vtime_account(). |
| */ |
| #ifndef __ARCH_HAS_VTIME_ACCOUNT |
| void vtime_common_account_irq_enter(struct task_struct *tsk) |
| { |
| if (!in_interrupt()) { |
| /* |
| * If we interrupted user, context_tracking_in_user() |
| * is 1 because the context tracking don't hook |
| * on irq entry/exit. This way we know if |
| * we need to flush user time on kernel entry. |
| */ |
| if (context_tracking_in_user()) { |
| vtime_account_user(tsk); |
| return; |
| } |
| |
| if (is_idle_task(tsk)) { |
| vtime_account_idle(tsk); |
| return; |
| } |
| } |
| vtime_account_system(tsk); |
| } |
| EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter); |
| #endif /* __ARCH_HAS_VTIME_ACCOUNT */ |
| #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ |
| |
| |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) |
| { |
| *ut = p->utime; |
| *st = p->stime; |
| } |
| EXPORT_SYMBOL_GPL(task_cputime_adjusted); |
| |
| void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) |
| { |
| struct task_cputime cputime; |
| |
| thread_group_cputime(p, &cputime); |
| |
| *ut = cputime.utime; |
| *st = cputime.stime; |
| } |
| #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ |
| /* |
| * Account a single tick of cpu time. |
| * @p: the process that the cpu time gets accounted to |
| * @user_tick: indicates if the tick is a user or a system tick |
| */ |
| void account_process_tick(struct task_struct *p, int user_tick) |
| { |
| cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
| struct rq *rq = this_rq(); |
| |
| if (vtime_accounting_enabled()) |
| return; |
| |
| if (sched_clock_irqtime) { |
| irqtime_account_process_tick(p, user_tick, rq, 1); |
| return; |
| } |
| |
| if (steal_account_process_tick()) |
| return; |
| |
| if (user_tick) |
| account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
| else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
| account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
| one_jiffy_scaled); |
| else |
| account_idle_time(cputime_one_jiffy); |
| } |
| |
| /* |
| * Account multiple ticks of steal time. |
| * @p: the process from which the cpu time has been stolen |
| * @ticks: number of stolen ticks |
| */ |
| void account_steal_ticks(unsigned long ticks) |
| { |
| account_steal_time(jiffies_to_cputime(ticks)); |
| } |
| |
| /* |
| * Account multiple ticks of idle time. |
| * @ticks: number of stolen ticks |
| */ |
| void account_idle_ticks(unsigned long ticks) |
| { |
| |
| if (sched_clock_irqtime) { |
| irqtime_account_idle_ticks(ticks); |
| return; |
| } |
| |
| account_idle_time(jiffies_to_cputime(ticks)); |
| } |
| |
| /* |
| * Perform (stime * rtime) / total, but avoid multiplication overflow by |
| * loosing precision when the numbers are big. |
| */ |
| static cputime_t scale_stime(u64 stime, u64 rtime, u64 total) |
| { |
| u64 scaled; |
| |
| for (;;) { |
| /* Make sure "rtime" is the bigger of stime/rtime */ |
| if (stime > rtime) |
| swap(rtime, stime); |
| |
| /* Make sure 'total' fits in 32 bits */ |
| if (total >> 32) |
| goto drop_precision; |
| |
| /* Does rtime (and thus stime) fit in 32 bits? */ |
| if (!(rtime >> 32)) |
| break; |
| |
| /* Can we just balance rtime/stime rather than dropping bits? */ |
| if (stime >> 31) |
| goto drop_precision; |
| |
| /* We can grow stime and shrink rtime and try to make them both fit */ |
| stime <<= 1; |
| rtime >>= 1; |
| continue; |
| |
| drop_precision: |
| /* We drop from rtime, it has more bits than stime */ |
| rtime >>= 1; |
| total >>= 1; |
| } |
| |
| /* |
| * Make sure gcc understands that this is a 32x32->64 multiply, |
| * followed by a 64/32->64 divide. |
| */ |
| scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); |
| return (__force cputime_t) scaled; |
| } |
| |
| /* |
| * Adjust tick based cputime random precision against scheduler runtime |
| * accounting. |
| * |
| * Tick based cputime accounting depend on random scheduling timeslices of a |
| * task to be interrupted or not by the timer. Depending on these |
| * circumstances, the number of these interrupts may be over or |
| * under-optimistic, matching the real user and system cputime with a variable |
| * precision. |
| * |
| * Fix this by scaling these tick based values against the total runtime |
| * accounted by the CFS scheduler. |
| * |
| * This code provides the following guarantees: |
| * |
| * stime + utime == rtime |
| * stime_i+1 >= stime_i, utime_i+1 >= utime_i |
| * |
| * Assuming that rtime_i+1 >= rtime_i. |
| */ |
| static void cputime_adjust(struct task_cputime *curr, |
| struct prev_cputime *prev, |
| cputime_t *ut, cputime_t *st) |
| { |
| cputime_t rtime, stime, utime; |
| unsigned long flags; |
| |
| /* Serialize concurrent callers such that we can honour our guarantees */ |
| raw_spin_lock_irqsave(&prev->lock, flags); |
| rtime = nsecs_to_cputime(curr->sum_exec_runtime); |
| |
| /* |
| * This is possible under two circumstances: |
| * - rtime isn't monotonic after all (a bug); |
| * - we got reordered by the lock. |
| * |
| * In both cases this acts as a filter such that the rest of the code |
| * can assume it is monotonic regardless of anything else. |
| */ |
| if (prev->stime + prev->utime >= rtime) |
| goto out; |
| |
| stime = curr->stime; |
| utime = curr->utime; |
| |
| /* |
| * If either stime or both stime and utime are 0, assume all runtime is |
| * userspace. Once a task gets some ticks, the monotonicy code at |
| * 'update' will ensure things converge to the observed ratio. |
| */ |
| if (stime == 0) { |
| utime = rtime; |
| goto update; |
| } |
| |
| if (utime == 0) { |
| stime = rtime; |
| goto update; |
| } |
| |
| stime = scale_stime((__force u64)stime, (__force u64)rtime, |
| (__force u64)(stime + utime)); |
| |
| update: |
| /* |
| * Make sure stime doesn't go backwards; this preserves monotonicity |
| * for utime because rtime is monotonic. |
| * |
| * utime_i+1 = rtime_i+1 - stime_i |
| * = rtime_i+1 - (rtime_i - utime_i) |
| * = (rtime_i+1 - rtime_i) + utime_i |
| * >= utime_i |
| */ |
| if (stime < prev->stime) |
| stime = prev->stime; |
| utime = rtime - stime; |
| |
| /* |
| * Make sure utime doesn't go backwards; this still preserves |
| * monotonicity for stime, analogous argument to above. |
| */ |
| if (utime < prev->utime) { |
| utime = prev->utime; |
| stime = rtime - utime; |
| } |
| |
| prev->stime = stime; |
| prev->utime = utime; |
| out: |
| *ut = prev->utime; |
| *st = prev->stime; |
| raw_spin_unlock_irqrestore(&prev->lock, flags); |
| } |
| |
| void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) |
| { |
| struct task_cputime cputime = { |
| .sum_exec_runtime = p->se.sum_exec_runtime, |
| }; |
| |
| task_cputime(p, &cputime.utime, &cputime.stime); |
| cputime_adjust(&cputime, &p->prev_cputime, ut, st); |
| } |
| EXPORT_SYMBOL_GPL(task_cputime_adjusted); |
| |
| void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) |
| { |
| struct task_cputime cputime; |
| |
| thread_group_cputime(p, &cputime); |
| cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); |
| } |
| #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ |
| |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN |
| static unsigned long long vtime_delta(struct task_struct *tsk) |
| { |
| unsigned long long clock; |
| |
| clock = local_clock(); |
| if (clock < tsk->vtime_snap) |
| return 0; |
| |
| return clock - tsk->vtime_snap; |
| } |
| |
| static cputime_t get_vtime_delta(struct task_struct *tsk) |
| { |
| unsigned long long delta = vtime_delta(tsk); |
| |
| WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING); |
| tsk->vtime_snap += delta; |
| |
| /* CHECKME: always safe to convert nsecs to cputime? */ |
| return nsecs_to_cputime(delta); |
| } |
| |
| static void __vtime_account_system(struct task_struct *tsk) |
| { |
| cputime_t delta_cpu = get_vtime_delta(tsk); |
| |
| account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu)); |
| } |
| |
| void vtime_account_system(struct task_struct *tsk) |
| { |
| write_seqlock(&tsk->vtime_seqlock); |
| __vtime_account_system(tsk); |
| write_sequnlock(&tsk->vtime_seqlock); |
| } |
| |
| void vtime_gen_account_irq_exit(struct task_struct *tsk) |
| { |
| write_seqlock(&tsk->vtime_seqlock); |
| __vtime_account_system(tsk); |
| if (context_tracking_in_user()) |
| tsk->vtime_snap_whence = VTIME_USER; |
| write_sequnlock(&tsk->vtime_seqlock); |
| } |
| |
| void vtime_account_user(struct task_struct *tsk) |
| { |
| cputime_t delta_cpu; |
| |
| write_seqlock(&tsk->vtime_seqlock); |
| delta_cpu = get_vtime_delta(tsk); |
| tsk->vtime_snap_whence = VTIME_SYS; |
| account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu)); |
| write_sequnlock(&tsk->vtime_seqlock); |
| } |
| |
| void vtime_user_enter(struct task_struct *tsk) |
| { |
| write_seqlock(&tsk->vtime_seqlock); |
| __vtime_account_system(tsk); |
| tsk->vtime_snap_whence = VTIME_USER; |
| write_sequnlock(&tsk->vtime_seqlock); |
| } |
| |
| void vtime_guest_enter(struct task_struct *tsk) |
| { |
| /* |
| * The flags must be updated under the lock with |
| * the vtime_snap flush and update. |
| * That enforces a right ordering and update sequence |
| * synchronization against the reader (task_gtime()) |
| * that can thus safely catch up with a tickless delta. |
| */ |
| write_seqlock(&tsk->vtime_seqlock); |
| __vtime_account_system(tsk); |
| current->flags |= PF_VCPU; |
| write_sequnlock(&tsk->vtime_seqlock); |
| } |
| EXPORT_SYMBOL_GPL(vtime_guest_enter); |
| |
| void vtime_guest_exit(struct task_struct *tsk) |
| { |
| write_seqlock(&tsk->vtime_seqlock); |
| __vtime_account_system(tsk); |
| current->flags &= ~PF_VCPU; |
| write_sequnlock(&tsk->vtime_seqlock); |
| } |
| EXPORT_SYMBOL_GPL(vtime_guest_exit); |
| |
| void vtime_account_idle(struct task_struct *tsk) |
| { |
| cputime_t delta_cpu = get_vtime_delta(tsk); |
| |
| account_idle_time(delta_cpu); |
| } |
| |
| void arch_vtime_task_switch(struct task_struct *prev) |
| { |
| write_seqlock(&prev->vtime_seqlock); |
| prev->vtime_snap_whence = VTIME_SLEEPING; |
| write_sequnlock(&prev->vtime_seqlock); |
| |
| write_seqlock(¤t->vtime_seqlock); |
| current->vtime_snap_whence = VTIME_SYS; |
| current->vtime_snap = sched_clock_cpu(smp_processor_id()); |
| write_sequnlock(¤t->vtime_seqlock); |
| } |
| |
| void vtime_init_idle(struct task_struct *t, int cpu) |
| { |
| unsigned long flags; |
| |
| write_seqlock_irqsave(&t->vtime_seqlock, flags); |
| t->vtime_snap_whence = VTIME_SYS; |
| t->vtime_snap = sched_clock_cpu(cpu); |
| write_sequnlock_irqrestore(&t->vtime_seqlock, flags); |
| } |
| |
| cputime_t task_gtime(struct task_struct *t) |
| { |
| unsigned int seq; |
| cputime_t gtime; |
| |
| if (!context_tracking_is_enabled()) |
| return t->gtime; |
| |
| do { |
| seq = read_seqbegin(&t->vtime_seqlock); |
| |
| gtime = t->gtime; |
| if (t->flags & PF_VCPU) |
| gtime += vtime_delta(t); |
| |
| } while (read_seqretry(&t->vtime_seqlock, seq)); |
| |
| return gtime; |
| } |
| |
| /* |
| * Fetch cputime raw values from fields of task_struct and |
| * add up the pending nohz execution time since the last |
| * cputime snapshot. |
| */ |
| static void |
| fetch_task_cputime(struct task_struct *t, |
| cputime_t *u_dst, cputime_t *s_dst, |
| cputime_t *u_src, cputime_t *s_src, |
| cputime_t *udelta, cputime_t *sdelta) |
| { |
| unsigned int seq; |
| unsigned long long delta; |
| |
| do { |
| *udelta = 0; |
| *sdelta = 0; |
| |
| seq = read_seqbegin(&t->vtime_seqlock); |
| |
| if (u_dst) |
| *u_dst = *u_src; |
| if (s_dst) |
| *s_dst = *s_src; |
| |
| /* Task is sleeping, nothing to add */ |
| if (t->vtime_snap_whence == VTIME_SLEEPING || |
| is_idle_task(t)) |
| continue; |
| |
| delta = vtime_delta(t); |
| |
| /* |
| * Task runs either in user or kernel space, add pending nohz time to |
| * the right place. |
| */ |
| if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) { |
| *udelta = delta; |
| } else { |
| if (t->vtime_snap_whence == VTIME_SYS) |
| *sdelta = delta; |
| } |
| } while (read_seqretry(&t->vtime_seqlock, seq)); |
| } |
| |
| |
| void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime) |
| { |
| cputime_t udelta, sdelta; |
| |
| fetch_task_cputime(t, utime, stime, &t->utime, |
| &t->stime, &udelta, &sdelta); |
| if (utime) |
| *utime += udelta; |
| if (stime) |
| *stime += sdelta; |
| } |
| |
| void task_cputime_scaled(struct task_struct *t, |
| cputime_t *utimescaled, cputime_t *stimescaled) |
| { |
| cputime_t udelta, sdelta; |
| |
| fetch_task_cputime(t, utimescaled, stimescaled, |
| &t->utimescaled, &t->stimescaled, &udelta, &sdelta); |
| if (utimescaled) |
| *utimescaled += cputime_to_scaled(udelta); |
| if (stimescaled) |
| *stimescaled += cputime_to_scaled(sdelta); |
| } |
| #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ |