| /* |
| * drivers/mtd/nand/diskonchip.c |
| * |
| * (C) 2003 Red Hat, Inc. |
| * (C) 2004 Dan Brown <dan_brown@ieee.org> |
| * (C) 2004 Kalev Lember <kalev@smartlink.ee> |
| * |
| * Author: David Woodhouse <dwmw2@infradead.org> |
| * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> |
| * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> |
| * |
| * Error correction code lifted from the old docecc code |
| * Author: Fabrice Bellard (fabrice.bellard@netgem.com) |
| * Copyright (C) 2000 Netgem S.A. |
| * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> |
| * |
| * Interface to generic NAND code for M-Systems DiskOnChip devices |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/delay.h> |
| #include <linux/rslib.h> |
| #include <linux/moduleparam.h> |
| #include <linux/slab.h> |
| #include <linux/io.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/doc2000.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/inftl.h> |
| #include <linux/module.h> |
| |
| /* Where to look for the devices? */ |
| #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS |
| #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 |
| #endif |
| |
| static unsigned long doc_locations[] __initdata = { |
| #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) |
| #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH |
| 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, |
| 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, |
| 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, |
| 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, |
| 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, |
| #else |
| 0xc8000, 0xca000, 0xcc000, 0xce000, |
| 0xd0000, 0xd2000, 0xd4000, 0xd6000, |
| 0xd8000, 0xda000, 0xdc000, 0xde000, |
| 0xe0000, 0xe2000, 0xe4000, 0xe6000, |
| 0xe8000, 0xea000, 0xec000, 0xee000, |
| #endif |
| #endif |
| 0xffffffff }; |
| |
| static struct mtd_info *doclist = NULL; |
| |
| struct doc_priv { |
| void __iomem *virtadr; |
| unsigned long physadr; |
| u_char ChipID; |
| u_char CDSNControl; |
| int chips_per_floor; /* The number of chips detected on each floor */ |
| int curfloor; |
| int curchip; |
| int mh0_page; |
| int mh1_page; |
| struct mtd_info *nextdoc; |
| |
| /* Handle the last stage of initialization (BBT scan, partitioning) */ |
| int (*late_init)(struct mtd_info *mtd); |
| }; |
| |
| /* This is the syndrome computed by the HW ecc generator upon reading an empty |
| page, one with all 0xff for data and stored ecc code. */ |
| static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a }; |
| |
| /* This is the ecc value computed by the HW ecc generator upon writing an empty |
| page, one with all 0xff for data. */ |
| static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; |
| |
| #define INFTL_BBT_RESERVED_BLOCKS 4 |
| |
| #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) |
| #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) |
| #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) |
| |
| static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, |
| unsigned int bitmask); |
| static void doc200x_select_chip(struct mtd_info *mtd, int chip); |
| |
| static int debug = 0; |
| module_param(debug, int, 0); |
| |
| static int try_dword = 1; |
| module_param(try_dword, int, 0); |
| |
| static int no_ecc_failures = 0; |
| module_param(no_ecc_failures, int, 0); |
| |
| static int no_autopart = 0; |
| module_param(no_autopart, int, 0); |
| |
| static int show_firmware_partition = 0; |
| module_param(show_firmware_partition, int, 0); |
| |
| #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE |
| static int inftl_bbt_write = 1; |
| #else |
| static int inftl_bbt_write = 0; |
| #endif |
| module_param(inftl_bbt_write, int, 0); |
| |
| static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; |
| module_param(doc_config_location, ulong, 0); |
| MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); |
| |
| /* Sector size for HW ECC */ |
| #define SECTOR_SIZE 512 |
| /* The sector bytes are packed into NB_DATA 10 bit words */ |
| #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) |
| /* Number of roots */ |
| #define NROOTS 4 |
| /* First consective root */ |
| #define FCR 510 |
| /* Number of symbols */ |
| #define NN 1023 |
| |
| /* the Reed Solomon control structure */ |
| static struct rs_control *rs_decoder; |
| |
| /* |
| * The HW decoder in the DoC ASIC's provides us a error syndrome, |
| * which we must convert to a standard syndrome usable by the generic |
| * Reed-Solomon library code. |
| * |
| * Fabrice Bellard figured this out in the old docecc code. I added |
| * some comments, improved a minor bit and converted it to make use |
| * of the generic Reed-Solomon library. tglx |
| */ |
| static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) |
| { |
| int i, j, nerr, errpos[8]; |
| uint8_t parity; |
| uint16_t ds[4], s[5], tmp, errval[8], syn[4]; |
| |
| memset(syn, 0, sizeof(syn)); |
| /* Convert the ecc bytes into words */ |
| ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); |
| ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); |
| ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); |
| ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); |
| parity = ecc[1]; |
| |
| /* Initialize the syndrome buffer */ |
| for (i = 0; i < NROOTS; i++) |
| s[i] = ds[0]; |
| /* |
| * Evaluate |
| * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] |
| * where x = alpha^(FCR + i) |
| */ |
| for (j = 1; j < NROOTS; j++) { |
| if (ds[j] == 0) |
| continue; |
| tmp = rs->index_of[ds[j]]; |
| for (i = 0; i < NROOTS; i++) |
| s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; |
| } |
| |
| /* Calc syn[i] = s[i] / alpha^(v + i) */ |
| for (i = 0; i < NROOTS; i++) { |
| if (s[i]) |
| syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); |
| } |
| /* Call the decoder library */ |
| nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); |
| |
| /* Incorrectable errors ? */ |
| if (nerr < 0) |
| return nerr; |
| |
| /* |
| * Correct the errors. The bitpositions are a bit of magic, |
| * but they are given by the design of the de/encoder circuit |
| * in the DoC ASIC's. |
| */ |
| for (i = 0; i < nerr; i++) { |
| int index, bitpos, pos = 1015 - errpos[i]; |
| uint8_t val; |
| if (pos >= NB_DATA && pos < 1019) |
| continue; |
| if (pos < NB_DATA) { |
| /* extract bit position (MSB first) */ |
| pos = 10 * (NB_DATA - 1 - pos) - 6; |
| /* now correct the following 10 bits. At most two bytes |
| can be modified since pos is even */ |
| index = (pos >> 3) ^ 1; |
| bitpos = pos & 7; |
| if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { |
| val = (uint8_t) (errval[i] >> (2 + bitpos)); |
| parity ^= val; |
| if (index < SECTOR_SIZE) |
| data[index] ^= val; |
| } |
| index = ((pos >> 3) + 1) ^ 1; |
| bitpos = (bitpos + 10) & 7; |
| if (bitpos == 0) |
| bitpos = 8; |
| if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { |
| val = (uint8_t) (errval[i] << (8 - bitpos)); |
| parity ^= val; |
| if (index < SECTOR_SIZE) |
| data[index] ^= val; |
| } |
| } |
| } |
| /* If the parity is wrong, no rescue possible */ |
| return parity ? -EBADMSG : nerr; |
| } |
| |
| static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) |
| { |
| volatile char dummy; |
| int i; |
| |
| for (i = 0; i < cycles; i++) { |
| if (DoC_is_Millennium(doc)) |
| dummy = ReadDOC(doc->virtadr, NOP); |
| else if (DoC_is_MillenniumPlus(doc)) |
| dummy = ReadDOC(doc->virtadr, Mplus_NOP); |
| else |
| dummy = ReadDOC(doc->virtadr, DOCStatus); |
| } |
| |
| } |
| |
| #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) |
| |
| /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ |
| static int _DoC_WaitReady(struct doc_priv *doc) |
| { |
| void __iomem *docptr = doc->virtadr; |
| unsigned long timeo = jiffies + (HZ * 10); |
| |
| if (debug) |
| printk("_DoC_WaitReady...\n"); |
| /* Out-of-line routine to wait for chip response */ |
| if (DoC_is_MillenniumPlus(doc)) { |
| while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { |
| if (time_after(jiffies, timeo)) { |
| printk("_DoC_WaitReady timed out.\n"); |
| return -EIO; |
| } |
| udelay(1); |
| cond_resched(); |
| } |
| } else { |
| while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { |
| if (time_after(jiffies, timeo)) { |
| printk("_DoC_WaitReady timed out.\n"); |
| return -EIO; |
| } |
| udelay(1); |
| cond_resched(); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static inline int DoC_WaitReady(struct doc_priv *doc) |
| { |
| void __iomem *docptr = doc->virtadr; |
| int ret = 0; |
| |
| if (DoC_is_MillenniumPlus(doc)) { |
| DoC_Delay(doc, 4); |
| |
| if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) |
| /* Call the out-of-line routine to wait */ |
| ret = _DoC_WaitReady(doc); |
| } else { |
| DoC_Delay(doc, 4); |
| |
| if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) |
| /* Call the out-of-line routine to wait */ |
| ret = _DoC_WaitReady(doc); |
| DoC_Delay(doc, 2); |
| } |
| |
| if (debug) |
| printk("DoC_WaitReady OK\n"); |
| return ret; |
| } |
| |
| static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| |
| if (debug) |
| printk("write_byte %02x\n", datum); |
| WriteDOC(datum, docptr, CDSNSlowIO); |
| WriteDOC(datum, docptr, 2k_CDSN_IO); |
| } |
| |
| static u_char doc2000_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| u_char ret; |
| |
| ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(doc, 2); |
| ret = ReadDOC(docptr, 2k_CDSN_IO); |
| if (debug) |
| printk("read_byte returns %02x\n", ret); |
| return ret; |
| } |
| |
| static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| int i; |
| if (debug) |
| printk("writebuf of %d bytes: ", len); |
| for (i = 0; i < len; i++) { |
| WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); |
| if (debug && i < 16) |
| printk("%02x ", buf[i]); |
| } |
| if (debug) |
| printk("\n"); |
| } |
| |
| static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| int i; |
| |
| if (debug) |
| printk("readbuf of %d bytes: ", len); |
| |
| for (i = 0; i < len; i++) { |
| buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); |
| } |
| } |
| |
| static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| int i; |
| |
| if (debug) |
| printk("readbuf_dword of %d bytes: ", len); |
| |
| if (unlikely((((unsigned long)buf) | len) & 3)) { |
| for (i = 0; i < len; i++) { |
| *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); |
| } |
| } else { |
| for (i = 0; i < len; i += 4) { |
| *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); |
| } |
| } |
| } |
| |
| static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| uint16_t ret; |
| |
| doc200x_select_chip(mtd, nr); |
| doc200x_hwcontrol(mtd, NAND_CMD_READID, |
| NAND_CTRL_CLE | NAND_CTRL_CHANGE); |
| doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); |
| doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); |
| |
| /* We can't use dev_ready here, but at least we wait for the |
| * command to complete |
| */ |
| udelay(50); |
| |
| ret = this->read_byte(mtd) << 8; |
| ret |= this->read_byte(mtd); |
| |
| if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { |
| /* First chip probe. See if we get same results by 32-bit access */ |
| union { |
| uint32_t dword; |
| uint8_t byte[4]; |
| } ident; |
| void __iomem *docptr = doc->virtadr; |
| |
| doc200x_hwcontrol(mtd, NAND_CMD_READID, |
| NAND_CTRL_CLE | NAND_CTRL_CHANGE); |
| doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); |
| doc200x_hwcontrol(mtd, NAND_CMD_NONE, |
| NAND_NCE | NAND_CTRL_CHANGE); |
| |
| udelay(50); |
| |
| ident.dword = readl(docptr + DoC_2k_CDSN_IO); |
| if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { |
| printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); |
| this->read_buf = &doc2000_readbuf_dword; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void __init doc2000_count_chips(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| uint16_t mfrid; |
| int i; |
| |
| /* Max 4 chips per floor on DiskOnChip 2000 */ |
| doc->chips_per_floor = 4; |
| |
| /* Find out what the first chip is */ |
| mfrid = doc200x_ident_chip(mtd, 0); |
| |
| /* Find how many chips in each floor. */ |
| for (i = 1; i < 4; i++) { |
| if (doc200x_ident_chip(mtd, i) != mfrid) |
| break; |
| } |
| doc->chips_per_floor = i; |
| printk(KERN_DEBUG "Detected %d chips per floor.\n", i); |
| } |
| |
| static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this) |
| { |
| struct doc_priv *doc = this->priv; |
| |
| int status; |
| |
| DoC_WaitReady(doc); |
| this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); |
| DoC_WaitReady(doc); |
| status = (int)this->read_byte(mtd); |
| |
| return status; |
| } |
| |
| static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| |
| WriteDOC(datum, docptr, CDSNSlowIO); |
| WriteDOC(datum, docptr, Mil_CDSN_IO); |
| WriteDOC(datum, docptr, WritePipeTerm); |
| } |
| |
| static u_char doc2001_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| |
| //ReadDOC(docptr, CDSNSlowIO); |
| /* 11.4.5 -- delay twice to allow extended length cycle */ |
| DoC_Delay(doc, 2); |
| ReadDOC(docptr, ReadPipeInit); |
| //return ReadDOC(docptr, Mil_CDSN_IO); |
| return ReadDOC(docptr, LastDataRead); |
| } |
| |
| static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| int i; |
| |
| for (i = 0; i < len; i++) |
| WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); |
| /* Terminate write pipeline */ |
| WriteDOC(0x00, docptr, WritePipeTerm); |
| } |
| |
| static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| int i; |
| |
| /* Start read pipeline */ |
| ReadDOC(docptr, ReadPipeInit); |
| |
| for (i = 0; i < len - 1; i++) |
| buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); |
| |
| /* Terminate read pipeline */ |
| buf[i] = ReadDOC(docptr, LastDataRead); |
| } |
| |
| static u_char doc2001plus_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| u_char ret; |
| |
| ReadDOC(docptr, Mplus_ReadPipeInit); |
| ReadDOC(docptr, Mplus_ReadPipeInit); |
| ret = ReadDOC(docptr, Mplus_LastDataRead); |
| if (debug) |
| printk("read_byte returns %02x\n", ret); |
| return ret; |
| } |
| |
| static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| int i; |
| |
| if (debug) |
| printk("writebuf of %d bytes: ", len); |
| for (i = 0; i < len; i++) { |
| WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); |
| if (debug && i < 16) |
| printk("%02x ", buf[i]); |
| } |
| if (debug) |
| printk("\n"); |
| } |
| |
| static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| int i; |
| |
| if (debug) |
| printk("readbuf of %d bytes: ", len); |
| |
| /* Start read pipeline */ |
| ReadDOC(docptr, Mplus_ReadPipeInit); |
| ReadDOC(docptr, Mplus_ReadPipeInit); |
| |
| for (i = 0; i < len - 2; i++) { |
| buf[i] = ReadDOC(docptr, Mil_CDSN_IO); |
| if (debug && i < 16) |
| printk("%02x ", buf[i]); |
| } |
| |
| /* Terminate read pipeline */ |
| buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); |
| if (debug && i < 16) |
| printk("%02x ", buf[len - 2]); |
| buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); |
| if (debug && i < 16) |
| printk("%02x ", buf[len - 1]); |
| if (debug) |
| printk("\n"); |
| } |
| |
| static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| int floor = 0; |
| |
| if (debug) |
| printk("select chip (%d)\n", chip); |
| |
| if (chip == -1) { |
| /* Disable flash internally */ |
| WriteDOC(0, docptr, Mplus_FlashSelect); |
| return; |
| } |
| |
| floor = chip / doc->chips_per_floor; |
| chip -= (floor * doc->chips_per_floor); |
| |
| /* Assert ChipEnable and deassert WriteProtect */ |
| WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); |
| this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); |
| |
| doc->curchip = chip; |
| doc->curfloor = floor; |
| } |
| |
| static void doc200x_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| int floor = 0; |
| |
| if (debug) |
| printk("select chip (%d)\n", chip); |
| |
| if (chip == -1) |
| return; |
| |
| floor = chip / doc->chips_per_floor; |
| chip -= (floor * doc->chips_per_floor); |
| |
| /* 11.4.4 -- deassert CE before changing chip */ |
| doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); |
| |
| WriteDOC(floor, docptr, FloorSelect); |
| WriteDOC(chip, docptr, CDSNDeviceSelect); |
| |
| doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); |
| |
| doc->curchip = chip; |
| doc->curfloor = floor; |
| } |
| |
| #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE) |
| |
| static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| doc->CDSNControl &= ~CDSN_CTRL_MSK; |
| doc->CDSNControl |= ctrl & CDSN_CTRL_MSK; |
| if (debug) |
| printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); |
| WriteDOC(doc->CDSNControl, docptr, CDSNControl); |
| /* 11.4.3 -- 4 NOPs after CSDNControl write */ |
| DoC_Delay(doc, 4); |
| } |
| if (cmd != NAND_CMD_NONE) { |
| if (DoC_is_2000(doc)) |
| doc2000_write_byte(mtd, cmd); |
| else |
| doc2001_write_byte(mtd, cmd); |
| } |
| } |
| |
| static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| |
| /* |
| * Must terminate write pipeline before sending any commands |
| * to the device. |
| */ |
| if (command == NAND_CMD_PAGEPROG) { |
| WriteDOC(0x00, docptr, Mplus_WritePipeTerm); |
| WriteDOC(0x00, docptr, Mplus_WritePipeTerm); |
| } |
| |
| /* |
| * Write out the command to the device. |
| */ |
| if (command == NAND_CMD_SEQIN) { |
| int readcmd; |
| |
| if (column >= mtd->writesize) { |
| /* OOB area */ |
| column -= mtd->writesize; |
| readcmd = NAND_CMD_READOOB; |
| } else if (column < 256) { |
| /* First 256 bytes --> READ0 */ |
| readcmd = NAND_CMD_READ0; |
| } else { |
| column -= 256; |
| readcmd = NAND_CMD_READ1; |
| } |
| WriteDOC(readcmd, docptr, Mplus_FlashCmd); |
| } |
| WriteDOC(command, docptr, Mplus_FlashCmd); |
| WriteDOC(0, docptr, Mplus_WritePipeTerm); |
| WriteDOC(0, docptr, Mplus_WritePipeTerm); |
| |
| if (column != -1 || page_addr != -1) { |
| /* Serially input address */ |
| if (column != -1) { |
| /* Adjust columns for 16 bit buswidth */ |
| if (this->options & NAND_BUSWIDTH_16 && |
| !nand_opcode_8bits(command)) |
| column >>= 1; |
| WriteDOC(column, docptr, Mplus_FlashAddress); |
| } |
| if (page_addr != -1) { |
| WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress); |
| WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); |
| /* One more address cycle for higher density devices */ |
| if (this->chipsize & 0x0c000000) { |
| WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); |
| printk("high density\n"); |
| } |
| } |
| WriteDOC(0, docptr, Mplus_WritePipeTerm); |
| WriteDOC(0, docptr, Mplus_WritePipeTerm); |
| /* deassert ALE */ |
| if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || |
| command == NAND_CMD_READOOB || command == NAND_CMD_READID) |
| WriteDOC(0, docptr, Mplus_FlashControl); |
| } |
| |
| /* |
| * program and erase have their own busy handlers |
| * status and sequential in needs no delay |
| */ |
| switch (command) { |
| |
| case NAND_CMD_PAGEPROG: |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| case NAND_CMD_SEQIN: |
| case NAND_CMD_STATUS: |
| return; |
| |
| case NAND_CMD_RESET: |
| if (this->dev_ready) |
| break; |
| udelay(this->chip_delay); |
| WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); |
| WriteDOC(0, docptr, Mplus_WritePipeTerm); |
| WriteDOC(0, docptr, Mplus_WritePipeTerm); |
| while (!(this->read_byte(mtd) & 0x40)) ; |
| return; |
| |
| /* This applies to read commands */ |
| default: |
| /* |
| * If we don't have access to the busy pin, we apply the given |
| * command delay |
| */ |
| if (!this->dev_ready) { |
| udelay(this->chip_delay); |
| return; |
| } |
| } |
| |
| /* Apply this short delay always to ensure that we do wait tWB in |
| * any case on any machine. */ |
| ndelay(100); |
| /* wait until command is processed */ |
| while (!this->dev_ready(mtd)) ; |
| } |
| |
| static int doc200x_dev_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| |
| if (DoC_is_MillenniumPlus(doc)) { |
| /* 11.4.2 -- must NOP four times before checking FR/B# */ |
| DoC_Delay(doc, 4); |
| if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { |
| if (debug) |
| printk("not ready\n"); |
| return 0; |
| } |
| if (debug) |
| printk("was ready\n"); |
| return 1; |
| } else { |
| /* 11.4.2 -- must NOP four times before checking FR/B# */ |
| DoC_Delay(doc, 4); |
| if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { |
| if (debug) |
| printk("not ready\n"); |
| return 0; |
| } |
| /* 11.4.2 -- Must NOP twice if it's ready */ |
| DoC_Delay(doc, 2); |
| if (debug) |
| printk("was ready\n"); |
| return 1; |
| } |
| } |
| |
| static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) |
| { |
| /* This is our last resort if we couldn't find or create a BBT. Just |
| pretend all blocks are good. */ |
| return 0; |
| } |
| |
| static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| |
| /* Prime the ECC engine */ |
| switch (mode) { |
| case NAND_ECC_READ: |
| WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC(DOC_ECC_EN, docptr, ECCConf); |
| break; |
| case NAND_ECC_WRITE: |
| WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); |
| break; |
| } |
| } |
| |
| static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| |
| /* Prime the ECC engine */ |
| switch (mode) { |
| case NAND_ECC_READ: |
| WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); |
| WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); |
| break; |
| case NAND_ECC_WRITE: |
| WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); |
| WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); |
| break; |
| } |
| } |
| |
| /* This code is only called on write */ |
| static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| int i; |
| int emptymatch = 1; |
| |
| /* flush the pipeline */ |
| if (DoC_is_2000(doc)) { |
| WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); |
| WriteDOC(0, docptr, 2k_CDSN_IO); |
| WriteDOC(0, docptr, 2k_CDSN_IO); |
| WriteDOC(0, docptr, 2k_CDSN_IO); |
| WriteDOC(doc->CDSNControl, docptr, CDSNControl); |
| } else if (DoC_is_MillenniumPlus(doc)) { |
| WriteDOC(0, docptr, Mplus_NOP); |
| WriteDOC(0, docptr, Mplus_NOP); |
| WriteDOC(0, docptr, Mplus_NOP); |
| } else { |
| WriteDOC(0, docptr, NOP); |
| WriteDOC(0, docptr, NOP); |
| WriteDOC(0, docptr, NOP); |
| } |
| |
| for (i = 0; i < 6; i++) { |
| if (DoC_is_MillenniumPlus(doc)) |
| ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); |
| else |
| ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); |
| if (ecc_code[i] != empty_write_ecc[i]) |
| emptymatch = 0; |
| } |
| if (DoC_is_MillenniumPlus(doc)) |
| WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); |
| else |
| WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| #if 0 |
| /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ |
| if (emptymatch) { |
| /* Note: this somewhat expensive test should not be triggered |
| often. It could be optimized away by examining the data in |
| the writebuf routine, and remembering the result. */ |
| for (i = 0; i < 512; i++) { |
| if (dat[i] == 0xff) |
| continue; |
| emptymatch = 0; |
| break; |
| } |
| } |
| /* If emptymatch still =1, we do have an all-0xff data buffer. |
| Return all-0xff ecc value instead of the computed one, so |
| it'll look just like a freshly-erased page. */ |
| if (emptymatch) |
| memset(ecc_code, 0xff, 6); |
| #endif |
| return 0; |
| } |
| |
| static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *isnull) |
| { |
| int i, ret = 0; |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| void __iomem *docptr = doc->virtadr; |
| uint8_t calc_ecc[6]; |
| volatile u_char dummy; |
| int emptymatch = 1; |
| |
| /* flush the pipeline */ |
| if (DoC_is_2000(doc)) { |
| dummy = ReadDOC(docptr, 2k_ECCStatus); |
| dummy = ReadDOC(docptr, 2k_ECCStatus); |
| dummy = ReadDOC(docptr, 2k_ECCStatus); |
| } else if (DoC_is_MillenniumPlus(doc)) { |
| dummy = ReadDOC(docptr, Mplus_ECCConf); |
| dummy = ReadDOC(docptr, Mplus_ECCConf); |
| dummy = ReadDOC(docptr, Mplus_ECCConf); |
| } else { |
| dummy = ReadDOC(docptr, ECCConf); |
| dummy = ReadDOC(docptr, ECCConf); |
| dummy = ReadDOC(docptr, ECCConf); |
| } |
| |
| /* Error occurred ? */ |
| if (dummy & 0x80) { |
| for (i = 0; i < 6; i++) { |
| if (DoC_is_MillenniumPlus(doc)) |
| calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); |
| else |
| calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); |
| if (calc_ecc[i] != empty_read_syndrome[i]) |
| emptymatch = 0; |
| } |
| /* If emptymatch=1, the read syndrome is consistent with an |
| all-0xff data and stored ecc block. Check the stored ecc. */ |
| if (emptymatch) { |
| for (i = 0; i < 6; i++) { |
| if (read_ecc[i] == 0xff) |
| continue; |
| emptymatch = 0; |
| break; |
| } |
| } |
| /* If emptymatch still =1, check the data block. */ |
| if (emptymatch) { |
| /* Note: this somewhat expensive test should not be triggered |
| often. It could be optimized away by examining the data in |
| the readbuf routine, and remembering the result. */ |
| for (i = 0; i < 512; i++) { |
| if (dat[i] == 0xff) |
| continue; |
| emptymatch = 0; |
| break; |
| } |
| } |
| /* If emptymatch still =1, this is almost certainly a freshly- |
| erased block, in which case the ECC will not come out right. |
| We'll suppress the error and tell the caller everything's |
| OK. Because it is. */ |
| if (!emptymatch) |
| ret = doc_ecc_decode(rs_decoder, dat, calc_ecc); |
| if (ret > 0) |
| printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); |
| } |
| if (DoC_is_MillenniumPlus(doc)) |
| WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); |
| else |
| WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| if (no_ecc_failures && mtd_is_eccerr(ret)) { |
| printk(KERN_ERR "suppressing ECC failure\n"); |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| //u_char mydatabuf[528]; |
| |
| /* The strange out-of-order .oobfree list below is a (possibly unneeded) |
| * attempt to retain compatibility. It used to read: |
| * .oobfree = { {8, 8} } |
| * Since that leaves two bytes unusable, it was changed. But the following |
| * scheme might affect existing jffs2 installs by moving the cleanmarker: |
| * .oobfree = { {6, 10} } |
| * jffs2 seems to handle the above gracefully, but the current scheme seems |
| * safer. The only problem with it is that any code that parses oobfree must |
| * be able to handle out-of-order segments. |
| */ |
| static struct nand_ecclayout doc200x_oobinfo = { |
| .eccbytes = 6, |
| .eccpos = {0, 1, 2, 3, 4, 5}, |
| .oobfree = {{8, 8}, {6, 2}} |
| }; |
| |
| /* Find the (I)NFTL Media Header, and optionally also the mirror media header. |
| On successful return, buf will contain a copy of the media header for |
| further processing. id is the string to scan for, and will presumably be |
| either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media |
| header. The page #s of the found media headers are placed in mh0_page and |
| mh1_page in the DOC private structure. */ |
| static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| unsigned offs; |
| int ret; |
| size_t retlen; |
| |
| for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { |
| ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); |
| if (retlen != mtd->writesize) |
| continue; |
| if (ret) { |
| printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs); |
| } |
| if (memcmp(buf, id, 6)) |
| continue; |
| printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); |
| if (doc->mh0_page == -1) { |
| doc->mh0_page = offs >> this->page_shift; |
| if (!findmirror) |
| return 1; |
| continue; |
| } |
| doc->mh1_page = offs >> this->page_shift; |
| return 2; |
| } |
| if (doc->mh0_page == -1) { |
| printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); |
| return 0; |
| } |
| /* Only one mediaheader was found. We want buf to contain a |
| mediaheader on return, so we'll have to re-read the one we found. */ |
| offs = doc->mh0_page << this->page_shift; |
| ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); |
| if (retlen != mtd->writesize) { |
| /* Insanity. Give up. */ |
| printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| int ret = 0; |
| u_char *buf; |
| struct NFTLMediaHeader *mh; |
| const unsigned psize = 1 << this->page_shift; |
| int numparts = 0; |
| unsigned blocks, maxblocks; |
| int offs, numheaders; |
| |
| buf = kmalloc(mtd->writesize, GFP_KERNEL); |
| if (!buf) { |
| return 0; |
| } |
| if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) |
| goto out; |
| mh = (struct NFTLMediaHeader *)buf; |
| |
| le16_to_cpus(&mh->NumEraseUnits); |
| le16_to_cpus(&mh->FirstPhysicalEUN); |
| le32_to_cpus(&mh->FormattedSize); |
| |
| printk(KERN_INFO " DataOrgID = %s\n" |
| " NumEraseUnits = %d\n" |
| " FirstPhysicalEUN = %d\n" |
| " FormattedSize = %d\n" |
| " UnitSizeFactor = %d\n", |
| mh->DataOrgID, mh->NumEraseUnits, |
| mh->FirstPhysicalEUN, mh->FormattedSize, |
| mh->UnitSizeFactor); |
| |
| blocks = mtd->size >> this->phys_erase_shift; |
| maxblocks = min(32768U, mtd->erasesize - psize); |
| |
| if (mh->UnitSizeFactor == 0x00) { |
| /* Auto-determine UnitSizeFactor. The constraints are: |
| - There can be at most 32768 virtual blocks. |
| - There can be at most (virtual block size - page size) |
| virtual blocks (because MediaHeader+BBT must fit in 1). |
| */ |
| mh->UnitSizeFactor = 0xff; |
| while (blocks > maxblocks) { |
| blocks >>= 1; |
| maxblocks = min(32768U, (maxblocks << 1) + psize); |
| mh->UnitSizeFactor--; |
| } |
| printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); |
| } |
| |
| /* NOTE: The lines below modify internal variables of the NAND and MTD |
| layers; variables with have already been configured by nand_scan. |
| Unfortunately, we didn't know before this point what these values |
| should be. Thus, this code is somewhat dependent on the exact |
| implementation of the NAND layer. */ |
| if (mh->UnitSizeFactor != 0xff) { |
| this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); |
| mtd->erasesize <<= (0xff - mh->UnitSizeFactor); |
| printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); |
| blocks = mtd->size >> this->bbt_erase_shift; |
| maxblocks = min(32768U, mtd->erasesize - psize); |
| } |
| |
| if (blocks > maxblocks) { |
| printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); |
| goto out; |
| } |
| |
| /* Skip past the media headers. */ |
| offs = max(doc->mh0_page, doc->mh1_page); |
| offs <<= this->page_shift; |
| offs += mtd->erasesize; |
| |
| if (show_firmware_partition == 1) { |
| parts[0].name = " DiskOnChip Firmware / Media Header partition"; |
| parts[0].offset = 0; |
| parts[0].size = offs; |
| numparts = 1; |
| } |
| |
| parts[numparts].name = " DiskOnChip BDTL partition"; |
| parts[numparts].offset = offs; |
| parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; |
| |
| offs += parts[numparts].size; |
| numparts++; |
| |
| if (offs < mtd->size) { |
| parts[numparts].name = " DiskOnChip Remainder partition"; |
| parts[numparts].offset = offs; |
| parts[numparts].size = mtd->size - offs; |
| numparts++; |
| } |
| |
| ret = numparts; |
| out: |
| kfree(buf); |
| return ret; |
| } |
| |
| /* This is a stripped-down copy of the code in inftlmount.c */ |
| static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| int ret = 0; |
| u_char *buf; |
| struct INFTLMediaHeader *mh; |
| struct INFTLPartition *ip; |
| int numparts = 0; |
| int blocks; |
| int vshift, lastvunit = 0; |
| int i; |
| int end = mtd->size; |
| |
| if (inftl_bbt_write) |
| end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); |
| |
| buf = kmalloc(mtd->writesize, GFP_KERNEL); |
| if (!buf) { |
| return 0; |
| } |
| |
| if (!find_media_headers(mtd, buf, "BNAND", 0)) |
| goto out; |
| doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); |
| mh = (struct INFTLMediaHeader *)buf; |
| |
| le32_to_cpus(&mh->NoOfBootImageBlocks); |
| le32_to_cpus(&mh->NoOfBinaryPartitions); |
| le32_to_cpus(&mh->NoOfBDTLPartitions); |
| le32_to_cpus(&mh->BlockMultiplierBits); |
| le32_to_cpus(&mh->FormatFlags); |
| le32_to_cpus(&mh->PercentUsed); |
| |
| printk(KERN_INFO " bootRecordID = %s\n" |
| " NoOfBootImageBlocks = %d\n" |
| " NoOfBinaryPartitions = %d\n" |
| " NoOfBDTLPartitions = %d\n" |
| " BlockMultiplerBits = %d\n" |
| " FormatFlgs = %d\n" |
| " OsakVersion = %d.%d.%d.%d\n" |
| " PercentUsed = %d\n", |
| mh->bootRecordID, mh->NoOfBootImageBlocks, |
| mh->NoOfBinaryPartitions, |
| mh->NoOfBDTLPartitions, |
| mh->BlockMultiplierBits, mh->FormatFlags, |
| ((unsigned char *) &mh->OsakVersion)[0] & 0xf, |
| ((unsigned char *) &mh->OsakVersion)[1] & 0xf, |
| ((unsigned char *) &mh->OsakVersion)[2] & 0xf, |
| ((unsigned char *) &mh->OsakVersion)[3] & 0xf, |
| mh->PercentUsed); |
| |
| vshift = this->phys_erase_shift + mh->BlockMultiplierBits; |
| |
| blocks = mtd->size >> vshift; |
| if (blocks > 32768) { |
| printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); |
| goto out; |
| } |
| |
| blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); |
| if (inftl_bbt_write && (blocks > mtd->erasesize)) { |
| printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); |
| goto out; |
| } |
| |
| /* Scan the partitions */ |
| for (i = 0; (i < 4); i++) { |
| ip = &(mh->Partitions[i]); |
| le32_to_cpus(&ip->virtualUnits); |
| le32_to_cpus(&ip->firstUnit); |
| le32_to_cpus(&ip->lastUnit); |
| le32_to_cpus(&ip->flags); |
| le32_to_cpus(&ip->spareUnits); |
| le32_to_cpus(&ip->Reserved0); |
| |
| printk(KERN_INFO " PARTITION[%d] ->\n" |
| " virtualUnits = %d\n" |
| " firstUnit = %d\n" |
| " lastUnit = %d\n" |
| " flags = 0x%x\n" |
| " spareUnits = %d\n", |
| i, ip->virtualUnits, ip->firstUnit, |
| ip->lastUnit, ip->flags, |
| ip->spareUnits); |
| |
| if ((show_firmware_partition == 1) && |
| (i == 0) && (ip->firstUnit > 0)) { |
| parts[0].name = " DiskOnChip IPL / Media Header partition"; |
| parts[0].offset = 0; |
| parts[0].size = mtd->erasesize * ip->firstUnit; |
| numparts = 1; |
| } |
| |
| if (ip->flags & INFTL_BINARY) |
| parts[numparts].name = " DiskOnChip BDK partition"; |
| else |
| parts[numparts].name = " DiskOnChip BDTL partition"; |
| parts[numparts].offset = ip->firstUnit << vshift; |
| parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; |
| numparts++; |
| if (ip->lastUnit > lastvunit) |
| lastvunit = ip->lastUnit; |
| if (ip->flags & INFTL_LAST) |
| break; |
| } |
| lastvunit++; |
| if ((lastvunit << vshift) < end) { |
| parts[numparts].name = " DiskOnChip Remainder partition"; |
| parts[numparts].offset = lastvunit << vshift; |
| parts[numparts].size = end - parts[numparts].offset; |
| numparts++; |
| } |
| ret = numparts; |
| out: |
| kfree(buf); |
| return ret; |
| } |
| |
| static int __init nftl_scan_bbt(struct mtd_info *mtd) |
| { |
| int ret, numparts; |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| struct mtd_partition parts[2]; |
| |
| memset((char *)parts, 0, sizeof(parts)); |
| /* On NFTL, we have to find the media headers before we can read the |
| BBTs, since they're stored in the media header eraseblocks. */ |
| numparts = nftl_partscan(mtd, parts); |
| if (!numparts) |
| return -EIO; |
| this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | |
| NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | |
| NAND_BBT_VERSION; |
| this->bbt_td->veroffs = 7; |
| this->bbt_td->pages[0] = doc->mh0_page + 1; |
| if (doc->mh1_page != -1) { |
| this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | |
| NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | |
| NAND_BBT_VERSION; |
| this->bbt_md->veroffs = 7; |
| this->bbt_md->pages[0] = doc->mh1_page + 1; |
| } else { |
| this->bbt_md = NULL; |
| } |
| |
| ret = this->scan_bbt(mtd); |
| if (ret) |
| return ret; |
| |
| return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); |
| } |
| |
| static int __init inftl_scan_bbt(struct mtd_info *mtd) |
| { |
| int ret, numparts; |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| struct mtd_partition parts[5]; |
| |
| if (this->numchips > doc->chips_per_floor) { |
| printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); |
| return -EIO; |
| } |
| |
| if (DoC_is_MillenniumPlus(doc)) { |
| this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; |
| if (inftl_bbt_write) |
| this->bbt_td->options |= NAND_BBT_WRITE; |
| this->bbt_td->pages[0] = 2; |
| this->bbt_md = NULL; |
| } else { |
| this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; |
| if (inftl_bbt_write) |
| this->bbt_td->options |= NAND_BBT_WRITE; |
| this->bbt_td->offs = 8; |
| this->bbt_td->len = 8; |
| this->bbt_td->veroffs = 7; |
| this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; |
| this->bbt_td->reserved_block_code = 0x01; |
| this->bbt_td->pattern = "MSYS_BBT"; |
| |
| this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; |
| if (inftl_bbt_write) |
| this->bbt_md->options |= NAND_BBT_WRITE; |
| this->bbt_md->offs = 8; |
| this->bbt_md->len = 8; |
| this->bbt_md->veroffs = 7; |
| this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; |
| this->bbt_md->reserved_block_code = 0x01; |
| this->bbt_md->pattern = "TBB_SYSM"; |
| } |
| |
| ret = this->scan_bbt(mtd); |
| if (ret) |
| return ret; |
| |
| memset((char *)parts, 0, sizeof(parts)); |
| numparts = inftl_partscan(mtd, parts); |
| /* At least for now, require the INFTL Media Header. We could probably |
| do without it for non-INFTL use, since all it gives us is |
| autopartitioning, but I want to give it more thought. */ |
| if (!numparts) |
| return -EIO; |
| return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); |
| } |
| |
| static inline int __init doc2000_init(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| |
| this->read_byte = doc2000_read_byte; |
| this->write_buf = doc2000_writebuf; |
| this->read_buf = doc2000_readbuf; |
| doc->late_init = nftl_scan_bbt; |
| |
| doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; |
| doc2000_count_chips(mtd); |
| mtd->name = "DiskOnChip 2000 (NFTL Model)"; |
| return (4 * doc->chips_per_floor); |
| } |
| |
| static inline int __init doc2001_init(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| |
| this->read_byte = doc2001_read_byte; |
| this->write_buf = doc2001_writebuf; |
| this->read_buf = doc2001_readbuf; |
| |
| ReadDOC(doc->virtadr, ChipID); |
| ReadDOC(doc->virtadr, ChipID); |
| ReadDOC(doc->virtadr, ChipID); |
| if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { |
| /* It's not a Millennium; it's one of the newer |
| DiskOnChip 2000 units with a similar ASIC. |
| Treat it like a Millennium, except that it |
| can have multiple chips. */ |
| doc2000_count_chips(mtd); |
| mtd->name = "DiskOnChip 2000 (INFTL Model)"; |
| doc->late_init = inftl_scan_bbt; |
| return (4 * doc->chips_per_floor); |
| } else { |
| /* Bog-standard Millennium */ |
| doc->chips_per_floor = 1; |
| mtd->name = "DiskOnChip Millennium"; |
| doc->late_init = nftl_scan_bbt; |
| return 1; |
| } |
| } |
| |
| static inline int __init doc2001plus_init(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct doc_priv *doc = this->priv; |
| |
| this->read_byte = doc2001plus_read_byte; |
| this->write_buf = doc2001plus_writebuf; |
| this->read_buf = doc2001plus_readbuf; |
| doc->late_init = inftl_scan_bbt; |
| this->cmd_ctrl = NULL; |
| this->select_chip = doc2001plus_select_chip; |
| this->cmdfunc = doc2001plus_command; |
| this->ecc.hwctl = doc2001plus_enable_hwecc; |
| |
| doc->chips_per_floor = 1; |
| mtd->name = "DiskOnChip Millennium Plus"; |
| |
| return 1; |
| } |
| |
| static int __init doc_probe(unsigned long physadr) |
| { |
| unsigned char ChipID; |
| struct mtd_info *mtd; |
| struct nand_chip *nand; |
| struct doc_priv *doc; |
| void __iomem *virtadr; |
| unsigned char save_control; |
| unsigned char tmp, tmpb, tmpc; |
| int reg, len, numchips; |
| int ret = 0; |
| |
| if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) |
| return -EBUSY; |
| virtadr = ioremap(physadr, DOC_IOREMAP_LEN); |
| if (!virtadr) { |
| printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); |
| ret = -EIO; |
| goto error_ioremap; |
| } |
| |
| /* It's not possible to cleanly detect the DiskOnChip - the |
| * bootup procedure will put the device into reset mode, and |
| * it's not possible to talk to it without actually writing |
| * to the DOCControl register. So we store the current contents |
| * of the DOCControl register's location, in case we later decide |
| * that it's not a DiskOnChip, and want to put it back how we |
| * found it. |
| */ |
| save_control = ReadDOC(virtadr, DOCControl); |
| |
| /* Reset the DiskOnChip ASIC */ |
| WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); |
| WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); |
| |
| /* Enable the DiskOnChip ASIC */ |
| WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); |
| WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); |
| |
| ChipID = ReadDOC(virtadr, ChipID); |
| |
| switch (ChipID) { |
| case DOC_ChipID_Doc2k: |
| reg = DoC_2k_ECCStatus; |
| break; |
| case DOC_ChipID_DocMil: |
| reg = DoC_ECCConf; |
| break; |
| case DOC_ChipID_DocMilPlus16: |
| case DOC_ChipID_DocMilPlus32: |
| case 0: |
| /* Possible Millennium Plus, need to do more checks */ |
| /* Possibly release from power down mode */ |
| for (tmp = 0; (tmp < 4); tmp++) |
| ReadDOC(virtadr, Mplus_Power); |
| |
| /* Reset the Millennium Plus ASIC */ |
| tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; |
| WriteDOC(tmp, virtadr, Mplus_DOCControl); |
| WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); |
| |
| mdelay(1); |
| /* Enable the Millennium Plus ASIC */ |
| tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; |
| WriteDOC(tmp, virtadr, Mplus_DOCControl); |
| WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); |
| mdelay(1); |
| |
| ChipID = ReadDOC(virtadr, ChipID); |
| |
| switch (ChipID) { |
| case DOC_ChipID_DocMilPlus16: |
| reg = DoC_Mplus_Toggle; |
| break; |
| case DOC_ChipID_DocMilPlus32: |
| printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); |
| default: |
| ret = -ENODEV; |
| goto notfound; |
| } |
| break; |
| |
| default: |
| ret = -ENODEV; |
| goto notfound; |
| } |
| /* Check the TOGGLE bit in the ECC register */ |
| tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; |
| tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; |
| tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; |
| if ((tmp == tmpb) || (tmp != tmpc)) { |
| printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); |
| ret = -ENODEV; |
| goto notfound; |
| } |
| |
| for (mtd = doclist; mtd; mtd = doc->nextdoc) { |
| unsigned char oldval; |
| unsigned char newval; |
| nand = mtd->priv; |
| doc = nand->priv; |
| /* Use the alias resolution register to determine if this is |
| in fact the same DOC aliased to a new address. If writes |
| to one chip's alias resolution register change the value on |
| the other chip, they're the same chip. */ |
| if (ChipID == DOC_ChipID_DocMilPlus16) { |
| oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); |
| newval = ReadDOC(virtadr, Mplus_AliasResolution); |
| } else { |
| oldval = ReadDOC(doc->virtadr, AliasResolution); |
| newval = ReadDOC(virtadr, AliasResolution); |
| } |
| if (oldval != newval) |
| continue; |
| if (ChipID == DOC_ChipID_DocMilPlus16) { |
| WriteDOC(~newval, virtadr, Mplus_AliasResolution); |
| oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); |
| WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it |
| } else { |
| WriteDOC(~newval, virtadr, AliasResolution); |
| oldval = ReadDOC(doc->virtadr, AliasResolution); |
| WriteDOC(newval, virtadr, AliasResolution); // restore it |
| } |
| newval = ~newval; |
| if (oldval == newval) { |
| printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); |
| goto notfound; |
| } |
| } |
| |
| printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); |
| |
| len = sizeof(struct mtd_info) + |
| sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr)); |
| mtd = kzalloc(len, GFP_KERNEL); |
| if (!mtd) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| nand = (struct nand_chip *) (mtd + 1); |
| doc = (struct doc_priv *) (nand + 1); |
| nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); |
| nand->bbt_md = nand->bbt_td + 1; |
| |
| mtd->priv = nand; |
| mtd->owner = THIS_MODULE; |
| |
| nand->priv = doc; |
| nand->select_chip = doc200x_select_chip; |
| nand->cmd_ctrl = doc200x_hwcontrol; |
| nand->dev_ready = doc200x_dev_ready; |
| nand->waitfunc = doc200x_wait; |
| nand->block_bad = doc200x_block_bad; |
| nand->ecc.hwctl = doc200x_enable_hwecc; |
| nand->ecc.calculate = doc200x_calculate_ecc; |
| nand->ecc.correct = doc200x_correct_data; |
| |
| nand->ecc.layout = &doc200x_oobinfo; |
| nand->ecc.mode = NAND_ECC_HW_SYNDROME; |
| nand->ecc.size = 512; |
| nand->ecc.bytes = 6; |
| nand->ecc.strength = 2; |
| nand->bbt_options = NAND_BBT_USE_FLASH; |
| /* Skip the automatic BBT scan so we can run it manually */ |
| nand->options |= NAND_SKIP_BBTSCAN; |
| |
| doc->physadr = physadr; |
| doc->virtadr = virtadr; |
| doc->ChipID = ChipID; |
| doc->curfloor = -1; |
| doc->curchip = -1; |
| doc->mh0_page = -1; |
| doc->mh1_page = -1; |
| doc->nextdoc = doclist; |
| |
| if (ChipID == DOC_ChipID_Doc2k) |
| numchips = doc2000_init(mtd); |
| else if (ChipID == DOC_ChipID_DocMilPlus16) |
| numchips = doc2001plus_init(mtd); |
| else |
| numchips = doc2001_init(mtd); |
| |
| if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) { |
| /* DBB note: i believe nand_release is necessary here, as |
| buffers may have been allocated in nand_base. Check with |
| Thomas. FIX ME! */ |
| /* nand_release will call mtd_device_unregister, but we |
| haven't yet added it. This is handled without incident by |
| mtd_device_unregister, as far as I can tell. */ |
| nand_release(mtd); |
| kfree(mtd); |
| goto fail; |
| } |
| |
| /* Success! */ |
| doclist = mtd; |
| return 0; |
| |
| notfound: |
| /* Put back the contents of the DOCControl register, in case it's not |
| actually a DiskOnChip. */ |
| WriteDOC(save_control, virtadr, DOCControl); |
| fail: |
| iounmap(virtadr); |
| |
| error_ioremap: |
| release_mem_region(physadr, DOC_IOREMAP_LEN); |
| |
| return ret; |
| } |
| |
| static void release_nanddoc(void) |
| { |
| struct mtd_info *mtd, *nextmtd; |
| struct nand_chip *nand; |
| struct doc_priv *doc; |
| |
| for (mtd = doclist; mtd; mtd = nextmtd) { |
| nand = mtd->priv; |
| doc = nand->priv; |
| |
| nextmtd = doc->nextdoc; |
| nand_release(mtd); |
| iounmap(doc->virtadr); |
| release_mem_region(doc->physadr, DOC_IOREMAP_LEN); |
| kfree(mtd); |
| } |
| } |
| |
| static int __init init_nanddoc(void) |
| { |
| int i, ret = 0; |
| |
| /* We could create the decoder on demand, if memory is a concern. |
| * This way we have it handy, if an error happens |
| * |
| * Symbolsize is 10 (bits) |
| * Primitve polynomial is x^10+x^3+1 |
| * first consecutive root is 510 |
| * primitve element to generate roots = 1 |
| * generator polinomial degree = 4 |
| */ |
| rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); |
| if (!rs_decoder) { |
| printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); |
| return -ENOMEM; |
| } |
| |
| if (doc_config_location) { |
| printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); |
| ret = doc_probe(doc_config_location); |
| if (ret < 0) |
| goto outerr; |
| } else { |
| for (i = 0; (doc_locations[i] != 0xffffffff); i++) { |
| doc_probe(doc_locations[i]); |
| } |
| } |
| /* No banner message any more. Print a message if no DiskOnChip |
| found, so the user knows we at least tried. */ |
| if (!doclist) { |
| printk(KERN_INFO "No valid DiskOnChip devices found\n"); |
| ret = -ENODEV; |
| goto outerr; |
| } |
| return 0; |
| outerr: |
| free_rs(rs_decoder); |
| return ret; |
| } |
| |
| static void __exit cleanup_nanddoc(void) |
| { |
| /* Cleanup the nand/DoC resources */ |
| release_nanddoc(); |
| |
| /* Free the reed solomon resources */ |
| if (rs_decoder) { |
| free_rs(rs_decoder); |
| } |
| } |
| |
| module_init(init_nanddoc); |
| module_exit(cleanup_nanddoc); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); |
| MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver"); |