| /* |
| * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc. |
| * |
| * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo |
| * Moved from arch/x86/kernel/apic/io_apic.c. |
| * Jiang Liu <jiang.liu@linux.intel.com> |
| * Enable support of hierarchical irqdomains |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/compiler.h> |
| #include <linux/slab.h> |
| #include <asm/irqdomain.h> |
| #include <asm/hw_irq.h> |
| #include <asm/apic.h> |
| #include <asm/i8259.h> |
| #include <asm/desc.h> |
| #include <asm/irq_remapping.h> |
| |
| struct apic_chip_data { |
| struct irq_cfg cfg; |
| cpumask_var_t domain; |
| cpumask_var_t old_domain; |
| u8 move_in_progress : 1; |
| }; |
| |
| struct irq_domain *x86_vector_domain; |
| static DEFINE_RAW_SPINLOCK(vector_lock); |
| static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask; |
| static struct irq_chip lapic_controller; |
| #ifdef CONFIG_X86_IO_APIC |
| static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY]; |
| #endif |
| |
| void lock_vector_lock(void) |
| { |
| /* Used to the online set of cpus does not change |
| * during assign_irq_vector. |
| */ |
| raw_spin_lock(&vector_lock); |
| } |
| |
| void unlock_vector_lock(void) |
| { |
| raw_spin_unlock(&vector_lock); |
| } |
| |
| static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data) |
| { |
| if (!irq_data) |
| return NULL; |
| |
| while (irq_data->parent_data) |
| irq_data = irq_data->parent_data; |
| |
| return irq_data->chip_data; |
| } |
| |
| struct irq_cfg *irqd_cfg(struct irq_data *irq_data) |
| { |
| struct apic_chip_data *data = apic_chip_data(irq_data); |
| |
| return data ? &data->cfg : NULL; |
| } |
| |
| struct irq_cfg *irq_cfg(unsigned int irq) |
| { |
| return irqd_cfg(irq_get_irq_data(irq)); |
| } |
| |
| static struct apic_chip_data *alloc_apic_chip_data(int node) |
| { |
| struct apic_chip_data *data; |
| |
| data = kzalloc_node(sizeof(*data), GFP_KERNEL, node); |
| if (!data) |
| return NULL; |
| if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node)) |
| goto out_data; |
| if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node)) |
| goto out_domain; |
| return data; |
| out_domain: |
| free_cpumask_var(data->domain); |
| out_data: |
| kfree(data); |
| return NULL; |
| } |
| |
| static void free_apic_chip_data(unsigned int virq, struct apic_chip_data *data) |
| { |
| #ifdef CONFIG_X86_IO_APIC |
| if (virq < nr_legacy_irqs()) |
| legacy_irq_data[virq] = NULL; |
| #endif |
| if (data) { |
| free_cpumask_var(data->domain); |
| free_cpumask_var(data->old_domain); |
| kfree(data); |
| } |
| } |
| |
| static int __assign_irq_vector(int irq, struct apic_chip_data *d, |
| const struct cpumask *mask) |
| { |
| /* |
| * NOTE! The local APIC isn't very good at handling |
| * multiple interrupts at the same interrupt level. |
| * As the interrupt level is determined by taking the |
| * vector number and shifting that right by 4, we |
| * want to spread these out a bit so that they don't |
| * all fall in the same interrupt level. |
| * |
| * Also, we've got to be careful not to trash gate |
| * 0x80, because int 0x80 is hm, kind of importantish. ;) |
| */ |
| static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START; |
| static int current_offset = VECTOR_OFFSET_START % 16; |
| int cpu, vector; |
| |
| /* |
| * If there is still a move in progress or the previous move has not |
| * been cleaned up completely, tell the caller to come back later. |
| */ |
| if (d->move_in_progress || |
| cpumask_intersects(d->old_domain, cpu_online_mask)) |
| return -EBUSY; |
| |
| /* Only try and allocate irqs on cpus that are present */ |
| cpumask_clear(d->old_domain); |
| cpumask_clear(searched_cpumask); |
| cpu = cpumask_first_and(mask, cpu_online_mask); |
| while (cpu < nr_cpu_ids) { |
| int new_cpu, offset; |
| |
| /* Get the possible target cpus for @mask/@cpu from the apic */ |
| apic->vector_allocation_domain(cpu, vector_cpumask, mask); |
| |
| /* |
| * Clear the offline cpus from @vector_cpumask for searching |
| * and verify whether the result overlaps with @mask. If true, |
| * then the call to apic->cpu_mask_to_apicid_and() will |
| * succeed as well. If not, no point in trying to find a |
| * vector in this mask. |
| */ |
| cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask); |
| if (!cpumask_intersects(vector_searchmask, mask)) |
| goto next_cpu; |
| |
| if (cpumask_subset(vector_cpumask, d->domain)) { |
| if (cpumask_equal(vector_cpumask, d->domain)) |
| goto success; |
| /* |
| * Mark the cpus which are not longer in the mask for |
| * cleanup. |
| */ |
| cpumask_andnot(d->old_domain, d->domain, vector_cpumask); |
| vector = d->cfg.vector; |
| goto update; |
| } |
| |
| vector = current_vector; |
| offset = current_offset; |
| next: |
| vector += 16; |
| if (vector >= first_system_vector) { |
| offset = (offset + 1) % 16; |
| vector = FIRST_EXTERNAL_VECTOR + offset; |
| } |
| |
| /* If the search wrapped around, try the next cpu */ |
| if (unlikely(current_vector == vector)) |
| goto next_cpu; |
| |
| if (test_bit(vector, used_vectors)) |
| goto next; |
| |
| for_each_cpu(new_cpu, vector_searchmask) { |
| if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector])) |
| goto next; |
| } |
| /* Found one! */ |
| current_vector = vector; |
| current_offset = offset; |
| /* Schedule the old vector for cleanup on all cpus */ |
| if (d->cfg.vector) |
| cpumask_copy(d->old_domain, d->domain); |
| for_each_cpu(new_cpu, vector_searchmask) |
| per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq); |
| goto update; |
| |
| next_cpu: |
| /* |
| * We exclude the current @vector_cpumask from the requested |
| * @mask and try again with the next online cpu in the |
| * result. We cannot modify @mask, so we use @vector_cpumask |
| * as a temporary buffer here as it will be reassigned when |
| * calling apic->vector_allocation_domain() above. |
| */ |
| cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask); |
| cpumask_andnot(vector_cpumask, mask, searched_cpumask); |
| cpu = cpumask_first_and(vector_cpumask, cpu_online_mask); |
| continue; |
| } |
| return -ENOSPC; |
| |
| update: |
| /* |
| * Exclude offline cpus from the cleanup mask and set the |
| * move_in_progress flag when the result is not empty. |
| */ |
| cpumask_and(d->old_domain, d->old_domain, cpu_online_mask); |
| d->move_in_progress = !cpumask_empty(d->old_domain); |
| d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0; |
| d->cfg.vector = vector; |
| cpumask_copy(d->domain, vector_cpumask); |
| success: |
| /* |
| * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail |
| * as we already established, that mask & d->domain & cpu_online_mask |
| * is not empty. |
| */ |
| BUG_ON(apic->cpu_mask_to_apicid_and(mask, d->domain, |
| &d->cfg.dest_apicid)); |
| return 0; |
| } |
| |
| static int assign_irq_vector(int irq, struct apic_chip_data *data, |
| const struct cpumask *mask) |
| { |
| int err; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&vector_lock, flags); |
| err = __assign_irq_vector(irq, data, mask); |
| raw_spin_unlock_irqrestore(&vector_lock, flags); |
| return err; |
| } |
| |
| static int assign_irq_vector_policy(int irq, int node, |
| struct apic_chip_data *data, |
| struct irq_alloc_info *info) |
| { |
| if (info && info->mask) |
| return assign_irq_vector(irq, data, info->mask); |
| if (node != NUMA_NO_NODE && |
| assign_irq_vector(irq, data, cpumask_of_node(node)) == 0) |
| return 0; |
| return assign_irq_vector(irq, data, apic->target_cpus()); |
| } |
| |
| static void clear_irq_vector(int irq, struct apic_chip_data *data) |
| { |
| struct irq_desc *desc; |
| int cpu, vector; |
| |
| if (!data->cfg.vector) |
| return; |
| |
| vector = data->cfg.vector; |
| for_each_cpu_and(cpu, data->domain, cpu_online_mask) |
| per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; |
| |
| data->cfg.vector = 0; |
| cpumask_clear(data->domain); |
| |
| /* |
| * If move is in progress or the old_domain mask is not empty, |
| * i.e. the cleanup IPI has not been processed yet, we need to remove |
| * the old references to desc from all cpus vector tables. |
| */ |
| if (!data->move_in_progress && cpumask_empty(data->old_domain)) |
| return; |
| |
| desc = irq_to_desc(irq); |
| for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) { |
| for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; |
| vector++) { |
| if (per_cpu(vector_irq, cpu)[vector] != desc) |
| continue; |
| per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; |
| break; |
| } |
| } |
| data->move_in_progress = 0; |
| } |
| |
| void init_irq_alloc_info(struct irq_alloc_info *info, |
| const struct cpumask *mask) |
| { |
| memset(info, 0, sizeof(*info)); |
| info->mask = mask; |
| } |
| |
| void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) |
| { |
| if (src) |
| *dst = *src; |
| else |
| memset(dst, 0, sizeof(*dst)); |
| } |
| |
| static void x86_vector_free_irqs(struct irq_domain *domain, |
| unsigned int virq, unsigned int nr_irqs) |
| { |
| struct apic_chip_data *apic_data; |
| struct irq_data *irq_data; |
| unsigned long flags; |
| int i; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i); |
| if (irq_data && irq_data->chip_data) { |
| raw_spin_lock_irqsave(&vector_lock, flags); |
| clear_irq_vector(virq + i, irq_data->chip_data); |
| apic_data = irq_data->chip_data; |
| irq_domain_reset_irq_data(irq_data); |
| raw_spin_unlock_irqrestore(&vector_lock, flags); |
| free_apic_chip_data(virq + i, apic_data); |
| } |
| } |
| } |
| |
| static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *arg) |
| { |
| struct irq_alloc_info *info = arg; |
| struct apic_chip_data *data; |
| struct irq_data *irq_data; |
| int i, err, node; |
| |
| if (disable_apic) |
| return -ENXIO; |
| |
| /* Currently vector allocator can't guarantee contiguous allocations */ |
| if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) |
| return -ENOSYS; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| irq_data = irq_domain_get_irq_data(domain, virq + i); |
| BUG_ON(!irq_data); |
| node = irq_data_get_node(irq_data); |
| #ifdef CONFIG_X86_IO_APIC |
| if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i]) |
| data = legacy_irq_data[virq + i]; |
| else |
| #endif |
| data = alloc_apic_chip_data(node); |
| if (!data) { |
| err = -ENOMEM; |
| goto error; |
| } |
| |
| irq_data->chip = &lapic_controller; |
| irq_data->chip_data = data; |
| irq_data->hwirq = virq + i; |
| err = assign_irq_vector_policy(virq + i, node, data, info); |
| if (err) { |
| irq_data->chip_data = NULL; |
| free_apic_chip_data(virq + i, data); |
| goto error; |
| } |
| } |
| |
| return 0; |
| |
| error: |
| x86_vector_free_irqs(domain, virq, i); |
| return err; |
| } |
| |
| static const struct irq_domain_ops x86_vector_domain_ops = { |
| .alloc = x86_vector_alloc_irqs, |
| .free = x86_vector_free_irqs, |
| }; |
| |
| int __init arch_probe_nr_irqs(void) |
| { |
| int nr; |
| |
| if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) |
| nr_irqs = NR_VECTORS * nr_cpu_ids; |
| |
| nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; |
| #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) |
| /* |
| * for MSI and HT dyn irq |
| */ |
| if (gsi_top <= NR_IRQS_LEGACY) |
| nr += 8 * nr_cpu_ids; |
| else |
| nr += gsi_top * 16; |
| #endif |
| if (nr < nr_irqs) |
| nr_irqs = nr; |
| |
| /* |
| * We don't know if PIC is present at this point so we need to do |
| * probe() to get the right number of legacy IRQs. |
| */ |
| return legacy_pic->probe(); |
| } |
| |
| #ifdef CONFIG_X86_IO_APIC |
| static void init_legacy_irqs(void) |
| { |
| int i, node = cpu_to_node(0); |
| struct apic_chip_data *data; |
| |
| /* |
| * For legacy IRQ's, start with assigning irq0 to irq15 to |
| * ISA_IRQ_VECTOR(i) for all cpu's. |
| */ |
| for (i = 0; i < nr_legacy_irqs(); i++) { |
| data = legacy_irq_data[i] = alloc_apic_chip_data(node); |
| BUG_ON(!data); |
| |
| data->cfg.vector = ISA_IRQ_VECTOR(i); |
| cpumask_setall(data->domain); |
| irq_set_chip_data(i, data); |
| } |
| } |
| #else |
| static void init_legacy_irqs(void) { } |
| #endif |
| |
| int __init arch_early_irq_init(void) |
| { |
| init_legacy_irqs(); |
| |
| x86_vector_domain = irq_domain_add_tree(NULL, &x86_vector_domain_ops, |
| NULL); |
| BUG_ON(x86_vector_domain == NULL); |
| irq_set_default_host(x86_vector_domain); |
| |
| arch_init_msi_domain(x86_vector_domain); |
| arch_init_htirq_domain(x86_vector_domain); |
| |
| BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL)); |
| BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); |
| BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL)); |
| |
| return arch_early_ioapic_init(); |
| } |
| |
| /* Initialize vector_irq on a new cpu */ |
| static void __setup_vector_irq(int cpu) |
| { |
| struct apic_chip_data *data; |
| struct irq_desc *desc; |
| int irq, vector; |
| |
| /* Mark the inuse vectors */ |
| for_each_irq_desc(irq, desc) { |
| struct irq_data *idata = irq_desc_get_irq_data(desc); |
| |
| data = apic_chip_data(idata); |
| if (!data || !cpumask_test_cpu(cpu, data->domain)) |
| continue; |
| vector = data->cfg.vector; |
| per_cpu(vector_irq, cpu)[vector] = desc; |
| } |
| /* Mark the free vectors */ |
| for (vector = 0; vector < NR_VECTORS; ++vector) { |
| desc = per_cpu(vector_irq, cpu)[vector]; |
| if (IS_ERR_OR_NULL(desc)) |
| continue; |
| |
| data = apic_chip_data(irq_desc_get_irq_data(desc)); |
| if (!cpumask_test_cpu(cpu, data->domain)) |
| per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; |
| } |
| } |
| |
| /* |
| * Setup the vector to irq mappings. Must be called with vector_lock held. |
| */ |
| void setup_vector_irq(int cpu) |
| { |
| int irq; |
| |
| lockdep_assert_held(&vector_lock); |
| /* |
| * On most of the platforms, legacy PIC delivers the interrupts on the |
| * boot cpu. But there are certain platforms where PIC interrupts are |
| * delivered to multiple cpu's. If the legacy IRQ is handled by the |
| * legacy PIC, for the new cpu that is coming online, setup the static |
| * legacy vector to irq mapping: |
| */ |
| for (irq = 0; irq < nr_legacy_irqs(); irq++) |
| per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq); |
| |
| __setup_vector_irq(cpu); |
| } |
| |
| static int apic_retrigger_irq(struct irq_data *irq_data) |
| { |
| struct apic_chip_data *data = apic_chip_data(irq_data); |
| unsigned long flags; |
| int cpu; |
| |
| raw_spin_lock_irqsave(&vector_lock, flags); |
| cpu = cpumask_first_and(data->domain, cpu_online_mask); |
| apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector); |
| raw_spin_unlock_irqrestore(&vector_lock, flags); |
| |
| return 1; |
| } |
| |
| void apic_ack_edge(struct irq_data *data) |
| { |
| irq_complete_move(irqd_cfg(data)); |
| irq_move_irq(data); |
| ack_APIC_irq(); |
| } |
| |
| static int apic_set_affinity(struct irq_data *irq_data, |
| const struct cpumask *dest, bool force) |
| { |
| struct apic_chip_data *data = irq_data->chip_data; |
| int err, irq = irq_data->irq; |
| |
| if (!config_enabled(CONFIG_SMP)) |
| return -EPERM; |
| |
| if (!cpumask_intersects(dest, cpu_online_mask)) |
| return -EINVAL; |
| |
| err = assign_irq_vector(irq, data, dest); |
| return err ? err : IRQ_SET_MASK_OK; |
| } |
| |
| static struct irq_chip lapic_controller = { |
| .irq_ack = apic_ack_edge, |
| .irq_set_affinity = apic_set_affinity, |
| .irq_retrigger = apic_retrigger_irq, |
| }; |
| |
| #ifdef CONFIG_SMP |
| static void __send_cleanup_vector(struct apic_chip_data *data) |
| { |
| raw_spin_lock(&vector_lock); |
| cpumask_and(data->old_domain, data->old_domain, cpu_online_mask); |
| data->move_in_progress = 0; |
| if (!cpumask_empty(data->old_domain)) |
| apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR); |
| raw_spin_unlock(&vector_lock); |
| } |
| |
| void send_cleanup_vector(struct irq_cfg *cfg) |
| { |
| struct apic_chip_data *data; |
| |
| data = container_of(cfg, struct apic_chip_data, cfg); |
| if (data->move_in_progress) |
| __send_cleanup_vector(data); |
| } |
| |
| asmlinkage __visible void smp_irq_move_cleanup_interrupt(void) |
| { |
| unsigned vector, me; |
| |
| entering_ack_irq(); |
| |
| /* Prevent vectors vanishing under us */ |
| raw_spin_lock(&vector_lock); |
| |
| me = smp_processor_id(); |
| for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { |
| struct apic_chip_data *data; |
| struct irq_desc *desc; |
| unsigned int irr; |
| |
| retry: |
| desc = __this_cpu_read(vector_irq[vector]); |
| if (IS_ERR_OR_NULL(desc)) |
| continue; |
| |
| if (!raw_spin_trylock(&desc->lock)) { |
| raw_spin_unlock(&vector_lock); |
| cpu_relax(); |
| raw_spin_lock(&vector_lock); |
| goto retry; |
| } |
| |
| data = apic_chip_data(irq_desc_get_irq_data(desc)); |
| if (!data) |
| goto unlock; |
| |
| /* |
| * Nothing to cleanup if irq migration is in progress |
| * or this cpu is not set in the cleanup mask. |
| */ |
| if (data->move_in_progress || |
| !cpumask_test_cpu(me, data->old_domain)) |
| goto unlock; |
| |
| /* |
| * We have two cases to handle here: |
| * 1) vector is unchanged but the target mask got reduced |
| * 2) vector and the target mask has changed |
| * |
| * #1 is obvious, but in #2 we have two vectors with the same |
| * irq descriptor: the old and the new vector. So we need to |
| * make sure that we only cleanup the old vector. The new |
| * vector has the current @vector number in the config and |
| * this cpu is part of the target mask. We better leave that |
| * one alone. |
| */ |
| if (vector == data->cfg.vector && |
| cpumask_test_cpu(me, data->domain)) |
| goto unlock; |
| |
| irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); |
| /* |
| * Check if the vector that needs to be cleanedup is |
| * registered at the cpu's IRR. If so, then this is not |
| * the best time to clean it up. Lets clean it up in the |
| * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR |
| * to myself. |
| */ |
| if (irr & (1 << (vector % 32))) { |
| apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); |
| goto unlock; |
| } |
| __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); |
| cpumask_clear_cpu(me, data->old_domain); |
| unlock: |
| raw_spin_unlock(&desc->lock); |
| } |
| |
| raw_spin_unlock(&vector_lock); |
| |
| exiting_irq(); |
| } |
| |
| static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) |
| { |
| unsigned me; |
| struct apic_chip_data *data; |
| |
| data = container_of(cfg, struct apic_chip_data, cfg); |
| if (likely(!data->move_in_progress)) |
| return; |
| |
| me = smp_processor_id(); |
| if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain)) |
| __send_cleanup_vector(data); |
| } |
| |
| void irq_complete_move(struct irq_cfg *cfg) |
| { |
| __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); |
| } |
| |
| /* |
| * Called from fixup_irqs() with @desc->lock held and interrupts disabled. |
| */ |
| void irq_force_complete_move(struct irq_desc *desc) |
| { |
| struct irq_data *irqdata; |
| struct apic_chip_data *data; |
| struct irq_cfg *cfg; |
| unsigned int cpu; |
| |
| /* |
| * The function is called for all descriptors regardless of which |
| * irqdomain they belong to. For example if an IRQ is provided by |
| * an irq_chip as part of a GPIO driver, the chip data for that |
| * descriptor is specific to the irq_chip in question. |
| * |
| * Check first that the chip_data is what we expect |
| * (apic_chip_data) before touching it any further. |
| */ |
| irqdata = irq_domain_get_irq_data(x86_vector_domain, |
| irq_desc_get_irq(desc)); |
| if (!irqdata) |
| return; |
| |
| data = apic_chip_data(irqdata); |
| cfg = data ? &data->cfg : NULL; |
| |
| if (!cfg) |
| return; |
| |
| /* |
| * This is tricky. If the cleanup of @data->old_domain has not been |
| * done yet, then the following setaffinity call will fail with |
| * -EBUSY. This can leave the interrupt in a stale state. |
| * |
| * All CPUs are stuck in stop machine with interrupts disabled so |
| * calling __irq_complete_move() would be completely pointless. |
| */ |
| raw_spin_lock(&vector_lock); |
| /* |
| * Clean out all offline cpus (including the outgoing one) from the |
| * old_domain mask. |
| */ |
| cpumask_and(data->old_domain, data->old_domain, cpu_online_mask); |
| |
| /* |
| * If move_in_progress is cleared and the old_domain mask is empty, |
| * then there is nothing to cleanup. fixup_irqs() will take care of |
| * the stale vectors on the outgoing cpu. |
| */ |
| if (!data->move_in_progress && cpumask_empty(data->old_domain)) { |
| raw_spin_unlock(&vector_lock); |
| return; |
| } |
| |
| /* |
| * 1) The interrupt is in move_in_progress state. That means that we |
| * have not seen an interrupt since the io_apic was reprogrammed to |
| * the new vector. |
| * |
| * 2) The interrupt has fired on the new vector, but the cleanup IPIs |
| * have not been processed yet. |
| */ |
| if (data->move_in_progress) { |
| /* |
| * In theory there is a race: |
| * |
| * set_ioapic(new_vector) <-- Interrupt is raised before update |
| * is effective, i.e. it's raised on |
| * the old vector. |
| * |
| * So if the target cpu cannot handle that interrupt before |
| * the old vector is cleaned up, we get a spurious interrupt |
| * and in the worst case the ioapic irq line becomes stale. |
| * |
| * But in case of cpu hotplug this should be a non issue |
| * because if the affinity update happens right before all |
| * cpus rendevouz in stop machine, there is no way that the |
| * interrupt can be blocked on the target cpu because all cpus |
| * loops first with interrupts enabled in stop machine, so the |
| * old vector is not yet cleaned up when the interrupt fires. |
| * |
| * So the only way to run into this issue is if the delivery |
| * of the interrupt on the apic/system bus would be delayed |
| * beyond the point where the target cpu disables interrupts |
| * in stop machine. I doubt that it can happen, but at least |
| * there is a theroretical chance. Virtualization might be |
| * able to expose this, but AFAICT the IOAPIC emulation is not |
| * as stupid as the real hardware. |
| * |
| * Anyway, there is nothing we can do about that at this point |
| * w/o refactoring the whole fixup_irq() business completely. |
| * We print at least the irq number and the old vector number, |
| * so we have the necessary information when a problem in that |
| * area arises. |
| */ |
| pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", |
| irqdata->irq, cfg->old_vector); |
| } |
| /* |
| * If old_domain is not empty, then other cpus still have the irq |
| * descriptor set in their vector array. Clean it up. |
| */ |
| for_each_cpu(cpu, data->old_domain) |
| per_cpu(vector_irq, cpu)[cfg->old_vector] = VECTOR_UNUSED; |
| |
| /* Cleanup the left overs of the (half finished) move */ |
| cpumask_clear(data->old_domain); |
| data->move_in_progress = 0; |
| raw_spin_unlock(&vector_lock); |
| } |
| #endif |
| |
| static void __init print_APIC_field(int base) |
| { |
| int i; |
| |
| printk(KERN_DEBUG); |
| |
| for (i = 0; i < 8; i++) |
| pr_cont("%08x", apic_read(base + i*0x10)); |
| |
| pr_cont("\n"); |
| } |
| |
| static void __init print_local_APIC(void *dummy) |
| { |
| unsigned int i, v, ver, maxlvt; |
| u64 icr; |
| |
| pr_debug("printing local APIC contents on CPU#%d/%d:\n", |
| smp_processor_id(), hard_smp_processor_id()); |
| v = apic_read(APIC_ID); |
| pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); |
| v = apic_read(APIC_LVR); |
| pr_info("... APIC VERSION: %08x\n", v); |
| ver = GET_APIC_VERSION(v); |
| maxlvt = lapic_get_maxlvt(); |
| |
| v = apic_read(APIC_TASKPRI); |
| pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); |
| |
| /* !82489DX */ |
| if (APIC_INTEGRATED(ver)) { |
| if (!APIC_XAPIC(ver)) { |
| v = apic_read(APIC_ARBPRI); |
| pr_debug("... APIC ARBPRI: %08x (%02x)\n", |
| v, v & APIC_ARBPRI_MASK); |
| } |
| v = apic_read(APIC_PROCPRI); |
| pr_debug("... APIC PROCPRI: %08x\n", v); |
| } |
| |
| /* |
| * Remote read supported only in the 82489DX and local APIC for |
| * Pentium processors. |
| */ |
| if (!APIC_INTEGRATED(ver) || maxlvt == 3) { |
| v = apic_read(APIC_RRR); |
| pr_debug("... APIC RRR: %08x\n", v); |
| } |
| |
| v = apic_read(APIC_LDR); |
| pr_debug("... APIC LDR: %08x\n", v); |
| if (!x2apic_enabled()) { |
| v = apic_read(APIC_DFR); |
| pr_debug("... APIC DFR: %08x\n", v); |
| } |
| v = apic_read(APIC_SPIV); |
| pr_debug("... APIC SPIV: %08x\n", v); |
| |
| pr_debug("... APIC ISR field:\n"); |
| print_APIC_field(APIC_ISR); |
| pr_debug("... APIC TMR field:\n"); |
| print_APIC_field(APIC_TMR); |
| pr_debug("... APIC IRR field:\n"); |
| print_APIC_field(APIC_IRR); |
| |
| /* !82489DX */ |
| if (APIC_INTEGRATED(ver)) { |
| /* Due to the Pentium erratum 3AP. */ |
| if (maxlvt > 3) |
| apic_write(APIC_ESR, 0); |
| |
| v = apic_read(APIC_ESR); |
| pr_debug("... APIC ESR: %08x\n", v); |
| } |
| |
| icr = apic_icr_read(); |
| pr_debug("... APIC ICR: %08x\n", (u32)icr); |
| pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); |
| |
| v = apic_read(APIC_LVTT); |
| pr_debug("... APIC LVTT: %08x\n", v); |
| |
| if (maxlvt > 3) { |
| /* PC is LVT#4. */ |
| v = apic_read(APIC_LVTPC); |
| pr_debug("... APIC LVTPC: %08x\n", v); |
| } |
| v = apic_read(APIC_LVT0); |
| pr_debug("... APIC LVT0: %08x\n", v); |
| v = apic_read(APIC_LVT1); |
| pr_debug("... APIC LVT1: %08x\n", v); |
| |
| if (maxlvt > 2) { |
| /* ERR is LVT#3. */ |
| v = apic_read(APIC_LVTERR); |
| pr_debug("... APIC LVTERR: %08x\n", v); |
| } |
| |
| v = apic_read(APIC_TMICT); |
| pr_debug("... APIC TMICT: %08x\n", v); |
| v = apic_read(APIC_TMCCT); |
| pr_debug("... APIC TMCCT: %08x\n", v); |
| v = apic_read(APIC_TDCR); |
| pr_debug("... APIC TDCR: %08x\n", v); |
| |
| if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { |
| v = apic_read(APIC_EFEAT); |
| maxlvt = (v >> 16) & 0xff; |
| pr_debug("... APIC EFEAT: %08x\n", v); |
| v = apic_read(APIC_ECTRL); |
| pr_debug("... APIC ECTRL: %08x\n", v); |
| for (i = 0; i < maxlvt; i++) { |
| v = apic_read(APIC_EILVTn(i)); |
| pr_debug("... APIC EILVT%d: %08x\n", i, v); |
| } |
| } |
| pr_cont("\n"); |
| } |
| |
| static void __init print_local_APICs(int maxcpu) |
| { |
| int cpu; |
| |
| if (!maxcpu) |
| return; |
| |
| preempt_disable(); |
| for_each_online_cpu(cpu) { |
| if (cpu >= maxcpu) |
| break; |
| smp_call_function_single(cpu, print_local_APIC, NULL, 1); |
| } |
| preempt_enable(); |
| } |
| |
| static void __init print_PIC(void) |
| { |
| unsigned int v; |
| unsigned long flags; |
| |
| if (!nr_legacy_irqs()) |
| return; |
| |
| pr_debug("\nprinting PIC contents\n"); |
| |
| raw_spin_lock_irqsave(&i8259A_lock, flags); |
| |
| v = inb(0xa1) << 8 | inb(0x21); |
| pr_debug("... PIC IMR: %04x\n", v); |
| |
| v = inb(0xa0) << 8 | inb(0x20); |
| pr_debug("... PIC IRR: %04x\n", v); |
| |
| outb(0x0b, 0xa0); |
| outb(0x0b, 0x20); |
| v = inb(0xa0) << 8 | inb(0x20); |
| outb(0x0a, 0xa0); |
| outb(0x0a, 0x20); |
| |
| raw_spin_unlock_irqrestore(&i8259A_lock, flags); |
| |
| pr_debug("... PIC ISR: %04x\n", v); |
| |
| v = inb(0x4d1) << 8 | inb(0x4d0); |
| pr_debug("... PIC ELCR: %04x\n", v); |
| } |
| |
| static int show_lapic __initdata = 1; |
| static __init int setup_show_lapic(char *arg) |
| { |
| int num = -1; |
| |
| if (strcmp(arg, "all") == 0) { |
| show_lapic = CONFIG_NR_CPUS; |
| } else { |
| get_option(&arg, &num); |
| if (num >= 0) |
| show_lapic = num; |
| } |
| |
| return 1; |
| } |
| __setup("show_lapic=", setup_show_lapic); |
| |
| static int __init print_ICs(void) |
| { |
| if (apic_verbosity == APIC_QUIET) |
| return 0; |
| |
| print_PIC(); |
| |
| /* don't print out if apic is not there */ |
| if (!cpu_has_apic && !apic_from_smp_config()) |
| return 0; |
| |
| print_local_APICs(show_lapic); |
| print_IO_APICs(); |
| |
| return 0; |
| } |
| |
| late_initcall(print_ICs); |