| /* esp.c: ESP Sun SCSI driver. |
| * |
| * Copyright (C) 1995, 1998, 2006 David S. Miller (davem@davemloft.net) |
| */ |
| |
| /* TODO: |
| * |
| * 1) Maybe disable parity checking in config register one for SCSI1 |
| * targets. (Gilmore says parity error on the SBus can lock up |
| * old sun4c's) |
| * 2) Add support for DMA2 pipelining. |
| * 3) Add tagged queueing. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/proc_fs.h> |
| #include <linux/stat.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| |
| #include "esp.h" |
| |
| #include <asm/sbus.h> |
| #include <asm/dma.h> |
| #include <asm/system.h> |
| #include <asm/ptrace.h> |
| #include <asm/pgtable.h> |
| #include <asm/oplib.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #ifndef __sparc_v9__ |
| #include <asm/machines.h> |
| #include <asm/idprom.h> |
| #endif |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_eh.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_tcq.h> |
| |
| #define DRV_VERSION "1.101" |
| |
| #define DEBUG_ESP |
| /* #define DEBUG_ESP_HME */ |
| /* #define DEBUG_ESP_DATA */ |
| /* #define DEBUG_ESP_QUEUE */ |
| /* #define DEBUG_ESP_DISCONNECT */ |
| /* #define DEBUG_ESP_STATUS */ |
| /* #define DEBUG_ESP_PHASES */ |
| /* #define DEBUG_ESP_WORKBUS */ |
| /* #define DEBUG_STATE_MACHINE */ |
| /* #define DEBUG_ESP_CMDS */ |
| /* #define DEBUG_ESP_IRQS */ |
| /* #define DEBUG_SDTR */ |
| /* #define DEBUG_ESP_SG */ |
| |
| /* Use the following to sprinkle debugging messages in a way which |
| * suits you if combinations of the above become too verbose when |
| * trying to track down a specific problem. |
| */ |
| /* #define DEBUG_ESP_MISC */ |
| |
| #if defined(DEBUG_ESP) |
| #define ESPLOG(foo) printk foo |
| #else |
| #define ESPLOG(foo) |
| #endif /* (DEBUG_ESP) */ |
| |
| #if defined(DEBUG_ESP_HME) |
| #define ESPHME(foo) printk foo |
| #else |
| #define ESPHME(foo) |
| #endif |
| |
| #if defined(DEBUG_ESP_DATA) |
| #define ESPDATA(foo) printk foo |
| #else |
| #define ESPDATA(foo) |
| #endif |
| |
| #if defined(DEBUG_ESP_QUEUE) |
| #define ESPQUEUE(foo) printk foo |
| #else |
| #define ESPQUEUE(foo) |
| #endif |
| |
| #if defined(DEBUG_ESP_DISCONNECT) |
| #define ESPDISC(foo) printk foo |
| #else |
| #define ESPDISC(foo) |
| #endif |
| |
| #if defined(DEBUG_ESP_STATUS) |
| #define ESPSTAT(foo) printk foo |
| #else |
| #define ESPSTAT(foo) |
| #endif |
| |
| #if defined(DEBUG_ESP_PHASES) |
| #define ESPPHASE(foo) printk foo |
| #else |
| #define ESPPHASE(foo) |
| #endif |
| |
| #if defined(DEBUG_ESP_WORKBUS) |
| #define ESPBUS(foo) printk foo |
| #else |
| #define ESPBUS(foo) |
| #endif |
| |
| #if defined(DEBUG_ESP_IRQS) |
| #define ESPIRQ(foo) printk foo |
| #else |
| #define ESPIRQ(foo) |
| #endif |
| |
| #if defined(DEBUG_SDTR) |
| #define ESPSDTR(foo) printk foo |
| #else |
| #define ESPSDTR(foo) |
| #endif |
| |
| #if defined(DEBUG_ESP_MISC) |
| #define ESPMISC(foo) printk foo |
| #else |
| #define ESPMISC(foo) |
| #endif |
| |
| /* Command phase enumeration. */ |
| enum { |
| not_issued = 0x00, /* Still in the issue_SC queue. */ |
| |
| /* Various forms of selecting a target. */ |
| #define in_slct_mask 0x10 |
| in_slct_norm = 0x10, /* ESP is arbitrating, normal selection */ |
| in_slct_stop = 0x11, /* ESP will select, then stop with IRQ */ |
| in_slct_msg = 0x12, /* select, then send a message */ |
| in_slct_tag = 0x13, /* select and send tagged queue msg */ |
| in_slct_sneg = 0x14, /* select and acquire sync capabilities */ |
| |
| /* Any post selection activity. */ |
| #define in_phases_mask 0x20 |
| in_datain = 0x20, /* Data is transferring from the bus */ |
| in_dataout = 0x21, /* Data is transferring to the bus */ |
| in_data_done = 0x22, /* Last DMA data operation done (maybe) */ |
| in_msgin = 0x23, /* Eating message from target */ |
| in_msgincont = 0x24, /* Eating more msg bytes from target */ |
| in_msgindone = 0x25, /* Decide what to do with what we got */ |
| in_msgout = 0x26, /* Sending message to target */ |
| in_msgoutdone = 0x27, /* Done sending msg out */ |
| in_cmdbegin = 0x28, /* Sending cmd after abnormal selection */ |
| in_cmdend = 0x29, /* Done sending slow cmd */ |
| in_status = 0x2a, /* Was in status phase, finishing cmd */ |
| in_freeing = 0x2b, /* freeing the bus for cmd cmplt or disc */ |
| in_the_dark = 0x2c, /* Don't know what bus phase we are in */ |
| |
| /* Special states, ie. not normal bus transitions... */ |
| #define in_spec_mask 0x80 |
| in_abortone = 0x80, /* Aborting one command currently */ |
| in_abortall = 0x81, /* Blowing away all commands we have */ |
| in_resetdev = 0x82, /* SCSI target reset in progress */ |
| in_resetbus = 0x83, /* SCSI bus reset in progress */ |
| in_tgterror = 0x84, /* Target did something stupid */ |
| }; |
| |
| enum { |
| /* Zero has special meaning, see skipahead[12]. */ |
| /*0*/ do_never, |
| |
| /*1*/ do_phase_determine, |
| /*2*/ do_reset_bus, |
| /*3*/ do_reset_complete, |
| /*4*/ do_work_bus, |
| /*5*/ do_intr_end |
| }; |
| |
| /* Forward declarations. */ |
| static irqreturn_t esp_intr(int irq, void *dev_id, struct pt_regs *pregs); |
| |
| /* Debugging routines */ |
| struct esp_cmdstrings { |
| u8 cmdchar; |
| char *text; |
| } esp_cmd_strings[] = { |
| /* Miscellaneous */ |
| { ESP_CMD_NULL, "ESP_NOP", }, |
| { ESP_CMD_FLUSH, "FIFO_FLUSH", }, |
| { ESP_CMD_RC, "RSTESP", }, |
| { ESP_CMD_RS, "RSTSCSI", }, |
| /* Disconnected State Group */ |
| { ESP_CMD_RSEL, "RESLCTSEQ", }, |
| { ESP_CMD_SEL, "SLCTNATN", }, |
| { ESP_CMD_SELA, "SLCTATN", }, |
| { ESP_CMD_SELAS, "SLCTATNSTOP", }, |
| { ESP_CMD_ESEL, "ENSLCTRESEL", }, |
| { ESP_CMD_DSEL, "DISSELRESEL", }, |
| { ESP_CMD_SA3, "SLCTATN3", }, |
| { ESP_CMD_RSEL3, "RESLCTSEQ", }, |
| /* Target State Group */ |
| { ESP_CMD_SMSG, "SNDMSG", }, |
| { ESP_CMD_SSTAT, "SNDSTATUS", }, |
| { ESP_CMD_SDATA, "SNDDATA", }, |
| { ESP_CMD_DSEQ, "DISCSEQ", }, |
| { ESP_CMD_TSEQ, "TERMSEQ", }, |
| { ESP_CMD_TCCSEQ, "TRGTCMDCOMPSEQ", }, |
| { ESP_CMD_DCNCT, "DISC", }, |
| { ESP_CMD_RMSG, "RCVMSG", }, |
| { ESP_CMD_RCMD, "RCVCMD", }, |
| { ESP_CMD_RDATA, "RCVDATA", }, |
| { ESP_CMD_RCSEQ, "RCVCMDSEQ", }, |
| /* Initiator State Group */ |
| { ESP_CMD_TI, "TRANSINFO", }, |
| { ESP_CMD_ICCSEQ, "INICMDSEQCOMP", }, |
| { ESP_CMD_MOK, "MSGACCEPTED", }, |
| { ESP_CMD_TPAD, "TPAD", }, |
| { ESP_CMD_SATN, "SATN", }, |
| { ESP_CMD_RATN, "RATN", }, |
| }; |
| #define NUM_ESP_COMMANDS ((sizeof(esp_cmd_strings)) / (sizeof(struct esp_cmdstrings))) |
| |
| /* Print textual representation of an ESP command */ |
| static inline void esp_print_cmd(u8 espcmd) |
| { |
| u8 dma_bit = espcmd & ESP_CMD_DMA; |
| int i; |
| |
| espcmd &= ~dma_bit; |
| for (i = 0; i < NUM_ESP_COMMANDS; i++) |
| if (esp_cmd_strings[i].cmdchar == espcmd) |
| break; |
| if (i == NUM_ESP_COMMANDS) |
| printk("ESP_Unknown"); |
| else |
| printk("%s%s", esp_cmd_strings[i].text, |
| ((dma_bit) ? "+DMA" : "")); |
| } |
| |
| /* Print the status register's value */ |
| static inline void esp_print_statreg(u8 statreg) |
| { |
| u8 phase; |
| |
| printk("STATUS<"); |
| phase = statreg & ESP_STAT_PMASK; |
| printk("%s,", (phase == ESP_DOP ? "DATA-OUT" : |
| (phase == ESP_DIP ? "DATA-IN" : |
| (phase == ESP_CMDP ? "COMMAND" : |
| (phase == ESP_STATP ? "STATUS" : |
| (phase == ESP_MOP ? "MSG-OUT" : |
| (phase == ESP_MIP ? "MSG_IN" : |
| "unknown"))))))); |
| if (statreg & ESP_STAT_TDONE) |
| printk("TRANS_DONE,"); |
| if (statreg & ESP_STAT_TCNT) |
| printk("TCOUNT_ZERO,"); |
| if (statreg & ESP_STAT_PERR) |
| printk("P_ERROR,"); |
| if (statreg & ESP_STAT_SPAM) |
| printk("SPAM,"); |
| if (statreg & ESP_STAT_INTR) |
| printk("IRQ,"); |
| printk(">"); |
| } |
| |
| /* Print the interrupt register's value */ |
| static inline void esp_print_ireg(u8 intreg) |
| { |
| printk("INTREG< "); |
| if (intreg & ESP_INTR_S) |
| printk("SLCT_NATN "); |
| if (intreg & ESP_INTR_SATN) |
| printk("SLCT_ATN "); |
| if (intreg & ESP_INTR_RSEL) |
| printk("RSLCT "); |
| if (intreg & ESP_INTR_FDONE) |
| printk("FDONE "); |
| if (intreg & ESP_INTR_BSERV) |
| printk("BSERV "); |
| if (intreg & ESP_INTR_DC) |
| printk("DISCNCT "); |
| if (intreg & ESP_INTR_IC) |
| printk("ILL_CMD "); |
| if (intreg & ESP_INTR_SR) |
| printk("SCSI_BUS_RESET "); |
| printk(">"); |
| } |
| |
| /* Print the sequence step registers contents */ |
| static inline void esp_print_seqreg(u8 stepreg) |
| { |
| stepreg &= ESP_STEP_VBITS; |
| printk("STEP<%s>", |
| (stepreg == ESP_STEP_ASEL ? "SLCT_ARB_CMPLT" : |
| (stepreg == ESP_STEP_SID ? "1BYTE_MSG_SENT" : |
| (stepreg == ESP_STEP_NCMD ? "NOT_IN_CMD_PHASE" : |
| (stepreg == ESP_STEP_PPC ? "CMD_BYTES_LOST" : |
| (stepreg == ESP_STEP_FINI4 ? "CMD_SENT_OK" : |
| "UNKNOWN")))))); |
| } |
| |
| static char *phase_string(int phase) |
| { |
| switch (phase) { |
| case not_issued: |
| return "UNISSUED"; |
| case in_slct_norm: |
| return "SLCTNORM"; |
| case in_slct_stop: |
| return "SLCTSTOP"; |
| case in_slct_msg: |
| return "SLCTMSG"; |
| case in_slct_tag: |
| return "SLCTTAG"; |
| case in_slct_sneg: |
| return "SLCTSNEG"; |
| case in_datain: |
| return "DATAIN"; |
| case in_dataout: |
| return "DATAOUT"; |
| case in_data_done: |
| return "DATADONE"; |
| case in_msgin: |
| return "MSGIN"; |
| case in_msgincont: |
| return "MSGINCONT"; |
| case in_msgindone: |
| return "MSGINDONE"; |
| case in_msgout: |
| return "MSGOUT"; |
| case in_msgoutdone: |
| return "MSGOUTDONE"; |
| case in_cmdbegin: |
| return "CMDBEGIN"; |
| case in_cmdend: |
| return "CMDEND"; |
| case in_status: |
| return "STATUS"; |
| case in_freeing: |
| return "FREEING"; |
| case in_the_dark: |
| return "CLUELESS"; |
| case in_abortone: |
| return "ABORTONE"; |
| case in_abortall: |
| return "ABORTALL"; |
| case in_resetdev: |
| return "RESETDEV"; |
| case in_resetbus: |
| return "RESETBUS"; |
| case in_tgterror: |
| return "TGTERROR"; |
| default: |
| return "UNKNOWN"; |
| }; |
| } |
| |
| #ifdef DEBUG_STATE_MACHINE |
| static inline void esp_advance_phase(struct scsi_cmnd *s, int newphase) |
| { |
| ESPLOG(("<%s>", phase_string(newphase))); |
| s->SCp.sent_command = s->SCp.phase; |
| s->SCp.phase = newphase; |
| } |
| #else |
| #define esp_advance_phase(__s, __newphase) \ |
| (__s)->SCp.sent_command = (__s)->SCp.phase; \ |
| (__s)->SCp.phase = (__newphase); |
| #endif |
| |
| #ifdef DEBUG_ESP_CMDS |
| static inline void esp_cmd(struct esp *esp, u8 cmd) |
| { |
| esp->espcmdlog[esp->espcmdent] = cmd; |
| esp->espcmdent = (esp->espcmdent + 1) & 31; |
| sbus_writeb(cmd, esp->eregs + ESP_CMD); |
| } |
| #else |
| #define esp_cmd(__esp, __cmd) \ |
| sbus_writeb((__cmd), ((__esp)->eregs) + ESP_CMD) |
| #endif |
| |
| #define ESP_INTSOFF(__dregs) \ |
| sbus_writel(sbus_readl((__dregs)+DMA_CSR)&~(DMA_INT_ENAB), (__dregs)+DMA_CSR) |
| #define ESP_INTSON(__dregs) \ |
| sbus_writel(sbus_readl((__dregs)+DMA_CSR)|DMA_INT_ENAB, (__dregs)+DMA_CSR) |
| #define ESP_IRQ_P(__dregs) \ |
| (sbus_readl((__dregs)+DMA_CSR) & (DMA_HNDL_INTR|DMA_HNDL_ERROR)) |
| |
| /* How we use the various Linux SCSI data structures for operation. |
| * |
| * struct scsi_cmnd: |
| * |
| * We keep track of the synchronous capabilities of a target |
| * in the device member, using sync_min_period and |
| * sync_max_offset. These are the values we directly write |
| * into the ESP registers while running a command. If offset |
| * is zero the ESP will use asynchronous transfers. |
| * If the borken flag is set we assume we shouldn't even bother |
| * trying to negotiate for synchronous transfer as this target |
| * is really stupid. If we notice the target is dropping the |
| * bus, and we have been allowing it to disconnect, we clear |
| * the disconnect flag. |
| */ |
| |
| |
| /* Manipulation of the ESP command queues. Thanks to the aha152x driver |
| * and its author, Juergen E. Fischer, for the methods used here. |
| * Note that these are per-ESP queues, not global queues like |
| * the aha152x driver uses. |
| */ |
| static inline void append_SC(struct scsi_cmnd **SC, struct scsi_cmnd *new_SC) |
| { |
| struct scsi_cmnd *end; |
| |
| new_SC->host_scribble = (unsigned char *) NULL; |
| if (!*SC) |
| *SC = new_SC; |
| else { |
| for (end=*SC;end->host_scribble;end=(struct scsi_cmnd *)end->host_scribble) |
| ; |
| end->host_scribble = (unsigned char *) new_SC; |
| } |
| } |
| |
| static inline void prepend_SC(struct scsi_cmnd **SC, struct scsi_cmnd *new_SC) |
| { |
| new_SC->host_scribble = (unsigned char *) *SC; |
| *SC = new_SC; |
| } |
| |
| static inline struct scsi_cmnd *remove_first_SC(struct scsi_cmnd **SC) |
| { |
| struct scsi_cmnd *ptr; |
| ptr = *SC; |
| if (ptr) |
| *SC = (struct scsi_cmnd *) (*SC)->host_scribble; |
| return ptr; |
| } |
| |
| static inline struct scsi_cmnd *remove_SC(struct scsi_cmnd **SC, int target, int lun) |
| { |
| struct scsi_cmnd *ptr, *prev; |
| |
| for (ptr = *SC, prev = NULL; |
| ptr && ((ptr->device->id != target) || (ptr->device->lun != lun)); |
| prev = ptr, ptr = (struct scsi_cmnd *) ptr->host_scribble) |
| ; |
| if (ptr) { |
| if (prev) |
| prev->host_scribble=ptr->host_scribble; |
| else |
| *SC=(struct scsi_cmnd *)ptr->host_scribble; |
| } |
| return ptr; |
| } |
| |
| /* Resetting various pieces of the ESP scsi driver chipset/buses. */ |
| static void esp_reset_dma(struct esp *esp) |
| { |
| int can_do_burst16, can_do_burst32, can_do_burst64; |
| int can_do_sbus64; |
| u32 tmp; |
| |
| can_do_burst16 = (esp->bursts & DMA_BURST16) != 0; |
| can_do_burst32 = (esp->bursts & DMA_BURST32) != 0; |
| can_do_burst64 = 0; |
| can_do_sbus64 = 0; |
| if (sbus_can_dma_64bit(esp->sdev)) |
| can_do_sbus64 = 1; |
| if (sbus_can_burst64(esp->sdev)) |
| can_do_burst64 = (esp->bursts & DMA_BURST64) != 0; |
| |
| /* Punt the DVMA into a known state. */ |
| if (esp->dma->revision != dvmahme) { |
| tmp = sbus_readl(esp->dregs + DMA_CSR); |
| sbus_writel(tmp | DMA_RST_SCSI, esp->dregs + DMA_CSR); |
| sbus_writel(tmp & ~DMA_RST_SCSI, esp->dregs + DMA_CSR); |
| } |
| switch (esp->dma->revision) { |
| case dvmahme: |
| /* This is the HME DVMA gate array. */ |
| |
| sbus_writel(DMA_RESET_FAS366, esp->dregs + DMA_CSR); |
| sbus_writel(DMA_RST_SCSI, esp->dregs + DMA_CSR); |
| |
| esp->prev_hme_dmacsr = (DMA_PARITY_OFF|DMA_2CLKS|DMA_SCSI_DISAB|DMA_INT_ENAB); |
| esp->prev_hme_dmacsr &= ~(DMA_ENABLE|DMA_ST_WRITE|DMA_BRST_SZ); |
| |
| if (can_do_burst64) |
| esp->prev_hme_dmacsr |= DMA_BRST64; |
| else if (can_do_burst32) |
| esp->prev_hme_dmacsr |= DMA_BRST32; |
| |
| if (can_do_sbus64) { |
| esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64; |
| sbus_set_sbus64(esp->sdev, esp->bursts); |
| } |
| |
| /* This chip is horrible. */ |
| while (sbus_readl(esp->dregs + DMA_CSR) & DMA_PEND_READ) |
| udelay(1); |
| |
| sbus_writel(0, esp->dregs + DMA_CSR); |
| sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); |
| |
| /* This is necessary to avoid having the SCSI channel |
| * engine lock up on us. |
| */ |
| sbus_writel(0, esp->dregs + DMA_ADDR); |
| |
| break; |
| case dvmarev2: |
| /* This is the gate array found in the sun4m |
| * NCR SBUS I/O subsystem. |
| */ |
| if (esp->erev != esp100) { |
| tmp = sbus_readl(esp->dregs + DMA_CSR); |
| sbus_writel(tmp | DMA_3CLKS, esp->dregs + DMA_CSR); |
| } |
| break; |
| case dvmarev3: |
| tmp = sbus_readl(esp->dregs + DMA_CSR); |
| tmp &= ~DMA_3CLKS; |
| tmp |= DMA_2CLKS; |
| if (can_do_burst32) { |
| tmp &= ~DMA_BRST_SZ; |
| tmp |= DMA_BRST32; |
| } |
| sbus_writel(tmp, esp->dregs + DMA_CSR); |
| break; |
| case dvmaesc1: |
| /* This is the DMA unit found on SCSI/Ether cards. */ |
| tmp = sbus_readl(esp->dregs + DMA_CSR); |
| tmp |= DMA_ADD_ENABLE; |
| tmp &= ~DMA_BCNT_ENAB; |
| if (!can_do_burst32 && can_do_burst16) { |
| tmp |= DMA_ESC_BURST; |
| } else { |
| tmp &= ~(DMA_ESC_BURST); |
| } |
| sbus_writel(tmp, esp->dregs + DMA_CSR); |
| break; |
| default: |
| break; |
| }; |
| ESP_INTSON(esp->dregs); |
| } |
| |
| /* Reset the ESP chip, _not_ the SCSI bus. */ |
| static void __init esp_reset_esp(struct esp *esp) |
| { |
| u8 family_code, version; |
| int i; |
| |
| /* Now reset the ESP chip */ |
| esp_cmd(esp, ESP_CMD_RC); |
| esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); |
| esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); |
| |
| /* Reload the configuration registers */ |
| sbus_writeb(esp->cfact, esp->eregs + ESP_CFACT); |
| esp->prev_stp = 0; |
| sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); |
| esp->prev_soff = 0; |
| sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); |
| sbus_writeb(esp->neg_defp, esp->eregs + ESP_TIMEO); |
| |
| /* This is the only point at which it is reliable to read |
| * the ID-code for a fast ESP chip variants. |
| */ |
| esp->max_period = ((35 * esp->ccycle) / 1000); |
| if (esp->erev == fast) { |
| version = sbus_readb(esp->eregs + ESP_UID); |
| family_code = (version & 0xf8) >> 3; |
| if (family_code == 0x02) |
| esp->erev = fas236; |
| else if (family_code == 0x0a) |
| esp->erev = fashme; /* Version is usually '5'. */ |
| else |
| esp->erev = fas100a; |
| ESPMISC(("esp%d: FAST chip is %s (family=%d, version=%d)\n", |
| esp->esp_id, |
| (esp->erev == fas236) ? "fas236" : |
| ((esp->erev == fas100a) ? "fas100a" : |
| "fasHME"), family_code, (version & 7))); |
| |
| esp->min_period = ((4 * esp->ccycle) / 1000); |
| } else { |
| esp->min_period = ((5 * esp->ccycle) / 1000); |
| } |
| esp->max_period = (esp->max_period + 3)>>2; |
| esp->min_period = (esp->min_period + 3)>>2; |
| |
| sbus_writeb(esp->config1, esp->eregs + ESP_CFG1); |
| switch (esp->erev) { |
| case esp100: |
| /* nothing to do */ |
| break; |
| case esp100a: |
| sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); |
| break; |
| case esp236: |
| /* Slow 236 */ |
| sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); |
| esp->prev_cfg3 = esp->config3[0]; |
| sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); |
| break; |
| case fashme: |
| esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB); |
| /* fallthrough... */ |
| case fas236: |
| /* Fast 236 or HME */ |
| sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); |
| for (i = 0; i < 16; i++) { |
| if (esp->erev == fashme) { |
| u8 cfg3; |
| |
| cfg3 = ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH; |
| if (esp->scsi_id >= 8) |
| cfg3 |= ESP_CONFIG3_IDBIT3; |
| esp->config3[i] |= cfg3; |
| } else { |
| esp->config3[i] |= ESP_CONFIG3_FCLK; |
| } |
| } |
| esp->prev_cfg3 = esp->config3[0]; |
| sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); |
| if (esp->erev == fashme) { |
| esp->radelay = 80; |
| } else { |
| if (esp->diff) |
| esp->radelay = 0; |
| else |
| esp->radelay = 96; |
| } |
| break; |
| case fas100a: |
| /* Fast 100a */ |
| sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); |
| for (i = 0; i < 16; i++) |
| esp->config3[i] |= ESP_CONFIG3_FCLOCK; |
| esp->prev_cfg3 = esp->config3[0]; |
| sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); |
| esp->radelay = 32; |
| break; |
| default: |
| panic("esp: what could it be... I wonder..."); |
| break; |
| }; |
| |
| /* Eat any bitrot in the chip */ |
| sbus_readb(esp->eregs + ESP_INTRPT); |
| udelay(100); |
| } |
| |
| /* This places the ESP into a known state at boot time. */ |
| static void __init esp_bootup_reset(struct esp *esp) |
| { |
| u8 tmp; |
| |
| /* Reset the DMA */ |
| esp_reset_dma(esp); |
| |
| /* Reset the ESP */ |
| esp_reset_esp(esp); |
| |
| /* Reset the SCSI bus, but tell ESP not to generate an irq */ |
| tmp = sbus_readb(esp->eregs + ESP_CFG1); |
| tmp |= ESP_CONFIG1_SRRDISAB; |
| sbus_writeb(tmp, esp->eregs + ESP_CFG1); |
| |
| esp_cmd(esp, ESP_CMD_RS); |
| udelay(400); |
| |
| sbus_writeb(esp->config1, esp->eregs + ESP_CFG1); |
| |
| /* Eat any bitrot in the chip and we are done... */ |
| sbus_readb(esp->eregs + ESP_INTRPT); |
| } |
| |
| static int __init esp_find_dvma(struct esp *esp, struct sbus_dev *dma_sdev) |
| { |
| struct sbus_dev *sdev = esp->sdev; |
| struct sbus_dma *dma; |
| |
| if (dma_sdev != NULL) { |
| for_each_dvma(dma) { |
| if (dma->sdev == dma_sdev) |
| break; |
| } |
| } else { |
| for_each_dvma(dma) { |
| /* If allocated already, can't use it. */ |
| if (dma->allocated) |
| continue; |
| |
| if (dma->sdev == NULL) |
| break; |
| |
| /* If bus + slot are the same and it has the |
| * correct OBP name, it's ours. |
| */ |
| if (sdev->bus == dma->sdev->bus && |
| sdev->slot == dma->sdev->slot && |
| (!strcmp(dma->sdev->prom_name, "dma") || |
| !strcmp(dma->sdev->prom_name, "espdma"))) |
| break; |
| } |
| } |
| |
| /* If we don't know how to handle the dvma, |
| * do not use this device. |
| */ |
| if (dma == NULL) { |
| printk("Cannot find dvma for ESP%d's SCSI\n", esp->esp_id); |
| return -1; |
| } |
| if (dma->allocated) { |
| printk("esp%d: can't use my espdma\n", esp->esp_id); |
| return -1; |
| } |
| dma->allocated = 1; |
| esp->dma = dma; |
| esp->dregs = dma->regs; |
| |
| return 0; |
| } |
| |
| static int __init esp_map_regs(struct esp *esp, int hme) |
| { |
| struct sbus_dev *sdev = esp->sdev; |
| struct resource *res; |
| |
| /* On HME, two reg sets exist, first is DVMA, |
| * second is ESP registers. |
| */ |
| if (hme) |
| res = &sdev->resource[1]; |
| else |
| res = &sdev->resource[0]; |
| |
| esp->eregs = sbus_ioremap(res, 0, ESP_REG_SIZE, "ESP Registers"); |
| |
| if (esp->eregs == 0) |
| return -1; |
| return 0; |
| } |
| |
| static int __init esp_map_cmdarea(struct esp *esp) |
| { |
| struct sbus_dev *sdev = esp->sdev; |
| |
| esp->esp_command = sbus_alloc_consistent(sdev, 16, |
| &esp->esp_command_dvma); |
| if (esp->esp_command == NULL || |
| esp->esp_command_dvma == 0) |
| return -1; |
| return 0; |
| } |
| |
| static int __init esp_register_irq(struct esp *esp) |
| { |
| esp->ehost->irq = esp->irq = esp->sdev->irqs[0]; |
| |
| /* We used to try various overly-clever things to |
| * reduce the interrupt processing overhead on |
| * sun4c/sun4m when multiple ESP's shared the |
| * same IRQ. It was too complex and messy to |
| * sanely maintain. |
| */ |
| if (request_irq(esp->ehost->irq, esp_intr, |
| SA_SHIRQ, "ESP SCSI", esp)) { |
| printk("esp%d: Cannot acquire irq line\n", |
| esp->esp_id); |
| return -1; |
| } |
| |
| printk("esp%d: IRQ %d ", esp->esp_id, |
| esp->ehost->irq); |
| |
| return 0; |
| } |
| |
| static void __init esp_get_scsi_id(struct esp *esp) |
| { |
| struct sbus_dev *sdev = esp->sdev; |
| struct device_node *dp = sdev->ofdev.node; |
| |
| esp->scsi_id = of_getintprop_default(dp, |
| "initiator-id", |
| -1); |
| if (esp->scsi_id == -1) |
| esp->scsi_id = of_getintprop_default(dp, |
| "scsi-initiator-id", |
| -1); |
| if (esp->scsi_id == -1) |
| esp->scsi_id = (sdev->bus == NULL) ? 7 : |
| of_getintprop_default(sdev->bus->ofdev.node, |
| "scsi-initiator-id", |
| 7); |
| esp->ehost->this_id = esp->scsi_id; |
| esp->scsi_id_mask = (1 << esp->scsi_id); |
| |
| } |
| |
| static void __init esp_get_clock_params(struct esp *esp) |
| { |
| struct sbus_dev *sdev = esp->sdev; |
| int prom_node = esp->prom_node; |
| int sbus_prom_node; |
| unsigned int fmhz; |
| u8 ccf; |
| |
| if (sdev != NULL && sdev->bus != NULL) |
| sbus_prom_node = sdev->bus->prom_node; |
| else |
| sbus_prom_node = 0; |
| |
| /* This is getting messy but it has to be done |
| * correctly or else you get weird behavior all |
| * over the place. We are trying to basically |
| * figure out three pieces of information. |
| * |
| * a) Clock Conversion Factor |
| * |
| * This is a representation of the input |
| * crystal clock frequency going into the |
| * ESP on this machine. Any operation whose |
| * timing is longer than 400ns depends on this |
| * value being correct. For example, you'll |
| * get blips for arbitration/selection during |
| * high load or with multiple targets if this |
| * is not set correctly. |
| * |
| * b) Selection Time-Out |
| * |
| * The ESP isn't very bright and will arbitrate |
| * for the bus and try to select a target |
| * forever if you let it. This value tells |
| * the ESP when it has taken too long to |
| * negotiate and that it should interrupt |
| * the CPU so we can see what happened. |
| * The value is computed as follows (from |
| * NCR/Symbios chip docs). |
| * |
| * (Time Out Period) * (Input Clock) |
| * STO = ---------------------------------- |
| * (8192) * (Clock Conversion Factor) |
| * |
| * You usually want the time out period to be |
| * around 250ms, I think we'll set it a little |
| * bit higher to account for fully loaded SCSI |
| * bus's and slow devices that don't respond so |
| * quickly to selection attempts. (yeah, I know |
| * this is out of spec. but there is a lot of |
| * buggy pieces of firmware out there so bite me) |
| * |
| * c) Imperical constants for synchronous offset |
| * and transfer period register values |
| * |
| * This entails the smallest and largest sync |
| * period we could ever handle on this ESP. |
| */ |
| |
| fmhz = prom_getintdefault(prom_node, "clock-frequency", -1); |
| if (fmhz == -1) |
| fmhz = (!sbus_prom_node) ? 0 : |
| prom_getintdefault(sbus_prom_node, "clock-frequency", -1); |
| |
| if (fmhz <= (5000000)) |
| ccf = 0; |
| else |
| ccf = (((5000000 - 1) + (fmhz))/(5000000)); |
| |
| if (!ccf || ccf > 8) { |
| /* If we can't find anything reasonable, |
| * just assume 20MHZ. This is the clock |
| * frequency of the older sun4c's where I've |
| * been unable to find the clock-frequency |
| * PROM property. All other machines provide |
| * useful values it seems. |
| */ |
| ccf = ESP_CCF_F4; |
| fmhz = (20000000); |
| } |
| |
| if (ccf == (ESP_CCF_F7 + 1)) |
| esp->cfact = ESP_CCF_F0; |
| else if (ccf == ESP_CCF_NEVER) |
| esp->cfact = ESP_CCF_F2; |
| else |
| esp->cfact = ccf; |
| esp->raw_cfact = ccf; |
| |
| esp->cfreq = fmhz; |
| esp->ccycle = ESP_MHZ_TO_CYCLE(fmhz); |
| esp->ctick = ESP_TICK(ccf, esp->ccycle); |
| esp->neg_defp = ESP_NEG_DEFP(fmhz, ccf); |
| esp->sync_defp = SYNC_DEFP_SLOW; |
| |
| printk("SCSI ID %d Clk %dMHz CCYC=%d CCF=%d TOut %d ", |
| esp->scsi_id, (fmhz / 1000000), |
| (int)esp->ccycle, (int)ccf, (int) esp->neg_defp); |
| } |
| |
| static void __init esp_get_bursts(struct esp *esp, struct sbus_dev *dma) |
| { |
| struct sbus_dev *sdev = esp->sdev; |
| u8 bursts; |
| |
| bursts = prom_getintdefault(esp->prom_node, "burst-sizes", 0xff); |
| |
| if (dma) { |
| u8 tmp = prom_getintdefault(dma->prom_node, |
| "burst-sizes", 0xff); |
| if (tmp != 0xff) |
| bursts &= tmp; |
| } |
| |
| if (sdev->bus) { |
| u8 tmp = prom_getintdefault(sdev->bus->prom_node, |
| "burst-sizes", 0xff); |
| if (tmp != 0xff) |
| bursts &= tmp; |
| } |
| |
| if (bursts == 0xff || |
| (bursts & DMA_BURST16) == 0 || |
| (bursts & DMA_BURST32) == 0) |
| bursts = (DMA_BURST32 - 1); |
| |
| esp->bursts = bursts; |
| } |
| |
| static void __init esp_get_revision(struct esp *esp) |
| { |
| u8 tmp; |
| |
| esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7)); |
| esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY); |
| sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); |
| |
| tmp = sbus_readb(esp->eregs + ESP_CFG2); |
| tmp &= ~ESP_CONFIG2_MAGIC; |
| if (tmp != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) { |
| /* If what we write to cfg2 does not come back, cfg2 |
| * is not implemented, therefore this must be a plain |
| * esp100. |
| */ |
| esp->erev = esp100; |
| printk("NCR53C90(esp100)\n"); |
| } else { |
| esp->config2 = 0; |
| esp->prev_cfg3 = esp->config3[0] = 5; |
| sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); |
| sbus_writeb(0, esp->eregs + ESP_CFG3); |
| sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); |
| |
| tmp = sbus_readb(esp->eregs + ESP_CFG3); |
| if (tmp != 5) { |
| /* The cfg2 register is implemented, however |
| * cfg3 is not, must be esp100a. |
| */ |
| esp->erev = esp100a; |
| printk("NCR53C90A(esp100a)\n"); |
| } else { |
| int target; |
| |
| for (target = 0; target < 16; target++) |
| esp->config3[target] = 0; |
| esp->prev_cfg3 = 0; |
| sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); |
| |
| /* All of cfg{1,2,3} implemented, must be one of |
| * the fas variants, figure out which one. |
| */ |
| if (esp->raw_cfact > ESP_CCF_F5) { |
| esp->erev = fast; |
| esp->sync_defp = SYNC_DEFP_FAST; |
| printk("NCR53C9XF(espfast)\n"); |
| } else { |
| esp->erev = esp236; |
| printk("NCR53C9x(esp236)\n"); |
| } |
| esp->config2 = 0; |
| sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); |
| } |
| } |
| } |
| |
| static void __init esp_init_swstate(struct esp *esp) |
| { |
| int i; |
| |
| /* Command queues... */ |
| esp->current_SC = NULL; |
| esp->disconnected_SC = NULL; |
| esp->issue_SC = NULL; |
| |
| /* Target and current command state... */ |
| esp->targets_present = 0; |
| esp->resetting_bus = 0; |
| esp->snip = 0; |
| |
| init_waitqueue_head(&esp->reset_queue); |
| |
| /* Debugging... */ |
| for(i = 0; i < 32; i++) |
| esp->espcmdlog[i] = 0; |
| esp->espcmdent = 0; |
| |
| /* MSG phase state... */ |
| for(i = 0; i < 16; i++) { |
| esp->cur_msgout[i] = 0; |
| esp->cur_msgin[i] = 0; |
| } |
| esp->prevmsgout = esp->prevmsgin = 0; |
| esp->msgout_len = esp->msgin_len = 0; |
| |
| /* Clear the one behind caches to hold unmatchable values. */ |
| esp->prev_soff = esp->prev_stp = esp->prev_cfg3 = 0xff; |
| esp->prev_hme_dmacsr = 0xffffffff; |
| } |
| |
| static int __init detect_one_esp(struct scsi_host_template *tpnt, |
| struct device *dev, |
| struct sbus_dev *esp_dev, |
| struct sbus_dev *espdma, |
| struct sbus_bus *sbus, |
| int hme) |
| { |
| static int instance; |
| struct Scsi_Host *esp_host = scsi_host_alloc(tpnt, sizeof(struct esp)); |
| struct esp *esp; |
| |
| if (!esp_host) |
| return -ENOMEM; |
| |
| if (hme) |
| esp_host->max_id = 16; |
| esp = (struct esp *) esp_host->hostdata; |
| esp->ehost = esp_host; |
| esp->sdev = esp_dev; |
| esp->esp_id = instance; |
| esp->prom_node = esp_dev->prom_node; |
| prom_getstring(esp->prom_node, "name", esp->prom_name, |
| sizeof(esp->prom_name)); |
| |
| if (esp_find_dvma(esp, espdma) < 0) |
| goto fail_unlink; |
| if (esp_map_regs(esp, hme) < 0) { |
| printk("ESP registers unmappable"); |
| goto fail_dvma_release; |
| } |
| if (esp_map_cmdarea(esp) < 0) { |
| printk("ESP DVMA transport area unmappable"); |
| goto fail_unmap_regs; |
| } |
| if (esp_register_irq(esp) < 0) |
| goto fail_unmap_cmdarea; |
| |
| esp_get_scsi_id(esp); |
| |
| esp->diff = prom_getbool(esp->prom_node, "differential"); |
| if (esp->diff) |
| printk("Differential "); |
| |
| esp_get_clock_params(esp); |
| esp_get_bursts(esp, espdma); |
| esp_get_revision(esp); |
| esp_init_swstate(esp); |
| |
| esp_bootup_reset(esp); |
| |
| if (scsi_add_host(esp_host, dev)) |
| goto fail_free_irq; |
| |
| dev_set_drvdata(&esp_dev->ofdev.dev, esp); |
| |
| scsi_scan_host(esp_host); |
| instance++; |
| |
| return 0; |
| |
| fail_free_irq: |
| free_irq(esp->ehost->irq, esp); |
| |
| fail_unmap_cmdarea: |
| sbus_free_consistent(esp->sdev, 16, |
| (void *) esp->esp_command, |
| esp->esp_command_dvma); |
| |
| fail_unmap_regs: |
| sbus_iounmap(esp->eregs, ESP_REG_SIZE); |
| |
| fail_dvma_release: |
| esp->dma->allocated = 0; |
| |
| fail_unlink: |
| scsi_host_put(esp_host); |
| return -1; |
| } |
| |
| /* Detecting ESP chips on the machine. This is the simple and easy |
| * version. |
| */ |
| static int __devexit esp_remove_common(struct esp *esp) |
| { |
| unsigned int irq = esp->ehost->irq; |
| |
| scsi_remove_host(esp->ehost); |
| |
| ESP_INTSOFF(esp->dregs); |
| #if 0 |
| esp_reset_dma(esp); |
| esp_reset_esp(esp); |
| #endif |
| |
| free_irq(irq, esp); |
| sbus_free_consistent(esp->sdev, 16, |
| (void *) esp->esp_command, esp->esp_command_dvma); |
| sbus_iounmap(esp->eregs, ESP_REG_SIZE); |
| esp->dma->allocated = 0; |
| |
| scsi_host_put(esp->ehost); |
| |
| return 0; |
| } |
| |
| |
| #ifdef CONFIG_SUN4 |
| |
| #include <asm/sun4paddr.h> |
| |
| static struct sbus_dev sun4_esp_dev; |
| |
| static int __init esp_sun4_probe(struct scsi_host_template *tpnt) |
| { |
| if (sun4_esp_physaddr) { |
| memset(&sun4_esp_dev, 0, sizeof(esp_dev)); |
| sun4_esp_dev.reg_addrs[0].phys_addr = sun4_esp_physaddr; |
| sun4_esp_dev.irqs[0] = 4; |
| sun4_esp_dev.resource[0].start = sun4_esp_physaddr; |
| sun4_esp_dev.resource[0].end = |
| sun4_esp_physaddr + ESP_REG_SIZE - 1; |
| sun4_esp_dev.resource[0].flags = IORESOURCE_IO; |
| |
| return detect_one_esp(tpnt, NULL, |
| &sun4_esp_dev, NULL, NULL, 0); |
| } |
| return 0; |
| } |
| |
| static int __devexit esp_sun4_remove(void) |
| { |
| struct esp *esp = dev_get_drvdata(&dev->dev); |
| |
| return esp_remove_common(esp); |
| } |
| |
| #else /* !CONFIG_SUN4 */ |
| |
| static int __devinit esp_sbus_probe(struct of_device *dev, const struct of_device_id *match) |
| { |
| struct sbus_dev *sdev = to_sbus_device(&dev->dev); |
| struct device_node *dp = dev->node; |
| struct sbus_dev *dma_sdev = NULL; |
| int hme = 0; |
| |
| if (dp->parent && |
| (!strcmp(dp->parent->name, "espdma") || |
| !strcmp(dp->parent->name, "dma"))) |
| dma_sdev = sdev->parent; |
| else if (!strcmp(dp->name, "SUNW,fas")) { |
| dma_sdev = sdev; |
| hme = 1; |
| } |
| |
| return detect_one_esp(match->data, &dev->dev, |
| sdev, dma_sdev, sdev->bus, hme); |
| } |
| |
| static int __devexit esp_sbus_remove(struct of_device *dev) |
| { |
| struct esp *esp = dev_get_drvdata(&dev->dev); |
| |
| return esp_remove_common(esp); |
| } |
| |
| #endif /* !CONFIG_SUN4 */ |
| |
| /* The info function will return whatever useful |
| * information the developer sees fit. If not provided, then |
| * the name field will be used instead. |
| */ |
| static const char *esp_info(struct Scsi_Host *host) |
| { |
| struct esp *esp; |
| |
| esp = (struct esp *) host->hostdata; |
| switch (esp->erev) { |
| case esp100: |
| return "Sparc ESP100 (NCR53C90)"; |
| case esp100a: |
| return "Sparc ESP100A (NCR53C90A)"; |
| case esp236: |
| return "Sparc ESP236"; |
| case fas236: |
| return "Sparc ESP236-FAST"; |
| case fashme: |
| return "Sparc ESP366-HME"; |
| case fas100a: |
| return "Sparc ESP100A-FAST"; |
| default: |
| return "Bogon ESP revision"; |
| }; |
| } |
| |
| /* From Wolfgang Stanglmeier's NCR scsi driver. */ |
| struct info_str |
| { |
| char *buffer; |
| int length; |
| int offset; |
| int pos; |
| }; |
| |
| static void copy_mem_info(struct info_str *info, char *data, int len) |
| { |
| if (info->pos + len > info->length) |
| len = info->length - info->pos; |
| |
| if (info->pos + len < info->offset) { |
| info->pos += len; |
| return; |
| } |
| if (info->pos < info->offset) { |
| data += (info->offset - info->pos); |
| len -= (info->offset - info->pos); |
| } |
| |
| if (len > 0) { |
| memcpy(info->buffer + info->pos, data, len); |
| info->pos += len; |
| } |
| } |
| |
| static int copy_info(struct info_str *info, char *fmt, ...) |
| { |
| va_list args; |
| char buf[81]; |
| int len; |
| |
| va_start(args, fmt); |
| len = vsprintf(buf, fmt, args); |
| va_end(args); |
| |
| copy_mem_info(info, buf, len); |
| return len; |
| } |
| |
| static int esp_host_info(struct esp *esp, char *ptr, off_t offset, int len) |
| { |
| struct scsi_device *sdev; |
| struct info_str info; |
| int i; |
| |
| info.buffer = ptr; |
| info.length = len; |
| info.offset = offset; |
| info.pos = 0; |
| |
| copy_info(&info, "Sparc ESP Host Adapter:\n"); |
| copy_info(&info, "\tPROM node\t\t%08x\n", (unsigned int) esp->prom_node); |
| copy_info(&info, "\tPROM name\t\t%s\n", esp->prom_name); |
| copy_info(&info, "\tESP Model\t\t"); |
| switch (esp->erev) { |
| case esp100: |
| copy_info(&info, "ESP100\n"); |
| break; |
| case esp100a: |
| copy_info(&info, "ESP100A\n"); |
| break; |
| case esp236: |
| copy_info(&info, "ESP236\n"); |
| break; |
| case fas236: |
| copy_info(&info, "FAS236\n"); |
| break; |
| case fas100a: |
| copy_info(&info, "FAS100A\n"); |
| break; |
| case fast: |
| copy_info(&info, "FAST\n"); |
| break; |
| case fashme: |
| copy_info(&info, "Happy Meal FAS\n"); |
| break; |
| case espunknown: |
| default: |
| copy_info(&info, "Unknown!\n"); |
| break; |
| }; |
| copy_info(&info, "\tDMA Revision\t\t"); |
| switch (esp->dma->revision) { |
| case dvmarev0: |
| copy_info(&info, "Rev 0\n"); |
| break; |
| case dvmaesc1: |
| copy_info(&info, "ESC Rev 1\n"); |
| break; |
| case dvmarev1: |
| copy_info(&info, "Rev 1\n"); |
| break; |
| case dvmarev2: |
| copy_info(&info, "Rev 2\n"); |
| break; |
| case dvmarev3: |
| copy_info(&info, "Rev 3\n"); |
| break; |
| case dvmarevplus: |
| copy_info(&info, "Rev 1+\n"); |
| break; |
| case dvmahme: |
| copy_info(&info, "Rev HME/FAS\n"); |
| break; |
| default: |
| copy_info(&info, "Unknown!\n"); |
| break; |
| }; |
| copy_info(&info, "\tLive Targets\t\t[ "); |
| for (i = 0; i < 15; i++) { |
| if (esp->targets_present & (1 << i)) |
| copy_info(&info, "%d ", i); |
| } |
| copy_info(&info, "]\n\n"); |
| |
| /* Now describe the state of each existing target. */ |
| copy_info(&info, "Target #\tconfig3\t\tSync Capabilities\tDisconnect\tWide\n"); |
| |
| shost_for_each_device(sdev, esp->ehost) { |
| struct esp_device *esp_dev = sdev->hostdata; |
| uint id = sdev->id; |
| |
| if (!(esp->targets_present & (1 << id))) |
| continue; |
| |
| copy_info(&info, "%d\t\t", id); |
| copy_info(&info, "%08lx\t", esp->config3[id]); |
| copy_info(&info, "[%02lx,%02lx]\t\t\t", |
| esp_dev->sync_max_offset, |
| esp_dev->sync_min_period); |
| copy_info(&info, "%s\t\t", |
| esp_dev->disconnect ? "yes" : "no"); |
| copy_info(&info, "%s\n", |
| (esp->config3[id] & ESP_CONFIG3_EWIDE) ? "yes" : "no"); |
| } |
| return info.pos > info.offset? info.pos - info.offset : 0; |
| } |
| |
| /* ESP proc filesystem code. */ |
| static int esp_proc_info(struct Scsi_Host *host, char *buffer, char **start, off_t offset, |
| int length, int inout) |
| { |
| struct esp *esp = (struct esp *) host->hostdata; |
| |
| if (inout) |
| return -EINVAL; /* not yet */ |
| |
| if (start) |
| *start = buffer; |
| |
| return esp_host_info(esp, buffer, offset, length); |
| } |
| |
| static void esp_get_dmabufs(struct esp *esp, struct scsi_cmnd *sp) |
| { |
| if (sp->use_sg == 0) { |
| sp->SCp.this_residual = sp->request_bufflen; |
| sp->SCp.buffer = (struct scatterlist *) sp->request_buffer; |
| sp->SCp.buffers_residual = 0; |
| if (sp->request_bufflen) { |
| sp->SCp.have_data_in = sbus_map_single(esp->sdev, sp->SCp.buffer, |
| sp->SCp.this_residual, |
| sp->sc_data_direction); |
| sp->SCp.ptr = (char *) ((unsigned long)sp->SCp.have_data_in); |
| } else { |
| sp->SCp.ptr = NULL; |
| } |
| } else { |
| sp->SCp.buffer = (struct scatterlist *) sp->buffer; |
| sp->SCp.buffers_residual = sbus_map_sg(esp->sdev, |
| sp->SCp.buffer, |
| sp->use_sg, |
| sp->sc_data_direction); |
| sp->SCp.this_residual = sg_dma_len(sp->SCp.buffer); |
| sp->SCp.ptr = (char *) ((unsigned long)sg_dma_address(sp->SCp.buffer)); |
| } |
| } |
| |
| static void esp_release_dmabufs(struct esp *esp, struct scsi_cmnd *sp) |
| { |
| if (sp->use_sg) { |
| sbus_unmap_sg(esp->sdev, sp->buffer, sp->use_sg, |
| sp->sc_data_direction); |
| } else if (sp->request_bufflen) { |
| sbus_unmap_single(esp->sdev, |
| sp->SCp.have_data_in, |
| sp->request_bufflen, |
| sp->sc_data_direction); |
| } |
| } |
| |
| static void esp_restore_pointers(struct esp *esp, struct scsi_cmnd *sp) |
| { |
| struct esp_pointers *ep = &esp->data_pointers[sp->device->id]; |
| |
| sp->SCp.ptr = ep->saved_ptr; |
| sp->SCp.buffer = ep->saved_buffer; |
| sp->SCp.this_residual = ep->saved_this_residual; |
| sp->SCp.buffers_residual = ep->saved_buffers_residual; |
| } |
| |
| static void esp_save_pointers(struct esp *esp, struct scsi_cmnd *sp) |
| { |
| struct esp_pointers *ep = &esp->data_pointers[sp->device->id]; |
| |
| ep->saved_ptr = sp->SCp.ptr; |
| ep->saved_buffer = sp->SCp.buffer; |
| ep->saved_this_residual = sp->SCp.this_residual; |
| ep->saved_buffers_residual = sp->SCp.buffers_residual; |
| } |
| |
| /* Some rules: |
| * |
| * 1) Never ever panic while something is live on the bus. |
| * If there is to be any chance of syncing the disks this |
| * rule is to be obeyed. |
| * |
| * 2) Any target that causes a foul condition will no longer |
| * have synchronous transfers done to it, no questions |
| * asked. |
| * |
| * 3) Keep register accesses to a minimum. Think about some |
| * day when we have Xbus machines this is running on and |
| * the ESP chip is on the other end of the machine on a |
| * different board from the cpu where this is running. |
| */ |
| |
| /* Fire off a command. We assume the bus is free and that the only |
| * case where we could see an interrupt is where we have disconnected |
| * commands active and they are trying to reselect us. |
| */ |
| static inline void esp_check_cmd(struct esp *esp, struct scsi_cmnd *sp) |
| { |
| switch (sp->cmd_len) { |
| case 6: |
| case 10: |
| case 12: |
| esp->esp_slowcmd = 0; |
| break; |
| |
| default: |
| esp->esp_slowcmd = 1; |
| esp->esp_scmdleft = sp->cmd_len; |
| esp->esp_scmdp = &sp->cmnd[0]; |
| break; |
| }; |
| } |
| |
| static inline void build_sync_nego_msg(struct esp *esp, int period, int offset) |
| { |
| esp->cur_msgout[0] = EXTENDED_MESSAGE; |
| esp->cur_msgout[1] = 3; |
| esp->cur_msgout[2] = EXTENDED_SDTR; |
| esp->cur_msgout[3] = period; |
| esp->cur_msgout[4] = offset; |
| esp->msgout_len = 5; |
| } |
| |
| /* SIZE is in bits, currently HME only supports 16 bit wide transfers. */ |
| static inline void build_wide_nego_msg(struct esp *esp, int size) |
| { |
| esp->cur_msgout[0] = EXTENDED_MESSAGE; |
| esp->cur_msgout[1] = 2; |
| esp->cur_msgout[2] = EXTENDED_WDTR; |
| switch (size) { |
| case 32: |
| esp->cur_msgout[3] = 2; |
| break; |
| case 16: |
| esp->cur_msgout[3] = 1; |
| break; |
| case 8: |
| default: |
| esp->cur_msgout[3] = 0; |
| break; |
| }; |
| |
| esp->msgout_len = 4; |
| } |
| |
| static void esp_exec_cmd(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr; |
| struct scsi_device *SDptr; |
| struct esp_device *esp_dev; |
| volatile u8 *cmdp = esp->esp_command; |
| u8 the_esp_command; |
| int lun, target; |
| int i; |
| |
| /* Hold off if we have disconnected commands and |
| * an IRQ is showing... |
| */ |
| if (esp->disconnected_SC && ESP_IRQ_P(esp->dregs)) |
| return; |
| |
| /* Grab first member of the issue queue. */ |
| SCptr = esp->current_SC = remove_first_SC(&esp->issue_SC); |
| |
| /* Safe to panic here because current_SC is null. */ |
| if (!SCptr) |
| panic("esp: esp_exec_cmd and issue queue is NULL"); |
| |
| SDptr = SCptr->device; |
| esp_dev = SDptr->hostdata; |
| lun = SCptr->device->lun; |
| target = SCptr->device->id; |
| |
| esp->snip = 0; |
| esp->msgout_len = 0; |
| |
| /* Send it out whole, or piece by piece? The ESP |
| * only knows how to automatically send out 6, 10, |
| * and 12 byte commands. I used to think that the |
| * Linux SCSI code would never throw anything other |
| * than that to us, but then again there is the |
| * SCSI generic driver which can send us anything. |
| */ |
| esp_check_cmd(esp, SCptr); |
| |
| /* If arbitration/selection is successful, the ESP will leave |
| * ATN asserted, causing the target to go into message out |
| * phase. The ESP will feed the target the identify and then |
| * the target can only legally go to one of command, |
| * datain/out, status, or message in phase, or stay in message |
| * out phase (should we be trying to send a sync negotiation |
| * message after the identify). It is not allowed to drop |
| * BSY, but some buggy targets do and we check for this |
| * condition in the selection complete code. Most of the time |
| * we'll make the command bytes available to the ESP and it |
| * will not interrupt us until it finishes command phase, we |
| * cannot do this for command sizes the ESP does not |
| * understand and in this case we'll get interrupted right |
| * when the target goes into command phase. |
| * |
| * It is absolutely _illegal_ in the presence of SCSI-2 devices |
| * to use the ESP select w/o ATN command. When SCSI-2 devices are |
| * present on the bus we _must_ always go straight to message out |
| * phase with an identify message for the target. Being that |
| * selection attempts in SCSI-1 w/o ATN was an option, doing SCSI-2 |
| * selections should not confuse SCSI-1 we hope. |
| */ |
| |
| if (esp_dev->sync) { |
| /* this targets sync is known */ |
| #ifndef __sparc_v9__ |
| do_sync_known: |
| #endif |
| if (esp_dev->disconnect) |
| *cmdp++ = IDENTIFY(1, lun); |
| else |
| *cmdp++ = IDENTIFY(0, lun); |
| |
| if (esp->esp_slowcmd) { |
| the_esp_command = (ESP_CMD_SELAS | ESP_CMD_DMA); |
| esp_advance_phase(SCptr, in_slct_stop); |
| } else { |
| the_esp_command = (ESP_CMD_SELA | ESP_CMD_DMA); |
| esp_advance_phase(SCptr, in_slct_norm); |
| } |
| } else if (!(esp->targets_present & (1<<target)) || !(esp_dev->disconnect)) { |
| /* After the bootup SCSI code sends both the |
| * TEST_UNIT_READY and INQUIRY commands we want |
| * to at least attempt allowing the device to |
| * disconnect. |
| */ |
| ESPMISC(("esp: Selecting device for first time. target=%d " |
| "lun=%d\n", target, SCptr->device->lun)); |
| if (!SDptr->borken && !esp_dev->disconnect) |
| esp_dev->disconnect = 1; |
| |
| *cmdp++ = IDENTIFY(0, lun); |
| esp->prevmsgout = NOP; |
| esp_advance_phase(SCptr, in_slct_norm); |
| the_esp_command = (ESP_CMD_SELA | ESP_CMD_DMA); |
| |
| /* Take no chances... */ |
| esp_dev->sync_max_offset = 0; |
| esp_dev->sync_min_period = 0; |
| } else { |
| /* Sorry, I have had way too many problems with |
| * various CDROM devices on ESP. -DaveM |
| */ |
| int cdrom_hwbug_wkaround = 0; |
| |
| #ifndef __sparc_v9__ |
| /* Never allow disconnects or synchronous transfers on |
| * SparcStation1 and SparcStation1+. Allowing those |
| * to be enabled seems to lockup the machine completely. |
| */ |
| if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) || |
| (idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) { |
| /* But we are nice and allow tapes and removable |
| * disks (but not CDROMs) to disconnect. |
| */ |
| if(SDptr->type == TYPE_TAPE || |
| (SDptr->type != TYPE_ROM && SDptr->removable)) |
| esp_dev->disconnect = 1; |
| else |
| esp_dev->disconnect = 0; |
| esp_dev->sync_max_offset = 0; |
| esp_dev->sync_min_period = 0; |
| esp_dev->sync = 1; |
| esp->snip = 0; |
| goto do_sync_known; |
| } |
| #endif /* !(__sparc_v9__) */ |
| |
| /* We've talked to this guy before, |
| * but never negotiated. Let's try, |
| * need to attempt WIDE first, before |
| * sync nego, as per SCSI 2 standard. |
| */ |
| if (esp->erev == fashme && !esp_dev->wide) { |
| if (!SDptr->borken && |
| SDptr->type != TYPE_ROM && |
| SDptr->removable == 0) { |
| build_wide_nego_msg(esp, 16); |
| esp_dev->wide = 1; |
| esp->wnip = 1; |
| goto after_nego_msg_built; |
| } else { |
| esp_dev->wide = 1; |
| /* Fall through and try sync. */ |
| } |
| } |
| |
| if (!SDptr->borken) { |
| if ((SDptr->type == TYPE_ROM)) { |
| /* Nice try sucker... */ |
| ESPMISC(("esp%d: Disabling sync for buggy " |
| "CDROM.\n", esp->esp_id)); |
| cdrom_hwbug_wkaround = 1; |
| build_sync_nego_msg(esp, 0, 0); |
| } else if (SDptr->removable != 0) { |
| ESPMISC(("esp%d: Not negotiating sync/wide but " |
| "allowing disconnect for removable media.\n", |
| esp->esp_id)); |
| build_sync_nego_msg(esp, 0, 0); |
| } else { |
| build_sync_nego_msg(esp, esp->sync_defp, 15); |
| } |
| } else { |
| build_sync_nego_msg(esp, 0, 0); |
| } |
| esp_dev->sync = 1; |
| esp->snip = 1; |
| |
| after_nego_msg_built: |
| /* A fix for broken SCSI1 targets, when they disconnect |
| * they lock up the bus and confuse ESP. So disallow |
| * disconnects for SCSI1 targets for now until we |
| * find a better fix. |
| * |
| * Addendum: This is funny, I figured out what was going |
| * on. The blotzed SCSI1 target would disconnect, |
| * one of the other SCSI2 targets or both would be |
| * disconnected as well. The SCSI1 target would |
| * stay disconnected long enough that we start |
| * up a command on one of the SCSI2 targets. As |
| * the ESP is arbitrating for the bus the SCSI1 |
| * target begins to arbitrate as well to reselect |
| * the ESP. The SCSI1 target refuses to drop it's |
| * ID bit on the data bus even though the ESP is |
| * at ID 7 and is the obvious winner for any |
| * arbitration. The ESP is a poor sport and refuses |
| * to lose arbitration, it will continue indefinitely |
| * trying to arbitrate for the bus and can only be |
| * stopped via a chip reset or SCSI bus reset. |
| * Therefore _no_ disconnects for SCSI1 targets |
| * thank you very much. ;-) |
| */ |
| if(((SDptr->scsi_level < 3) && |
| (SDptr->type != TYPE_TAPE) && |
| SDptr->removable == 0) || |
| cdrom_hwbug_wkaround || SDptr->borken) { |
| ESPMISC((KERN_INFO "esp%d: Disabling DISCONNECT for target %d " |
| "lun %d\n", esp->esp_id, SCptr->device->id, SCptr->device->lun)); |
| esp_dev->disconnect = 0; |
| *cmdp++ = IDENTIFY(0, lun); |
| } else { |
| *cmdp++ = IDENTIFY(1, lun); |
| } |
| |
| /* ESP fifo is only so big... |
| * Make this look like a slow command. |
| */ |
| esp->esp_slowcmd = 1; |
| esp->esp_scmdleft = SCptr->cmd_len; |
| esp->esp_scmdp = &SCptr->cmnd[0]; |
| |
| the_esp_command = (ESP_CMD_SELAS | ESP_CMD_DMA); |
| esp_advance_phase(SCptr, in_slct_msg); |
| } |
| |
| if (!esp->esp_slowcmd) |
| for (i = 0; i < SCptr->cmd_len; i++) |
| *cmdp++ = SCptr->cmnd[i]; |
| |
| /* HME sucks... */ |
| if (esp->erev == fashme) |
| sbus_writeb((target & 0xf) | (ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT), |
| esp->eregs + ESP_BUSID); |
| else |
| sbus_writeb(target & 7, esp->eregs + ESP_BUSID); |
| if (esp->prev_soff != esp_dev->sync_max_offset || |
| esp->prev_stp != esp_dev->sync_min_period || |
| (esp->erev > esp100a && |
| esp->prev_cfg3 != esp->config3[target])) { |
| esp->prev_soff = esp_dev->sync_max_offset; |
| esp->prev_stp = esp_dev->sync_min_period; |
| sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); |
| sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); |
| if (esp->erev > esp100a) { |
| esp->prev_cfg3 = esp->config3[target]; |
| sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); |
| } |
| } |
| i = (cmdp - esp->esp_command); |
| |
| if (esp->erev == fashme) { |
| esp_cmd(esp, ESP_CMD_FLUSH); /* Grrr! */ |
| |
| /* Set up the DMA and HME counters */ |
| sbus_writeb(i, esp->eregs + ESP_TCLOW); |
| sbus_writeb(0, esp->eregs + ESP_TCMED); |
| sbus_writeb(0, esp->eregs + FAS_RLO); |
| sbus_writeb(0, esp->eregs + FAS_RHI); |
| esp_cmd(esp, the_esp_command); |
| |
| /* Talk about touchy hardware... */ |
| esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr | |
| (DMA_SCSI_DISAB | DMA_ENABLE)) & |
| ~(DMA_ST_WRITE)); |
| sbus_writel(16, esp->dregs + DMA_COUNT); |
| sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); |
| sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); |
| } else { |
| u32 tmp; |
| |
| /* Set up the DMA and ESP counters */ |
| sbus_writeb(i, esp->eregs + ESP_TCLOW); |
| sbus_writeb(0, esp->eregs + ESP_TCMED); |
| tmp = sbus_readl(esp->dregs + DMA_CSR); |
| tmp &= ~DMA_ST_WRITE; |
| tmp |= DMA_ENABLE; |
| sbus_writel(tmp, esp->dregs + DMA_CSR); |
| if (esp->dma->revision == dvmaesc1) { |
| if (i) /* Workaround ESC gate array SBUS rerun bug. */ |
| sbus_writel(PAGE_SIZE, esp->dregs + DMA_COUNT); |
| } |
| sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); |
| |
| /* Tell ESP to "go". */ |
| esp_cmd(esp, the_esp_command); |
| } |
| } |
| |
| /* Queue a SCSI command delivered from the mid-level Linux SCSI code. */ |
| static int esp_queue(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) |
| { |
| struct esp *esp; |
| |
| /* Set up func ptr and initial driver cmd-phase. */ |
| SCpnt->scsi_done = done; |
| SCpnt->SCp.phase = not_issued; |
| |
| /* We use the scratch area. */ |
| ESPQUEUE(("esp_queue: target=%d lun=%d ", SCpnt->device->id, SCpnt->device->lun)); |
| ESPDISC(("N<%02x,%02x>", SCpnt->device->id, SCpnt->device->lun)); |
| |
| esp = (struct esp *) SCpnt->device->host->hostdata; |
| esp_get_dmabufs(esp, SCpnt); |
| esp_save_pointers(esp, SCpnt); /* FIXME for tag queueing */ |
| |
| SCpnt->SCp.Status = CHECK_CONDITION; |
| SCpnt->SCp.Message = 0xff; |
| SCpnt->SCp.sent_command = 0; |
| |
| /* Place into our queue. */ |
| if (SCpnt->cmnd[0] == REQUEST_SENSE) { |
| ESPQUEUE(("RQSENSE\n")); |
| prepend_SC(&esp->issue_SC, SCpnt); |
| } else { |
| ESPQUEUE(("\n")); |
| append_SC(&esp->issue_SC, SCpnt); |
| } |
| |
| /* Run it now if we can. */ |
| if (!esp->current_SC && !esp->resetting_bus) |
| esp_exec_cmd(esp); |
| |
| return 0; |
| } |
| |
| /* Dump driver state. */ |
| static void esp_dump_cmd(struct scsi_cmnd *SCptr) |
| { |
| ESPLOG(("[tgt<%02x> lun<%02x> " |
| "pphase<%s> cphase<%s>]", |
| SCptr->device->id, SCptr->device->lun, |
| phase_string(SCptr->SCp.sent_command), |
| phase_string(SCptr->SCp.phase))); |
| } |
| |
| static void esp_dump_state(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr = esp->current_SC; |
| #ifdef DEBUG_ESP_CMDS |
| int i; |
| #endif |
| |
| ESPLOG(("esp%d: dumping state\n", esp->esp_id)); |
| ESPLOG(("esp%d: dma -- cond_reg<%08x> addr<%08x>\n", |
| esp->esp_id, |
| sbus_readl(esp->dregs + DMA_CSR), |
| sbus_readl(esp->dregs + DMA_ADDR))); |
| ESPLOG(("esp%d: SW [sreg<%02x> sstep<%02x> ireg<%02x>]\n", |
| esp->esp_id, esp->sreg, esp->seqreg, esp->ireg)); |
| ESPLOG(("esp%d: HW reread [sreg<%02x> sstep<%02x> ireg<%02x>]\n", |
| esp->esp_id, |
| sbus_readb(esp->eregs + ESP_STATUS), |
| sbus_readb(esp->eregs + ESP_SSTEP), |
| sbus_readb(esp->eregs + ESP_INTRPT))); |
| #ifdef DEBUG_ESP_CMDS |
| printk("esp%d: last ESP cmds [", esp->esp_id); |
| i = (esp->espcmdent - 1) & 31; |
| printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); |
| i = (i - 1) & 31; |
| printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); |
| i = (i - 1) & 31; |
| printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); |
| i = (i - 1) & 31; |
| printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); |
| printk("]\n"); |
| #endif /* (DEBUG_ESP_CMDS) */ |
| |
| if (SCptr) { |
| ESPLOG(("esp%d: current command ", esp->esp_id)); |
| esp_dump_cmd(SCptr); |
| } |
| ESPLOG(("\n")); |
| SCptr = esp->disconnected_SC; |
| ESPLOG(("esp%d: disconnected ", esp->esp_id)); |
| while (SCptr) { |
| esp_dump_cmd(SCptr); |
| SCptr = (struct scsi_cmnd *) SCptr->host_scribble; |
| } |
| ESPLOG(("\n")); |
| } |
| |
| /* Abort a command. The host_lock is acquired by caller. */ |
| static int esp_abort(struct scsi_cmnd *SCptr) |
| { |
| struct esp *esp = (struct esp *) SCptr->device->host->hostdata; |
| int don; |
| |
| ESPLOG(("esp%d: Aborting command\n", esp->esp_id)); |
| esp_dump_state(esp); |
| |
| /* Wheee, if this is the current command on the bus, the |
| * best we can do is assert ATN and wait for msgout phase. |
| * This should even fix a hung SCSI bus when we lose state |
| * in the driver and timeout because the eventual phase change |
| * will cause the ESP to (eventually) give an interrupt. |
| */ |
| if (esp->current_SC == SCptr) { |
| esp->cur_msgout[0] = ABORT; |
| esp->msgout_len = 1; |
| esp->msgout_ctr = 0; |
| esp_cmd(esp, ESP_CMD_SATN); |
| return SUCCESS; |
| } |
| |
| /* If it is still in the issue queue then we can safely |
| * call the completion routine and report abort success. |
| */ |
| don = (sbus_readl(esp->dregs + DMA_CSR) & DMA_INT_ENAB); |
| if (don) { |
| ESP_INTSOFF(esp->dregs); |
| } |
| if (esp->issue_SC) { |
| struct scsi_cmnd **prev, *this; |
| for (prev = (&esp->issue_SC), this = esp->issue_SC; |
| this != NULL; |
| prev = (struct scsi_cmnd **) &(this->host_scribble), |
| this = (struct scsi_cmnd *) this->host_scribble) { |
| |
| if (this == SCptr) { |
| *prev = (struct scsi_cmnd *) this->host_scribble; |
| this->host_scribble = NULL; |
| |
| esp_release_dmabufs(esp, this); |
| this->result = DID_ABORT << 16; |
| this->scsi_done(this); |
| |
| if (don) |
| ESP_INTSON(esp->dregs); |
| |
| return SUCCESS; |
| } |
| } |
| } |
| |
| /* Yuck, the command to abort is disconnected, it is not |
| * worth trying to abort it now if something else is live |
| * on the bus at this time. So, we let the SCSI code wait |
| * a little bit and try again later. |
| */ |
| if (esp->current_SC) { |
| if (don) |
| ESP_INTSON(esp->dregs); |
| return FAILED; |
| } |
| |
| /* It's disconnected, we have to reconnect to re-establish |
| * the nexus and tell the device to abort. However, we really |
| * cannot 'reconnect' per se. Don't try to be fancy, just |
| * indicate failure, which causes our caller to reset the whole |
| * bus. |
| */ |
| |
| if (don) |
| ESP_INTSON(esp->dregs); |
| |
| return FAILED; |
| } |
| |
| /* We've sent ESP_CMD_RS to the ESP, the interrupt had just |
| * arrived indicating the end of the SCSI bus reset. Our job |
| * is to clean out the command queues and begin re-execution |
| * of SCSI commands once more. |
| */ |
| static int esp_finish_reset(struct esp *esp) |
| { |
| struct scsi_cmnd *sp = esp->current_SC; |
| |
| /* Clean up currently executing command, if any. */ |
| if (sp != NULL) { |
| esp->current_SC = NULL; |
| |
| esp_release_dmabufs(esp, sp); |
| sp->result = (DID_RESET << 16); |
| |
| sp->scsi_done(sp); |
| } |
| |
| /* Clean up disconnected queue, they have been invalidated |
| * by the bus reset. |
| */ |
| if (esp->disconnected_SC) { |
| while ((sp = remove_first_SC(&esp->disconnected_SC)) != NULL) { |
| esp_release_dmabufs(esp, sp); |
| sp->result = (DID_RESET << 16); |
| |
| sp->scsi_done(sp); |
| } |
| } |
| |
| /* SCSI bus reset is complete. */ |
| esp->resetting_bus = 0; |
| wake_up(&esp->reset_queue); |
| |
| /* Ok, now it is safe to get commands going once more. */ |
| if (esp->issue_SC) |
| esp_exec_cmd(esp); |
| |
| return do_intr_end; |
| } |
| |
| static int esp_do_resetbus(struct esp *esp) |
| { |
| ESPLOG(("esp%d: Resetting scsi bus\n", esp->esp_id)); |
| esp->resetting_bus = 1; |
| esp_cmd(esp, ESP_CMD_RS); |
| |
| return do_intr_end; |
| } |
| |
| /* Reset ESP chip, reset hanging bus, then kill active and |
| * disconnected commands for targets without soft reset. |
| * |
| * The host_lock is acquired by caller. |
| */ |
| static int esp_reset(struct scsi_cmnd *SCptr) |
| { |
| struct esp *esp = (struct esp *) SCptr->device->host->hostdata; |
| |
| spin_lock_irq(esp->ehost->host_lock); |
| (void) esp_do_resetbus(esp); |
| spin_unlock_irq(esp->ehost->host_lock); |
| |
| wait_event(esp->reset_queue, (esp->resetting_bus == 0)); |
| |
| return SUCCESS; |
| } |
| |
| /* Internal ESP done function. */ |
| static void esp_done(struct esp *esp, int error) |
| { |
| struct scsi_cmnd *done_SC = esp->current_SC; |
| |
| esp->current_SC = NULL; |
| |
| esp_release_dmabufs(esp, done_SC); |
| done_SC->result = error; |
| |
| done_SC->scsi_done(done_SC); |
| |
| /* Bus is free, issue any commands in the queue. */ |
| if (esp->issue_SC && !esp->current_SC) |
| esp_exec_cmd(esp); |
| |
| } |
| |
| /* Wheee, ESP interrupt engine. */ |
| |
| /* Forward declarations. */ |
| static int esp_do_phase_determine(struct esp *esp); |
| static int esp_do_data_finale(struct esp *esp); |
| static int esp_select_complete(struct esp *esp); |
| static int esp_do_status(struct esp *esp); |
| static int esp_do_msgin(struct esp *esp); |
| static int esp_do_msgindone(struct esp *esp); |
| static int esp_do_msgout(struct esp *esp); |
| static int esp_do_cmdbegin(struct esp *esp); |
| |
| #define sreg_datainp(__sreg) (((__sreg) & ESP_STAT_PMASK) == ESP_DIP) |
| #define sreg_dataoutp(__sreg) (((__sreg) & ESP_STAT_PMASK) == ESP_DOP) |
| |
| /* Read any bytes found in the FAS366 fifo, storing them into |
| * the ESP driver software state structure. |
| */ |
| static void hme_fifo_read(struct esp *esp) |
| { |
| u8 count = 0; |
| u8 status = esp->sreg; |
| |
| /* Cannot safely frob the fifo for these following cases, but |
| * we must always read the fifo when the reselect interrupt |
| * is pending. |
| */ |
| if (((esp->ireg & ESP_INTR_RSEL) == 0) && |
| (sreg_datainp(status) || |
| sreg_dataoutp(status) || |
| (esp->current_SC && |
| esp->current_SC->SCp.phase == in_data_done))) { |
| ESPHME(("<wkaround_skipped>")); |
| } else { |
| unsigned long fcnt = sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES; |
| |
| /* The HME stores bytes in multiples of 2 in the fifo. */ |
| ESPHME(("hme_fifo[fcnt=%d", (int)fcnt)); |
| while (fcnt) { |
| esp->hme_fifo_workaround_buffer[count++] = |
| sbus_readb(esp->eregs + ESP_FDATA); |
| esp->hme_fifo_workaround_buffer[count++] = |
| sbus_readb(esp->eregs + ESP_FDATA); |
| ESPHME(("<%02x,%02x>", esp->hme_fifo_workaround_buffer[count-2], esp->hme_fifo_workaround_buffer[count-1])); |
| fcnt--; |
| } |
| if (sbus_readb(esp->eregs + ESP_STATUS2) & ESP_STAT2_F1BYTE) { |
| ESPHME(("<poke_byte>")); |
| sbus_writeb(0, esp->eregs + ESP_FDATA); |
| esp->hme_fifo_workaround_buffer[count++] = |
| sbus_readb(esp->eregs + ESP_FDATA); |
| ESPHME(("<%02x,0x00>", esp->hme_fifo_workaround_buffer[count-1])); |
| ESPHME(("CMD_FLUSH")); |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| } else { |
| ESPHME(("no_xtra_byte")); |
| } |
| } |
| ESPHME(("wkarnd_cnt=%d]", (int)count)); |
| esp->hme_fifo_workaround_count = count; |
| } |
| |
| static inline void hme_fifo_push(struct esp *esp, u8 *bytes, u8 count) |
| { |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| while (count) { |
| u8 tmp = *bytes++; |
| sbus_writeb(tmp, esp->eregs + ESP_FDATA); |
| sbus_writeb(0, esp->eregs + ESP_FDATA); |
| count--; |
| } |
| } |
| |
| /* We try to avoid some interrupts by jumping ahead and see if the ESP |
| * has gotten far enough yet. Hence the following. |
| */ |
| static inline int skipahead1(struct esp *esp, struct scsi_cmnd *scp, |
| int prev_phase, int new_phase) |
| { |
| if (scp->SCp.sent_command != prev_phase) |
| return 0; |
| if (ESP_IRQ_P(esp->dregs)) { |
| /* Yes, we are able to save an interrupt. */ |
| if (esp->erev == fashme) |
| esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2); |
| esp->sreg = (sbus_readb(esp->eregs + ESP_STATUS) & ~(ESP_STAT_INTR)); |
| esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); |
| if (esp->erev == fashme) { |
| /* This chip is really losing. */ |
| ESPHME(("HME[")); |
| /* Must latch fifo before reading the interrupt |
| * register else garbage ends up in the FIFO |
| * which confuses the driver utterly. |
| * Happy Meal indeed.... |
| */ |
| ESPHME(("fifo_workaround]")); |
| if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || |
| (esp->sreg2 & ESP_STAT2_F1BYTE)) |
| hme_fifo_read(esp); |
| } |
| if (!(esp->ireg & ESP_INTR_SR)) |
| return 0; |
| else |
| return do_reset_complete; |
| } |
| /* Ho hum, target is taking forever... */ |
| scp->SCp.sent_command = new_phase; /* so we don't recurse... */ |
| return do_intr_end; |
| } |
| |
| static inline int skipahead2(struct esp *esp, struct scsi_cmnd *scp, |
| int prev_phase1, int prev_phase2, int new_phase) |
| { |
| if (scp->SCp.sent_command != prev_phase1 && |
| scp->SCp.sent_command != prev_phase2) |
| return 0; |
| if (ESP_IRQ_P(esp->dregs)) { |
| /* Yes, we are able to save an interrupt. */ |
| if (esp->erev == fashme) |
| esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2); |
| esp->sreg = (sbus_readb(esp->eregs + ESP_STATUS) & ~(ESP_STAT_INTR)); |
| esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); |
| if (esp->erev == fashme) { |
| /* This chip is really losing. */ |
| ESPHME(("HME[")); |
| |
| /* Must latch fifo before reading the interrupt |
| * register else garbage ends up in the FIFO |
| * which confuses the driver utterly. |
| * Happy Meal indeed.... |
| */ |
| ESPHME(("fifo_workaround]")); |
| if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || |
| (esp->sreg2 & ESP_STAT2_F1BYTE)) |
| hme_fifo_read(esp); |
| } |
| if (!(esp->ireg & ESP_INTR_SR)) |
| return 0; |
| else |
| return do_reset_complete; |
| } |
| /* Ho hum, target is taking forever... */ |
| scp->SCp.sent_command = new_phase; /* so we don't recurse... */ |
| return do_intr_end; |
| } |
| |
| /* Now some dma helpers. */ |
| static void dma_setup(struct esp *esp, __u32 addr, int count, int write) |
| { |
| u32 nreg = sbus_readl(esp->dregs + DMA_CSR); |
| |
| if (write) |
| nreg |= DMA_ST_WRITE; |
| else |
| nreg &= ~(DMA_ST_WRITE); |
| nreg |= DMA_ENABLE; |
| sbus_writel(nreg, esp->dregs + DMA_CSR); |
| if (esp->dma->revision == dvmaesc1) { |
| /* This ESC gate array sucks! */ |
| __u32 src = addr; |
| __u32 dest = src + count; |
| |
| if (dest & (PAGE_SIZE - 1)) |
| count = PAGE_ALIGN(count); |
| sbus_writel(count, esp->dregs + DMA_COUNT); |
| } |
| sbus_writel(addr, esp->dregs + DMA_ADDR); |
| } |
| |
| static void dma_drain(struct esp *esp) |
| { |
| u32 tmp; |
| |
| if (esp->dma->revision == dvmahme) |
| return; |
| if ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_FIFO_ISDRAIN) { |
| switch (esp->dma->revision) { |
| default: |
| tmp |= DMA_FIFO_STDRAIN; |
| sbus_writel(tmp, esp->dregs + DMA_CSR); |
| |
| case dvmarev3: |
| case dvmaesc1: |
| while (sbus_readl(esp->dregs + DMA_CSR) & DMA_FIFO_ISDRAIN) |
| udelay(1); |
| }; |
| } |
| } |
| |
| static void dma_invalidate(struct esp *esp) |
| { |
| u32 tmp; |
| |
| if (esp->dma->revision == dvmahme) { |
| sbus_writel(DMA_RST_SCSI, esp->dregs + DMA_CSR); |
| |
| esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr | |
| (DMA_PARITY_OFF | DMA_2CLKS | |
| DMA_SCSI_DISAB | DMA_INT_ENAB)) & |
| ~(DMA_ST_WRITE | DMA_ENABLE)); |
| |
| sbus_writel(0, esp->dregs + DMA_CSR); |
| sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); |
| |
| /* This is necessary to avoid having the SCSI channel |
| * engine lock up on us. |
| */ |
| sbus_writel(0, esp->dregs + DMA_ADDR); |
| } else { |
| while ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_PEND_READ) |
| udelay(1); |
| |
| tmp &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB); |
| tmp |= DMA_FIFO_INV; |
| sbus_writel(tmp, esp->dregs + DMA_CSR); |
| tmp &= ~DMA_FIFO_INV; |
| sbus_writel(tmp, esp->dregs + DMA_CSR); |
| } |
| } |
| |
| static inline void dma_flashclear(struct esp *esp) |
| { |
| dma_drain(esp); |
| dma_invalidate(esp); |
| } |
| |
| static int dma_can_transfer(struct esp *esp, struct scsi_cmnd *sp) |
| { |
| __u32 base, end, sz; |
| |
| if (esp->dma->revision == dvmarev3) { |
| sz = sp->SCp.this_residual; |
| if (sz > 0x1000000) |
| sz = 0x1000000; |
| } else { |
| base = ((__u32)((unsigned long)sp->SCp.ptr)); |
| base &= (0x1000000 - 1); |
| end = (base + sp->SCp.this_residual); |
| if (end > 0x1000000) |
| end = 0x1000000; |
| sz = (end - base); |
| } |
| return sz; |
| } |
| |
| /* Misc. esp helper macros. */ |
| #define esp_setcount(__eregs, __cnt, __hme) \ |
| sbus_writeb(((__cnt)&0xff), (__eregs) + ESP_TCLOW); \ |
| sbus_writeb((((__cnt)>>8)&0xff), (__eregs) + ESP_TCMED); \ |
| if (__hme) { \ |
| sbus_writeb((((__cnt)>>16)&0xff), (__eregs) + FAS_RLO); \ |
| sbus_writeb(0, (__eregs) + FAS_RHI); \ |
| } |
| |
| #define esp_getcount(__eregs, __hme) \ |
| ((sbus_readb((__eregs) + ESP_TCLOW)&0xff) | \ |
| ((sbus_readb((__eregs) + ESP_TCMED)&0xff) << 8) | \ |
| ((__hme) ? sbus_readb((__eregs) + FAS_RLO) << 16 : 0)) |
| |
| #define fcount(__esp) \ |
| (((__esp)->erev == fashme) ? \ |
| (__esp)->hme_fifo_workaround_count : \ |
| sbus_readb(((__esp)->eregs) + ESP_FFLAGS) & ESP_FF_FBYTES) |
| |
| #define fnzero(__esp) \ |
| (((__esp)->erev == fashme) ? 0 : \ |
| sbus_readb(((__esp)->eregs) + ESP_FFLAGS) & ESP_FF_ONOTZERO) |
| |
| /* XXX speculative nops unnecessary when continuing amidst a data phase |
| * XXX even on esp100!!! another case of flooding the bus with I/O reg |
| * XXX writes... |
| */ |
| #define esp_maybe_nop(__esp) \ |
| if ((__esp)->erev == esp100) \ |
| esp_cmd((__esp), ESP_CMD_NULL) |
| |
| #define sreg_to_dataphase(__sreg) \ |
| ((((__sreg) & ESP_STAT_PMASK) == ESP_DOP) ? in_dataout : in_datain) |
| |
| /* The ESP100 when in synchronous data phase, can mistake a long final |
| * REQ pulse from the target as an extra byte, it places whatever is on |
| * the data lines into the fifo. For now, we will assume when this |
| * happens that the target is a bit quirky and we don't want to |
| * be talking synchronously to it anyways. Regardless, we need to |
| * tell the ESP to eat the extraneous byte so that we can proceed |
| * to the next phase. |
| */ |
| static int esp100_sync_hwbug(struct esp *esp, struct scsi_cmnd *sp, int fifocnt) |
| { |
| /* Do not touch this piece of code. */ |
| if ((!(esp->erev == esp100)) || |
| (!(sreg_datainp((esp->sreg = sbus_readb(esp->eregs + ESP_STATUS))) && |
| !fifocnt) && |
| !(sreg_dataoutp(esp->sreg) && !fnzero(esp)))) { |
| if (sp->SCp.phase == in_dataout) |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| return 0; |
| } else { |
| /* Async mode for this guy. */ |
| build_sync_nego_msg(esp, 0, 0); |
| |
| /* Ack the bogus byte, but set ATN first. */ |
| esp_cmd(esp, ESP_CMD_SATN); |
| esp_cmd(esp, ESP_CMD_MOK); |
| return 1; |
| } |
| } |
| |
| /* This closes the window during a selection with a reselect pending, because |
| * we use DMA for the selection process the FIFO should hold the correct |
| * contents if we get reselected during this process. So we just need to |
| * ack the possible illegal cmd interrupt pending on the esp100. |
| */ |
| static inline int esp100_reconnect_hwbug(struct esp *esp) |
| { |
| u8 tmp; |
| |
| if (esp->erev != esp100) |
| return 0; |
| tmp = sbus_readb(esp->eregs + ESP_INTRPT); |
| if (tmp & ESP_INTR_SR) |
| return 1; |
| return 0; |
| } |
| |
| /* This verifies the BUSID bits during a reselection so that we know which |
| * target is talking to us. |
| */ |
| static inline int reconnect_target(struct esp *esp) |
| { |
| int it, me = esp->scsi_id_mask, targ = 0; |
| |
| if (2 != fcount(esp)) |
| return -1; |
| if (esp->erev == fashme) { |
| /* HME does not latch it's own BUS ID bits during |
| * a reselection. Also the target number is given |
| * as an unsigned char, not as a sole bit number |
| * like the other ESP's do. |
| * Happy Meal indeed.... |
| */ |
| targ = esp->hme_fifo_workaround_buffer[0]; |
| } else { |
| it = sbus_readb(esp->eregs + ESP_FDATA); |
| if (!(it & me)) |
| return -1; |
| it &= ~me; |
| if (it & (it - 1)) |
| return -1; |
| while (!(it & 1)) |
| targ++, it >>= 1; |
| } |
| return targ; |
| } |
| |
| /* This verifies the identify from the target so that we know which lun is |
| * being reconnected. |
| */ |
| static inline int reconnect_lun(struct esp *esp) |
| { |
| int lun; |
| |
| if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) |
| return -1; |
| if (esp->erev == fashme) |
| lun = esp->hme_fifo_workaround_buffer[1]; |
| else |
| lun = sbus_readb(esp->eregs + ESP_FDATA); |
| |
| /* Yes, you read this correctly. We report lun of zero |
| * if we see parity error. ESP reports parity error for |
| * the lun byte, and this is the only way to hope to recover |
| * because the target is connected. |
| */ |
| if (esp->sreg & ESP_STAT_PERR) |
| return 0; |
| |
| /* Check for illegal bits being set in the lun. */ |
| if ((lun & 0x40) || !(lun & 0x80)) |
| return -1; |
| |
| return lun & 7; |
| } |
| |
| /* This puts the driver in a state where it can revitalize a command that |
| * is being continued due to reselection. |
| */ |
| static inline void esp_connect(struct esp *esp, struct scsi_cmnd *sp) |
| { |
| struct esp_device *esp_dev = sp->device->hostdata; |
| |
| if (esp->prev_soff != esp_dev->sync_max_offset || |
| esp->prev_stp != esp_dev->sync_min_period || |
| (esp->erev > esp100a && |
| esp->prev_cfg3 != esp->config3[sp->device->id])) { |
| esp->prev_soff = esp_dev->sync_max_offset; |
| esp->prev_stp = esp_dev->sync_min_period; |
| sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); |
| sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); |
| if (esp->erev > esp100a) { |
| esp->prev_cfg3 = esp->config3[sp->device->id]; |
| sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); |
| } |
| } |
| esp->current_SC = sp; |
| } |
| |
| /* This will place the current working command back into the issue queue |
| * if we are to receive a reselection amidst a selection attempt. |
| */ |
| static inline void esp_reconnect(struct esp *esp, struct scsi_cmnd *sp) |
| { |
| if (!esp->disconnected_SC) |
| ESPLOG(("esp%d: Weird, being reselected but disconnected " |
| "command queue is empty.\n", esp->esp_id)); |
| esp->snip = 0; |
| esp->current_SC = NULL; |
| sp->SCp.phase = not_issued; |
| append_SC(&esp->issue_SC, sp); |
| } |
| |
| /* Begin message in phase. */ |
| static int esp_do_msgin(struct esp *esp) |
| { |
| /* Must be very careful with the fifo on the HME */ |
| if ((esp->erev != fashme) || |
| !(sbus_readb(esp->eregs + ESP_STATUS2) & ESP_STAT2_FEMPTY)) |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| esp_maybe_nop(esp); |
| esp_cmd(esp, ESP_CMD_TI); |
| esp->msgin_len = 1; |
| esp->msgin_ctr = 0; |
| esp_advance_phase(esp->current_SC, in_msgindone); |
| return do_work_bus; |
| } |
| |
| /* This uses various DMA csr fields and the fifo flags count value to |
| * determine how many bytes were successfully sent/received by the ESP. |
| */ |
| static inline int esp_bytes_sent(struct esp *esp, int fifo_count) |
| { |
| int rval = sbus_readl(esp->dregs + DMA_ADDR) - esp->esp_command_dvma; |
| |
| if (esp->dma->revision == dvmarev1) |
| rval -= (4 - ((sbus_readl(esp->dregs + DMA_CSR) & DMA_READ_AHEAD)>>11)); |
| return rval - fifo_count; |
| } |
| |
| static inline void advance_sg(struct scsi_cmnd *sp) |
| { |
| ++sp->SCp.buffer; |
| --sp->SCp.buffers_residual; |
| sp->SCp.this_residual = sg_dma_len(sp->SCp.buffer); |
| sp->SCp.ptr = (char *)((unsigned long)sg_dma_address(sp->SCp.buffer)); |
| } |
| |
| /* Please note that the way I've coded these routines is that I _always_ |
| * check for a disconnect during any and all information transfer |
| * phases. The SCSI standard states that the target _can_ cause a BUS |
| * FREE condition by dropping all MSG/CD/IO/BSY signals. Also note |
| * that during information transfer phases the target controls every |
| * change in phase, the only thing the initiator can do is "ask" for |
| * a message out phase by driving ATN true. The target can, and sometimes |
| * will, completely ignore this request so we cannot assume anything when |
| * we try to force a message out phase to abort/reset a target. Most of |
| * the time the target will eventually be nice and go to message out, so |
| * we may have to hold on to our state about what we want to tell the target |
| * for some period of time. |
| */ |
| |
| /* I think I have things working here correctly. Even partial transfers |
| * within a buffer or sub-buffer should not upset us at all no matter |
| * how bad the target and/or ESP fucks things up. |
| */ |
| static int esp_do_data(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr = esp->current_SC; |
| int thisphase, hmuch; |
| |
| ESPDATA(("esp_do_data: ")); |
| esp_maybe_nop(esp); |
| thisphase = sreg_to_dataphase(esp->sreg); |
| esp_advance_phase(SCptr, thisphase); |
| ESPDATA(("newphase<%s> ", (thisphase == in_datain) ? "DATAIN" : "DATAOUT")); |
| hmuch = dma_can_transfer(esp, SCptr); |
| if (hmuch > (64 * 1024) && (esp->erev != fashme)) |
| hmuch = (64 * 1024); |
| ESPDATA(("hmuch<%d> ", hmuch)); |
| esp->current_transfer_size = hmuch; |
| |
| if (esp->erev == fashme) { |
| u32 tmp = esp->prev_hme_dmacsr; |
| |
| /* Always set the ESP count registers first. */ |
| esp_setcount(esp->eregs, hmuch, 1); |
| |
| /* Get the DMA csr computed. */ |
| tmp |= (DMA_SCSI_DISAB | DMA_ENABLE); |
| if (thisphase == in_datain) |
| tmp |= DMA_ST_WRITE; |
| else |
| tmp &= ~(DMA_ST_WRITE); |
| esp->prev_hme_dmacsr = tmp; |
| |
| ESPDATA(("DMA|TI --> do_intr_end\n")); |
| if (thisphase == in_datain) { |
| sbus_writel(hmuch, esp->dregs + DMA_COUNT); |
| esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); |
| } else { |
| esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); |
| sbus_writel(hmuch, esp->dregs + DMA_COUNT); |
| } |
| sbus_writel((__u32)((unsigned long)SCptr->SCp.ptr), esp->dregs+DMA_ADDR); |
| sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); |
| } else { |
| esp_setcount(esp->eregs, hmuch, 0); |
| dma_setup(esp, ((__u32)((unsigned long)SCptr->SCp.ptr)), |
| hmuch, (thisphase == in_datain)); |
| ESPDATA(("DMA|TI --> do_intr_end\n")); |
| esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); |
| } |
| return do_intr_end; |
| } |
| |
| /* See how successful the data transfer was. */ |
| static int esp_do_data_finale(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr = esp->current_SC; |
| struct esp_device *esp_dev = SCptr->device->hostdata; |
| int bogus_data = 0, bytes_sent = 0, fifocnt, ecount = 0; |
| |
| ESPDATA(("esp_do_data_finale: ")); |
| |
| if (SCptr->SCp.phase == in_datain) { |
| if (esp->sreg & ESP_STAT_PERR) { |
| /* Yuck, parity error. The ESP asserts ATN |
| * so that we can go to message out phase |
| * immediately and inform the target that |
| * something bad happened. |
| */ |
| ESPLOG(("esp%d: data bad parity detected.\n", |
| esp->esp_id)); |
| esp->cur_msgout[0] = INITIATOR_ERROR; |
| esp->msgout_len = 1; |
| } |
| dma_drain(esp); |
| } |
| dma_invalidate(esp); |
| |
| /* This could happen for the above parity error case. */ |
| if (esp->ireg != ESP_INTR_BSERV) { |
| /* Please go to msgout phase, please please please... */ |
| ESPLOG(("esp%d: !BSERV after data, probably to msgout\n", |
| esp->esp_id)); |
| return esp_do_phase_determine(esp); |
| } |
| |
| /* Check for partial transfers and other horrible events. |
| * Note, here we read the real fifo flags register even |
| * on HME broken adapters because we skip the HME fifo |
| * workaround code in esp_handle() if we are doing data |
| * phase things. We don't want to fuck directly with |
| * the fifo like that, especially if doing synchronous |
| * transfers! Also, will need to double the count on |
| * HME if we are doing wide transfers, as the HME fifo |
| * will move and count 16-bit quantities during wide data. |
| * SMCC _and_ Qlogic can both bite me. |
| */ |
| fifocnt = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES); |
| if (esp->erev != fashme) |
| ecount = esp_getcount(esp->eregs, 0); |
| bytes_sent = esp->current_transfer_size; |
| |
| ESPDATA(("trans_sz(%d), ", bytes_sent)); |
| if (esp->erev == fashme) { |
| if (!(esp->sreg & ESP_STAT_TCNT)) { |
| ecount = esp_getcount(esp->eregs, 1); |
| bytes_sent -= ecount; |
| } |
| |
| /* Always subtract any cruft remaining in the FIFO. */ |
| if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE) |
| fifocnt <<= 1; |
| if (SCptr->SCp.phase == in_dataout) |
| bytes_sent -= fifocnt; |
| |
| /* I have an IBM disk which exhibits the following |
| * behavior during writes to it. It disconnects in |
| * the middle of a partial transfer, the current sglist |
| * buffer is 1024 bytes, the disk stops data transfer |
| * at 512 bytes. |
| * |
| * However the FAS366 reports that 32 more bytes were |
| * transferred than really were. This is precisely |
| * the size of a fully loaded FIFO in wide scsi mode. |
| * The FIFO state recorded indicates that it is empty. |
| * |
| * I have no idea if this is a bug in the FAS366 chip |
| * or a bug in the firmware on this IBM disk. In any |
| * event the following seems to be a good workaround. -DaveM |
| */ |
| if (bytes_sent != esp->current_transfer_size && |
| SCptr->SCp.phase == in_dataout) { |
| int mask = (64 - 1); |
| |
| if ((esp->prev_cfg3 & ESP_CONFIG3_EWIDE) == 0) |
| mask >>= 1; |
| |
| if (bytes_sent & mask) |
| bytes_sent -= (bytes_sent & mask); |
| } |
| } else { |
| if (!(esp->sreg & ESP_STAT_TCNT)) |
| bytes_sent -= ecount; |
| if (SCptr->SCp.phase == in_dataout) |
| bytes_sent -= fifocnt; |
| } |
| |
| ESPDATA(("bytes_sent(%d), ", bytes_sent)); |
| |
| /* If we were in synchronous mode, check for peculiarities. */ |
| if (esp->erev == fashme) { |
| if (esp_dev->sync_max_offset) { |
| if (SCptr->SCp.phase == in_dataout) |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| } else { |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| } |
| } else { |
| if (esp_dev->sync_max_offset) |
| bogus_data = esp100_sync_hwbug(esp, SCptr, fifocnt); |
| else |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| } |
| |
| /* Until we are sure of what has happened, we are certainly |
| * in the dark. |
| */ |
| esp_advance_phase(SCptr, in_the_dark); |
| |
| if (bytes_sent < 0) { |
| /* I've seen this happen due to lost state in this |
| * driver. No idea why it happened, but allowing |
| * this value to be negative caused things to |
| * lock up. This allows greater chance of recovery. |
| * In fact every time I've seen this, it has been |
| * a driver bug without question. |
| */ |
| ESPLOG(("esp%d: yieee, bytes_sent < 0!\n", esp->esp_id)); |
| ESPLOG(("esp%d: csz=%d fifocount=%d ecount=%d\n", |
| esp->esp_id, |
| esp->current_transfer_size, fifocnt, ecount)); |
| ESPLOG(("esp%d: use_sg=%d ptr=%p this_residual=%d\n", |
| esp->esp_id, |
| SCptr->use_sg, SCptr->SCp.ptr, SCptr->SCp.this_residual)); |
| ESPLOG(("esp%d: Forcing async for target %d\n", esp->esp_id, |
| SCptr->device->id)); |
| SCptr->device->borken = 1; |
| esp_dev->sync = 0; |
| bytes_sent = 0; |
| } |
| |
| /* Update the state of our transfer. */ |
| SCptr->SCp.ptr += bytes_sent; |
| SCptr->SCp.this_residual -= bytes_sent; |
| if (SCptr->SCp.this_residual < 0) { |
| /* shit */ |
| ESPLOG(("esp%d: Data transfer overrun.\n", esp->esp_id)); |
| SCptr->SCp.this_residual = 0; |
| } |
| |
| /* Maybe continue. */ |
| if (!bogus_data) { |
| ESPDATA(("!bogus_data, ")); |
| |
| /* NO MATTER WHAT, we advance the scatterlist, |
| * if the target should decide to disconnect |
| * in between scatter chunks (which is common) |
| * we could die horribly! I used to have the sg |
| * advance occur only if we are going back into |
| * (or are staying in) a data phase, you can |
| * imagine the hell I went through trying to |
| * figure this out. |
| */ |
| if (SCptr->use_sg && !SCptr->SCp.this_residual) |
| advance_sg(SCptr); |
| if (sreg_datainp(esp->sreg) || sreg_dataoutp(esp->sreg)) { |
| ESPDATA(("to more data\n")); |
| return esp_do_data(esp); |
| } |
| ESPDATA(("to new phase\n")); |
| return esp_do_phase_determine(esp); |
| } |
| /* Bogus data, just wait for next interrupt. */ |
| ESPLOG(("esp%d: bogus_data during end of data phase\n", |
| esp->esp_id)); |
| return do_intr_end; |
| } |
| |
| /* We received a non-good status return at the end of |
| * running a SCSI command. This is used to decide if |
| * we should clear our synchronous transfer state for |
| * such a device when that happens. |
| * |
| * The idea is that when spinning up a disk or rewinding |
| * a tape, we don't want to go into a loop re-negotiating |
| * synchronous capabilities over and over. |
| */ |
| static int esp_should_clear_sync(struct scsi_cmnd *sp) |
| { |
| u8 cmd1 = sp->cmnd[0]; |
| u8 cmd2 = sp->data_cmnd[0]; |
| |
| /* These cases are for spinning up a disk and |
| * waiting for that spinup to complete. |
| */ |
| if (cmd1 == START_STOP || |
| cmd2 == START_STOP) |
| return 0; |
| |
| if (cmd1 == TEST_UNIT_READY || |
| cmd2 == TEST_UNIT_READY) |
| return 0; |
| |
| /* One more special case for SCSI tape drives, |
| * this is what is used to probe the device for |
| * completion of a rewind or tape load operation. |
| */ |
| if (sp->device->type == TYPE_TAPE) { |
| if (cmd1 == MODE_SENSE || |
| cmd2 == MODE_SENSE) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Either a command is completing or a target is dropping off the bus |
| * to continue the command in the background so we can do other work. |
| */ |
| static int esp_do_freebus(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr = esp->current_SC; |
| struct esp_device *esp_dev = SCptr->device->hostdata; |
| int rval; |
| |
| rval = skipahead2(esp, SCptr, in_status, in_msgindone, in_freeing); |
| if (rval) |
| return rval; |
| if (esp->ireg != ESP_INTR_DC) { |
| ESPLOG(("esp%d: Target will not disconnect\n", esp->esp_id)); |
| return do_reset_bus; /* target will not drop BSY... */ |
| } |
| esp->msgout_len = 0; |
| esp->prevmsgout = NOP; |
| if (esp->prevmsgin == COMMAND_COMPLETE) { |
| /* Normal end of nexus. */ |
| if (esp->disconnected_SC || (esp->erev == fashme)) |
| esp_cmd(esp, ESP_CMD_ESEL); |
| |
| if (SCptr->SCp.Status != GOOD && |
| SCptr->SCp.Status != CONDITION_GOOD && |
| ((1<<SCptr->device->id) & esp->targets_present) && |
| esp_dev->sync && |
| esp_dev->sync_max_offset) { |
| /* SCSI standard says that the synchronous capabilities |
| * should be renegotiated at this point. Most likely |
| * we are about to request sense from this target |
| * in which case we want to avoid using sync |
| * transfers until we are sure of the current target |
| * state. |
| */ |
| ESPMISC(("esp: Status <%d> for target %d lun %d\n", |
| SCptr->SCp.Status, SCptr->device->id, SCptr->device->lun)); |
| |
| /* But don't do this when spinning up a disk at |
| * boot time while we poll for completion as it |
| * fills up the console with messages. Also, tapes |
| * can report not ready many times right after |
| * loading up a tape. |
| */ |
| if (esp_should_clear_sync(SCptr) != 0) |
| esp_dev->sync = 0; |
| } |
| ESPDISC(("F<%02x,%02x>", SCptr->device->id, SCptr->device->lun)); |
| esp_done(esp, ((SCptr->SCp.Status & 0xff) | |
| ((SCptr->SCp.Message & 0xff)<<8) | |
| (DID_OK << 16))); |
| } else if (esp->prevmsgin == DISCONNECT) { |
| /* Normal disconnect. */ |
| esp_cmd(esp, ESP_CMD_ESEL); |
| ESPDISC(("D<%02x,%02x>", SCptr->device->id, SCptr->device->lun)); |
| append_SC(&esp->disconnected_SC, SCptr); |
| esp->current_SC = NULL; |
| if (esp->issue_SC) |
| esp_exec_cmd(esp); |
| } else { |
| /* Driver bug, we do not expect a disconnect here |
| * and should not have advanced the state engine |
| * to in_freeing. |
| */ |
| ESPLOG(("esp%d: last msg not disc and not cmd cmplt.\n", |
| esp->esp_id)); |
| return do_reset_bus; |
| } |
| return do_intr_end; |
| } |
| |
| /* When a reselect occurs, and we cannot find the command to |
| * reconnect to in our queues, we do this. |
| */ |
| static int esp_bad_reconnect(struct esp *esp) |
| { |
| struct scsi_cmnd *sp; |
| |
| ESPLOG(("esp%d: Eieeee, reconnecting unknown command!\n", |
| esp->esp_id)); |
| ESPLOG(("QUEUE DUMP\n")); |
| sp = esp->issue_SC; |
| ESPLOG(("esp%d: issue_SC[", esp->esp_id)); |
| while (sp) { |
| ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun)); |
| sp = (struct scsi_cmnd *) sp->host_scribble; |
| } |
| ESPLOG(("]\n")); |
| sp = esp->current_SC; |
| ESPLOG(("esp%d: current_SC[", esp->esp_id)); |
| if (sp) |
| ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun)); |
| else |
| ESPLOG(("<NULL>")); |
| ESPLOG(("]\n")); |
| sp = esp->disconnected_SC; |
| ESPLOG(("esp%d: disconnected_SC[", esp->esp_id)); |
| while (sp) { |
| ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun)); |
| sp = (struct scsi_cmnd *) sp->host_scribble; |
| } |
| ESPLOG(("]\n")); |
| return do_reset_bus; |
| } |
| |
| /* Do the needy when a target tries to reconnect to us. */ |
| static int esp_do_reconnect(struct esp *esp) |
| { |
| int lun, target; |
| struct scsi_cmnd *SCptr; |
| |
| /* Check for all bogus conditions first. */ |
| target = reconnect_target(esp); |
| if (target < 0) { |
| ESPDISC(("bad bus bits\n")); |
| return do_reset_bus; |
| } |
| lun = reconnect_lun(esp); |
| if (lun < 0) { |
| ESPDISC(("target=%2x, bad identify msg\n", target)); |
| return do_reset_bus; |
| } |
| |
| /* Things look ok... */ |
| ESPDISC(("R<%02x,%02x>", target, lun)); |
| |
| /* Must not flush FIFO or DVMA on HME. */ |
| if (esp->erev != fashme) { |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| if (esp100_reconnect_hwbug(esp)) |
| return do_reset_bus; |
| esp_cmd(esp, ESP_CMD_NULL); |
| } |
| |
| SCptr = remove_SC(&esp->disconnected_SC, (u8) target, (u8) lun); |
| if (!SCptr) |
| return esp_bad_reconnect(esp); |
| |
| esp_connect(esp, SCptr); |
| esp_cmd(esp, ESP_CMD_MOK); |
| |
| if (esp->erev == fashme) |
| sbus_writeb(((SCptr->device->id & 0xf) | |
| (ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT)), |
| esp->eregs + ESP_BUSID); |
| |
| /* Reconnect implies a restore pointers operation. */ |
| esp_restore_pointers(esp, SCptr); |
| |
| esp->snip = 0; |
| esp_advance_phase(SCptr, in_the_dark); |
| return do_intr_end; |
| } |
| |
| /* End of NEXUS (hopefully), pick up status + message byte then leave if |
| * all goes well. |
| */ |
| static int esp_do_status(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr = esp->current_SC; |
| int intr, rval; |
| |
| rval = skipahead1(esp, SCptr, in_the_dark, in_status); |
| if (rval) |
| return rval; |
| intr = esp->ireg; |
| ESPSTAT(("esp_do_status: ")); |
| if (intr != ESP_INTR_DC) { |
| int message_out = 0; /* for parity problems */ |
| |
| /* Ack the message. */ |
| ESPSTAT(("ack msg, ")); |
| esp_cmd(esp, ESP_CMD_MOK); |
| |
| if (esp->erev != fashme) { |
| dma_flashclear(esp); |
| |
| /* Wait till the first bits settle. */ |
| while (esp->esp_command[0] == 0xff) |
| udelay(1); |
| } else { |
| esp->esp_command[0] = esp->hme_fifo_workaround_buffer[0]; |
| esp->esp_command[1] = esp->hme_fifo_workaround_buffer[1]; |
| } |
| |
| ESPSTAT(("got something, ")); |
| /* ESP chimes in with one of |
| * |
| * 1) function done interrupt: |
| * both status and message in bytes |
| * are available |
| * |
| * 2) bus service interrupt: |
| * only status byte was acquired |
| * |
| * 3) Anything else: |
| * can't happen, but we test for it |
| * anyways |
| * |
| * ALSO: If bad parity was detected on either |
| * the status _or_ the message byte then |
| * the ESP has asserted ATN on the bus |
| * and we must therefore wait for the |
| * next phase change. |
| */ |
| if (intr & ESP_INTR_FDONE) { |
| /* We got it all, hallejulia. */ |
| ESPSTAT(("got both, ")); |
| SCptr->SCp.Status = esp->esp_command[0]; |
| SCptr->SCp.Message = esp->esp_command[1]; |
| esp->prevmsgin = SCptr->SCp.Message; |
| esp->cur_msgin[0] = SCptr->SCp.Message; |
| if (esp->sreg & ESP_STAT_PERR) { |
| /* There was bad parity for the |
| * message byte, the status byte |
| * was ok. |
| */ |
| message_out = MSG_PARITY_ERROR; |
| } |
| } else if (intr == ESP_INTR_BSERV) { |
| /* Only got status byte. */ |
| ESPLOG(("esp%d: got status only, ", esp->esp_id)); |
| if (!(esp->sreg & ESP_STAT_PERR)) { |
| SCptr->SCp.Status = esp->esp_command[0]; |
| SCptr->SCp.Message = 0xff; |
| } else { |
| /* The status byte had bad parity. |
| * we leave the scsi_pointer Status |
| * field alone as we set it to a default |
| * of CHECK_CONDITION in esp_queue. |
| */ |
| message_out = INITIATOR_ERROR; |
| } |
| } else { |
| /* This shouldn't happen ever. */ |
| ESPSTAT(("got bolixed\n")); |
| esp_advance_phase(SCptr, in_the_dark); |
| return esp_do_phase_determine(esp); |
| } |
| |
| if (!message_out) { |
| ESPSTAT(("status=%2x msg=%2x, ", SCptr->SCp.Status, |
| SCptr->SCp.Message)); |
| if (SCptr->SCp.Message == COMMAND_COMPLETE) { |
| ESPSTAT(("and was COMMAND_COMPLETE\n")); |
| esp_advance_phase(SCptr, in_freeing); |
| return esp_do_freebus(esp); |
| } else { |
| ESPLOG(("esp%d: and _not_ COMMAND_COMPLETE\n", |
| esp->esp_id)); |
| esp->msgin_len = esp->msgin_ctr = 1; |
| esp_advance_phase(SCptr, in_msgindone); |
| return esp_do_msgindone(esp); |
| } |
| } else { |
| /* With luck we'll be able to let the target |
| * know that bad parity happened, it will know |
| * which byte caused the problems and send it |
| * again. For the case where the status byte |
| * receives bad parity, I do not believe most |
| * targets recover very well. We'll see. |
| */ |
| ESPLOG(("esp%d: bad parity somewhere mout=%2x\n", |
| esp->esp_id, message_out)); |
| esp->cur_msgout[0] = message_out; |
| esp->msgout_len = esp->msgout_ctr = 1; |
| esp_advance_phase(SCptr, in_the_dark); |
| return esp_do_phase_determine(esp); |
| } |
| } else { |
| /* If we disconnect now, all hell breaks loose. */ |
| ESPLOG(("esp%d: whoops, disconnect\n", esp->esp_id)); |
| esp_advance_phase(SCptr, in_the_dark); |
| return esp_do_phase_determine(esp); |
| } |
| } |
| |
| static int esp_enter_status(struct esp *esp) |
| { |
| u8 thecmd = ESP_CMD_ICCSEQ; |
| |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| if (esp->erev != fashme) { |
| u32 tmp; |
| |
| esp->esp_command[0] = esp->esp_command[1] = 0xff; |
| sbus_writeb(2, esp->eregs + ESP_TCLOW); |
| sbus_writeb(0, esp->eregs + ESP_TCMED); |
| tmp = sbus_readl(esp->dregs + DMA_CSR); |
| tmp |= (DMA_ST_WRITE | DMA_ENABLE); |
| sbus_writel(tmp, esp->dregs + DMA_CSR); |
| if (esp->dma->revision == dvmaesc1) |
| sbus_writel(0x100, esp->dregs + DMA_COUNT); |
| sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); |
| thecmd |= ESP_CMD_DMA; |
| } |
| esp_cmd(esp, thecmd); |
| esp_advance_phase(esp->current_SC, in_status); |
| |
| return esp_do_status(esp); |
| } |
| |
| static int esp_disconnect_amidst_phases(struct esp *esp) |
| { |
| struct scsi_cmnd *sp = esp->current_SC; |
| struct esp_device *esp_dev = sp->device->hostdata; |
| |
| /* This means real problems if we see this |
| * here. Unless we were actually trying |
| * to force the device to abort/reset. |
| */ |
| ESPLOG(("esp%d Disconnect amidst phases, ", esp->esp_id)); |
| ESPLOG(("pphase<%s> cphase<%s>, ", |
| phase_string(sp->SCp.phase), |
| phase_string(sp->SCp.sent_command))); |
| |
| if (esp->disconnected_SC != NULL || (esp->erev == fashme)) |
| esp_cmd(esp, ESP_CMD_ESEL); |
| |
| switch (esp->cur_msgout[0]) { |
| default: |
| /* We didn't expect this to happen at all. */ |
| ESPLOG(("device is bolixed\n")); |
| esp_advance_phase(sp, in_tgterror); |
| esp_done(esp, (DID_ERROR << 16)); |
| break; |
| |
| case BUS_DEVICE_RESET: |
| ESPLOG(("device reset successful\n")); |
| esp_dev->sync_max_offset = 0; |
| esp_dev->sync_min_period = 0; |
| esp_dev->sync = 0; |
| esp_advance_phase(sp, in_resetdev); |
| esp_done(esp, (DID_RESET << 16)); |
| break; |
| |
| case ABORT: |
| ESPLOG(("device abort successful\n")); |
| esp_advance_phase(sp, in_abortone); |
| esp_done(esp, (DID_ABORT << 16)); |
| break; |
| |
| }; |
| return do_intr_end; |
| } |
| |
| static int esp_enter_msgout(struct esp *esp) |
| { |
| esp_advance_phase(esp->current_SC, in_msgout); |
| return esp_do_msgout(esp); |
| } |
| |
| static int esp_enter_msgin(struct esp *esp) |
| { |
| esp_advance_phase(esp->current_SC, in_msgin); |
| return esp_do_msgin(esp); |
| } |
| |
| static int esp_enter_cmd(struct esp *esp) |
| { |
| esp_advance_phase(esp->current_SC, in_cmdbegin); |
| return esp_do_cmdbegin(esp); |
| } |
| |
| static int esp_enter_badphase(struct esp *esp) |
| { |
| ESPLOG(("esp%d: Bizarre bus phase %2x.\n", esp->esp_id, |
| esp->sreg & ESP_STAT_PMASK)); |
| return do_reset_bus; |
| } |
| |
| typedef int (*espfunc_t)(struct esp *); |
| |
| static espfunc_t phase_vector[] = { |
| esp_do_data, /* ESP_DOP */ |
| esp_do_data, /* ESP_DIP */ |
| esp_enter_cmd, /* ESP_CMDP */ |
| esp_enter_status, /* ESP_STATP */ |
| esp_enter_badphase, /* ESP_STAT_PMSG */ |
| esp_enter_badphase, /* ESP_STAT_PMSG | ESP_STAT_PIO */ |
| esp_enter_msgout, /* ESP_MOP */ |
| esp_enter_msgin, /* ESP_MIP */ |
| }; |
| |
| /* The target has control of the bus and we have to see where it has |
| * taken us. |
| */ |
| static int esp_do_phase_determine(struct esp *esp) |
| { |
| if ((esp->ireg & ESP_INTR_DC) != 0) |
| return esp_disconnect_amidst_phases(esp); |
| return phase_vector[esp->sreg & ESP_STAT_PMASK](esp); |
| } |
| |
| /* First interrupt after exec'ing a cmd comes here. */ |
| static int esp_select_complete(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr = esp->current_SC; |
| struct esp_device *esp_dev = SCptr->device->hostdata; |
| int cmd_bytes_sent, fcnt; |
| |
| if (esp->erev != fashme) |
| esp->seqreg = (sbus_readb(esp->eregs + ESP_SSTEP) & ESP_STEP_VBITS); |
| |
| if (esp->erev == fashme) |
| fcnt = esp->hme_fifo_workaround_count; |
| else |
| fcnt = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES); |
| |
| cmd_bytes_sent = esp_bytes_sent(esp, fcnt); |
| dma_invalidate(esp); |
| |
| /* Let's check to see if a reselect happened |
| * while we we're trying to select. This must |
| * be checked first. |
| */ |
| if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) { |
| esp_reconnect(esp, SCptr); |
| return esp_do_reconnect(esp); |
| } |
| |
| /* Looks like things worked, we should see a bus service & |
| * a function complete interrupt at this point. Note we |
| * are doing a direct comparison because we don't want to |
| * be fooled into thinking selection was successful if |
| * ESP_INTR_DC is set, see below. |
| */ |
| if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) { |
| /* target speaks... */ |
| esp->targets_present |= (1<<SCptr->device->id); |
| |
| /* What if the target ignores the sdtr? */ |
| if (esp->snip) |
| esp_dev->sync = 1; |
| |
| /* See how far, if at all, we got in getting |
| * the information out to the target. |
| */ |
| switch (esp->seqreg) { |
| default: |
| |
| case ESP_STEP_ASEL: |
| /* Arbitration won, target selected, but |
| * we are in some phase which is not command |
| * phase nor is it message out phase. |
| * |
| * XXX We've confused the target, obviously. |
| * XXX So clear it's state, but we also end |
| * XXX up clearing everyone elses. That isn't |
| * XXX so nice. I'd like to just reset this |
| * XXX target, but if I cannot even get it's |
| * XXX attention and finish selection to talk |
| * XXX to it, there is not much more I can do. |
| * XXX If we have a loaded bus we're going to |
| * XXX spend the next second or so renegotiating |
| * XXX for synchronous transfers. |
| */ |
| ESPLOG(("esp%d: STEP_ASEL for tgt %d\n", |
| esp->esp_id, SCptr->device->id)); |
| |
| case ESP_STEP_SID: |
| /* Arbitration won, target selected, went |
| * to message out phase, sent one message |
| * byte, then we stopped. ATN is asserted |
| * on the SCSI bus and the target is still |
| * there hanging on. This is a legal |
| * sequence step if we gave the ESP a select |
| * and stop command. |
| * |
| * XXX See above, I could set the borken flag |
| * XXX in the device struct and retry the |
| * XXX command. But would that help for |
| * XXX tagged capable targets? |
| */ |
| |
| case ESP_STEP_NCMD: |
| /* Arbitration won, target selected, maybe |
| * sent the one message byte in message out |
| * phase, but we did not go to command phase |
| * in the end. Actually, we could have sent |
| * only some of the message bytes if we tried |
| * to send out the entire identify and tag |
| * message using ESP_CMD_SA3. |
| */ |
| cmd_bytes_sent = 0; |
| break; |
| |
| case ESP_STEP_PPC: |
| /* No, not the powerPC pinhead. Arbitration |
| * won, all message bytes sent if we went to |
| * message out phase, went to command phase |
| * but only part of the command was sent. |
| * |
| * XXX I've seen this, but usually in conjunction |
| * XXX with a gross error which appears to have |
| * XXX occurred between the time I told the |
| * XXX ESP to arbitrate and when I got the |
| * XXX interrupt. Could I have misloaded the |
| * XXX command bytes into the fifo? Actually, |
| * XXX I most likely missed a phase, and therefore |
| * XXX went into never never land and didn't even |
| * XXX know it. That was the old driver though. |
| * XXX What is even more peculiar is that the ESP |
| * XXX showed the proper function complete and |
| * XXX bus service bits in the interrupt register. |
| */ |
| |
| case ESP_STEP_FINI4: |
| case ESP_STEP_FINI5: |
| case ESP_STEP_FINI6: |
| case ESP_STEP_FINI7: |
| /* Account for the identify message */ |
| if (SCptr->SCp.phase == in_slct_norm) |
| cmd_bytes_sent -= 1; |
| }; |
| |
| if (esp->erev != fashme) |
| esp_cmd(esp, ESP_CMD_NULL); |
| |
| /* Be careful, we could really get fucked during synchronous |
| * data transfers if we try to flush the fifo now. |
| */ |
| if ((esp->erev != fashme) && /* not a Happy Meal and... */ |
| !fcnt && /* Fifo is empty and... */ |
| /* either we are not doing synchronous transfers or... */ |
| (!esp_dev->sync_max_offset || |
| /* We are not going into data in phase. */ |
| ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP))) |
| esp_cmd(esp, ESP_CMD_FLUSH); /* flush is safe */ |
| |
| /* See how far we got if this is not a slow command. */ |
| if (!esp->esp_slowcmd) { |
| if (cmd_bytes_sent < 0) |
| cmd_bytes_sent = 0; |
| if (cmd_bytes_sent != SCptr->cmd_len) { |
| /* Crapola, mark it as a slowcmd |
| * so that we have some chance of |
| * keeping the command alive with |
| * good luck. |
| * |
| * XXX Actually, if we didn't send it all |
| * XXX this means either we didn't set things |
| * XXX up properly (driver bug) or the target |
| * XXX or the ESP detected parity on one of |
| * XXX the command bytes. This makes much |
| * XXX more sense, and therefore this code |
| * XXX should be changed to send out a |
| * XXX parity error message or if the status |
| * XXX register shows no parity error then |
| * XXX just expect the target to bring the |
| * XXX bus into message in phase so that it |
| * XXX can send us the parity error message. |
| * XXX SCSI sucks... |
| */ |
| esp->esp_slowcmd = 1; |
| esp->esp_scmdp = &(SCptr->cmnd[cmd_bytes_sent]); |
| esp->esp_scmdleft = (SCptr->cmd_len - cmd_bytes_sent); |
| } |
| } |
| |
| /* Now figure out where we went. */ |
| esp_advance_phase(SCptr, in_the_dark); |
| return esp_do_phase_determine(esp); |
| } |
| |
| /* Did the target even make it? */ |
| if (esp->ireg == ESP_INTR_DC) { |
| /* wheee... nobody there or they didn't like |
| * what we told it to do, clean up. |
| */ |
| |
| /* If anyone is off the bus, but working on |
| * a command in the background for us, tell |
| * the ESP to listen for them. |
| */ |
| if (esp->disconnected_SC) |
| esp_cmd(esp, ESP_CMD_ESEL); |
| |
| if (((1<<SCptr->device->id) & esp->targets_present) && |
| esp->seqreg != 0 && |
| (esp->cur_msgout[0] == EXTENDED_MESSAGE) && |
| (SCptr->SCp.phase == in_slct_msg || |
| SCptr->SCp.phase == in_slct_stop)) { |
| /* shit */ |
| esp->snip = 0; |
| ESPLOG(("esp%d: Failed synchronous negotiation for target %d " |
| "lun %d\n", esp->esp_id, SCptr->device->id, SCptr->device->lun)); |
| esp_dev->sync_max_offset = 0; |
| esp_dev->sync_min_period = 0; |
| esp_dev->sync = 1; /* so we don't negotiate again */ |
| |
| /* Run the command again, this time though we |
| * won't try to negotiate for synchronous transfers. |
| * |
| * XXX I'd like to do something like send an |
| * XXX INITIATOR_ERROR or ABORT message to the |
| * XXX target to tell it, "Sorry I confused you, |
| * XXX please come back and I will be nicer next |
| * XXX time". But that requires having the target |
| * XXX on the bus, and it has dropped BSY on us. |
| */ |
| esp->current_SC = NULL; |
| esp_advance_phase(SCptr, not_issued); |
| prepend_SC(&esp->issue_SC, SCptr); |
| esp_exec_cmd(esp); |
| return do_intr_end; |
| } |
| |
| /* Ok, this is normal, this is what we see during boot |
| * or whenever when we are scanning the bus for targets. |
| * But first make sure that is really what is happening. |
| */ |
| if (((1<<SCptr->device->id) & esp->targets_present)) { |
| ESPLOG(("esp%d: Warning, live target %d not responding to " |
| "selection.\n", esp->esp_id, SCptr->device->id)); |
| |
| /* This _CAN_ happen. The SCSI standard states that |
| * the target is to _not_ respond to selection if |
| * _it_ detects bad parity on the bus for any reason. |
| * Therefore, we assume that if we've talked successfully |
| * to this target before, bad parity is the problem. |
| */ |
| esp_done(esp, (DID_PARITY << 16)); |
| } else { |
| /* Else, there really isn't anyone there. */ |
| ESPMISC(("esp: selection failure, maybe nobody there?\n")); |
| ESPMISC(("esp: target %d lun %d\n", |
| SCptr->device->id, SCptr->device->lun)); |
| esp_done(esp, (DID_BAD_TARGET << 16)); |
| } |
| return do_intr_end; |
| } |
| |
| ESPLOG(("esp%d: Selection failure.\n", esp->esp_id)); |
| printk("esp%d: Currently -- ", esp->esp_id); |
| esp_print_ireg(esp->ireg); printk(" "); |
| esp_print_statreg(esp->sreg); printk(" "); |
| esp_print_seqreg(esp->seqreg); printk("\n"); |
| printk("esp%d: New -- ", esp->esp_id); |
| esp->sreg = sbus_readb(esp->eregs + ESP_STATUS); |
| esp->seqreg = sbus_readb(esp->eregs + ESP_SSTEP); |
| esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); |
| esp_print_ireg(esp->ireg); printk(" "); |
| esp_print_statreg(esp->sreg); printk(" "); |
| esp_print_seqreg(esp->seqreg); printk("\n"); |
| ESPLOG(("esp%d: resetting bus\n", esp->esp_id)); |
| return do_reset_bus; /* ugh... */ |
| } |
| |
| /* Continue reading bytes for msgin phase. */ |
| static int esp_do_msgincont(struct esp *esp) |
| { |
| if (esp->ireg & ESP_INTR_BSERV) { |
| /* in the right phase too? */ |
| if ((esp->sreg & ESP_STAT_PMASK) == ESP_MIP) { |
| /* phew... */ |
| esp_cmd(esp, ESP_CMD_TI); |
| esp_advance_phase(esp->current_SC, in_msgindone); |
| return do_intr_end; |
| } |
| |
| /* We changed phase but ESP shows bus service, |
| * in this case it is most likely that we, the |
| * hacker who has been up for 20hrs straight |
| * staring at the screen, drowned in coffee |
| * smelling like retched cigarette ashes |
| * have miscoded something..... so, try to |
| * recover as best we can. |
| */ |
| ESPLOG(("esp%d: message in mis-carriage.\n", esp->esp_id)); |
| } |
| esp_advance_phase(esp->current_SC, in_the_dark); |
| return do_phase_determine; |
| } |
| |
| static int check_singlebyte_msg(struct esp *esp) |
| { |
| esp->prevmsgin = esp->cur_msgin[0]; |
| if (esp->cur_msgin[0] & 0x80) { |
| /* wheee... */ |
| ESPLOG(("esp%d: target sends identify amidst phases\n", |
| esp->esp_id)); |
| esp_advance_phase(esp->current_SC, in_the_dark); |
| return 0; |
| } else if (((esp->cur_msgin[0] & 0xf0) == 0x20) || |
| (esp->cur_msgin[0] == EXTENDED_MESSAGE)) { |
| esp->msgin_len = 2; |
| esp_advance_phase(esp->current_SC, in_msgincont); |
| return 0; |
| } |
| esp_advance_phase(esp->current_SC, in_the_dark); |
| switch (esp->cur_msgin[0]) { |
| default: |
| /* We don't want to hear about it. */ |
| ESPLOG(("esp%d: msg %02x which we don't know about\n", esp->esp_id, |
| esp->cur_msgin[0])); |
| return MESSAGE_REJECT; |
| |
| case NOP: |
| ESPLOG(("esp%d: target %d sends a nop\n", esp->esp_id, |
| esp->current_SC->device->id)); |
| return 0; |
| |
| case RESTORE_POINTERS: |
| /* In this case we might also have to backup the |
| * "slow command" pointer. It is rare to get such |
| * a save/restore pointer sequence so early in the |
| * bus transition sequences, but cover it. |
| */ |
| if (esp->esp_slowcmd) { |
| esp->esp_scmdleft = esp->current_SC->cmd_len; |
| esp->esp_scmdp = &esp->current_SC->cmnd[0]; |
| } |
| esp_restore_pointers(esp, esp->current_SC); |
| return 0; |
| |
| case SAVE_POINTERS: |
| esp_save_pointers(esp, esp->current_SC); |
| return 0; |
| |
| case COMMAND_COMPLETE: |
| case DISCONNECT: |
| /* Freeing the bus, let it go. */ |
| esp->current_SC->SCp.phase = in_freeing; |
| return 0; |
| |
| case MESSAGE_REJECT: |
| ESPMISC(("msg reject, ")); |
| if (esp->prevmsgout == EXTENDED_MESSAGE) { |
| struct esp_device *esp_dev = esp->current_SC->device->hostdata; |
| |
| /* Doesn't look like this target can |
| * do synchronous or WIDE transfers. |
| */ |
| ESPSDTR(("got reject, was trying nego, clearing sync/WIDE\n")); |
| esp_dev->sync = 1; |
| esp_dev->wide = 1; |
| esp_dev->sync_min_period = 0; |
| esp_dev->sync_max_offset = 0; |
| return 0; |
| } else { |
| ESPMISC(("not sync nego, sending ABORT\n")); |
| return ABORT; |
| } |
| }; |
| } |
| |
| /* Target negotiates for synchronous transfers before we do, this |
| * is legal although very strange. What is even funnier is that |
| * the SCSI2 standard specifically recommends against targets doing |
| * this because so many initiators cannot cope with this occurring. |
| */ |
| static int target_with_ants_in_pants(struct esp *esp, |
| struct scsi_cmnd *SCptr, |
| struct esp_device *esp_dev) |
| { |
| if (esp_dev->sync || SCptr->device->borken) { |
| /* sorry, no can do */ |
| ESPSDTR(("forcing to async, ")); |
| build_sync_nego_msg(esp, 0, 0); |
| esp_dev->sync = 1; |
| esp->snip = 1; |
| ESPLOG(("esp%d: hoping for msgout\n", esp->esp_id)); |
| esp_advance_phase(SCptr, in_the_dark); |
| return EXTENDED_MESSAGE; |
| } |
| |
| /* Ok, we'll check them out... */ |
| return 0; |
| } |
| |
| static void sync_report(struct esp *esp) |
| { |
| int msg3, msg4; |
| char *type; |
| |
| msg3 = esp->cur_msgin[3]; |
| msg4 = esp->cur_msgin[4]; |
| if (msg4) { |
| int hz = 1000000000 / (msg3 * 4); |
| int integer = hz / 1000000; |
| int fraction = (hz - (integer * 1000000)) / 10000; |
| if ((esp->erev == fashme) && |
| (esp->config3[esp->current_SC->device->id] & ESP_CONFIG3_EWIDE)) { |
| type = "FAST-WIDE"; |
| integer <<= 1; |
| fraction <<= 1; |
| } else if ((msg3 * 4) < 200) { |
| type = "FAST"; |
| } else { |
| type = "synchronous"; |
| } |
| |
| /* Do not transform this back into one big printk |
| * again, it triggers a bug in our sparc64-gcc272 |
| * sibling call optimization. -DaveM |
| */ |
| ESPLOG((KERN_INFO "esp%d: target %d ", |
| esp->esp_id, esp->current_SC->device->id)); |
| ESPLOG(("[period %dns offset %d %d.%02dMHz ", |
| (int) msg3 * 4, (int) msg4, |
| integer, fraction)); |
| ESPLOG(("%s SCSI%s]\n", type, |
| (((msg3 * 4) < 200) ? "-II" : ""))); |
| } else { |
| ESPLOG((KERN_INFO "esp%d: target %d asynchronous\n", |
| esp->esp_id, esp->current_SC->device->id)); |
| } |
| } |
| |
| static int check_multibyte_msg(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr = esp->current_SC; |
| struct esp_device *esp_dev = SCptr->device->hostdata; |
| u8 regval = 0; |
| int message_out = 0; |
| |
| ESPSDTR(("chk multibyte msg: ")); |
| if (esp->cur_msgin[2] == EXTENDED_SDTR) { |
| int period = esp->cur_msgin[3]; |
| int offset = esp->cur_msgin[4]; |
| |
| ESPSDTR(("is sync nego response, ")); |
| if (!esp->snip) { |
| int rval; |
| |
| /* Target negotiates first! */ |
| ESPSDTR(("target jumps the gun, ")); |
| message_out = EXTENDED_MESSAGE; /* we must respond */ |
| rval = target_with_ants_in_pants(esp, SCptr, esp_dev); |
| if (rval) |
| return rval; |
| } |
| |
| ESPSDTR(("examining sdtr, ")); |
| |
| /* Offset cannot be larger than ESP fifo size. */ |
| if (offset > 15) { |
| ESPSDTR(("offset too big %2x, ", offset)); |
| offset = 15; |
| ESPSDTR(("sending back new offset\n")); |
| build_sync_nego_msg(esp, period, offset); |
| return EXTENDED_MESSAGE; |
| } |
| |
| if (offset && period > esp->max_period) { |
| /* Yeee, async for this slow device. */ |
| ESPSDTR(("period too long %2x, ", period)); |
| build_sync_nego_msg(esp, 0, 0); |
| ESPSDTR(("hoping for msgout\n")); |
| esp_advance_phase(esp->current_SC, in_the_dark); |
| return EXTENDED_MESSAGE; |
| } else if (offset && period < esp->min_period) { |
| ESPSDTR(("period too short %2x, ", period)); |
| period = esp->min_period; |
| if (esp->erev > esp236) |
| regval = 4; |
| else |
| regval = 5; |
| } else if (offset) { |
| int tmp; |
| |
| ESPSDTR(("period is ok, ")); |
| tmp = esp->ccycle / 1000; |
| regval = (((period << 2) + tmp - 1) / tmp); |
| if (regval && ((esp->erev == fas100a || |
| esp->erev == fas236 || |
| esp->erev == fashme))) { |
| if (period >= 50) |
| regval--; |
| } |
| } |
| |
| if (offset) { |
| u8 bit; |
| |
| esp_dev->sync_min_period = (regval & 0x1f); |
| esp_dev->sync_max_offset = (offset | esp->radelay); |
| if (esp->erev == fas100a || esp->erev == fas236 || esp->erev == fashme) { |
| if ((esp->erev == fas100a) || (esp->erev == fashme)) |
| bit = ESP_CONFIG3_FAST; |
| else |
| bit = ESP_CONFIG3_FSCSI; |
| if (period < 50) { |
| /* On FAS366, if using fast-20 synchronous transfers |
| * we need to make sure the REQ/ACK assert/deassert |
| * control bits are clear. |
| */ |
| if (esp->erev == fashme) |
| esp_dev->sync_max_offset &= ~esp->radelay; |
| esp->config3[SCptr->device->id] |= bit; |
| } else { |
| esp->config3[SCptr->device->id] &= ~bit; |
| } |
| esp->prev_cfg3 = esp->config3[SCptr->device->id]; |
| sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); |
| } |
| esp->prev_soff = esp_dev->sync_max_offset; |
| esp->prev_stp = esp_dev->sync_min_period; |
| sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); |
| sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); |
| ESPSDTR(("soff=%2x stp=%2x cfg3=%2x\n", |
| esp_dev->sync_max_offset, |
| esp_dev->sync_min_period, |
| esp->config3[SCptr->device->id])); |
| |
| esp->snip = 0; |
| } else if (esp_dev->sync_max_offset) { |
| u8 bit; |
| |
| /* back to async mode */ |
| ESPSDTR(("unaccaptable sync nego, forcing async\n")); |
| esp_dev->sync_max_offset = 0; |
| esp_dev->sync_min_period = 0; |
| esp->prev_soff = 0; |
| esp->prev_stp = 0; |
| sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); |
| sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); |
| if (esp->erev == fas100a || esp->erev == fas236 || esp->erev == fashme) { |
| if ((esp->erev == fas100a) || (esp->erev == fashme)) |
| bit = ESP_CONFIG3_FAST; |
| else |
| bit = ESP_CONFIG3_FSCSI; |
| esp->config3[SCptr->device->id] &= ~bit; |
| esp->prev_cfg3 = esp->config3[SCptr->device->id]; |
| sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); |
| } |
| } |
| |
| sync_report(esp); |
| |
| ESPSDTR(("chk multibyte msg: sync is known, ")); |
| esp_dev->sync = 1; |
| |
| if (message_out) { |
| ESPLOG(("esp%d: sending sdtr back, hoping for msgout\n", |
| esp->esp_id)); |
| build_sync_nego_msg(esp, period, offset); |
| esp_advance_phase(SCptr, in_the_dark); |
| return EXTENDED_MESSAGE; |
| } |
| |
| ESPSDTR(("returning zero\n")); |
| esp_advance_phase(SCptr, in_the_dark); /* ...or else! */ |
| return 0; |
| } else if (esp->cur_msgin[2] == EXTENDED_WDTR) { |
| int size = 8 << esp->cur_msgin[3]; |
| |
| esp->wnip = 0; |
| if (esp->erev != fashme) { |
| ESPLOG(("esp%d: AIEEE wide msg received and not HME.\n", |
| esp->esp_id)); |
| message_out = MESSAGE_REJECT; |
| } else if (size > 16) { |
| ESPLOG(("esp%d: AIEEE wide transfer for %d size " |
| "not supported.\n", esp->esp_id, size)); |
| message_out = MESSAGE_REJECT; |
| } else { |
| /* Things look good; let's see what we got. */ |
| if (size == 16) { |
| /* Set config 3 register for this target. */ |
| esp->config3[SCptr->device->id] |= ESP_CONFIG3_EWIDE; |
| } else { |
| /* Just make sure it was one byte sized. */ |
| if (size != 8) { |
| ESPLOG(("esp%d: Aieee, wide nego of %d size.\n", |
| esp->esp_id, size)); |
| message_out = MESSAGE_REJECT; |
| goto finish; |
| } |
| /* Pure paranoia. */ |
| esp->config3[SCptr->device->id] &= ~(ESP_CONFIG3_EWIDE); |
| } |
| esp->prev_cfg3 = esp->config3[SCptr->device->id]; |
| sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); |
| |
| /* Regardless, next try for sync transfers. */ |
| build_sync_nego_msg(esp, esp->sync_defp, 15); |
| esp_dev->sync = 1; |
| esp->snip = 1; |
| message_out = EXTENDED_MESSAGE; |
| } |
| } else if (esp->cur_msgin[2] == EXTENDED_MODIFY_DATA_POINTER) { |
| ESPLOG(("esp%d: rejecting modify data ptr msg\n", esp->esp_id)); |
| message_out = MESSAGE_REJECT; |
| } |
| finish: |
| esp_advance_phase(SCptr, in_the_dark); |
| return message_out; |
| } |
| |
| static int esp_do_msgindone(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr = esp->current_SC; |
| int message_out = 0, it = 0, rval; |
| |
| rval = skipahead1(esp, SCptr, in_msgin, in_msgindone); |
| if (rval) |
| return rval; |
| if (SCptr->SCp.sent_command != in_status) { |
| if (!(esp->ireg & ESP_INTR_DC)) { |
| if (esp->msgin_len && (esp->sreg & ESP_STAT_PERR)) { |
| message_out = MSG_PARITY_ERROR; |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| } else if (esp->erev != fashme && |
| (it = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES)) != 1) { |
| /* We certainly dropped the ball somewhere. */ |
| message_out = INITIATOR_ERROR; |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| } else if (!esp->msgin_len) { |
| if (esp->erev == fashme) |
| it = esp->hme_fifo_workaround_buffer[0]; |
| else |
| it = sbus_readb(esp->eregs + ESP_FDATA); |
| esp_advance_phase(SCptr, in_msgincont); |
| } else { |
| /* it is ok and we want it */ |
| if (esp->erev == fashme) |
| it = esp->cur_msgin[esp->msgin_ctr] = |
| esp->hme_fifo_workaround_buffer[0]; |
| else |
| it = esp->cur_msgin[esp->msgin_ctr] = |
| sbus_readb(esp->eregs + ESP_FDATA); |
| esp->msgin_ctr++; |
| } |
| } else { |
| esp_advance_phase(SCptr, in_the_dark); |
| return do_work_bus; |
| } |
| } else { |
| it = esp->cur_msgin[0]; |
| } |
| if (!message_out && esp->msgin_len) { |
| if (esp->msgin_ctr < esp->msgin_len) { |
| esp_advance_phase(SCptr, in_msgincont); |
| } else if (esp->msgin_len == 1) { |
| message_out = check_singlebyte_msg(esp); |
| } else if (esp->msgin_len == 2) { |
| if (esp->cur_msgin[0] == EXTENDED_MESSAGE) { |
| if ((it + 2) >= 15) { |
| message_out = MESSAGE_REJECT; |
| } else { |
| esp->msgin_len = (it + 2); |
| esp_advance_phase(SCptr, in_msgincont); |
| } |
| } else { |
| message_out = MESSAGE_REJECT; /* foo on you */ |
| } |
| } else { |
| message_out = check_multibyte_msg(esp); |
| } |
| } |
| if (message_out < 0) { |
| return -message_out; |
| } else if (message_out) { |
| if (((message_out != 1) && |
| ((message_out < 0x20) || (message_out & 0x80)))) |
| esp->msgout_len = 1; |
| esp->cur_msgout[0] = message_out; |
| esp_cmd(esp, ESP_CMD_SATN); |
| esp_advance_phase(SCptr, in_the_dark); |
| esp->msgin_len = 0; |
| } |
| esp->sreg = sbus_readb(esp->eregs + ESP_STATUS); |
| esp->sreg &= ~(ESP_STAT_INTR); |
| if ((esp->sreg & (ESP_STAT_PMSG|ESP_STAT_PCD)) == (ESP_STAT_PMSG|ESP_STAT_PCD)) |
| esp_cmd(esp, ESP_CMD_MOK); |
| if ((SCptr->SCp.sent_command == in_msgindone) && |
| (SCptr->SCp.phase == in_freeing)) |
| return esp_do_freebus(esp); |
| return do_intr_end; |
| } |
| |
| static int esp_do_cmdbegin(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr = esp->current_SC; |
| |
| esp_advance_phase(SCptr, in_cmdend); |
| if (esp->erev == fashme) { |
| u32 tmp = sbus_readl(esp->dregs + DMA_CSR); |
| int i; |
| |
| for (i = 0; i < esp->esp_scmdleft; i++) |
| esp->esp_command[i] = *esp->esp_scmdp++; |
| esp->esp_scmdleft = 0; |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| esp_setcount(esp->eregs, i, 1); |
| esp_cmd(esp, (ESP_CMD_DMA | ESP_CMD_TI)); |
| tmp |= (DMA_SCSI_DISAB | DMA_ENABLE); |
| tmp &= ~(DMA_ST_WRITE); |
| sbus_writel(i, esp->dregs + DMA_COUNT); |
| sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); |
| sbus_writel(tmp, esp->dregs + DMA_CSR); |
| } else { |
| u8 tmp; |
| |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| tmp = *esp->esp_scmdp++; |
| esp->esp_scmdleft--; |
| sbus_writeb(tmp, esp->eregs + ESP_FDATA); |
| esp_cmd(esp, ESP_CMD_TI); |
| } |
| return do_intr_end; |
| } |
| |
| static int esp_do_cmddone(struct esp *esp) |
| { |
| if (esp->erev == fashme) |
| dma_invalidate(esp); |
| else |
| esp_cmd(esp, ESP_CMD_NULL); |
| |
| if (esp->ireg & ESP_INTR_BSERV) { |
| esp_advance_phase(esp->current_SC, in_the_dark); |
| return esp_do_phase_determine(esp); |
| } |
| |
| ESPLOG(("esp%d: in do_cmddone() but didn't get BSERV interrupt.\n", |
| esp->esp_id)); |
| return do_reset_bus; |
| } |
| |
| static int esp_do_msgout(struct esp *esp) |
| { |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| switch (esp->msgout_len) { |
| case 1: |
| if (esp->erev == fashme) |
| hme_fifo_push(esp, &esp->cur_msgout[0], 1); |
| else |
| sbus_writeb(esp->cur_msgout[0], esp->eregs + ESP_FDATA); |
| |
| esp_cmd(esp, ESP_CMD_TI); |
| break; |
| |
| case 2: |
| esp->esp_command[0] = esp->cur_msgout[0]; |
| esp->esp_command[1] = esp->cur_msgout[1]; |
| |
| if (esp->erev == fashme) { |
| hme_fifo_push(esp, &esp->cur_msgout[0], 2); |
| esp_cmd(esp, ESP_CMD_TI); |
| } else { |
| dma_setup(esp, esp->esp_command_dvma, 2, 0); |
| esp_setcount(esp->eregs, 2, 0); |
| esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); |
| } |
| break; |
| |
| case 4: |
| esp->esp_command[0] = esp->cur_msgout[0]; |
| esp->esp_command[1] = esp->cur_msgout[1]; |
| esp->esp_command[2] = esp->cur_msgout[2]; |
| esp->esp_command[3] = esp->cur_msgout[3]; |
| esp->snip = 1; |
| |
| if (esp->erev == fashme) { |
| hme_fifo_push(esp, &esp->cur_msgout[0], 4); |
| esp_cmd(esp, ESP_CMD_TI); |
| } else { |
| dma_setup(esp, esp->esp_command_dvma, 4, 0); |
| esp_setcount(esp->eregs, 4, 0); |
| esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); |
| } |
| break; |
| |
| case 5: |
| esp->esp_command[0] = esp->cur_msgout[0]; |
| esp->esp_command[1] = esp->cur_msgout[1]; |
| esp->esp_command[2] = esp->cur_msgout[2]; |
| esp->esp_command[3] = esp->cur_msgout[3]; |
| esp->esp_command[4] = esp->cur_msgout[4]; |
| esp->snip = 1; |
| |
| if (esp->erev == fashme) { |
| hme_fifo_push(esp, &esp->cur_msgout[0], 5); |
| esp_cmd(esp, ESP_CMD_TI); |
| } else { |
| dma_setup(esp, esp->esp_command_dvma, 5, 0); |
| esp_setcount(esp->eregs, 5, 0); |
| esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); |
| } |
| break; |
| |
| default: |
| /* whoops */ |
| ESPMISC(("bogus msgout sending NOP\n")); |
| esp->cur_msgout[0] = NOP; |
| |
| if (esp->erev == fashme) { |
| hme_fifo_push(esp, &esp->cur_msgout[0], 1); |
| } else { |
| sbus_writeb(esp->cur_msgout[0], esp->eregs + ESP_FDATA); |
| } |
| |
| esp->msgout_len = 1; |
| esp_cmd(esp, ESP_CMD_TI); |
| break; |
| }; |
| |
| esp_advance_phase(esp->current_SC, in_msgoutdone); |
| return do_intr_end; |
| } |
| |
| static int esp_do_msgoutdone(struct esp *esp) |
| { |
| if (esp->msgout_len > 1) { |
| /* XXX HME/FAS ATN deassert workaround required, |
| * XXX no DMA flushing, only possible ESP_CMD_FLUSH |
| * XXX to kill the fifo. |
| */ |
| if (esp->erev != fashme) { |
| u32 tmp; |
| |
| while ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_PEND_READ) |
| udelay(1); |
| tmp &= ~DMA_ENABLE; |
| sbus_writel(tmp, esp->dregs + DMA_CSR); |
| dma_invalidate(esp); |
| } else { |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| } |
| } |
| if (!(esp->ireg & ESP_INTR_DC)) { |
| if (esp->erev != fashme) |
| esp_cmd(esp, ESP_CMD_NULL); |
| switch (esp->sreg & ESP_STAT_PMASK) { |
| case ESP_MOP: |
| /* whoops, parity error */ |
| ESPLOG(("esp%d: still in msgout, parity error assumed\n", |
| esp->esp_id)); |
| if (esp->msgout_len > 1) |
| esp_cmd(esp, ESP_CMD_SATN); |
| esp_advance_phase(esp->current_SC, in_msgout); |
| return do_work_bus; |
| |
| case ESP_DIP: |
| break; |
| |
| default: |
| /* Happy Meal fifo is touchy... */ |
| if ((esp->erev != fashme) && |
| !fcount(esp) && |
| !(((struct esp_device *)esp->current_SC->device->hostdata)->sync_max_offset)) |
| esp_cmd(esp, ESP_CMD_FLUSH); |
| break; |
| |
| }; |
| } else { |
| ESPLOG(("esp%d: disconnect, resetting bus\n", esp->esp_id)); |
| return do_reset_bus; |
| } |
| |
| /* If we sent out a synchronous negotiation message, update |
| * our state. |
| */ |
| if (esp->cur_msgout[2] == EXTENDED_MESSAGE && |
| esp->cur_msgout[4] == EXTENDED_SDTR) { |
| esp->snip = 1; /* anal retentiveness... */ |
| } |
| |
| esp->prevmsgout = esp->cur_msgout[0]; |
| esp->msgout_len = 0; |
| esp_advance_phase(esp->current_SC, in_the_dark); |
| return esp_do_phase_determine(esp); |
| } |
| |
| static int esp_bus_unexpected(struct esp *esp) |
| { |
| ESPLOG(("esp%d: command in weird state %2x\n", |
| esp->esp_id, esp->current_SC->SCp.phase)); |
| return do_reset_bus; |
| } |
| |
| static espfunc_t bus_vector[] = { |
| esp_do_data_finale, |
| esp_do_data_finale, |
| esp_bus_unexpected, |
| esp_do_msgin, |
| esp_do_msgincont, |
| esp_do_msgindone, |
| esp_do_msgout, |
| esp_do_msgoutdone, |
| esp_do_cmdbegin, |
| esp_do_cmddone, |
| esp_do_status, |
| esp_do_freebus, |
| esp_do_phase_determine, |
| esp_bus_unexpected, |
| esp_bus_unexpected, |
| esp_bus_unexpected, |
| }; |
| |
| /* This is the second tier in our dual-level SCSI state machine. */ |
| static int esp_work_bus(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr = esp->current_SC; |
| unsigned int phase; |
| |
| ESPBUS(("esp_work_bus: ")); |
| if (!SCptr) { |
| ESPBUS(("reconnect\n")); |
| return esp_do_reconnect(esp); |
| } |
| phase = SCptr->SCp.phase; |
| if ((phase & 0xf0) == in_phases_mask) |
| return bus_vector[(phase & 0x0f)](esp); |
| else if ((phase & 0xf0) == in_slct_mask) |
| return esp_select_complete(esp); |
| else |
| return esp_bus_unexpected(esp); |
| } |
| |
| static espfunc_t isvc_vector[] = { |
| NULL, |
| esp_do_phase_determine, |
| esp_do_resetbus, |
| esp_finish_reset, |
| esp_work_bus |
| }; |
| |
| /* Main interrupt handler for an esp adapter. */ |
| static void esp_handle(struct esp *esp) |
| { |
| struct scsi_cmnd *SCptr; |
| int what_next = do_intr_end; |
| |
| SCptr = esp->current_SC; |
| |
| /* Check for errors. */ |
| esp->sreg = sbus_readb(esp->eregs + ESP_STATUS); |
| esp->sreg &= (~ESP_STAT_INTR); |
| if (esp->erev == fashme) { |
| esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2); |
| esp->seqreg = (sbus_readb(esp->eregs + ESP_SSTEP) & ESP_STEP_VBITS); |
| } |
| |
| if (esp->sreg & (ESP_STAT_SPAM)) { |
| /* Gross error, could be due to one of: |
| * |
| * - top of fifo overwritten, could be because |
| * we tried to do a synchronous transfer with |
| * an offset greater than ESP fifo size |
| * |
| * - top of command register overwritten |
| * |
| * - DMA setup to go in one direction, SCSI |
| * bus points in the other, whoops |
| * |
| * - weird phase change during asynchronous |
| * data phase while we are initiator |
| */ |
| ESPLOG(("esp%d: Gross error sreg=%2x\n", esp->esp_id, esp->sreg)); |
| |
| /* If a command is live on the bus we cannot safely |
| * reset the bus, so we'll just let the pieces fall |
| * where they may. Here we are hoping that the |
| * target will be able to cleanly go away soon |
| * so we can safely reset things. |
| */ |
| if (!SCptr) { |
| ESPLOG(("esp%d: No current cmd during gross error, " |
| "resetting bus\n", esp->esp_id)); |
| what_next = do_reset_bus; |
| goto state_machine; |
| } |
| } |
| |
| if (sbus_readl(esp->dregs + DMA_CSR) & DMA_HNDL_ERROR) { |
| /* A DMA gate array error. Here we must |
| * be seeing one of two things. Either the |
| * virtual to physical address translation |
| * on the SBUS could not occur, else the |
| * translation it did get pointed to a bogus |
| * page. Ho hum... |
| */ |
| ESPLOG(("esp%d: DMA error %08x\n", esp->esp_id, |
| sbus_readl(esp->dregs + DMA_CSR))); |
| |
| /* DMA gate array itself must be reset to clear the |
| * error condition. |
| */ |
| esp_reset_dma(esp); |
| |
| what_next = do_reset_bus; |
| goto state_machine; |
| } |
| |
| esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); /* Unlatch intr reg */ |
| |
| if (esp->erev == fashme) { |
| /* This chip is really losing. */ |
| ESPHME(("HME[")); |
| |
| ESPHME(("sreg2=%02x,", esp->sreg2)); |
| /* Must latch fifo before reading the interrupt |
| * register else garbage ends up in the FIFO |
| * which confuses the driver utterly. |
| */ |
| if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || |
| (esp->sreg2 & ESP_STAT2_F1BYTE)) { |
| ESPHME(("fifo_workaround]")); |
| hme_fifo_read(esp); |
| } else { |
| ESPHME(("no_fifo_workaround]")); |
| } |
| } |
| |
| /* No current cmd is only valid at this point when there are |
| * commands off the bus or we are trying a reset. |
| */ |
| if (!SCptr && !esp->disconnected_SC && !(esp->ireg & ESP_INTR_SR)) { |
| /* Panic is safe, since current_SC is null. */ |
| ESPLOG(("esp%d: no command in esp_handle()\n", esp->esp_id)); |
| panic("esp_handle: current_SC == penguin within interrupt!"); |
| } |
| |
| if (esp->ireg & (ESP_INTR_IC)) { |
| /* Illegal command fed to ESP. Outside of obvious |
| * software bugs that could cause this, there is |
| * a condition with esp100 where we can confuse the |
| * ESP into an erroneous illegal command interrupt |
| * because it does not scrape the FIFO properly |
| * for reselection. See esp100_reconnect_hwbug() |
| * to see how we try very hard to avoid this. |
| */ |
| ESPLOG(("esp%d: invalid command\n", esp->esp_id)); |
| |
| esp_dump_state(esp); |
| |
| if (SCptr != NULL) { |
| /* Devices with very buggy firmware can drop BSY |
| * during a scatter list interrupt when using sync |
| * mode transfers. We continue the transfer as |
| * expected, the target drops the bus, the ESP |
| * gets confused, and we get a illegal command |
| * interrupt because the bus is in the disconnected |
| * state now and ESP_CMD_TI is only allowed when |
| * a nexus is alive on the bus. |
| */ |
| ESPLOG(("esp%d: Forcing async and disabling disconnect for " |
| "target %d\n", esp->esp_id, SCptr->device->id)); |
| SCptr->device->borken = 1; /* foo on you */ |
| } |
| |
| what_next = do_reset_bus; |
| } else if (!(esp->ireg & ~(ESP_INTR_FDONE | ESP_INTR_BSERV | ESP_INTR_DC))) { |
| if (SCptr) { |
| unsigned int phase = SCptr->SCp.phase; |
| |
| if (phase & in_phases_mask) { |
| what_next = esp_work_bus(esp); |
| } else if (phase & in_slct_mask) { |
| what_next = esp_select_complete(esp); |
| } else { |
| ESPLOG(("esp%d: interrupt for no good reason...\n", |
| esp->esp_id)); |
| what_next = do_intr_end; |
| } |
| } else { |
| ESPLOG(("esp%d: BSERV or FDONE or DC while SCptr==NULL\n", |
| esp->esp_id)); |
| what_next = do_reset_bus; |
| } |
| } else if (esp->ireg & ESP_INTR_SR) { |
| ESPLOG(("esp%d: SCSI bus reset interrupt\n", esp->esp_id)); |
| what_next = do_reset_complete; |
| } else if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN)) { |
| ESPLOG(("esp%d: AIEEE we have been selected by another initiator!\n", |
| esp->esp_id)); |
| what_next = do_reset_bus; |
| } else if (esp->ireg & ESP_INTR_RSEL) { |
| if (SCptr == NULL) { |
| /* This is ok. */ |
| what_next = esp_do_reconnect(esp); |
| } else if (SCptr->SCp.phase & in_slct_mask) { |
| /* Only selection code knows how to clean |
| * up properly. |
| */ |
| ESPDISC(("Reselected during selection attempt\n")); |
| what_next = esp_select_complete(esp); |
| } else { |
| ESPLOG(("esp%d: Reselected while bus is busy\n", |
| esp->esp_id)); |
| what_next = do_reset_bus; |
| } |
| } |
| |
| /* This is tier-one in our dual level SCSI state machine. */ |
| state_machine: |
| while (what_next != do_intr_end) { |
| if (what_next >= do_phase_determine && |
| what_next < do_intr_end) { |
| what_next = isvc_vector[what_next](esp); |
| } else { |
| /* state is completely lost ;-( */ |
| ESPLOG(("esp%d: interrupt engine loses state, resetting bus\n", |
| esp->esp_id)); |
| what_next = do_reset_bus; |
| } |
| } |
| } |
| |
| /* Service only the ESP described by dev_id. */ |
| static irqreturn_t esp_intr(int irq, void *dev_id, struct pt_regs *pregs) |
| { |
| struct esp *esp = dev_id; |
| unsigned long flags; |
| |
| spin_lock_irqsave(esp->ehost->host_lock, flags); |
| if (ESP_IRQ_P(esp->dregs)) { |
| ESP_INTSOFF(esp->dregs); |
| |
| ESPIRQ(("I[%d:%d](", smp_processor_id(), esp->esp_id)); |
| esp_handle(esp); |
| ESPIRQ((")")); |
| |
| ESP_INTSON(esp->dregs); |
| } |
| spin_unlock_irqrestore(esp->ehost->host_lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int esp_slave_alloc(struct scsi_device *SDptr) |
| { |
| struct esp_device *esp_dev = |
| kmalloc(sizeof(struct esp_device), GFP_ATOMIC); |
| |
| if (!esp_dev) |
| return -ENOMEM; |
| memset(esp_dev, 0, sizeof(struct esp_device)); |
| SDptr->hostdata = esp_dev; |
| return 0; |
| } |
| |
| static void esp_slave_destroy(struct scsi_device *SDptr) |
| { |
| struct esp *esp = (struct esp *) SDptr->host->hostdata; |
| |
| esp->targets_present &= ~(1 << SDptr->id); |
| kfree(SDptr->hostdata); |
| SDptr->hostdata = NULL; |
| } |
| |
| static struct scsi_host_template esp_template = { |
| .module = THIS_MODULE, |
| .name = "esp", |
| .info = esp_info, |
| .slave_alloc = esp_slave_alloc, |
| .slave_destroy = esp_slave_destroy, |
| .queuecommand = esp_queue, |
| .eh_abort_handler = esp_abort, |
| .eh_bus_reset_handler = esp_reset, |
| .can_queue = 7, |
| .this_id = 7, |
| .sg_tablesize = SG_ALL, |
| .cmd_per_lun = 1, |
| .use_clustering = ENABLE_CLUSTERING, |
| .proc_name = "esp", |
| .proc_info = esp_proc_info, |
| }; |
| |
| #ifndef CONFIG_SUN4 |
| static struct of_device_id esp_match[] = { |
| { |
| .name = "SUNW,esp", |
| .data = &esp_template, |
| }, |
| { |
| .name = "SUNW,fas", |
| .data = &esp_template, |
| }, |
| { |
| .name = "esp", |
| .data = &esp_template, |
| }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, esp_match); |
| |
| static struct of_platform_driver esp_sbus_driver = { |
| .name = "esp", |
| .match_table = esp_match, |
| .probe = esp_sbus_probe, |
| .remove = __devexit_p(esp_sbus_remove), |
| }; |
| #endif |
| |
| static int __init esp_init(void) |
| { |
| #ifdef CONFIG_SUN4 |
| return esp_sun4_probe(&esp_template); |
| #else |
| return of_register_driver(&esp_sbus_driver, &sbus_bus_type); |
| #endif |
| } |
| |
| static void __exit esp_exit(void) |
| { |
| #ifdef CONFIG_SUN4 |
| esp_sun4_remove(); |
| #else |
| of_unregister_driver(&esp_sbus_driver); |
| #endif |
| } |
| |
| MODULE_DESCRIPTION("ESP Sun SCSI driver"); |
| MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| module_init(esp_init); |
| module_exit(esp_exit); |