| /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */ |
| /* |
| Written 1998-2001 by Donald Becker. |
| |
| Current Maintainer: Roger Luethi <rl@hellgate.ch> |
| |
| This software may be used and distributed according to the terms of |
| the GNU General Public License (GPL), incorporated herein by reference. |
| Drivers based on or derived from this code fall under the GPL and must |
| retain the authorship, copyright and license notice. This file is not |
| a complete program and may only be used when the entire operating |
| system is licensed under the GPL. |
| |
| This driver is designed for the VIA VT86C100A Rhine-I. |
| It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM |
| and management NIC 6105M). |
| |
| The author may be reached as becker@scyld.com, or C/O |
| Scyld Computing Corporation |
| 410 Severn Ave., Suite 210 |
| Annapolis MD 21403 |
| |
| |
| This driver contains some changes from the original Donald Becker |
| version. He may or may not be interested in bug reports on this |
| code. You can find his versions at: |
| http://www.scyld.com/network/via-rhine.html |
| [link no longer provides useful info -jgarzik] |
| |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #define DRV_NAME "via-rhine" |
| #define DRV_VERSION "1.5.1" |
| #define DRV_RELDATE "2010-10-09" |
| |
| #include <linux/types.h> |
| |
| /* A few user-configurable values. |
| These may be modified when a driver module is loaded. */ |
| static int debug = 0; |
| #define RHINE_MSG_DEFAULT \ |
| (0x0000) |
| |
| /* Set the copy breakpoint for the copy-only-tiny-frames scheme. |
| Setting to > 1518 effectively disables this feature. */ |
| #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ |
| defined(CONFIG_SPARC) || defined(__ia64__) || \ |
| defined(__sh__) || defined(__mips__) |
| static int rx_copybreak = 1518; |
| #else |
| static int rx_copybreak; |
| #endif |
| |
| /* Work-around for broken BIOSes: they are unable to get the chip back out of |
| power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */ |
| static bool avoid_D3; |
| |
| /* |
| * In case you are looking for 'options[]' or 'full_duplex[]', they |
| * are gone. Use ethtool(8) instead. |
| */ |
| |
| /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). |
| The Rhine has a 64 element 8390-like hash table. */ |
| static const int multicast_filter_limit = 32; |
| |
| |
| /* Operational parameters that are set at compile time. */ |
| |
| /* Keep the ring sizes a power of two for compile efficiency. |
| The compiler will convert <unsigned>'%'<2^N> into a bit mask. |
| Making the Tx ring too large decreases the effectiveness of channel |
| bonding and packet priority. |
| There are no ill effects from too-large receive rings. */ |
| #define TX_RING_SIZE 16 |
| #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */ |
| #define RX_RING_SIZE 64 |
| |
| /* Operational parameters that usually are not changed. */ |
| |
| /* Time in jiffies before concluding the transmitter is hung. */ |
| #define TX_TIMEOUT (2*HZ) |
| |
| #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/of_irq.h> |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/mii.h> |
| #include <linux/ethtool.h> |
| #include <linux/crc32.h> |
| #include <linux/if_vlan.h> |
| #include <linux/bitops.h> |
| #include <linux/workqueue.h> |
| #include <asm/processor.h> /* Processor type for cache alignment. */ |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/uaccess.h> |
| #include <linux/dmi.h> |
| |
| /* These identify the driver base version and may not be removed. */ |
| static const char version[] = |
| "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker"; |
| |
| MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); |
| MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver"); |
| MODULE_LICENSE("GPL"); |
| |
| module_param(debug, int, 0); |
| module_param(rx_copybreak, int, 0); |
| module_param(avoid_D3, bool, 0); |
| MODULE_PARM_DESC(debug, "VIA Rhine debug message flags"); |
| MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames"); |
| MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)"); |
| |
| #define MCAM_SIZE 32 |
| #define VCAM_SIZE 32 |
| |
| /* |
| Theory of Operation |
| |
| I. Board Compatibility |
| |
| This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet |
| controller. |
| |
| II. Board-specific settings |
| |
| Boards with this chip are functional only in a bus-master PCI slot. |
| |
| Many operational settings are loaded from the EEPROM to the Config word at |
| offset 0x78. For most of these settings, this driver assumes that they are |
| correct. |
| If this driver is compiled to use PCI memory space operations the EEPROM |
| must be configured to enable memory ops. |
| |
| III. Driver operation |
| |
| IIIa. Ring buffers |
| |
| This driver uses two statically allocated fixed-size descriptor lists |
| formed into rings by a branch from the final descriptor to the beginning of |
| the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. |
| |
| IIIb/c. Transmit/Receive Structure |
| |
| This driver attempts to use a zero-copy receive and transmit scheme. |
| |
| Alas, all data buffers are required to start on a 32 bit boundary, so |
| the driver must often copy transmit packets into bounce buffers. |
| |
| The driver allocates full frame size skbuffs for the Rx ring buffers at |
| open() time and passes the skb->data field to the chip as receive data |
| buffers. When an incoming frame is less than RX_COPYBREAK bytes long, |
| a fresh skbuff is allocated and the frame is copied to the new skbuff. |
| When the incoming frame is larger, the skbuff is passed directly up the |
| protocol stack. Buffers consumed this way are replaced by newly allocated |
| skbuffs in the last phase of rhine_rx(). |
| |
| The RX_COPYBREAK value is chosen to trade-off the memory wasted by |
| using a full-sized skbuff for small frames vs. the copying costs of larger |
| frames. New boards are typically used in generously configured machines |
| and the underfilled buffers have negligible impact compared to the benefit of |
| a single allocation size, so the default value of zero results in never |
| copying packets. When copying is done, the cost is usually mitigated by using |
| a combined copy/checksum routine. Copying also preloads the cache, which is |
| most useful with small frames. |
| |
| Since the VIA chips are only able to transfer data to buffers on 32 bit |
| boundaries, the IP header at offset 14 in an ethernet frame isn't |
| longword aligned for further processing. Copying these unaligned buffers |
| has the beneficial effect of 16-byte aligning the IP header. |
| |
| IIId. Synchronization |
| |
| The driver runs as two independent, single-threaded flows of control. One |
| is the send-packet routine, which enforces single-threaded use by the |
| netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler, |
| which is single threaded by the hardware and interrupt handling software. |
| |
| The send packet thread has partial control over the Tx ring. It locks the |
| netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in |
| the ring is not available it stops the transmit queue by |
| calling netif_stop_queue. |
| |
| The interrupt handler has exclusive control over the Rx ring and records stats |
| from the Tx ring. After reaping the stats, it marks the Tx queue entry as |
| empty by incrementing the dirty_tx mark. If at least half of the entries in |
| the Rx ring are available the transmit queue is woken up if it was stopped. |
| |
| IV. Notes |
| |
| IVb. References |
| |
| Preliminary VT86C100A manual from http://www.via.com.tw/ |
| http://www.scyld.com/expert/100mbps.html |
| http://www.scyld.com/expert/NWay.html |
| ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf |
| ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF |
| |
| |
| IVc. Errata |
| |
| The VT86C100A manual is not reliable information. |
| The 3043 chip does not handle unaligned transmit or receive buffers, resulting |
| in significant performance degradation for bounce buffer copies on transmit |
| and unaligned IP headers on receive. |
| The chip does not pad to minimum transmit length. |
| |
| */ |
| |
| |
| /* This table drives the PCI probe routines. It's mostly boilerplate in all |
| of the drivers, and will likely be provided by some future kernel. |
| Note the matching code -- the first table entry matchs all 56** cards but |
| second only the 1234 card. |
| */ |
| |
| enum rhine_revs { |
| VT86C100A = 0x00, |
| VTunknown0 = 0x20, |
| VT6102 = 0x40, |
| VT8231 = 0x50, /* Integrated MAC */ |
| VT8233 = 0x60, /* Integrated MAC */ |
| VT8235 = 0x74, /* Integrated MAC */ |
| VT8237 = 0x78, /* Integrated MAC */ |
| VTunknown1 = 0x7C, |
| VT6105 = 0x80, |
| VT6105_B0 = 0x83, |
| VT6105L = 0x8A, |
| VT6107 = 0x8C, |
| VTunknown2 = 0x8E, |
| VT6105M = 0x90, /* Management adapter */ |
| }; |
| |
| enum rhine_quirks { |
| rqWOL = 0x0001, /* Wake-On-LAN support */ |
| rqForceReset = 0x0002, |
| rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */ |
| rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */ |
| rqRhineI = 0x0100, /* See comment below */ |
| rqIntPHY = 0x0200, /* Integrated PHY */ |
| rqMgmt = 0x0400, /* Management adapter */ |
| rqNeedEnMMIO = 0x0800, /* Whether the core needs to be |
| * switched from PIO mode to MMIO |
| * (only applies to PCI) |
| */ |
| }; |
| /* |
| * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable |
| * MMIO as well as for the collision counter and the Tx FIFO underflow |
| * indicator. In addition, Tx and Rx buffers need to 4 byte aligned. |
| */ |
| |
| /* Beware of PCI posted writes */ |
| #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0) |
| |
| static const struct pci_device_id rhine_pci_tbl[] = { |
| { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */ |
| { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */ |
| { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */ |
| { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */ |
| { } /* terminate list */ |
| }; |
| MODULE_DEVICE_TABLE(pci, rhine_pci_tbl); |
| |
| /* OpenFirmware identifiers for platform-bus devices |
| * The .data field is currently only used to store quirks |
| */ |
| static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns; |
| static struct of_device_id rhine_of_tbl[] = { |
| { .compatible = "via,vt8500-rhine", .data = &vt8500_quirks }, |
| { } /* terminate list */ |
| }; |
| MODULE_DEVICE_TABLE(of, rhine_of_tbl); |
| |
| /* Offsets to the device registers. */ |
| enum register_offsets { |
| StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, |
| ChipCmd1=0x09, TQWake=0x0A, |
| IntrStatus=0x0C, IntrEnable=0x0E, |
| MulticastFilter0=0x10, MulticastFilter1=0x14, |
| RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54, |
| MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F, |
| MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74, |
| ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B, |
| RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81, |
| StickyHW=0x83, IntrStatus2=0x84, |
| CamMask=0x88, CamCon=0x92, CamAddr=0x93, |
| WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4, |
| WOLcrClr1=0xA6, WOLcgClr=0xA7, |
| PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD, |
| }; |
| |
| /* Bits in ConfigD */ |
| enum backoff_bits { |
| BackOptional=0x01, BackModify=0x02, |
| BackCaptureEffect=0x04, BackRandom=0x08 |
| }; |
| |
| /* Bits in the TxConfig (TCR) register */ |
| enum tcr_bits { |
| TCR_PQEN=0x01, |
| TCR_LB0=0x02, /* loopback[0] */ |
| TCR_LB1=0x04, /* loopback[1] */ |
| TCR_OFSET=0x08, |
| TCR_RTGOPT=0x10, |
| TCR_RTFT0=0x20, |
| TCR_RTFT1=0x40, |
| TCR_RTSF=0x80, |
| }; |
| |
| /* Bits in the CamCon (CAMC) register */ |
| enum camcon_bits { |
| CAMC_CAMEN=0x01, |
| CAMC_VCAMSL=0x02, |
| CAMC_CAMWR=0x04, |
| CAMC_CAMRD=0x08, |
| }; |
| |
| /* Bits in the PCIBusConfig1 (BCR1) register */ |
| enum bcr1_bits { |
| BCR1_POT0=0x01, |
| BCR1_POT1=0x02, |
| BCR1_POT2=0x04, |
| BCR1_CTFT0=0x08, |
| BCR1_CTFT1=0x10, |
| BCR1_CTSF=0x20, |
| BCR1_TXQNOBK=0x40, /* for VT6105 */ |
| BCR1_VIDFR=0x80, /* for VT6105 */ |
| BCR1_MED0=0x40, /* for VT6102 */ |
| BCR1_MED1=0x80, /* for VT6102 */ |
| }; |
| |
| /* Registers we check that mmio and reg are the same. */ |
| static const int mmio_verify_registers[] = { |
| RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD, |
| 0 |
| }; |
| |
| /* Bits in the interrupt status/mask registers. */ |
| enum intr_status_bits { |
| IntrRxDone = 0x0001, |
| IntrTxDone = 0x0002, |
| IntrRxErr = 0x0004, |
| IntrTxError = 0x0008, |
| IntrRxEmpty = 0x0020, |
| IntrPCIErr = 0x0040, |
| IntrStatsMax = 0x0080, |
| IntrRxEarly = 0x0100, |
| IntrTxUnderrun = 0x0210, |
| IntrRxOverflow = 0x0400, |
| IntrRxDropped = 0x0800, |
| IntrRxNoBuf = 0x1000, |
| IntrTxAborted = 0x2000, |
| IntrLinkChange = 0x4000, |
| IntrRxWakeUp = 0x8000, |
| IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */ |
| IntrNormalSummary = IntrRxDone | IntrTxDone, |
| IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError | |
| IntrTxUnderrun, |
| }; |
| |
| /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */ |
| enum wol_bits { |
| WOLucast = 0x10, |
| WOLmagic = 0x20, |
| WOLbmcast = 0x30, |
| WOLlnkon = 0x40, |
| WOLlnkoff = 0x80, |
| }; |
| |
| /* The Rx and Tx buffer descriptors. */ |
| struct rx_desc { |
| __le32 rx_status; |
| __le32 desc_length; /* Chain flag, Buffer/frame length */ |
| __le32 addr; |
| __le32 next_desc; |
| }; |
| struct tx_desc { |
| __le32 tx_status; |
| __le32 desc_length; /* Chain flag, Tx Config, Frame length */ |
| __le32 addr; |
| __le32 next_desc; |
| }; |
| |
| /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */ |
| #define TXDESC 0x00e08000 |
| |
| enum rx_status_bits { |
| RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F |
| }; |
| |
| /* Bits in *_desc.*_status */ |
| enum desc_status_bits { |
| DescOwn=0x80000000 |
| }; |
| |
| /* Bits in *_desc.*_length */ |
| enum desc_length_bits { |
| DescTag=0x00010000 |
| }; |
| |
| /* Bits in ChipCmd. */ |
| enum chip_cmd_bits { |
| CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08, |
| CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40, |
| Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04, |
| Cmd1NoTxPoll=0x08, Cmd1Reset=0x80, |
| }; |
| |
| struct rhine_stats { |
| u64 packets; |
| u64 bytes; |
| struct u64_stats_sync syncp; |
| }; |
| |
| struct rhine_private { |
| /* Bit mask for configured VLAN ids */ |
| unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; |
| |
| /* Descriptor rings */ |
| struct rx_desc *rx_ring; |
| struct tx_desc *tx_ring; |
| dma_addr_t rx_ring_dma; |
| dma_addr_t tx_ring_dma; |
| |
| /* The addresses of receive-in-place skbuffs. */ |
| struct sk_buff *rx_skbuff[RX_RING_SIZE]; |
| dma_addr_t rx_skbuff_dma[RX_RING_SIZE]; |
| |
| /* The saved address of a sent-in-place packet/buffer, for later free(). */ |
| struct sk_buff *tx_skbuff[TX_RING_SIZE]; |
| dma_addr_t tx_skbuff_dma[TX_RING_SIZE]; |
| |
| /* Tx bounce buffers (Rhine-I only) */ |
| unsigned char *tx_buf[TX_RING_SIZE]; |
| unsigned char *tx_bufs; |
| dma_addr_t tx_bufs_dma; |
| |
| int irq; |
| long pioaddr; |
| struct net_device *dev; |
| struct napi_struct napi; |
| spinlock_t lock; |
| struct mutex task_lock; |
| bool task_enable; |
| struct work_struct slow_event_task; |
| struct work_struct reset_task; |
| |
| u32 msg_enable; |
| |
| /* Frequently used values: keep some adjacent for cache effect. */ |
| u32 quirks; |
| struct rx_desc *rx_head_desc; |
| unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ |
| unsigned int cur_tx, dirty_tx; |
| unsigned int rx_buf_sz; /* Based on MTU+slack. */ |
| struct rhine_stats rx_stats; |
| struct rhine_stats tx_stats; |
| u8 wolopts; |
| |
| u8 tx_thresh, rx_thresh; |
| |
| struct mii_if_info mii_if; |
| void __iomem *base; |
| }; |
| |
| #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0) |
| #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0) |
| #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0) |
| |
| #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x)) |
| #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x)) |
| #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x)) |
| |
| #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0) |
| #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0) |
| #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0) |
| |
| #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0) |
| #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0) |
| #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0) |
| |
| |
| static int mdio_read(struct net_device *dev, int phy_id, int location); |
| static void mdio_write(struct net_device *dev, int phy_id, int location, int value); |
| static int rhine_open(struct net_device *dev); |
| static void rhine_reset_task(struct work_struct *work); |
| static void rhine_slow_event_task(struct work_struct *work); |
| static void rhine_tx_timeout(struct net_device *dev); |
| static netdev_tx_t rhine_start_tx(struct sk_buff *skb, |
| struct net_device *dev); |
| static irqreturn_t rhine_interrupt(int irq, void *dev_instance); |
| static void rhine_tx(struct net_device *dev); |
| static int rhine_rx(struct net_device *dev, int limit); |
| static void rhine_set_rx_mode(struct net_device *dev); |
| static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev, |
| struct rtnl_link_stats64 *stats); |
| static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); |
| static const struct ethtool_ops netdev_ethtool_ops; |
| static int rhine_close(struct net_device *dev); |
| static int rhine_vlan_rx_add_vid(struct net_device *dev, |
| __be16 proto, u16 vid); |
| static int rhine_vlan_rx_kill_vid(struct net_device *dev, |
| __be16 proto, u16 vid); |
| static void rhine_restart_tx(struct net_device *dev); |
| |
| static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low) |
| { |
| void __iomem *ioaddr = rp->base; |
| int i; |
| |
| for (i = 0; i < 1024; i++) { |
| bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask); |
| |
| if (low ^ has_mask_bits) |
| break; |
| udelay(10); |
| } |
| if (i > 64) { |
| netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle " |
| "count: %04d\n", low ? "low" : "high", reg, mask, i); |
| } |
| } |
| |
| static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask) |
| { |
| rhine_wait_bit(rp, reg, mask, false); |
| } |
| |
| static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask) |
| { |
| rhine_wait_bit(rp, reg, mask, true); |
| } |
| |
| static u32 rhine_get_events(struct rhine_private *rp) |
| { |
| void __iomem *ioaddr = rp->base; |
| u32 intr_status; |
| |
| intr_status = ioread16(ioaddr + IntrStatus); |
| /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ |
| if (rp->quirks & rqStatusWBRace) |
| intr_status |= ioread8(ioaddr + IntrStatus2) << 16; |
| return intr_status; |
| } |
| |
| static void rhine_ack_events(struct rhine_private *rp, u32 mask) |
| { |
| void __iomem *ioaddr = rp->base; |
| |
| if (rp->quirks & rqStatusWBRace) |
| iowrite8(mask >> 16, ioaddr + IntrStatus2); |
| iowrite16(mask, ioaddr + IntrStatus); |
| mmiowb(); |
| } |
| |
| /* |
| * Get power related registers into sane state. |
| * Notify user about past WOL event. |
| */ |
| static void rhine_power_init(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| u16 wolstat; |
| |
| if (rp->quirks & rqWOL) { |
| /* Make sure chip is in power state D0 */ |
| iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW); |
| |
| /* Disable "force PME-enable" */ |
| iowrite8(0x80, ioaddr + WOLcgClr); |
| |
| /* Clear power-event config bits (WOL) */ |
| iowrite8(0xFF, ioaddr + WOLcrClr); |
| /* More recent cards can manage two additional patterns */ |
| if (rp->quirks & rq6patterns) |
| iowrite8(0x03, ioaddr + WOLcrClr1); |
| |
| /* Save power-event status bits */ |
| wolstat = ioread8(ioaddr + PwrcsrSet); |
| if (rp->quirks & rq6patterns) |
| wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8; |
| |
| /* Clear power-event status bits */ |
| iowrite8(0xFF, ioaddr + PwrcsrClr); |
| if (rp->quirks & rq6patterns) |
| iowrite8(0x03, ioaddr + PwrcsrClr1); |
| |
| if (wolstat) { |
| char *reason; |
| switch (wolstat) { |
| case WOLmagic: |
| reason = "Magic packet"; |
| break; |
| case WOLlnkon: |
| reason = "Link went up"; |
| break; |
| case WOLlnkoff: |
| reason = "Link went down"; |
| break; |
| case WOLucast: |
| reason = "Unicast packet"; |
| break; |
| case WOLbmcast: |
| reason = "Multicast/broadcast packet"; |
| break; |
| default: |
| reason = "Unknown"; |
| } |
| netdev_info(dev, "Woke system up. Reason: %s\n", |
| reason); |
| } |
| } |
| } |
| |
| static void rhine_chip_reset(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| u8 cmd1; |
| |
| iowrite8(Cmd1Reset, ioaddr + ChipCmd1); |
| IOSYNC; |
| |
| if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) { |
| netdev_info(dev, "Reset not complete yet. Trying harder.\n"); |
| |
| /* Force reset */ |
| if (rp->quirks & rqForceReset) |
| iowrite8(0x40, ioaddr + MiscCmd); |
| |
| /* Reset can take somewhat longer (rare) */ |
| rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset); |
| } |
| |
| cmd1 = ioread8(ioaddr + ChipCmd1); |
| netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ? |
| "failed" : "succeeded"); |
| } |
| |
| static void enable_mmio(long pioaddr, u32 quirks) |
| { |
| int n; |
| |
| if (quirks & rqNeedEnMMIO) { |
| if (quirks & rqRhineI) { |
| /* More recent docs say that this bit is reserved */ |
| n = inb(pioaddr + ConfigA) | 0x20; |
| outb(n, pioaddr + ConfigA); |
| } else { |
| n = inb(pioaddr + ConfigD) | 0x80; |
| outb(n, pioaddr + ConfigD); |
| } |
| } |
| } |
| |
| static inline int verify_mmio(struct device *hwdev, |
| long pioaddr, |
| void __iomem *ioaddr, |
| u32 quirks) |
| { |
| if (quirks & rqNeedEnMMIO) { |
| int i = 0; |
| |
| /* Check that selected MMIO registers match the PIO ones */ |
| while (mmio_verify_registers[i]) { |
| int reg = mmio_verify_registers[i++]; |
| unsigned char a = inb(pioaddr+reg); |
| unsigned char b = readb(ioaddr+reg); |
| |
| if (a != b) { |
| dev_err(hwdev, |
| "MMIO do not match PIO [%02x] (%02x != %02x)\n", |
| reg, a, b); |
| return -EIO; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM |
| * (plus 0x6C for Rhine-I/II) |
| */ |
| static void rhine_reload_eeprom(long pioaddr, struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| int i; |
| |
| outb(0x20, pioaddr + MACRegEEcsr); |
| for (i = 0; i < 1024; i++) { |
| if (!(inb(pioaddr + MACRegEEcsr) & 0x20)) |
| break; |
| } |
| if (i > 512) |
| pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__); |
| |
| /* |
| * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable |
| * MMIO. If reloading EEPROM was done first this could be avoided, but |
| * it is not known if that still works with the "win98-reboot" problem. |
| */ |
| enable_mmio(pioaddr, rp->quirks); |
| |
| /* Turn off EEPROM-controlled wake-up (magic packet) */ |
| if (rp->quirks & rqWOL) |
| iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA); |
| |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void rhine_poll(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| const int irq = rp->irq; |
| |
| disable_irq(irq); |
| rhine_interrupt(irq, dev); |
| enable_irq(irq); |
| } |
| #endif |
| |
| static void rhine_kick_tx_threshold(struct rhine_private *rp) |
| { |
| if (rp->tx_thresh < 0xe0) { |
| void __iomem *ioaddr = rp->base; |
| |
| rp->tx_thresh += 0x20; |
| BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig); |
| } |
| } |
| |
| static void rhine_tx_err(struct rhine_private *rp, u32 status) |
| { |
| struct net_device *dev = rp->dev; |
| |
| if (status & IntrTxAborted) { |
| netif_info(rp, tx_err, dev, |
| "Abort %08x, frame dropped\n", status); |
| } |
| |
| if (status & IntrTxUnderrun) { |
| rhine_kick_tx_threshold(rp); |
| netif_info(rp, tx_err ,dev, "Transmitter underrun, " |
| "Tx threshold now %02x\n", rp->tx_thresh); |
| } |
| |
| if (status & IntrTxDescRace) |
| netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n"); |
| |
| if ((status & IntrTxError) && |
| (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) { |
| rhine_kick_tx_threshold(rp); |
| netif_info(rp, tx_err, dev, "Unspecified error. " |
| "Tx threshold now %02x\n", rp->tx_thresh); |
| } |
| |
| rhine_restart_tx(dev); |
| } |
| |
| static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp) |
| { |
| void __iomem *ioaddr = rp->base; |
| struct net_device_stats *stats = &rp->dev->stats; |
| |
| stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs); |
| stats->rx_missed_errors += ioread16(ioaddr + RxMissed); |
| |
| /* |
| * Clears the "tally counters" for CRC errors and missed frames(?). |
| * It has been reported that some chips need a write of 0 to clear |
| * these, for others the counters are set to 1 when written to and |
| * instead cleared when read. So we clear them both ways ... |
| */ |
| iowrite32(0, ioaddr + RxMissed); |
| ioread16(ioaddr + RxCRCErrs); |
| ioread16(ioaddr + RxMissed); |
| } |
| |
| #define RHINE_EVENT_NAPI_RX (IntrRxDone | \ |
| IntrRxErr | \ |
| IntrRxEmpty | \ |
| IntrRxOverflow | \ |
| IntrRxDropped | \ |
| IntrRxNoBuf | \ |
| IntrRxWakeUp) |
| |
| #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \ |
| IntrTxAborted | \ |
| IntrTxUnderrun | \ |
| IntrTxDescRace) |
| #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR) |
| |
| #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \ |
| RHINE_EVENT_NAPI_TX | \ |
| IntrStatsMax) |
| #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange) |
| #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW) |
| |
| static int rhine_napipoll(struct napi_struct *napi, int budget) |
| { |
| struct rhine_private *rp = container_of(napi, struct rhine_private, napi); |
| struct net_device *dev = rp->dev; |
| void __iomem *ioaddr = rp->base; |
| u16 enable_mask = RHINE_EVENT & 0xffff; |
| int work_done = 0; |
| u32 status; |
| |
| status = rhine_get_events(rp); |
| rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW); |
| |
| if (status & RHINE_EVENT_NAPI_RX) |
| work_done += rhine_rx(dev, budget); |
| |
| if (status & RHINE_EVENT_NAPI_TX) { |
| if (status & RHINE_EVENT_NAPI_TX_ERR) { |
| /* Avoid scavenging before Tx engine turned off */ |
| rhine_wait_bit_low(rp, ChipCmd, CmdTxOn); |
| if (ioread8(ioaddr + ChipCmd) & CmdTxOn) |
| netif_warn(rp, tx_err, dev, "Tx still on\n"); |
| } |
| |
| rhine_tx(dev); |
| |
| if (status & RHINE_EVENT_NAPI_TX_ERR) |
| rhine_tx_err(rp, status); |
| } |
| |
| if (status & IntrStatsMax) { |
| spin_lock(&rp->lock); |
| rhine_update_rx_crc_and_missed_errord(rp); |
| spin_unlock(&rp->lock); |
| } |
| |
| if (status & RHINE_EVENT_SLOW) { |
| enable_mask &= ~RHINE_EVENT_SLOW; |
| schedule_work(&rp->slow_event_task); |
| } |
| |
| if (work_done < budget) { |
| napi_complete(napi); |
| iowrite16(enable_mask, ioaddr + IntrEnable); |
| mmiowb(); |
| } |
| return work_done; |
| } |
| |
| static void rhine_hw_init(struct net_device *dev, long pioaddr) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| /* Reset the chip to erase previous misconfiguration. */ |
| rhine_chip_reset(dev); |
| |
| /* Rhine-I needs extra time to recuperate before EEPROM reload */ |
| if (rp->quirks & rqRhineI) |
| msleep(5); |
| |
| /* Reload EEPROM controlled bytes cleared by soft reset */ |
| if (dev_is_pci(dev->dev.parent)) |
| rhine_reload_eeprom(pioaddr, dev); |
| } |
| |
| static const struct net_device_ops rhine_netdev_ops = { |
| .ndo_open = rhine_open, |
| .ndo_stop = rhine_close, |
| .ndo_start_xmit = rhine_start_tx, |
| .ndo_get_stats64 = rhine_get_stats64, |
| .ndo_set_rx_mode = rhine_set_rx_mode, |
| .ndo_change_mtu = eth_change_mtu, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = eth_mac_addr, |
| .ndo_do_ioctl = netdev_ioctl, |
| .ndo_tx_timeout = rhine_tx_timeout, |
| .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid, |
| .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = rhine_poll, |
| #endif |
| }; |
| |
| static int rhine_init_one_common(struct device *hwdev, u32 quirks, |
| long pioaddr, void __iomem *ioaddr, int irq) |
| { |
| struct net_device *dev; |
| struct rhine_private *rp; |
| int i, rc, phy_id; |
| const char *name; |
| |
| /* this should always be supported */ |
| rc = dma_set_mask(hwdev, DMA_BIT_MASK(32)); |
| if (rc) { |
| dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n"); |
| goto err_out; |
| } |
| |
| dev = alloc_etherdev(sizeof(struct rhine_private)); |
| if (!dev) { |
| rc = -ENOMEM; |
| goto err_out; |
| } |
| SET_NETDEV_DEV(dev, hwdev); |
| |
| rp = netdev_priv(dev); |
| rp->dev = dev; |
| rp->quirks = quirks; |
| rp->pioaddr = pioaddr; |
| rp->base = ioaddr; |
| rp->irq = irq; |
| rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT); |
| |
| phy_id = rp->quirks & rqIntPHY ? 1 : 0; |
| |
| u64_stats_init(&rp->tx_stats.syncp); |
| u64_stats_init(&rp->rx_stats.syncp); |
| |
| /* Get chip registers into a sane state */ |
| rhine_power_init(dev); |
| rhine_hw_init(dev, pioaddr); |
| |
| for (i = 0; i < 6; i++) |
| dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i); |
| |
| if (!is_valid_ether_addr(dev->dev_addr)) { |
| /* Report it and use a random ethernet address instead */ |
| netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr); |
| eth_hw_addr_random(dev); |
| netdev_info(dev, "Using random MAC address: %pM\n", |
| dev->dev_addr); |
| } |
| |
| /* For Rhine-I/II, phy_id is loaded from EEPROM */ |
| if (!phy_id) |
| phy_id = ioread8(ioaddr + 0x6C); |
| |
| spin_lock_init(&rp->lock); |
| mutex_init(&rp->task_lock); |
| INIT_WORK(&rp->reset_task, rhine_reset_task); |
| INIT_WORK(&rp->slow_event_task, rhine_slow_event_task); |
| |
| rp->mii_if.dev = dev; |
| rp->mii_if.mdio_read = mdio_read; |
| rp->mii_if.mdio_write = mdio_write; |
| rp->mii_if.phy_id_mask = 0x1f; |
| rp->mii_if.reg_num_mask = 0x1f; |
| |
| /* The chip-specific entries in the device structure. */ |
| dev->netdev_ops = &rhine_netdev_ops; |
| dev->ethtool_ops = &netdev_ethtool_ops; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| |
| netif_napi_add(dev, &rp->napi, rhine_napipoll, 64); |
| |
| if (rp->quirks & rqRhineI) |
| dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM; |
| |
| if (rp->quirks & rqMgmt) |
| dev->features |= NETIF_F_HW_VLAN_CTAG_TX | |
| NETIF_F_HW_VLAN_CTAG_RX | |
| NETIF_F_HW_VLAN_CTAG_FILTER; |
| |
| /* dev->name not defined before register_netdev()! */ |
| rc = register_netdev(dev); |
| if (rc) |
| goto err_out_free_netdev; |
| |
| if (rp->quirks & rqRhineI) |
| name = "Rhine"; |
| else if (rp->quirks & rqStatusWBRace) |
| name = "Rhine II"; |
| else if (rp->quirks & rqMgmt) |
| name = "Rhine III (Management Adapter)"; |
| else |
| name = "Rhine III"; |
| |
| netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n", |
| name, (long)ioaddr, dev->dev_addr, rp->irq); |
| |
| dev_set_drvdata(hwdev, dev); |
| |
| { |
| u16 mii_cmd; |
| int mii_status = mdio_read(dev, phy_id, 1); |
| mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE; |
| mdio_write(dev, phy_id, MII_BMCR, mii_cmd); |
| if (mii_status != 0xffff && mii_status != 0x0000) { |
| rp->mii_if.advertising = mdio_read(dev, phy_id, 4); |
| netdev_info(dev, |
| "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n", |
| phy_id, |
| mii_status, rp->mii_if.advertising, |
| mdio_read(dev, phy_id, 5)); |
| |
| /* set IFF_RUNNING */ |
| if (mii_status & BMSR_LSTATUS) |
| netif_carrier_on(dev); |
| else |
| netif_carrier_off(dev); |
| |
| } |
| } |
| rp->mii_if.phy_id = phy_id; |
| if (avoid_D3) |
| netif_info(rp, probe, dev, "No D3 power state at shutdown\n"); |
| |
| return 0; |
| |
| err_out_free_netdev: |
| free_netdev(dev); |
| err_out: |
| return rc; |
| } |
| |
| static int rhine_init_one_pci(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct device *hwdev = &pdev->dev; |
| int rc; |
| long pioaddr, memaddr; |
| void __iomem *ioaddr; |
| int io_size = pdev->revision < VTunknown0 ? 128 : 256; |
| |
| /* This driver was written to use PCI memory space. Some early versions |
| * of the Rhine may only work correctly with I/O space accesses. |
| * TODO: determine for which revisions this is true and assign the flag |
| * in code as opposed to this Kconfig option (???) |
| */ |
| #ifdef CONFIG_VIA_RHINE_MMIO |
| u32 quirks = rqNeedEnMMIO; |
| #else |
| u32 quirks = 0; |
| #endif |
| |
| /* when built into the kernel, we only print version if device is found */ |
| #ifndef MODULE |
| pr_info_once("%s\n", version); |
| #endif |
| |
| rc = pci_enable_device(pdev); |
| if (rc) |
| goto err_out; |
| |
| if (pdev->revision < VTunknown0) { |
| quirks |= rqRhineI; |
| } else if (pdev->revision >= VT6102) { |
| quirks |= rqWOL | rqForceReset; |
| if (pdev->revision < VT6105) { |
| quirks |= rqStatusWBRace; |
| } else { |
| quirks |= rqIntPHY; |
| if (pdev->revision >= VT6105_B0) |
| quirks |= rq6patterns; |
| if (pdev->revision >= VT6105M) |
| quirks |= rqMgmt; |
| } |
| } |
| |
| /* sanity check */ |
| if ((pci_resource_len(pdev, 0) < io_size) || |
| (pci_resource_len(pdev, 1) < io_size)) { |
| rc = -EIO; |
| dev_err(hwdev, "Insufficient PCI resources, aborting\n"); |
| goto err_out_pci_disable; |
| } |
| |
| pioaddr = pci_resource_start(pdev, 0); |
| memaddr = pci_resource_start(pdev, 1); |
| |
| pci_set_master(pdev); |
| |
| rc = pci_request_regions(pdev, DRV_NAME); |
| if (rc) |
| goto err_out_pci_disable; |
| |
| ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size); |
| if (!ioaddr) { |
| rc = -EIO; |
| dev_err(hwdev, |
| "ioremap failed for device %s, region 0x%X @ 0x%lX\n", |
| dev_name(hwdev), io_size, memaddr); |
| goto err_out_free_res; |
| } |
| |
| enable_mmio(pioaddr, quirks); |
| |
| rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks); |
| if (rc) |
| goto err_out_unmap; |
| |
| rc = rhine_init_one_common(&pdev->dev, quirks, |
| pioaddr, ioaddr, pdev->irq); |
| if (!rc) |
| return 0; |
| |
| err_out_unmap: |
| pci_iounmap(pdev, ioaddr); |
| err_out_free_res: |
| pci_release_regions(pdev); |
| err_out_pci_disable: |
| pci_disable_device(pdev); |
| err_out: |
| return rc; |
| } |
| |
| static int rhine_init_one_platform(struct platform_device *pdev) |
| { |
| const struct of_device_id *match; |
| const u32 *quirks; |
| int irq; |
| struct resource *res; |
| void __iomem *ioaddr; |
| |
| match = of_match_device(rhine_of_tbl, &pdev->dev); |
| if (!match) |
| return -EINVAL; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| ioaddr = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(ioaddr)) |
| return PTR_ERR(ioaddr); |
| |
| irq = irq_of_parse_and_map(pdev->dev.of_node, 0); |
| if (!irq) |
| return -EINVAL; |
| |
| quirks = match->data; |
| if (!quirks) |
| return -EINVAL; |
| |
| return rhine_init_one_common(&pdev->dev, *quirks, |
| (long)ioaddr, ioaddr, irq); |
| } |
| |
| static int alloc_ring(struct net_device* dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| struct device *hwdev = dev->dev.parent; |
| void *ring; |
| dma_addr_t ring_dma; |
| |
| ring = dma_alloc_coherent(hwdev, |
| RX_RING_SIZE * sizeof(struct rx_desc) + |
| TX_RING_SIZE * sizeof(struct tx_desc), |
| &ring_dma, |
| GFP_ATOMIC); |
| if (!ring) { |
| netdev_err(dev, "Could not allocate DMA memory\n"); |
| return -ENOMEM; |
| } |
| if (rp->quirks & rqRhineI) { |
| rp->tx_bufs = dma_alloc_coherent(hwdev, |
| PKT_BUF_SZ * TX_RING_SIZE, |
| &rp->tx_bufs_dma, |
| GFP_ATOMIC); |
| if (rp->tx_bufs == NULL) { |
| dma_free_coherent(hwdev, |
| RX_RING_SIZE * sizeof(struct rx_desc) + |
| TX_RING_SIZE * sizeof(struct tx_desc), |
| ring, ring_dma); |
| return -ENOMEM; |
| } |
| } |
| |
| rp->rx_ring = ring; |
| rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc); |
| rp->rx_ring_dma = ring_dma; |
| rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc); |
| |
| return 0; |
| } |
| |
| static void free_ring(struct net_device* dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| struct device *hwdev = dev->dev.parent; |
| |
| dma_free_coherent(hwdev, |
| RX_RING_SIZE * sizeof(struct rx_desc) + |
| TX_RING_SIZE * sizeof(struct tx_desc), |
| rp->rx_ring, rp->rx_ring_dma); |
| rp->tx_ring = NULL; |
| |
| if (rp->tx_bufs) |
| dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE, |
| rp->tx_bufs, rp->tx_bufs_dma); |
| |
| rp->tx_bufs = NULL; |
| |
| } |
| |
| static void alloc_rbufs(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| struct device *hwdev = dev->dev.parent; |
| dma_addr_t next; |
| int i; |
| |
| rp->dirty_rx = rp->cur_rx = 0; |
| |
| rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); |
| rp->rx_head_desc = &rp->rx_ring[0]; |
| next = rp->rx_ring_dma; |
| |
| /* Init the ring entries */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| rp->rx_ring[i].rx_status = 0; |
| rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz); |
| next += sizeof(struct rx_desc); |
| rp->rx_ring[i].next_desc = cpu_to_le32(next); |
| rp->rx_skbuff[i] = NULL; |
| } |
| /* Mark the last entry as wrapping the ring. */ |
| rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma); |
| |
| /* Fill in the Rx buffers. Handle allocation failure gracefully. */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz); |
| rp->rx_skbuff[i] = skb; |
| if (skb == NULL) |
| break; |
| |
| rp->rx_skbuff_dma[i] = |
| dma_map_single(hwdev, skb->data, rp->rx_buf_sz, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(hwdev, rp->rx_skbuff_dma[i])) { |
| rp->rx_skbuff_dma[i] = 0; |
| dev_kfree_skb(skb); |
| break; |
| } |
| rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]); |
| rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn); |
| } |
| rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); |
| } |
| |
| static void free_rbufs(struct net_device* dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| struct device *hwdev = dev->dev.parent; |
| int i; |
| |
| /* Free all the skbuffs in the Rx queue. */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| rp->rx_ring[i].rx_status = 0; |
| rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ |
| if (rp->rx_skbuff[i]) { |
| dma_unmap_single(hwdev, |
| rp->rx_skbuff_dma[i], |
| rp->rx_buf_sz, DMA_FROM_DEVICE); |
| dev_kfree_skb(rp->rx_skbuff[i]); |
| } |
| rp->rx_skbuff[i] = NULL; |
| } |
| } |
| |
| static void alloc_tbufs(struct net_device* dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| dma_addr_t next; |
| int i; |
| |
| rp->dirty_tx = rp->cur_tx = 0; |
| next = rp->tx_ring_dma; |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| rp->tx_skbuff[i] = NULL; |
| rp->tx_ring[i].tx_status = 0; |
| rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); |
| next += sizeof(struct tx_desc); |
| rp->tx_ring[i].next_desc = cpu_to_le32(next); |
| if (rp->quirks & rqRhineI) |
| rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ]; |
| } |
| rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma); |
| |
| } |
| |
| static void free_tbufs(struct net_device* dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| struct device *hwdev = dev->dev.parent; |
| int i; |
| |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| rp->tx_ring[i].tx_status = 0; |
| rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); |
| rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ |
| if (rp->tx_skbuff[i]) { |
| if (rp->tx_skbuff_dma[i]) { |
| dma_unmap_single(hwdev, |
| rp->tx_skbuff_dma[i], |
| rp->tx_skbuff[i]->len, |
| DMA_TO_DEVICE); |
| } |
| dev_kfree_skb(rp->tx_skbuff[i]); |
| } |
| rp->tx_skbuff[i] = NULL; |
| rp->tx_buf[i] = NULL; |
| } |
| } |
| |
| static void rhine_check_media(struct net_device *dev, unsigned int init_media) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| |
| mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media); |
| |
| if (rp->mii_if.full_duplex) |
| iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex, |
| ioaddr + ChipCmd1); |
| else |
| iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex, |
| ioaddr + ChipCmd1); |
| |
| netif_info(rp, link, dev, "force_media %d, carrier %d\n", |
| rp->mii_if.force_media, netif_carrier_ok(dev)); |
| } |
| |
| /* Called after status of force_media possibly changed */ |
| static void rhine_set_carrier(struct mii_if_info *mii) |
| { |
| struct net_device *dev = mii->dev; |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| if (mii->force_media) { |
| /* autoneg is off: Link is always assumed to be up */ |
| if (!netif_carrier_ok(dev)) |
| netif_carrier_on(dev); |
| } |
| |
| rhine_check_media(dev, 0); |
| |
| netif_info(rp, link, dev, "force_media %d, carrier %d\n", |
| mii->force_media, netif_carrier_ok(dev)); |
| } |
| |
| /** |
| * rhine_set_cam - set CAM multicast filters |
| * @ioaddr: register block of this Rhine |
| * @idx: multicast CAM index [0..MCAM_SIZE-1] |
| * @addr: multicast address (6 bytes) |
| * |
| * Load addresses into multicast filters. |
| */ |
| static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr) |
| { |
| int i; |
| |
| iowrite8(CAMC_CAMEN, ioaddr + CamCon); |
| wmb(); |
| |
| /* Paranoid -- idx out of range should never happen */ |
| idx &= (MCAM_SIZE - 1); |
| |
| iowrite8((u8) idx, ioaddr + CamAddr); |
| |
| for (i = 0; i < 6; i++, addr++) |
| iowrite8(*addr, ioaddr + MulticastFilter0 + i); |
| udelay(10); |
| wmb(); |
| |
| iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); |
| udelay(10); |
| |
| iowrite8(0, ioaddr + CamCon); |
| } |
| |
| /** |
| * rhine_set_vlan_cam - set CAM VLAN filters |
| * @ioaddr: register block of this Rhine |
| * @idx: VLAN CAM index [0..VCAM_SIZE-1] |
| * @addr: VLAN ID (2 bytes) |
| * |
| * Load addresses into VLAN filters. |
| */ |
| static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr) |
| { |
| iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); |
| wmb(); |
| |
| /* Paranoid -- idx out of range should never happen */ |
| idx &= (VCAM_SIZE - 1); |
| |
| iowrite8((u8) idx, ioaddr + CamAddr); |
| |
| iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6); |
| udelay(10); |
| wmb(); |
| |
| iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); |
| udelay(10); |
| |
| iowrite8(0, ioaddr + CamCon); |
| } |
| |
| /** |
| * rhine_set_cam_mask - set multicast CAM mask |
| * @ioaddr: register block of this Rhine |
| * @mask: multicast CAM mask |
| * |
| * Mask sets multicast filters active/inactive. |
| */ |
| static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask) |
| { |
| iowrite8(CAMC_CAMEN, ioaddr + CamCon); |
| wmb(); |
| |
| /* write mask */ |
| iowrite32(mask, ioaddr + CamMask); |
| |
| /* disable CAMEN */ |
| iowrite8(0, ioaddr + CamCon); |
| } |
| |
| /** |
| * rhine_set_vlan_cam_mask - set VLAN CAM mask |
| * @ioaddr: register block of this Rhine |
| * @mask: VLAN CAM mask |
| * |
| * Mask sets VLAN filters active/inactive. |
| */ |
| static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask) |
| { |
| iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); |
| wmb(); |
| |
| /* write mask */ |
| iowrite32(mask, ioaddr + CamMask); |
| |
| /* disable CAMEN */ |
| iowrite8(0, ioaddr + CamCon); |
| } |
| |
| /** |
| * rhine_init_cam_filter - initialize CAM filters |
| * @dev: network device |
| * |
| * Initialize (disable) hardware VLAN and multicast support on this |
| * Rhine. |
| */ |
| static void rhine_init_cam_filter(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| |
| /* Disable all CAMs */ |
| rhine_set_vlan_cam_mask(ioaddr, 0); |
| rhine_set_cam_mask(ioaddr, 0); |
| |
| /* disable hardware VLAN support */ |
| BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig); |
| BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); |
| } |
| |
| /** |
| * rhine_update_vcam - update VLAN CAM filters |
| * @rp: rhine_private data of this Rhine |
| * |
| * Update VLAN CAM filters to match configuration change. |
| */ |
| static void rhine_update_vcam(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| u16 vid; |
| u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */ |
| unsigned int i = 0; |
| |
| for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) { |
| rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid); |
| vCAMmask |= 1 << i; |
| if (++i >= VCAM_SIZE) |
| break; |
| } |
| rhine_set_vlan_cam_mask(ioaddr, vCAMmask); |
| } |
| |
| static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| spin_lock_bh(&rp->lock); |
| set_bit(vid, rp->active_vlans); |
| rhine_update_vcam(dev); |
| spin_unlock_bh(&rp->lock); |
| return 0; |
| } |
| |
| static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| spin_lock_bh(&rp->lock); |
| clear_bit(vid, rp->active_vlans); |
| rhine_update_vcam(dev); |
| spin_unlock_bh(&rp->lock); |
| return 0; |
| } |
| |
| static void init_registers(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| int i; |
| |
| for (i = 0; i < 6; i++) |
| iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i); |
| |
| /* Initialize other registers. */ |
| iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */ |
| /* Configure initial FIFO thresholds. */ |
| iowrite8(0x20, ioaddr + TxConfig); |
| rp->tx_thresh = 0x20; |
| rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */ |
| |
| iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr); |
| iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr); |
| |
| rhine_set_rx_mode(dev); |
| |
| if (rp->quirks & rqMgmt) |
| rhine_init_cam_filter(dev); |
| |
| napi_enable(&rp->napi); |
| |
| iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable); |
| |
| iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8), |
| ioaddr + ChipCmd); |
| rhine_check_media(dev, 1); |
| } |
| |
| /* Enable MII link status auto-polling (required for IntrLinkChange) */ |
| static void rhine_enable_linkmon(struct rhine_private *rp) |
| { |
| void __iomem *ioaddr = rp->base; |
| |
| iowrite8(0, ioaddr + MIICmd); |
| iowrite8(MII_BMSR, ioaddr + MIIRegAddr); |
| iowrite8(0x80, ioaddr + MIICmd); |
| |
| rhine_wait_bit_high(rp, MIIRegAddr, 0x20); |
| |
| iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr); |
| } |
| |
| /* Disable MII link status auto-polling (required for MDIO access) */ |
| static void rhine_disable_linkmon(struct rhine_private *rp) |
| { |
| void __iomem *ioaddr = rp->base; |
| |
| iowrite8(0, ioaddr + MIICmd); |
| |
| if (rp->quirks & rqRhineI) { |
| iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR |
| |
| /* Can be called from ISR. Evil. */ |
| mdelay(1); |
| |
| /* 0x80 must be set immediately before turning it off */ |
| iowrite8(0x80, ioaddr + MIICmd); |
| |
| rhine_wait_bit_high(rp, MIIRegAddr, 0x20); |
| |
| /* Heh. Now clear 0x80 again. */ |
| iowrite8(0, ioaddr + MIICmd); |
| } |
| else |
| rhine_wait_bit_high(rp, MIIRegAddr, 0x80); |
| } |
| |
| /* Read and write over the MII Management Data I/O (MDIO) interface. */ |
| |
| static int mdio_read(struct net_device *dev, int phy_id, int regnum) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| int result; |
| |
| rhine_disable_linkmon(rp); |
| |
| /* rhine_disable_linkmon already cleared MIICmd */ |
| iowrite8(phy_id, ioaddr + MIIPhyAddr); |
| iowrite8(regnum, ioaddr + MIIRegAddr); |
| iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */ |
| rhine_wait_bit_low(rp, MIICmd, 0x40); |
| result = ioread16(ioaddr + MIIData); |
| |
| rhine_enable_linkmon(rp); |
| return result; |
| } |
| |
| static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| |
| rhine_disable_linkmon(rp); |
| |
| /* rhine_disable_linkmon already cleared MIICmd */ |
| iowrite8(phy_id, ioaddr + MIIPhyAddr); |
| iowrite8(regnum, ioaddr + MIIRegAddr); |
| iowrite16(value, ioaddr + MIIData); |
| iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */ |
| rhine_wait_bit_low(rp, MIICmd, 0x20); |
| |
| rhine_enable_linkmon(rp); |
| } |
| |
| static void rhine_task_disable(struct rhine_private *rp) |
| { |
| mutex_lock(&rp->task_lock); |
| rp->task_enable = false; |
| mutex_unlock(&rp->task_lock); |
| |
| cancel_work_sync(&rp->slow_event_task); |
| cancel_work_sync(&rp->reset_task); |
| } |
| |
| static void rhine_task_enable(struct rhine_private *rp) |
| { |
| mutex_lock(&rp->task_lock); |
| rp->task_enable = true; |
| mutex_unlock(&rp->task_lock); |
| } |
| |
| static int rhine_open(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| int rc; |
| |
| rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev); |
| if (rc) |
| return rc; |
| |
| netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq); |
| |
| rc = alloc_ring(dev); |
| if (rc) { |
| free_irq(rp->irq, dev); |
| return rc; |
| } |
| alloc_rbufs(dev); |
| alloc_tbufs(dev); |
| rhine_chip_reset(dev); |
| rhine_task_enable(rp); |
| init_registers(dev); |
| |
| netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n", |
| __func__, ioread16(ioaddr + ChipCmd), |
| mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); |
| |
| netif_start_queue(dev); |
| |
| return 0; |
| } |
| |
| static void rhine_reset_task(struct work_struct *work) |
| { |
| struct rhine_private *rp = container_of(work, struct rhine_private, |
| reset_task); |
| struct net_device *dev = rp->dev; |
| |
| mutex_lock(&rp->task_lock); |
| |
| if (!rp->task_enable) |
| goto out_unlock; |
| |
| napi_disable(&rp->napi); |
| netif_tx_disable(dev); |
| spin_lock_bh(&rp->lock); |
| |
| /* clear all descriptors */ |
| free_tbufs(dev); |
| free_rbufs(dev); |
| alloc_tbufs(dev); |
| alloc_rbufs(dev); |
| |
| /* Reinitialize the hardware. */ |
| rhine_chip_reset(dev); |
| init_registers(dev); |
| |
| spin_unlock_bh(&rp->lock); |
| |
| dev->trans_start = jiffies; /* prevent tx timeout */ |
| dev->stats.tx_errors++; |
| netif_wake_queue(dev); |
| |
| out_unlock: |
| mutex_unlock(&rp->task_lock); |
| } |
| |
| static void rhine_tx_timeout(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| |
| netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n", |
| ioread16(ioaddr + IntrStatus), |
| mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); |
| |
| schedule_work(&rp->reset_task); |
| } |
| |
| static netdev_tx_t rhine_start_tx(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| struct device *hwdev = dev->dev.parent; |
| void __iomem *ioaddr = rp->base; |
| unsigned entry; |
| |
| /* Caution: the write order is important here, set the field |
| with the "ownership" bits last. */ |
| |
| /* Calculate the next Tx descriptor entry. */ |
| entry = rp->cur_tx % TX_RING_SIZE; |
| |
| if (skb_padto(skb, ETH_ZLEN)) |
| return NETDEV_TX_OK; |
| |
| rp->tx_skbuff[entry] = skb; |
| |
| if ((rp->quirks & rqRhineI) && |
| (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) { |
| /* Must use alignment buffer. */ |
| if (skb->len > PKT_BUF_SZ) { |
| /* packet too long, drop it */ |
| dev_kfree_skb_any(skb); |
| rp->tx_skbuff[entry] = NULL; |
| dev->stats.tx_dropped++; |
| return NETDEV_TX_OK; |
| } |
| |
| /* Padding is not copied and so must be redone. */ |
| skb_copy_and_csum_dev(skb, rp->tx_buf[entry]); |
| if (skb->len < ETH_ZLEN) |
| memset(rp->tx_buf[entry] + skb->len, 0, |
| ETH_ZLEN - skb->len); |
| rp->tx_skbuff_dma[entry] = 0; |
| rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma + |
| (rp->tx_buf[entry] - |
| rp->tx_bufs)); |
| } else { |
| rp->tx_skbuff_dma[entry] = |
| dma_map_single(hwdev, skb->data, skb->len, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) { |
| dev_kfree_skb_any(skb); |
| rp->tx_skbuff_dma[entry] = 0; |
| dev->stats.tx_dropped++; |
| return NETDEV_TX_OK; |
| } |
| rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]); |
| } |
| |
| rp->tx_ring[entry].desc_length = |
| cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN)); |
| |
| if (unlikely(vlan_tx_tag_present(skb))) { |
| u16 vid_pcp = vlan_tx_tag_get(skb); |
| |
| /* drop CFI/DEI bit, register needs VID and PCP */ |
| vid_pcp = (vid_pcp & VLAN_VID_MASK) | |
| ((vid_pcp & VLAN_PRIO_MASK) >> 1); |
| rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16); |
| /* request tagging */ |
| rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000); |
| } |
| else |
| rp->tx_ring[entry].tx_status = 0; |
| |
| /* lock eth irq */ |
| wmb(); |
| rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn); |
| wmb(); |
| |
| rp->cur_tx++; |
| |
| /* Non-x86 Todo: explicitly flush cache lines here. */ |
| |
| if (vlan_tx_tag_present(skb)) |
| /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ |
| BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); |
| |
| /* Wake the potentially-idle transmit channel */ |
| iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, |
| ioaddr + ChipCmd1); |
| IOSYNC; |
| |
| if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN) |
| netif_stop_queue(dev); |
| |
| netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n", |
| rp->cur_tx - 1, entry); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static void rhine_irq_disable(struct rhine_private *rp) |
| { |
| iowrite16(0x0000, rp->base + IntrEnable); |
| mmiowb(); |
| } |
| |
| /* The interrupt handler does all of the Rx thread work and cleans up |
| after the Tx thread. */ |
| static irqreturn_t rhine_interrupt(int irq, void *dev_instance) |
| { |
| struct net_device *dev = dev_instance; |
| struct rhine_private *rp = netdev_priv(dev); |
| u32 status; |
| int handled = 0; |
| |
| status = rhine_get_events(rp); |
| |
| netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status); |
| |
| if (status & RHINE_EVENT) { |
| handled = 1; |
| |
| rhine_irq_disable(rp); |
| napi_schedule(&rp->napi); |
| } |
| |
| if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) { |
| netif_err(rp, intr, dev, "Something Wicked happened! %08x\n", |
| status); |
| } |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| /* This routine is logically part of the interrupt handler, but isolated |
| for clarity. */ |
| static void rhine_tx(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| struct device *hwdev = dev->dev.parent; |
| int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE; |
| |
| /* find and cleanup dirty tx descriptors */ |
| while (rp->dirty_tx != rp->cur_tx) { |
| txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status); |
| netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n", |
| entry, txstatus); |
| if (txstatus & DescOwn) |
| break; |
| if (txstatus & 0x8000) { |
| netif_dbg(rp, tx_done, dev, |
| "Transmit error, Tx status %08x\n", txstatus); |
| dev->stats.tx_errors++; |
| if (txstatus & 0x0400) |
| dev->stats.tx_carrier_errors++; |
| if (txstatus & 0x0200) |
| dev->stats.tx_window_errors++; |
| if (txstatus & 0x0100) |
| dev->stats.tx_aborted_errors++; |
| if (txstatus & 0x0080) |
| dev->stats.tx_heartbeat_errors++; |
| if (((rp->quirks & rqRhineI) && txstatus & 0x0002) || |
| (txstatus & 0x0800) || (txstatus & 0x1000)) { |
| dev->stats.tx_fifo_errors++; |
| rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn); |
| break; /* Keep the skb - we try again */ |
| } |
| /* Transmitter restarted in 'abnormal' handler. */ |
| } else { |
| if (rp->quirks & rqRhineI) |
| dev->stats.collisions += (txstatus >> 3) & 0x0F; |
| else |
| dev->stats.collisions += txstatus & 0x0F; |
| netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n", |
| (txstatus >> 3) & 0xF, txstatus & 0xF); |
| |
| u64_stats_update_begin(&rp->tx_stats.syncp); |
| rp->tx_stats.bytes += rp->tx_skbuff[entry]->len; |
| rp->tx_stats.packets++; |
| u64_stats_update_end(&rp->tx_stats.syncp); |
| } |
| /* Free the original skb. */ |
| if (rp->tx_skbuff_dma[entry]) { |
| dma_unmap_single(hwdev, |
| rp->tx_skbuff_dma[entry], |
| rp->tx_skbuff[entry]->len, |
| DMA_TO_DEVICE); |
| } |
| dev_consume_skb_any(rp->tx_skbuff[entry]); |
| rp->tx_skbuff[entry] = NULL; |
| entry = (++rp->dirty_tx) % TX_RING_SIZE; |
| } |
| if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4) |
| netif_wake_queue(dev); |
| } |
| |
| /** |
| * rhine_get_vlan_tci - extract TCI from Rx data buffer |
| * @skb: pointer to sk_buff |
| * @data_size: used data area of the buffer including CRC |
| * |
| * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q |
| * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte |
| * aligned following the CRC. |
| */ |
| static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size) |
| { |
| u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2; |
| return be16_to_cpup((__be16 *)trailer); |
| } |
| |
| /* Process up to limit frames from receive ring */ |
| static int rhine_rx(struct net_device *dev, int limit) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| struct device *hwdev = dev->dev.parent; |
| int count; |
| int entry = rp->cur_rx % RX_RING_SIZE; |
| |
| netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__, |
| entry, le32_to_cpu(rp->rx_head_desc->rx_status)); |
| |
| /* If EOP is set on the next entry, it's a new packet. Send it up. */ |
| for (count = 0; count < limit; ++count) { |
| struct rx_desc *desc = rp->rx_head_desc; |
| u32 desc_status = le32_to_cpu(desc->rx_status); |
| u32 desc_length = le32_to_cpu(desc->desc_length); |
| int data_size = desc_status >> 16; |
| |
| if (desc_status & DescOwn) |
| break; |
| |
| netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__, |
| desc_status); |
| |
| if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) { |
| if ((desc_status & RxWholePkt) != RxWholePkt) { |
| netdev_warn(dev, |
| "Oversized Ethernet frame spanned multiple buffers, " |
| "entry %#x length %d status %08x!\n", |
| entry, data_size, |
| desc_status); |
| netdev_warn(dev, |
| "Oversized Ethernet frame %p vs %p\n", |
| rp->rx_head_desc, |
| &rp->rx_ring[entry]); |
| dev->stats.rx_length_errors++; |
| } else if (desc_status & RxErr) { |
| /* There was a error. */ |
| netif_dbg(rp, rx_err, dev, |
| "%s() Rx error %08x\n", __func__, |
| desc_status); |
| dev->stats.rx_errors++; |
| if (desc_status & 0x0030) |
| dev->stats.rx_length_errors++; |
| if (desc_status & 0x0048) |
| dev->stats.rx_fifo_errors++; |
| if (desc_status & 0x0004) |
| dev->stats.rx_frame_errors++; |
| if (desc_status & 0x0002) { |
| /* this can also be updated outside the interrupt handler */ |
| spin_lock(&rp->lock); |
| dev->stats.rx_crc_errors++; |
| spin_unlock(&rp->lock); |
| } |
| } |
| } else { |
| struct sk_buff *skb = NULL; |
| /* Length should omit the CRC */ |
| int pkt_len = data_size - 4; |
| u16 vlan_tci = 0; |
| |
| /* Check if the packet is long enough to accept without |
| copying to a minimally-sized skbuff. */ |
| if (pkt_len < rx_copybreak) |
| skb = netdev_alloc_skb_ip_align(dev, pkt_len); |
| if (skb) { |
| dma_sync_single_for_cpu(hwdev, |
| rp->rx_skbuff_dma[entry], |
| rp->rx_buf_sz, |
| DMA_FROM_DEVICE); |
| |
| skb_copy_to_linear_data(skb, |
| rp->rx_skbuff[entry]->data, |
| pkt_len); |
| skb_put(skb, pkt_len); |
| dma_sync_single_for_device(hwdev, |
| rp->rx_skbuff_dma[entry], |
| rp->rx_buf_sz, |
| DMA_FROM_DEVICE); |
| } else { |
| skb = rp->rx_skbuff[entry]; |
| if (skb == NULL) { |
| netdev_err(dev, "Inconsistent Rx descriptor chain\n"); |
| break; |
| } |
| rp->rx_skbuff[entry] = NULL; |
| skb_put(skb, pkt_len); |
| dma_unmap_single(hwdev, |
| rp->rx_skbuff_dma[entry], |
| rp->rx_buf_sz, |
| DMA_FROM_DEVICE); |
| } |
| |
| if (unlikely(desc_length & DescTag)) |
| vlan_tci = rhine_get_vlan_tci(skb, data_size); |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| if (unlikely(desc_length & DescTag)) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); |
| netif_receive_skb(skb); |
| |
| u64_stats_update_begin(&rp->rx_stats.syncp); |
| rp->rx_stats.bytes += pkt_len; |
| rp->rx_stats.packets++; |
| u64_stats_update_end(&rp->rx_stats.syncp); |
| } |
| entry = (++rp->cur_rx) % RX_RING_SIZE; |
| rp->rx_head_desc = &rp->rx_ring[entry]; |
| } |
| |
| /* Refill the Rx ring buffers. */ |
| for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) { |
| struct sk_buff *skb; |
| entry = rp->dirty_rx % RX_RING_SIZE; |
| if (rp->rx_skbuff[entry] == NULL) { |
| skb = netdev_alloc_skb(dev, rp->rx_buf_sz); |
| rp->rx_skbuff[entry] = skb; |
| if (skb == NULL) |
| break; /* Better luck next round. */ |
| rp->rx_skbuff_dma[entry] = |
| dma_map_single(hwdev, skb->data, |
| rp->rx_buf_sz, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(hwdev, |
| rp->rx_skbuff_dma[entry])) { |
| dev_kfree_skb(skb); |
| rp->rx_skbuff_dma[entry] = 0; |
| break; |
| } |
| rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]); |
| } |
| rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn); |
| } |
| |
| return count; |
| } |
| |
| static void rhine_restart_tx(struct net_device *dev) { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| int entry = rp->dirty_tx % TX_RING_SIZE; |
| u32 intr_status; |
| |
| /* |
| * If new errors occurred, we need to sort them out before doing Tx. |
| * In that case the ISR will be back here RSN anyway. |
| */ |
| intr_status = rhine_get_events(rp); |
| |
| if ((intr_status & IntrTxErrSummary) == 0) { |
| |
| /* We know better than the chip where it should continue. */ |
| iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc), |
| ioaddr + TxRingPtr); |
| |
| iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn, |
| ioaddr + ChipCmd); |
| |
| if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000)) |
| /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ |
| BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); |
| |
| iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, |
| ioaddr + ChipCmd1); |
| IOSYNC; |
| } |
| else { |
| /* This should never happen */ |
| netif_warn(rp, tx_err, dev, "another error occurred %08x\n", |
| intr_status); |
| } |
| |
| } |
| |
| static void rhine_slow_event_task(struct work_struct *work) |
| { |
| struct rhine_private *rp = |
| container_of(work, struct rhine_private, slow_event_task); |
| struct net_device *dev = rp->dev; |
| u32 intr_status; |
| |
| mutex_lock(&rp->task_lock); |
| |
| if (!rp->task_enable) |
| goto out_unlock; |
| |
| intr_status = rhine_get_events(rp); |
| rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW); |
| |
| if (intr_status & IntrLinkChange) |
| rhine_check_media(dev, 0); |
| |
| if (intr_status & IntrPCIErr) |
| netif_warn(rp, hw, dev, "PCI error\n"); |
| |
| iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable); |
| |
| out_unlock: |
| mutex_unlock(&rp->task_lock); |
| } |
| |
| static struct rtnl_link_stats64 * |
| rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| unsigned int start; |
| |
| spin_lock_bh(&rp->lock); |
| rhine_update_rx_crc_and_missed_errord(rp); |
| spin_unlock_bh(&rp->lock); |
| |
| netdev_stats_to_stats64(stats, &dev->stats); |
| |
| do { |
| start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp); |
| stats->rx_packets = rp->rx_stats.packets; |
| stats->rx_bytes = rp->rx_stats.bytes; |
| } while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start)); |
| |
| do { |
| start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp); |
| stats->tx_packets = rp->tx_stats.packets; |
| stats->tx_bytes = rp->tx_stats.bytes; |
| } while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start)); |
| |
| return stats; |
| } |
| |
| static void rhine_set_rx_mode(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| u32 mc_filter[2]; /* Multicast hash filter */ |
| u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */ |
| struct netdev_hw_addr *ha; |
| |
| if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ |
| rx_mode = 0x1C; |
| iowrite32(0xffffffff, ioaddr + MulticastFilter0); |
| iowrite32(0xffffffff, ioaddr + MulticastFilter1); |
| } else if ((netdev_mc_count(dev) > multicast_filter_limit) || |
| (dev->flags & IFF_ALLMULTI)) { |
| /* Too many to match, or accept all multicasts. */ |
| iowrite32(0xffffffff, ioaddr + MulticastFilter0); |
| iowrite32(0xffffffff, ioaddr + MulticastFilter1); |
| } else if (rp->quirks & rqMgmt) { |
| int i = 0; |
| u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */ |
| netdev_for_each_mc_addr(ha, dev) { |
| if (i == MCAM_SIZE) |
| break; |
| rhine_set_cam(ioaddr, i, ha->addr); |
| mCAMmask |= 1 << i; |
| i++; |
| } |
| rhine_set_cam_mask(ioaddr, mCAMmask); |
| } else { |
| memset(mc_filter, 0, sizeof(mc_filter)); |
| netdev_for_each_mc_addr(ha, dev) { |
| int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; |
| |
| mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); |
| } |
| iowrite32(mc_filter[0], ioaddr + MulticastFilter0); |
| iowrite32(mc_filter[1], ioaddr + MulticastFilter1); |
| } |
| /* enable/disable VLAN receive filtering */ |
| if (rp->quirks & rqMgmt) { |
| if (dev->flags & IFF_PROMISC) |
| BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); |
| else |
| BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1); |
| } |
| BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig); |
| } |
| |
| static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct device *hwdev = dev->dev.parent; |
| |
| strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); |
| strlcpy(info->version, DRV_VERSION, sizeof(info->version)); |
| strlcpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info)); |
| } |
| |
| static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| int rc; |
| |
| mutex_lock(&rp->task_lock); |
| rc = mii_ethtool_gset(&rp->mii_if, cmd); |
| mutex_unlock(&rp->task_lock); |
| |
| return rc; |
| } |
| |
| static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| int rc; |
| |
| mutex_lock(&rp->task_lock); |
| rc = mii_ethtool_sset(&rp->mii_if, cmd); |
| rhine_set_carrier(&rp->mii_if); |
| mutex_unlock(&rp->task_lock); |
| |
| return rc; |
| } |
| |
| static int netdev_nway_reset(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| return mii_nway_restart(&rp->mii_if); |
| } |
| |
| static u32 netdev_get_link(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| return mii_link_ok(&rp->mii_if); |
| } |
| |
| static u32 netdev_get_msglevel(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| return rp->msg_enable; |
| } |
| |
| static void netdev_set_msglevel(struct net_device *dev, u32 value) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| rp->msg_enable = value; |
| } |
| |
| static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| if (!(rp->quirks & rqWOL)) |
| return; |
| |
| spin_lock_irq(&rp->lock); |
| wol->supported = WAKE_PHY | WAKE_MAGIC | |
| WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ |
| wol->wolopts = rp->wolopts; |
| spin_unlock_irq(&rp->lock); |
| } |
| |
| static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| u32 support = WAKE_PHY | WAKE_MAGIC | |
| WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ |
| |
| if (!(rp->quirks & rqWOL)) |
| return -EINVAL; |
| |
| if (wol->wolopts & ~support) |
| return -EINVAL; |
| |
| spin_lock_irq(&rp->lock); |
| rp->wolopts = wol->wolopts; |
| spin_unlock_irq(&rp->lock); |
| |
| return 0; |
| } |
| |
| static const struct ethtool_ops netdev_ethtool_ops = { |
| .get_drvinfo = netdev_get_drvinfo, |
| .get_settings = netdev_get_settings, |
| .set_settings = netdev_set_settings, |
| .nway_reset = netdev_nway_reset, |
| .get_link = netdev_get_link, |
| .get_msglevel = netdev_get_msglevel, |
| .set_msglevel = netdev_set_msglevel, |
| .get_wol = rhine_get_wol, |
| .set_wol = rhine_set_wol, |
| }; |
| |
| static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| int rc; |
| |
| if (!netif_running(dev)) |
| return -EINVAL; |
| |
| mutex_lock(&rp->task_lock); |
| rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL); |
| rhine_set_carrier(&rp->mii_if); |
| mutex_unlock(&rp->task_lock); |
| |
| return rc; |
| } |
| |
| static int rhine_close(struct net_device *dev) |
| { |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| |
| rhine_task_disable(rp); |
| napi_disable(&rp->napi); |
| netif_stop_queue(dev); |
| |
| netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n", |
| ioread16(ioaddr + ChipCmd)); |
| |
| /* Switch to loopback mode to avoid hardware races. */ |
| iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig); |
| |
| rhine_irq_disable(rp); |
| |
| /* Stop the chip's Tx and Rx processes. */ |
| iowrite16(CmdStop, ioaddr + ChipCmd); |
| |
| free_irq(rp->irq, dev); |
| free_rbufs(dev); |
| free_tbufs(dev); |
| free_ring(dev); |
| |
| return 0; |
| } |
| |
| |
| static void rhine_remove_one_pci(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| unregister_netdev(dev); |
| |
| pci_iounmap(pdev, rp->base); |
| pci_release_regions(pdev); |
| |
| free_netdev(dev); |
| pci_disable_device(pdev); |
| } |
| |
| static int rhine_remove_one_platform(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| unregister_netdev(dev); |
| |
| iounmap(rp->base); |
| |
| free_netdev(dev); |
| |
| return 0; |
| } |
| |
| static void rhine_shutdown_pci(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct rhine_private *rp = netdev_priv(dev); |
| void __iomem *ioaddr = rp->base; |
| |
| if (!(rp->quirks & rqWOL)) |
| return; /* Nothing to do for non-WOL adapters */ |
| |
| rhine_power_init(dev); |
| |
| /* Make sure we use pattern 0, 1 and not 4, 5 */ |
| if (rp->quirks & rq6patterns) |
| iowrite8(0x04, ioaddr + WOLcgClr); |
| |
| spin_lock(&rp->lock); |
| |
| if (rp->wolopts & WAKE_MAGIC) { |
| iowrite8(WOLmagic, ioaddr + WOLcrSet); |
| /* |
| * Turn EEPROM-controlled wake-up back on -- some hardware may |
| * not cooperate otherwise. |
| */ |
| iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA); |
| } |
| |
| if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST)) |
| iowrite8(WOLbmcast, ioaddr + WOLcgSet); |
| |
| if (rp->wolopts & WAKE_PHY) |
| iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet); |
| |
| if (rp->wolopts & WAKE_UCAST) |
| iowrite8(WOLucast, ioaddr + WOLcrSet); |
| |
| if (rp->wolopts) { |
| /* Enable legacy WOL (for old motherboards) */ |
| iowrite8(0x01, ioaddr + PwcfgSet); |
| iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW); |
| } |
| |
| spin_unlock(&rp->lock); |
| |
| if (system_state == SYSTEM_POWER_OFF && !avoid_D3) { |
| iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW); |
| |
| pci_wake_from_d3(pdev, true); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int rhine_suspend(struct device *device) |
| { |
| struct net_device *dev = dev_get_drvdata(device); |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| if (!netif_running(dev)) |
| return 0; |
| |
| rhine_task_disable(rp); |
| rhine_irq_disable(rp); |
| napi_disable(&rp->napi); |
| |
| netif_device_detach(dev); |
| |
| if (dev_is_pci(device)) |
| rhine_shutdown_pci(to_pci_dev(device)); |
| |
| return 0; |
| } |
| |
| static int rhine_resume(struct device *device) |
| { |
| struct net_device *dev = dev_get_drvdata(device); |
| struct rhine_private *rp = netdev_priv(dev); |
| |
| if (!netif_running(dev)) |
| return 0; |
| |
| enable_mmio(rp->pioaddr, rp->quirks); |
| rhine_power_init(dev); |
| free_tbufs(dev); |
| free_rbufs(dev); |
| alloc_tbufs(dev); |
| alloc_rbufs(dev); |
| rhine_task_enable(rp); |
| spin_lock_bh(&rp->lock); |
| init_registers(dev); |
| spin_unlock_bh(&rp->lock); |
| |
| netif_device_attach(dev); |
| |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume); |
| #define RHINE_PM_OPS (&rhine_pm_ops) |
| |
| #else |
| |
| #define RHINE_PM_OPS NULL |
| |
| #endif /* !CONFIG_PM_SLEEP */ |
| |
| static struct pci_driver rhine_driver_pci = { |
| .name = DRV_NAME, |
| .id_table = rhine_pci_tbl, |
| .probe = rhine_init_one_pci, |
| .remove = rhine_remove_one_pci, |
| .shutdown = rhine_shutdown_pci, |
| .driver.pm = RHINE_PM_OPS, |
| }; |
| |
| static struct platform_driver rhine_driver_platform = { |
| .probe = rhine_init_one_platform, |
| .remove = rhine_remove_one_platform, |
| .driver = { |
| .name = DRV_NAME, |
| .of_match_table = rhine_of_tbl, |
| .pm = RHINE_PM_OPS, |
| } |
| }; |
| |
| static struct dmi_system_id rhine_dmi_table[] __initdata = { |
| { |
| .ident = "EPIA-M", |
| .matches = { |
| DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."), |
| DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), |
| }, |
| }, |
| { |
| .ident = "KV7", |
| .matches = { |
| DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"), |
| DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), |
| }, |
| }, |
| { NULL } |
| }; |
| |
| static int __init rhine_init(void) |
| { |
| int ret_pci, ret_platform; |
| |
| /* when a module, this is printed whether or not devices are found in probe */ |
| #ifdef MODULE |
| pr_info("%s\n", version); |
| #endif |
| if (dmi_check_system(rhine_dmi_table)) { |
| /* these BIOSes fail at PXE boot if chip is in D3 */ |
| avoid_D3 = true; |
| pr_warn("Broken BIOS detected, avoid_D3 enabled\n"); |
| } |
| else if (avoid_D3) |
| pr_info("avoid_D3 set\n"); |
| |
| ret_pci = pci_register_driver(&rhine_driver_pci); |
| ret_platform = platform_driver_register(&rhine_driver_platform); |
| if ((ret_pci < 0) && (ret_platform < 0)) |
| return ret_pci; |
| |
| return 0; |
| } |
| |
| |
| static void __exit rhine_cleanup(void) |
| { |
| platform_driver_unregister(&rhine_driver_platform); |
| pci_unregister_driver(&rhine_driver_pci); |
| } |
| |
| |
| module_init(rhine_init); |
| module_exit(rhine_cleanup); |