blob: defec3155ea1716881445f20418caff2b062e739 [file] [log] [blame]
/*
* linux/drivers/thermal/gpu_cooling.c
*
* Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
* Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <linux/module.h>
#include <linux/thermal.h>
#include <linux/cpufreq.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/gpu_cooling.h>
#include <soc/samsung/tmu.h>
#include <trace/events/thermal.h>
#include <soc/samsung/cal-if.h>
#include <soc/samsung/ect_parser.h>
#include "samsung/exynos_tmu.h"
#if defined(CONFIG_SOC_EXYNOS8895) && defined(CONFIG_SOC_EMULATOR8895)
#include <dt-bindings/clock/emulator8895.h>
#elif defined(CONFIG_SOC_EXYNOS8895) && !defined(CONFIG_SOC_EMULATOR8895)
#include <dt-bindings/clock/exynos8895.h>
#elif defined(CONFIG_SOC_EXYNOS7872)
#include <dt-bindings/clock/exynos7872.h>
#elif defined(CONFIG_SOC_EXYNOS7885)
#include <dt-bindings/clock/exynos7885.h>
#endif
/**
* struct power_table - frequency to power conversion
* @frequency: frequency in KHz
* @power: power in mW
*
* This structure is built when the cooling device registers and helps
* in translating frequency to power and viceversa.
*/
struct power_table {
u32 frequency;
u32 power;
};
/**
* struct gpufreq_cooling_device - data for cooling device with gpufreq
* @id: unique integer value corresponding to each gpufreq_cooling_device
* registered.
* @cool_dev: thermal_cooling_device pointer to keep track of the
* registered cooling device.
* @gpufreq_state: integer value representing the current state of gpufreq
* cooling devices.
* @gpufreq_val: integer value representing the absolute value of the clipped
* frequency.
* @allowed_gpus: all the gpus involved for this gpufreq_cooling_device.
*
* This structure is required for keeping information of each
* gpufreq_cooling_device registered. In order to prevent corruption of this a
* mutex lock cooling_gpu_lock is used.
*/
struct gpufreq_cooling_device {
int id;
struct thermal_cooling_device *cool_dev;
unsigned long gpufreq_state;
unsigned int gpufreq_val;
u32 last_load;
struct power_table *dyn_power_table;
int dyn_power_table_entries;
get_static_t plat_get_static_power;
int *var_table;
int *var_coeff;
int *asv_coeff;
unsigned int var_volt_size;
unsigned int var_temp_size;
};
static DEFINE_IDR(gpufreq_idr);
static DEFINE_MUTEX(cooling_gpu_lock);
static BLOCKING_NOTIFIER_HEAD(gpu_notifier);
static unsigned int gpufreq_dev_count;
struct cpufreq_frequency_table *gpu_freq_table;
/**
* get_idr - function to get a unique id.
* @idr: struct idr * handle used to create a id.
* @id: int * value generated by this function.
*
* This function will populate @id with an unique
* id, using the idr API.
*
* Return: 0 on success, an error code on failure.
*/
static int get_idr(struct idr *idr, int *id)
{
int ret;
mutex_lock(&cooling_gpu_lock);
ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
mutex_unlock(&cooling_gpu_lock);
if (unlikely(ret < 0))
return ret;
*id = ret;
return 0;
}
/**
* release_idr - function to free the unique id.
* @idr: struct idr * handle used for creating the id.
* @id: int value representing the unique id.
*/
static void release_idr(struct idr *idr, int id)
{
mutex_lock(&cooling_gpu_lock);
idr_remove(idr, id);
mutex_unlock(&cooling_gpu_lock);
}
/* Below code defines functions to be used for gpufreq as cooling device */
enum gpufreq_cooling_property {
GET_LEVEL,
GET_FREQ,
GET_MAXL,
};
/**
* get_property - fetch a property of interest for a give gpu.
* @gpu: gpu for which the property is required
* @input: query parameter
* @output: query return
* @property: type of query (frequency, level, max level)
*
* This is the common function to
* 1. get maximum gpu cooling states
* 2. translate frequency to cooling state
* 3. translate cooling state to frequency
* Note that the code may be not in good shape
* but it is written in this way in order to:
* a) reduce duplicate code as most of the code can be shared.
* b) make sure the logic is consistent when translating between
* cooling states and frequencies.
*
* Return: 0 on success, -EINVAL when invalid parameters are passed.
*/
static int get_property(unsigned int gpu, unsigned long input,
unsigned int *output,
enum gpufreq_cooling_property property)
{
int i;
unsigned long max_level = 0, level = 0;
unsigned int freq = CPUFREQ_ENTRY_INVALID;
int descend = -1;
struct cpufreq_frequency_table *pos, *table =
gpu_freq_table;
if (!output)
return -EINVAL;
cpufreq_for_each_valid_entry(pos, table) {
/* ignore duplicate entry */
if (freq == pos->frequency)
continue;
/* get the frequency order */
if (freq != CPUFREQ_ENTRY_INVALID && descend == -1)
descend = freq > pos->frequency;
freq = pos->frequency;
max_level++;
}
/* No valid cpu frequency entry */
if (max_level == 0)
return -EINVAL;
/* max_level is an index, not a counter */
max_level--;
/* get max level */
if (property == GET_MAXL) {
*output = (unsigned int)max_level;
return 0;
}
if (property == GET_FREQ)
level = descend ? input : (max_level - input);
i = 0;
cpufreq_for_each_valid_entry(pos, table) {
/* ignore duplicate entry */
if (freq == pos->frequency)
continue;
/* now we have a valid frequency entry */
freq = pos->frequency;
if (property == GET_LEVEL && (unsigned int)input == freq) {
/* get level by frequency */
*output = (unsigned int)(descend ? i : (max_level - i));
return 0;
}
if (property == GET_FREQ && level == i) {
/* get frequency by level */
*output = freq;
return 0;
}
i++;
}
return -EINVAL;
}
/**
* gpufreq_cooling_get_level - for a give gpu, return the cooling level.
* @gpu: gpu for which the level is required
* @freq: the frequency of interest
*
* This function will match the cooling level corresponding to the
* requested @freq and return it.
*
* Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
* otherwise.
*/
unsigned long gpufreq_cooling_get_level(unsigned int gpu, unsigned int freq)
{
unsigned int val;
#if defined(CONFIG_SOC_EXYNOS7885_ANDROID_VERSION_P)
if (freq > gpu_dvfs_get_max_freq())
freq = gpu_dvfs_get_max_freq();
#else
if (freq > gpu_dvfs_get_max_freq() * 1000)
freq = gpu_dvfs_get_max_freq() * 1000;
#endif
if (get_property(gpu, (unsigned long)freq, &val, GET_LEVEL))
return THERMAL_CSTATE_INVALID;
return (unsigned long)val;
}
EXPORT_SYMBOL_GPL(gpufreq_cooling_get_level);
/**
* gpufreq_cooling_get_freq - for a give gpu, return the cooling frequency.
* @gpu: gpu for which the level is required
* @level: the level of interest
*
* This function will match the cooling level corresponding to the
* requested @freq and return it.
*
* Return: The matched cooling level on success or THERMAL_CFREQ_INVALID
* otherwise.
*/
static u32 gpufreq_cooling_get_freq(unsigned int gpu, unsigned long level)
{
unsigned int val = 0;
if (get_property(gpu, level, &val, GET_FREQ))
return THERMAL_CFREQ_INVALID;
return val;
}
EXPORT_SYMBOL_GPL(gpufreq_cooling_get_freq);
/**
* build_dyn_power_table() - create a dynamic power to frequency table
* @gpufreq_device: the gpufreq cooling device in which to store the table
* @capacitance: dynamic power coefficient for these gpus
*
* Build a dynamic power to frequency table for this gpu and store it
* in @gpufreq_device. This table will be used in gpu_power_to_freq() and
* gpu_freq_to_power() to convert between power and frequency
* efficiently. Power is stored in mW, frequency in KHz. The
* resulting table is in ascending order.
*
* Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
* -ENOMEM if we run out of memory or -EAGAIN if an OPP was
* added/enabled while the function was executing.
*/
static int build_dyn_power_table(struct gpufreq_cooling_device *gpufreq_device,
u32 capacitance)
{
struct power_table *power_table;
int num_opps = 0, i, cnt = 0;
unsigned long freq;
num_opps = gpu_dvfs_get_step();
if (num_opps == 0)
return -EINVAL;
power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
if (!power_table)
return -ENOMEM;
for (freq = 0, i = 0; i < num_opps; i++) {
u32 voltage_mv;
u64 power;
freq = gpu_dvfs_get_clock(num_opps - i - 1);
if (freq > gpu_dvfs_get_max_freq())
continue;
voltage_mv = gpu_dvfs_get_voltage(freq) / 1000;
/*
* Do the multiplication with MHz and millivolt so as
* to not overflow.
*/
#if defined(CONFIG_SOC_EXYNOS7885_ANDROID_VERSION_P)
power = (u64)capacitance * (freq / 1000) * voltage_mv * voltage_mv;
#else
power = (u64)capacitance * freq * voltage_mv * voltage_mv;
#endif
do_div(power, 1000000000);
power_table[i].frequency = (unsigned int)freq;
/* power is stored in mW */
power_table[i].power = power;
cnt++;
}
gpufreq_device->dyn_power_table = power_table;
gpufreq_device->dyn_power_table_entries = cnt;
return 0;
}
static int build_static_power_table(struct gpufreq_cooling_device *gpufreq_device)
{
int i, j;
int ratio = cal_asv_get_ids_info(ACPM_DVFS_G3D);
int asv_group = cal_asv_get_grp(ACPM_DVFS_G3D);
void *gen_block;
struct ect_gen_param_table *volt_temp_param, *asv_param;
int ratio_table[16] = { 0, 25, 29, 35, 41, 48, 57, 67, 79, 94, 110, 130, 151, 162, 162, 162};
if (asv_group < 0 || asv_group > 15)
asv_group = 0;
if (!ratio)
ratio = ratio_table[asv_group];
gen_block = ect_get_block("GEN");
if (gen_block == NULL) {
pr_err("%s: Failed to get gen block from ECT\n", __func__);
return -EINVAL;
}
volt_temp_param = ect_gen_param_get_table(gen_block, "DTM_G3D_VOLT_TEMP");
asv_param = ect_gen_param_get_table(gen_block, "DTM_G3D_ASV");
if (volt_temp_param && asv_param) {
gpufreq_device->var_volt_size = volt_temp_param->num_of_row - 1;
gpufreq_device->var_temp_size = volt_temp_param->num_of_col - 1;
gpufreq_device->var_coeff = kzalloc(sizeof(int) *
volt_temp_param->num_of_row *
volt_temp_param->num_of_col,
GFP_KERNEL);
if (!gpufreq_device->var_coeff)
goto err_mem;
gpufreq_device->asv_coeff = kzalloc(sizeof(int) *
asv_param->num_of_row *
asv_param->num_of_col,
GFP_KERNEL);
if (!gpufreq_device->asv_coeff)
goto free_var_coeff;
gpufreq_device->var_table = kzalloc(sizeof(int) *
volt_temp_param->num_of_row *
volt_temp_param->num_of_col,
GFP_KERNEL);
if (!gpufreq_device->var_table)
goto free_asv_coeff;
memcpy(gpufreq_device->var_coeff, volt_temp_param->parameter,
sizeof(int) * volt_temp_param->num_of_row * volt_temp_param->num_of_col);
memcpy(gpufreq_device->asv_coeff, asv_param->parameter,
sizeof(int) * asv_param->num_of_row * asv_param->num_of_col);
memcpy(gpufreq_device->var_table, volt_temp_param->parameter,
sizeof(int) * volt_temp_param->num_of_row * volt_temp_param->num_of_col);
} else {
pr_err("%s: Failed to get param table from ECT\n", __func__);
return -EINVAL;
}
for (i = 1; i <= gpufreq_device->var_volt_size; i++) {
long asv_coeff = (long)gpufreq_device->asv_coeff[3 * i + 0] * asv_group * asv_group
+ (long)gpufreq_device->asv_coeff[3 * i + 1] * asv_group
+ (long)gpufreq_device->asv_coeff[3 * i + 2];
asv_coeff = asv_coeff / 100;
for (j = 1; j <= gpufreq_device->var_temp_size; j++) {
long var_coeff = (long)gpufreq_device->var_coeff[i * (gpufreq_device->var_temp_size + 1) + j];
var_coeff = ratio * var_coeff * asv_coeff;
var_coeff = var_coeff / 100000;
gpufreq_device->var_table[i * (gpufreq_device->var_temp_size + 1) + j] = (int)var_coeff;
}
}
return 0;
free_asv_coeff:
kfree(gpufreq_device->asv_coeff);
free_var_coeff:
kfree(gpufreq_device->var_coeff);
err_mem:
return -ENOMEM;
}
static int lookup_static_power(struct gpufreq_cooling_device *gpufreq_device,
unsigned long voltage, int temperature, u32 *power)
{
int volt_index = 0, temp_index = 0;
int index = 0;
voltage = voltage / 1000;
temperature = temperature / 1000;
for (volt_index = 0; volt_index <= gpufreq_device->var_volt_size; volt_index++) {
if (voltage < gpufreq_device->var_table[volt_index * (gpufreq_device->var_temp_size + 1)]) {
volt_index = volt_index - 1;
break;
}
}
if (volt_index == 0)
volt_index = 1;
if (volt_index > gpufreq_device->var_volt_size)
volt_index = gpufreq_device->var_volt_size;
for (temp_index = 0; temp_index <= gpufreq_device->var_temp_size; temp_index++) {
if (temperature < gpufreq_device->var_table[temp_index]) {
temp_index = temp_index - 1;
break;
}
}
if (temp_index == 0)
temp_index = 1;
if (temp_index > gpufreq_device->var_temp_size)
temp_index = gpufreq_device->var_temp_size;
index = (int)(volt_index * (gpufreq_device->var_temp_size + 1) + temp_index);
*power = (unsigned int)gpufreq_device->var_table[index];
return 0;
}
static u32 gpu_freq_to_power(struct gpufreq_cooling_device *gpufreq_device,
u32 freq)
{
int i;
struct power_table *pt = gpufreq_device->dyn_power_table;
for (i = 1; i < gpufreq_device->dyn_power_table_entries; i++)
if (freq < pt[i].frequency)
break;
return pt[i - 1].power;
}
static u32 gpu_power_to_freq(struct gpufreq_cooling_device *gpufreq_device,
u32 power)
{
int i;
struct power_table *pt = gpufreq_device->dyn_power_table;
for (i = 1; i < gpufreq_device->dyn_power_table_entries; i++)
if (power < pt[i].power)
break;
return pt[i - 1].frequency;
}
/**
* get_static_power() - calculate the static power consumed by the gpus
* @gpufreq_device: struct &gpufreq_cooling_device for this gpu cdev
* @tz: thermal zone device in which we're operating
* @freq: frequency in KHz
* @power: pointer in which to store the calculated static power
*
* Calculate the static power consumed by the gpus described by
* @gpu_actor running at frequency @freq. This function relies on a
* platform specific function that should have been provided when the
* actor was registered. If it wasn't, the static power is assumed to
* be negligible. The calculated static power is stored in @power.
*
* Return: 0 on success, -E* on failure.
*/
static int get_static_power(struct gpufreq_cooling_device *gpufreq_device,
struct thermal_zone_device *tz, unsigned long freq,
u32 *power)
{
unsigned long voltage;
if (freq == 0) {
*power = 0;
return 0;
}
voltage = gpu_dvfs_get_voltage(freq);
if (voltage == 0) {
pr_warn("Failed to get voltage for frequency %lu\n", freq);
return -EINVAL;
}
return lookup_static_power(gpufreq_device, voltage, tz->temperature, power);
}
/**
* get_dynamic_power() - calculate the dynamic power
* @gpufreq_device: &gpufreq_cooling_device for this cdev
* @freq: current frequency
*
* Return: the dynamic power consumed by the gpus described by
* @gpufreq_device.
*/
static u32 get_dynamic_power(struct gpufreq_cooling_device *gpufreq_device,
unsigned long freq)
{
u32 raw_gpu_power;
raw_gpu_power = gpu_freq_to_power(gpufreq_device, freq);
return (raw_gpu_power * gpufreq_device->last_load) / 100;
}
/**
* gpufreq_apply_cooling - function to apply frequency clipping.
* @gpufreq_device: gpufreq_cooling_device pointer containing frequency
* clipping data.
* @cooling_state: value of the cooling state.
*
* Function used to make sure the gpufreq layer is aware of current thermal
* limits. The limits are applied by updating the gpufreq policy.
*
* Return: 0 on success, an error code otherwise (-EINVAL in case wrong
* cooling state).
*/
#if defined(CONFIG_SEC_DEBUG_HW_PARAM)
static u64 last_time[THERMAL_ZONE_MAX], curr_time[THERMAL_ZONE_MAX];
extern struct thermal_data_devices thermal_data_info[THERMAL_ZONE_MAX];
#endif
static int gpufreq_apply_cooling(struct gpufreq_cooling_device *gpufreq_device,
unsigned long cooling_state)
{
unsigned int gpu_cooling_freq = 0;
#if defined(CONFIG_SEC_DEBUG_HW_PARAM)
int tid = gpufreq_device->id + THERMAL_ZONE_GPU;
#endif
/* Check if the old cooling action is same as new cooling action */
if (gpufreq_device->gpufreq_state == cooling_state)
return 0;
gpufreq_device->gpufreq_state = cooling_state;
gpu_cooling_freq = gpufreq_cooling_get_freq(0, gpufreq_device->gpufreq_state);
if (gpu_cooling_freq == THERMAL_CFREQ_INVALID) {
pr_warn("Failed to convert %lu gpu_level\n",
gpufreq_device->gpufreq_state);
return -EINVAL;
}
#if !defined(CONFIG_SOC_EXYNOS7885_ANDROID_VERSION_P)
gpu_cooling_freq = gpu_cooling_freq / 1000;
#endif
#if defined(CONFIG_SEC_DEBUG_HW_PARAM)
curr_time[tid] = ktime_to_ns(ktime_get()) / 1000000;
if (last_time[tid]) {
thermal_data_info[tid].freq_level[cooling_state] +=
curr_time[tid] - last_time[tid];
}
last_time[tid] = curr_time[tid];
#endif
blocking_notifier_call_chain(&gpu_notifier, GPU_THROTTLING, &gpu_cooling_freq);
return 0;
}
/* gpufreq cooling device callback functions are defined below */
/**
* gpufreq_get_max_state - callback function to get the max cooling state.
* @cdev: thermal cooling device pointer.
* @state: fill this variable with the max cooling state.
*
* Callback for the thermal cooling device to return the gpufreq
* max cooling state.
*
* Return: 0 on success, an error code otherwise.
*/
static int gpufreq_get_max_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
unsigned int count = 0;
int ret;
ret = get_property(0, 0, &count, GET_MAXL);
if (count > 0)
*state = count;
return ret;
}
/**
* gpufreq_get_cur_state - callback function to get the current cooling state.
* @cdev: thermal cooling device pointer.
* @state: fill this variable with the current cooling state.
*
* Callback for the thermal cooling device to return the gpufreq
* current cooling state.
*
* Return: 0 on success, an error code otherwise.
*/
static int gpufreq_get_cur_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
struct gpufreq_cooling_device *gpufreq_device = cdev->devdata;
*state = gpufreq_device->gpufreq_state;
return 0;
}
/**
* gpufreq_set_cur_state - callback function to set the current cooling state.
* @cdev: thermal cooling device pointer.
* @state: set this variable to the current cooling state.
*
* Callback for the thermal cooling device to change the gpufreq
* current cooling state.
*
* Return: 0 on success, an error code otherwise.
*/
static int gpufreq_set_cur_state(struct thermal_cooling_device *cdev,
unsigned long state)
{
struct gpufreq_cooling_device *gpufreq_device = cdev->devdata;
#if defined(CONFIG_SEC_DEBUG_HW_PARAM)
unsigned long max_level;
gpufreq_get_max_state(cdev, &max_level);
thermal_data_info[gpufreq_device->id + THERMAL_ZONE_GPU].max_level = max_level;
#endif
return gpufreq_apply_cooling(gpufreq_device, state);
}
static enum gpu_noti_state_t gpu_tstate = GPU_COLD;
static int gpufreq_set_cur_temp(struct thermal_cooling_device *cdev,
bool suspended, int temp)
{
enum gpu_noti_state_t tstate;
unsigned long value;
if (suspended || temp < EXYNOS_COLD_TEMP)
tstate = GPU_COLD;
else
tstate = GPU_NORMAL;
if (gpu_tstate == tstate)
return 0;
gpu_tstate = tstate;
value = tstate;
blocking_notifier_call_chain(&gpu_notifier, tstate, &value);
return 0;
}
/**
* gpufreq_get_requested_power() - get the current power
* @cdev: &thermal_cooling_device pointer
* @tz: a valid thermal zone device pointer
* @power: pointer in which to store the resulting power
*
* Calculate the current power consumption of the gpus in milliwatts
* and store it in @power. This function should actually calculate
* the requested power, but it's hard to get the frequency that
* gpufreq would have assigned if there were no thermal limits.
* Instead, we calculate the current power on the assumption that the
* immediate future will look like the immediate past.
*
* We use the current frequency and the average load since this
* function was last called. In reality, there could have been
* multiple opps since this function was last called and that affects
* the load calculation. While it's not perfectly accurate, this
* simplification is good enough and works. REVISIT this, as more
* complex code may be needed if experiments show that it's not
* accurate enough.
*
* Return: 0 on success, -E* if getting the static power failed.
*/
static int gpufreq_get_requested_power(struct thermal_cooling_device *cdev,
struct thermal_zone_device *tz,
u32 *power)
{
unsigned long freq;
int ret = 0;
u32 static_power, dynamic_power;
struct gpufreq_cooling_device *gpufreq_device = cdev->devdata;
u32 load_gpu = 0;
freq = gpu_dvfs_get_cur_clock();
load_gpu = gpu_dvfs_get_utilization();;
gpufreq_device->last_load = load_gpu;
dynamic_power = get_dynamic_power(gpufreq_device, freq);
ret = get_static_power(gpufreq_device, tz, freq, &static_power);
if (ret)
return ret;
if (trace_thermal_power_gpu_get_power_enabled()) {
trace_thermal_power_gpu_get_power(
freq, load_gpu, dynamic_power, static_power);
}
*power = static_power + dynamic_power;
return 0;
}
/**
* gpufreq_state2power() - convert a gpu cdev state to power consumed
* @cdev: &thermal_cooling_device pointer
* @tz: a valid thermal zone device pointer
* @state: cooling device state to be converted
* @power: pointer in which to store the resulting power
*
* Convert cooling device state @state into power consumption in
* milliwatts assuming 100% load. Store the calculated power in
* @power.
*
* Return: 0 on success, -EINVAL if the cooling device state could not
* be converted into a frequency or other -E* if there was an error
* when calculating the static power.
*/
static int gpufreq_state2power(struct thermal_cooling_device *cdev,
struct thermal_zone_device *tz,
unsigned long state, u32 *power)
{
unsigned int freq;
u32 static_power, dynamic_power;
int ret;
struct gpufreq_cooling_device *gpufreq_device = cdev->devdata;
#if defined(CONFIG_SOC_EXYNOS7885_ANDROID_VERSION_P)
freq = gpu_freq_table[state].frequency;
#else
freq = gpu_freq_table[state].frequency / 1000;
#endif
if (!freq)
return -EINVAL;
dynamic_power = gpu_freq_to_power(gpufreq_device, freq);
ret = get_static_power(gpufreq_device, tz, freq, &static_power);
if (ret)
return ret;
*power = static_power + dynamic_power;
return 0;
}
/**
* gpufreq_power2state() - convert power to a cooling device state
* @cdev: &thermal_cooling_device pointer
* @tz: a valid thermal zone device pointer
* @power: power in milliwatts to be converted
* @state: pointer in which to store the resulting state
*
* Calculate a cooling device state for the gpus described by @cdev
* that would allow them to consume at most @power mW and store it in
* @state. Note that this calculation depends on external factors
* such as the gpu load or the current static power. Calling this
* function with the same power as input can yield different cooling
* device states depending on those external factors.
*
* Return: 0 on success, -ENODEV if no gpus are online or -EINVAL if
* the calculated frequency could not be converted to a valid state.
* The latter should not happen unless the frequencies available to
* gpufreq have changed since the initialization of the gpu cooling
* device.
*/
static int gpufreq_power2state(struct thermal_cooling_device *cdev,
struct thermal_zone_device *tz, u32 power,
unsigned long *state)
{
unsigned int cur_freq, target_freq;
int ret;
s32 dyn_power;
u32 static_power;
struct gpufreq_cooling_device *gpufreq_device = cdev->devdata;
cur_freq = gpu_dvfs_get_cur_clock();
ret = get_static_power(gpufreq_device, tz, cur_freq, &static_power);
if (ret)
return ret;
dyn_power = power - static_power;
dyn_power = dyn_power > 0 ? dyn_power : 0;
target_freq = gpu_power_to_freq(gpufreq_device, dyn_power);
#if defined(CONFIG_SOC_EXYNOS7885_ANDROID_VERSION_P)
*state = gpufreq_cooling_get_level(0, target_freq);
#else
*state = gpufreq_cooling_get_level(0, target_freq * 1000);
#endif
if (*state == THERMAL_CSTATE_INVALID) {
pr_warn("Failed to convert %dKHz for gpu into a cdev state\n",
target_freq);
return -EINVAL;
}
trace_thermal_power_gpu_limit(target_freq, *state, power);
return 0;
}
/* Bind gpufreq callbacks to thermal cooling device ops */
static struct thermal_cooling_device_ops gpufreq_cooling_ops = {
.get_max_state = gpufreq_get_max_state,
.get_cur_state = gpufreq_get_cur_state,
.set_cur_state = gpufreq_set_cur_state,
.set_cur_temp = gpufreq_set_cur_temp,
};
int exynos_gpu_add_notifier(struct notifier_block *n)
{
return blocking_notifier_chain_register(&gpu_notifier, n);
}
/**
* __gpufreq_cooling_register - helper function to create gpufreq cooling device
* @np: a valid struct device_node to the cooling device device tree node
* @clip_gpus: gpumask of gpus where the frequency constraints will happen.
* @capacitance: dynamic power coefficient for these gpus
* @plat_static_func: function to calculate the static power consumed by these
* gpus (optional)
*
* This interface function registers the gpufreq cooling device with the name
* "thermal-gpufreq-%x". This api can support multiple instances of gpufreq
* cooling devices. It also gives the opportunity to link the cooling device
* with a device tree node, in order to bind it via the thermal DT code.
*
* Return: a valid struct thermal_cooling_device pointer on success,
* on failure, it returns a corresponding ERR_PTR().
*/
static struct thermal_cooling_device *
__gpufreq_cooling_register(struct device_node *np,
const struct cpumask *clip_gpus, u32 capacitance,
get_static_t plat_static_func)
{
struct thermal_cooling_device *cool_dev;
struct gpufreq_cooling_device *gpufreq_dev = NULL;
char dev_name[THERMAL_NAME_LENGTH];
int ret = 0;
gpufreq_dev = kzalloc(sizeof(struct gpufreq_cooling_device),
GFP_KERNEL);
if (!gpufreq_dev)
return ERR_PTR(-ENOMEM);
ret = get_idr(&gpufreq_idr, &gpufreq_dev->id);
if (ret) {
kfree(gpufreq_dev);
return ERR_PTR(-EINVAL);
}
if (capacitance) {
gpufreq_cooling_ops.get_requested_power =
gpufreq_get_requested_power;
gpufreq_cooling_ops.state2power = gpufreq_state2power;
gpufreq_cooling_ops.power2state = gpufreq_power2state;
ret = build_dyn_power_table(gpufreq_dev, capacitance);
if (ret)
return ERR_PTR(ret);
ret = build_static_power_table(gpufreq_dev);
if (ret)
return ERR_PTR(ret);
}
snprintf(dev_name, sizeof(dev_name), "thermal-gpufreq-%d",
gpufreq_dev->id);
cool_dev = thermal_of_cooling_device_register(np, dev_name, gpufreq_dev,
&gpufreq_cooling_ops);
if (IS_ERR(cool_dev)) {
release_idr(&gpufreq_idr, gpufreq_dev->id);
kfree(gpufreq_dev);
return cool_dev;
}
gpufreq_dev->cool_dev = cool_dev;
gpufreq_dev->gpufreq_state = 0;
mutex_lock(&cooling_gpu_lock);
gpufreq_dev_count++;
mutex_unlock(&cooling_gpu_lock);
return cool_dev;
}
/**
* gpufreq_cooling_register - function to create gpufreq cooling device.
* @clip_gpus: cpumask of gpus where the frequency constraints will happen.
*
* This interface function registers the gpufreq cooling device with the name
* "thermal-gpufreq-%x". This api can support multiple instances of gpufreq
* cooling devices.
*
* Return: a valid struct thermal_cooling_device pointer on success,
* on failure, it returns a corresponding ERR_PTR().
*/
struct thermal_cooling_device *
gpufreq_cooling_register(const struct cpumask *clip_gpus)
{
return __gpufreq_cooling_register(NULL, clip_gpus, 0, NULL);
}
EXPORT_SYMBOL_GPL(gpufreq_cooling_register);
/**
* of_gpufreq_cooling_register - function to create gpufreq cooling device.
* @np: a valid struct device_node to the cooling device device tree node
* @clip_gpus: cpumask of gpus where the frequency constraints will happen.
*
* This interface function registers the gpufreq cooling device with the name
* "thermal-gpufreq-%x". This api can support multiple instances of gpufreq
* cooling devices. Using this API, the gpufreq cooling device will be
* linked to the device tree node provided.
*
* Return: a valid struct thermal_cooling_device pointer on success,
* on failure, it returns a corresponding ERR_PTR().
*/
struct thermal_cooling_device *
of_gpufreq_cooling_register(struct device_node *np,
const struct cpumask *clip_gpus)
{
if (!np)
return ERR_PTR(-EINVAL);
return __gpufreq_cooling_register(np, clip_gpus, 0, NULL);
}
EXPORT_SYMBOL_GPL(of_gpufreq_cooling_register);
/**
* gpufreq_power_cooling_register() - create gpufreq cooling device with power extensions
* @clip_gpus: gpumask of gpus where the frequency constraints will happen
* @capacitance: dynamic power coefficient for these gpus
* @plat_static_func: function to calculate the static power consumed by these
* gpus (optional)
*
* This interface function registers the gpufreq cooling device with
* the name "thermal-gpufreq-%x". This api can support multiple
* instances of gpufreq cooling devices. Using this function, the
* cooling device will implement the power extensions by using a
* simple gpu power model. The gpus must have registered their OPPs
* using the OPP library.
*
* An optional @plat_static_func may be provided to calculate the
* static power consumed by these gpus. If the platform's static
* power consumption is unknown or negligible, make it NULL.
*
* Return: a valid struct thermal_cooling_device pointer on success,
* on failure, it returns a corresponding ERR_PTR().
*/
struct thermal_cooling_device *
gpufreq_power_cooling_register(const struct cpumask *clip_gpus, u32 capacitance,
get_static_t plat_static_func)
{
return __gpufreq_cooling_register(NULL, clip_gpus, capacitance,
plat_static_func);
}
EXPORT_SYMBOL(gpufreq_power_cooling_register);
/**
* of_gpufreq_power_cooling_register() - create gpufreq cooling device with power extensions
* @np: a valid struct device_node to the cooling device device tree node
* @clip_gpus: gpumask of gpus where the frequency constraints will happen
* @capacitance: dynamic power coefficient for these gpus
* @plat_static_func: function to calculate the static power consumed by these
* gpus (optional)
*
* This interface function registers the gpufreq cooling device with
* the name "thermal-gpufreq-%x". This api can support multiple
* instances of gpufreq cooling devices. Using this API, the gpufreq
* cooling device will be linked to the device tree node provided.
* Using this function, the cooling device will implement the power
* extensions by using a simple gpu power model. The gpus must have
* registered their OPPs using the OPP library.
*
* An optional @plat_static_func may be provided to calculate the
* static power consumed by these gpus. If the platform's static
* power consumption is unknown or negligible, make it NULL.
*
* Return: a valid struct thermal_cooling_device pointer on success,
* on failure, it returns a corresponding ERR_PTR().
*/
struct thermal_cooling_device *
of_gpufreq_power_cooling_register(struct device_node *np,
const struct cpumask *clip_gpus,
u32 capacitance,
get_static_t plat_static_func)
{
if (!np)
return ERR_PTR(-EINVAL);
return __gpufreq_cooling_register(np, clip_gpus, capacitance,
plat_static_func);
}
EXPORT_SYMBOL(of_gpufreq_power_cooling_register);
/**
* gpufreq_cooling_unregister - function to remove gpufreq cooling device.
* @cdev: thermal cooling device pointer.
*
* This interface function unregisters the "thermal-gpufreq-%x" cooling device.
*/
void gpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
{
struct gpufreq_cooling_device *gpufreq_dev;
if (!cdev)
return;
gpufreq_dev = cdev->devdata;
mutex_lock(&cooling_gpu_lock);
gpufreq_dev_count--;
mutex_unlock(&cooling_gpu_lock);
thermal_cooling_device_unregister(gpufreq_dev->cool_dev);
release_idr(&gpufreq_idr, gpufreq_dev->id);
kfree(gpufreq_dev);
}
EXPORT_SYMBOL_GPL(gpufreq_cooling_unregister);
/**
* gpu_cooling_table_init - function to make GPU throttling table.
* @pdev : struct platform_device pointer
*
* Return : a valid struct gpu_freq_table pointer on success,
* on failture, it returns a corresponding ERR_PTR().
*/
int gpu_cooling_table_init(struct platform_device *pdev)
{
int ret = 0, i = 0;
#if defined(CONFIG_ECT)
struct exynos_tmu_data *exynos_data;
void *thermal_block;
struct ect_ap_thermal_function *function;
int last_level = -1, count = 0;
#else
unsigned int table_size;
u32 gpu_idx_num = 0;
#endif
#if defined(CONFIG_ECT)
exynos_data = platform_get_drvdata(pdev);
thermal_block = ect_get_block(BLOCK_AP_THERMAL);
if (thermal_block == NULL) {
dev_err(&pdev->dev, "Failed to get thermal block");
return -ENODEV;
}
function = ect_ap_thermal_get_function(thermal_block, exynos_data->tmu_name);
if (function == NULL) {
dev_err(&pdev->dev, "Failed to get %s information", exynos_data->tmu_name);
return -ENODEV;
}
/* Table size can be num_of_range + 1 since last row has the value of TABLE_END */
gpu_freq_table = kzalloc(sizeof(struct cpufreq_frequency_table)
* (function->num_of_range + 1), GFP_KERNEL);
for (i = 0; i < function->num_of_range; i++) {
if (last_level == function->range_list[i].max_frequency)
continue;
gpu_freq_table[count].flags = 0;
gpu_freq_table[count].driver_data = count;
gpu_freq_table[count].frequency = function->range_list[i].max_frequency;
#if defined(CONFIG_SOC_EXYNOS7885_ANDROID_VERSION_P)
if (gpu_freq_table[count].frequency > gpu_dvfs_get_max_freq()) {
gpu_freq_table[count].frequency = gpu_dvfs_get_max_freq();
dev_info(&pdev->dev, "[GPU TMU] max freq %d->%d\n",
function->range_list[i].max_frequency, gpu_dvfs_get_max_freq());
}
#else
if (gpu_freq_table[count].frequency > (gpu_dvfs_get_max_freq() * 1000)) {
gpu_freq_table[count].frequency = (gpu_dvfs_get_max_freq() * 1000);
dev_info(&pdev->dev, "[GPU TMU] max freq %d->%d\n",
function->range_list[i].max_frequency, gpu_dvfs_get_max_freq() * 1000);
}
#endif
last_level = gpu_freq_table[count].frequency;
dev_info(&pdev->dev, "[GPU TMU] index : %d, frequency : %d \n",
gpu_freq_table[count].driver_data, gpu_freq_table[count].frequency);
count++;
}
if (i == function->num_of_range)
gpu_freq_table[count].frequency = GPU_TABLE_END;
#else
/* gpu cooling frequency table parse */
ret = of_property_read_u32(pdev->dev.of_node, "gpu_idx_num", &gpu_idx_num);
if (ret < 0)
dev_err(&pdev->dev, "gpu_idx_num happend error value\n");
if (gpu_idx_num) {
gpu_freq_table= kzalloc(sizeof(struct cpufreq_frequency_table)
* gpu_idx_num, GFP_KERNEL);
if (!gpu_freq_table) {
dev_err(&pdev->dev, "failed to allocate for gpu_table\n");
return -ENODEV;
}
table_size = sizeof(struct cpufreq_frequency_table) / sizeof(unsigned int);
ret = of_property_read_u32_array(pdev->dev.of_node, "gpu_cooling_table",
(unsigned int *)gpu_freq_table, table_size * gpu_idx_num);
for (i = 0; i < gpu_idx_num; i++)
dev_info(&pdev->dev, "[GPU TMU] index : %d, frequency : %d \n",
gpu_freq_table[i].driver_data, gpu_freq_table[i].frequency);
}
#endif
return ret;
}
EXPORT_SYMBOL_GPL(gpu_cooling_table_init);