Update Chelsio gige net driver.

- Use extern prefix for functions required.
- Removed a lot of wrappers, including t1_read/write_reg_4.
- Removed various macros, using native kernel calls now.
- Enumerated various #defines.
- Removed a lot of shared code which is not currently used in "NIC only" mode.
- Removed dead code.

Documentation/networking/cxgb.txt:
- Updated release notes for version 2.1.1

drivers/net/chelsio/ch_ethtool.h
- removed file, no longer using ETHTOOL namespace.

drivers/net/chelsio/common.h
- moved code from osdep.h to common.h
- added comment to #endif indicating which symbol it closes.

drivers/net/chelsio/cphy.h
- removed dead code.
- added comment to #endif indicating which symbol it closes.

drivers/net/chelsio/cxgb2.c
- use DMA_{32,64}BIT_MASK in include/linux/dma-mapping.h.
- removed unused code.
- use printk message for link info resembling drivers/net/mii.c.
- no longer using the MODULE_xxx namespace.
- no longer using "pci_" namespace.
- no longer using ETHTOOL namespace.

drivers/net/chelsio/cxgb2.h
- removed file, merged into common.h

drivers/net/chelsio/elmer0.h
- removed dead code.
- added various enums.
- added comment to #endif indicating which symbol it closes.

drivers/net/chelsio/espi.c
- removed various macros, using native kernel calls now.
- removed a lot of wrappers, including t1_read/write_reg_4.

drivers/net/chelsio/espi.h
- added comment to #endif indicating which symbol it closes.

drivers/net/chelsio/gmac.h
- added comment to #endif indicating which symbol it closes.

drivers/net/chelsio/mv88x201x.c
- changes to sync with Chelsio TOT.

drivers/net/chelsio/osdep.h
- removed file, consolidation. osdep was used to translate wrapper functions
  since our code supports multiple OSs. removed wrappers.

  drivers/net/chelsio/pm3393.c
  - removed various macros, using native kernel calls now.
  - removed a lot of wrappers, including t1_read/write_reg_4.
  - removed unused code.

  drivers/net/chelsio/regs.h
  - added a few register entries for future and current feature support.
  - added comment to #endif indicating which symbol it closes.

  drivers/net/chelsio/sge.c
  - rewrote large portion of scatter-gather engine to stabilize
  performance.
  - using u8/u16/u32 kernel types instead of __u8/__u16/__u32 compiler
  types.

  drivers/net/chelsio/sge.h
  - rewrote large portion of scatter-gather engine to stabilize
  performance.
  - added comment to #endif indicating which symbol it closes.

  drivers/net/chelsio/subr.c
  - merged tp.c into subr.c
  - removed various macros, using native kernel calls now.
  - removed a lot of wrappers, including t1_read/write_reg_4.
  - removed unused code.

  drivers/net/chelsio/suni1x10gexp_regs.h
  - modified copyright and authorship of file.
  - added comment to #endif indicating which symbol it closes.

  drivers/net/chelsio/tp.c
  - removed file, merged into subr.c.

  drivers/net/chelsio/tp.h
  - removed file.

  include/linux/pci_ids.h
  - patched to include PCI_VENDOR_ID_CHELSIO 0x1425, removed define from
  our code.
diff --git a/drivers/net/chelsio/sge.c b/drivers/net/chelsio/sge.c
index bcf8b1e..53b41d9 100644
--- a/drivers/net/chelsio/sge.c
+++ b/drivers/net/chelsio/sge.c
@@ -1,8 +1,8 @@
 /*****************************************************************************
  *                                                                           *
  * File: sge.c                                                               *
- * $Revision: 1.13 $                                                         *
- * $Date: 2005/03/23 07:41:27 $                                              *
+ * $Revision: 1.26 $                                                         *
+ * $Date: 2005/06/21 18:29:48 $                                              *
  * Description:                                                              *
  *  DMA engine.                                                              *
  *  part of the Chelsio 10Gb Ethernet Driver.                                *
@@ -58,59 +58,62 @@
 #include "regs.h"
 #include "espi.h"
 
+
+#ifdef NETIF_F_TSO
 #include <linux/tcp.h>
+#endif
 
 #define SGE_CMDQ_N		2
 #define SGE_FREELQ_N		2
-#define SGE_CMDQ0_E_N		512
+#define SGE_CMDQ0_E_N		1024
 #define SGE_CMDQ1_E_N		128
 #define SGE_FREEL_SIZE		4096
 #define SGE_JUMBO_FREEL_SIZE	512
 #define SGE_FREEL_REFILL_THRESH	16
 #define SGE_RESPQ_E_N		1024
-#define SGE_INTR_BUCKETSIZE	100
-#define SGE_INTR_LATBUCKETS	5
-#define SGE_INTR_MAXBUCKETS	11
-#define SGE_INTRTIMER0		1
-#define SGE_INTRTIMER1		50
-#define SGE_INTRTIMER_NRES	10000
-#define SGE_RX_COPY_THRESHOLD	256
+#define SGE_INTRTIMER_NRES	1000
+#define SGE_RX_COPY_THRES	256
 #define SGE_RX_SM_BUF_SIZE	1536
 
-#define SGE_RESPQ_REPLENISH_THRES ((3 * SGE_RESPQ_E_N) / 4)
+# define SGE_RX_DROP_THRES 2
 
-#define SGE_RX_OFFSET 2
-#ifndef NET_IP_ALIGN
-# define NET_IP_ALIGN SGE_RX_OFFSET
-#endif
+#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
 
 /*
- * Memory Mapped HW Command, Freelist and Response Queue Descriptors
+ * Period of the TX buffer reclaim timer.  This timer does not need to run
+ * frequently as TX buffers are usually reclaimed by new TX packets.
+ */
+#define TX_RECLAIM_PERIOD (HZ / 4)
+
+#ifndef NET_IP_ALIGN
+# define NET_IP_ALIGN 2
+#endif
+
+#define M_CMD_LEN       0x7fffffff
+#define V_CMD_LEN(v)    (v)
+#define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
+#define V_CMD_GEN1(v)   ((v) << 31)
+#define V_CMD_GEN2(v)   (v)
+#define F_CMD_DATAVALID (1 << 1)
+#define F_CMD_SOP       (1 << 2)
+#define V_CMD_EOP(v)    ((v) << 3)
+
+/*
+ * Command queue, receive buffer list, and response queue descriptors.
  */
 #if defined(__BIG_ENDIAN_BITFIELD)
 struct cmdQ_e {
-	u32 AddrLow;
-	u32 GenerationBit	: 1;
-	u32 BufferLength	: 31;
-	u32 RespQueueSelector	: 4;
-	u32 ResponseTokens	: 12;
-	u32 CmdId		: 8;
-	u32 Reserved		: 3;
-	u32 TokenValid		: 1;
-	u32 Eop			: 1;
-	u32 Sop			: 1;
-	u32 DataValid		: 1;
-	u32 GenerationBit2	: 1;
-	u32 AddrHigh;
+	u32 addr_lo;
+	u32 len_gen;
+	u32 flags;
+	u32 addr_hi;
 };
 
 struct freelQ_e {
-	u32 AddrLow;
-	u32 GenerationBit	: 1;
-	u32 BufferLength	: 31;
-	u32 Reserved		: 31;
-	u32 GenerationBit2	: 1;
-	u32 AddrHigh;
+	u32 addr_lo;
+	u32 len_gen;
+	u32 gen2;
+	u32 addr_hi;
 };
 
 struct respQ_e {
@@ -128,31 +131,19 @@
 	u32 GenerationBit	: 1;
 	u32 BufferLength;
 };
-
 #elif defined(__LITTLE_ENDIAN_BITFIELD)
 struct cmdQ_e {
-	u32 BufferLength	: 31;
-	u32 GenerationBit	: 1;
-	u32 AddrLow;
-	u32 AddrHigh;
-	u32 GenerationBit2	: 1;
-	u32 DataValid		: 1;
-	u32 Sop			: 1;
-	u32 Eop			: 1;
-	u32 TokenValid		: 1;
-	u32 Reserved		: 3;
-	u32 CmdId		: 8;
-	u32 ResponseTokens	: 12;
-	u32 RespQueueSelector	: 4;
+	u32 len_gen;
+	u32 addr_lo;
+	u32 addr_hi;
+	u32 flags;
 };
 
 struct freelQ_e {
-	u32 BufferLength	: 31;
-	u32 GenerationBit	: 1;
-	u32 AddrLow;
-	u32 AddrHigh;
-	u32 GenerationBit2	: 1;
-	u32 Reserved		: 31;
+	u32 len_gen;
+	u32 addr_lo;
+	u32 addr_hi;
+	u32 gen2;
 };
 
 struct respQ_e {
@@ -179,7 +170,6 @@
 	struct sk_buff *skb;
 	DECLARE_PCI_UNMAP_ADDR(dma_addr);
 	DECLARE_PCI_UNMAP_LEN(dma_len);
-	unsigned int single;
 };
 
 struct freelQ_ce {
@@ -189,44 +179,52 @@
 };
 
 /*
- * SW Command, Freelist and Response Queue
+ * SW command, freelist and response rings
  */
 struct cmdQ {
-	atomic_t	asleep;		/* HW DMA Fetch status */
-	atomic_t	credits;	/* # available descriptors for TX */
-	atomic_t	pio_pidx;	/* Variable updated on Doorbell */
-	u16		entries_n;	/* # descriptors for TX	*/
-	u16		pidx;		/* producer index (SW) */
-	u16		cidx;		/* consumer index (HW) */
-	u8		genbit;		/* current generation (=valid) bit */
-	struct cmdQ_e  *entries;	/* HW command descriptor Q */
-	struct cmdQ_ce *centries;	/* SW command context descriptor Q */
-	spinlock_t	Qlock;		/* Lock to protect cmdQ enqueuing */
-	dma_addr_t	dma_addr;	/* DMA addr HW command descriptor Q */
+	unsigned long   status;         /* HW DMA fetch status */
+	unsigned int    in_use;         /* # of in-use command descriptors */
+	unsigned int	size;	        /* # of descriptors */
+	unsigned int	processed;      /* total # of descs HW has processed */
+	unsigned int	cleaned;        /* total # of descs SW has reclaimed */
+	unsigned int	stop_thres;     /* SW TX queue suspend threshold */
+	u16		pidx;           /* producer index (SW) */
+	u16		cidx;           /* consumer index (HW) */
+	u8		genbit;         /* current generation (=valid) bit */
+	u8		sop;            /* is next entry start of packet? */
+	struct cmdQ_e  *entries;        /* HW command descriptor Q */
+	struct cmdQ_ce *centries;       /* SW command context descriptor Q */
+	spinlock_t	lock;           /* Lock to protect cmdQ enqueuing */
+	dma_addr_t	dma_addr;       /* DMA addr HW command descriptor Q */
 };
 
 struct freelQ {
-	unsigned int	credits;	/* # of available RX buffers */
-	unsigned int	entries_n;	/* free list capacity */
-	u16		pidx;		/* producer index (SW) */
-	u16		cidx;		/* consumer index (HW) */
+	unsigned int	credits;        /* # of available RX buffers */
+	unsigned int	size;	        /* free list capacity */
+	u16		pidx;           /* producer index (SW) */
+	u16		cidx;           /* consumer index (HW) */
 	u16		rx_buffer_size; /* Buffer size on this free list */
 	u16		dma_offset;     /* DMA offset to align IP headers */
-	u8		genbit;		/* current generation (=valid) bit */
-	struct freelQ_e	*entries;	/* HW freelist descriptor Q */
-	struct freelQ_ce *centries;	/* SW freelist conext descriptor Q */
-	dma_addr_t	dma_addr;	/* DMA addr HW freelist descriptor Q */
+	u16		recycleq_idx;   /* skb recycle q to use */
+	u8		genbit;	        /* current generation (=valid) bit */
+	struct freelQ_e	*entries;       /* HW freelist descriptor Q */
+	struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
+	dma_addr_t	dma_addr;       /* DMA addr HW freelist descriptor Q */
 };
 
 struct respQ {
-	u16		credits;	/* # of available respQ descriptors */
-	u16		credits_pend;	/* # of not yet returned descriptors */
-	u16		entries_n;	/* # of response Q descriptors */
-	u16		pidx;		/* producer index (HW) */
-	u16		cidx;		/* consumer index (SW) */
-	u8		genbit;		/* current generation(=valid) bit */
+	unsigned int	credits;        /* credits to be returned to SGE */
+	unsigned int	size;	        /* # of response Q descriptors */
+	u16		cidx;	        /* consumer index (SW) */
+	u8		genbit;	        /* current generation(=valid) bit */
 	struct respQ_e *entries;        /* HW response descriptor Q */
-	dma_addr_t	dma_addr;	/* DMA addr HW response descriptor Q */
+	dma_addr_t	dma_addr;       /* DMA addr HW response descriptor Q */
+};
+
+/* Bit flags for cmdQ.status */
+enum {
+	CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
+	CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
 };
 
 /*
@@ -239,134 +237,50 @@
  */
 struct sge {
 	struct adapter *adapter; 	/* adapter backpointer */
-	struct freelQ 	freelQ[SGE_FREELQ_N]; /* freelist Q(s) */
-	struct respQ 	respQ;		/* response Q instatiation */
+	struct net_device *netdev;      /* netdevice backpointer */
+	struct freelQ 	freelQ[SGE_FREELQ_N]; /* buffer free lists */
+	struct respQ 	respQ;		/* response Q */
+	unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
 	unsigned int	rx_pkt_pad;     /* RX padding for L2 packets */
 	unsigned int	jumbo_fl;       /* jumbo freelist Q index */
-	u32		intrtimer[SGE_INTR_MAXBUCKETS];	/* ! */
-	u32		currIndex;	/* current index into intrtimer[] */
-	u32		intrtimer_nres;	/* no resource interrupt timer value */
-	u32		sge_control;	/* shadow content of sge control reg */
-	struct sge_intr_counts intr_cnt;
-	struct timer_list ptimer;
-	struct sk_buff  *pskb;
-	u32		ptimeout;
-	struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned; /* command Q(s)*/
+	unsigned int	intrtimer_nres;	/* no-resource interrupt timer */
+	unsigned int	fixed_intrtimer;/* non-adaptive interrupt timer */
+	struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
+	struct timer_list espibug_timer;
+	unsigned int	espibug_timeout;
+	struct sk_buff	*espibug_skb;
+	u32		sge_control;	/* shadow value of sge control reg */
+	struct sge_intr_counts stats;
+	struct sge_port_stats port_stats[MAX_NPORTS];
+	struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
 };
 
-static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
-			unsigned int qid);
-
 /*
  * PIO to indicate that memory mapped Q contains valid descriptor(s).
  */
-static inline void doorbell_pio(struct sge *sge, u32 val)
+static inline void doorbell_pio(struct adapter *adapter, u32 val)
 {
 	wmb();
-	t1_write_reg_4(sge->adapter, A_SG_DOORBELL, val);
-}
-
-/*
- * Disables the DMA engine.
- */
-void t1_sge_stop(struct sge *sge)
-{
-	t1_write_reg_4(sge->adapter, A_SG_CONTROL, 0);
-	t1_read_reg_4(sge->adapter, A_SG_CONTROL);     /* flush write */
-	if (is_T2(sge->adapter))
-		del_timer_sync(&sge->ptimer);
-}
-
-static u8 ch_mac_addr[ETH_ALEN] = {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
-static void t1_espi_workaround(void *data)
-{
-	struct adapter *adapter = (struct adapter *)data;
-	struct sge *sge = adapter->sge;
-
-	if (netif_running(adapter->port[0].dev) &&
-		atomic_read(&sge->cmdQ[0].asleep)) {
-
-		u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
-
-		if ((seop & 0xfff0fff) == 0xfff && sge->pskb) {
-			struct sk_buff *skb = sge->pskb;
-			if (!skb->cb[0]) {
-				memcpy(skb->data+sizeof(struct cpl_tx_pkt), ch_mac_addr, ETH_ALEN);
-				memcpy(skb->data+skb->len-10, ch_mac_addr, ETH_ALEN);
-
-				skb->cb[0] = 0xff;
-			}
-			t1_sge_tx(skb, adapter,0);
-		}
-	}
-	mod_timer(&adapter->sge->ptimer, jiffies + sge->ptimeout);
-}
-
-/*
- * Enables the DMA engine.
- */
-void t1_sge_start(struct sge *sge)
-{
-	t1_write_reg_4(sge->adapter, A_SG_CONTROL, sge->sge_control);
-	t1_read_reg_4(sge->adapter, A_SG_CONTROL);     /* flush write */
-	if (is_T2(sge->adapter)) {
-		init_timer(&sge->ptimer);
-		sge->ptimer.function = (void *)&t1_espi_workaround;
-		sge->ptimer.data = (unsigned long)sge->adapter;
-		sge->ptimer.expires = jiffies + sge->ptimeout;
-		add_timer(&sge->ptimer);
-	}
-}
-
-/*
- * Creates a t1_sge structure and returns suggested resource parameters.
- */
-struct sge * __devinit t1_sge_create(struct adapter *adapter,
-				     struct sge_params *p)
-{
-	struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL);
-
-	if (!sge)
-		return NULL;
-	memset(sge, 0, sizeof(*sge));
-
-	if (is_T2(adapter))
-		sge->ptimeout = 1;	/* finest allowed */
-
-	sge->adapter = adapter;
-	sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : SGE_RX_OFFSET;
-	sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
-
-	p->cmdQ_size[0] = SGE_CMDQ0_E_N;
-	p->cmdQ_size[1] = SGE_CMDQ1_E_N;
-	p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
-	p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
-	p->rx_coalesce_usecs = SGE_INTRTIMER1;
-	p->last_rx_coalesce_raw = SGE_INTRTIMER1 *
-	  (board_info(sge->adapter)->clock_core / 1000000);
-	p->default_rx_coalesce_usecs = SGE_INTRTIMER1;
-	p->coalesce_enable = 0;	/* Turn off adaptive algorithm by default */
-	p->sample_interval_usecs = 0;
-	return sge;
+	writel(val, adapter->regs + A_SG_DOORBELL);
 }
 
 /*
  * Frees all RX buffers on the freelist Q. The caller must make sure that
  * the SGE is turned off before calling this function.
  */
-static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *Q)
+static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
 {
-	unsigned int cidx = Q->cidx, credits = Q->credits;
+	unsigned int cidx = q->cidx;
 
-	while (credits--) {
-		struct freelQ_ce *ce = &Q->centries[cidx];
+	while (q->credits--) {
+		struct freelQ_ce *ce = &q->centries[cidx];
 
 		pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
 				 pci_unmap_len(ce, dma_len),
 				 PCI_DMA_FROMDEVICE);
 		dev_kfree_skb(ce->skb);
 		ce->skb = NULL;
-		if (++cidx == Q->entries_n)
+		if (++cidx == q->size)
 			cidx = 0;
 	}
 }
@@ -380,29 +294,29 @@
 	unsigned int size, i;
 
 	if (sge->respQ.entries) {
-		size = sizeof(struct respQ_e) * sge->respQ.entries_n;
+		size = sizeof(struct respQ_e) * sge->respQ.size;
 		pci_free_consistent(pdev, size, sge->respQ.entries,
 				    sge->respQ.dma_addr);
 	}
 
 	for (i = 0; i < SGE_FREELQ_N; i++) {
-		struct freelQ *Q = &sge->freelQ[i];
+		struct freelQ *q = &sge->freelQ[i];
 
-		if (Q->centries) {
-			free_freelQ_buffers(pdev, Q);
-			kfree(Q->centries);
+		if (q->centries) {
+			free_freelQ_buffers(pdev, q);
+			kfree(q->centries);
 		}
-		if (Q->entries) {
-			size = sizeof(struct freelQ_e) * Q->entries_n;
-			pci_free_consistent(pdev, size, Q->entries,
-					    Q->dma_addr);
+		if (q->entries) {
+			size = sizeof(struct freelQ_e) * q->size;
+			pci_free_consistent(pdev, size, q->entries,
+					    q->dma_addr);
 		}
 	}
 }
 
 /*
  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
- * response Q.
+ * response queue.
  */
 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
 {
@@ -410,21 +324,22 @@
 	unsigned int size, i;
 
 	for (i = 0; i < SGE_FREELQ_N; i++) {
-		struct freelQ *Q = &sge->freelQ[i];
+		struct freelQ *q = &sge->freelQ[i];
 
-		Q->genbit = 1;
-		Q->entries_n = p->freelQ_size[i];
-		Q->dma_offset = SGE_RX_OFFSET - sge->rx_pkt_pad;
-		size = sizeof(struct freelQ_e) * Q->entries_n;
-		Q->entries = (struct freelQ_e *)
-			      pci_alloc_consistent(pdev, size, &Q->dma_addr);
-		if (!Q->entries)
+		q->genbit = 1;
+		q->size = p->freelQ_size[i];
+		q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
+		size = sizeof(struct freelQ_e) * q->size;
+		q->entries = (struct freelQ_e *)
+			      pci_alloc_consistent(pdev, size, &q->dma_addr);
+		if (!q->entries)
 			goto err_no_mem;
-		memset(Q->entries, 0, size);
-		Q->centries = kcalloc(Q->entries_n, sizeof(struct freelQ_ce),
-				      GFP_KERNEL);
-		if (!Q->centries)
+		memset(q->entries, 0, size);
+		size = sizeof(struct freelQ_ce) * q->size;
+		q->centries = kmalloc(size, GFP_KERNEL);
+		if (!q->centries)
 			goto err_no_mem;
+		memset(q->centries, 0, size);
 	}
 
 	/*
@@ -440,10 +355,17 @@
 	sge->freelQ[sge->jumbo_fl].rx_buffer_size = (16 * 1024) -
 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 
+	/*
+	 * Setup which skb recycle Q should be used when recycling buffers from
+	 * each free list.
+	 */
+	sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
+	sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
+
 	sge->respQ.genbit = 1;
-	sge->respQ.entries_n = SGE_RESPQ_E_N;
-	sge->respQ.credits = SGE_RESPQ_E_N;
-	size = sizeof(struct respQ_e) * sge->respQ.entries_n;
+	sge->respQ.size = SGE_RESPQ_E_N;
+	sge->respQ.credits = 0;
+	size = sizeof(struct respQ_e) * sge->respQ.size;
 	sge->respQ.entries = (struct respQ_e *)
 		pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
 	if (!sge->respQ.entries)
@@ -457,48 +379,37 @@
 }
 
 /*
- * Frees 'credits_pend' TX buffers and returns the credits to Q->credits.
- *
- * The adaptive algorithm receives the total size of the buffers freed
- * accumulated in @*totpayload. No initialization of this argument here.
- *
+ * Reclaims n TX descriptors and frees the buffers associated with them.
  */
-static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *Q,
-			      unsigned int credits_pend, unsigned int *totpayload)
+static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
 {
+	struct cmdQ_ce *ce;
 	struct pci_dev *pdev = sge->adapter->pdev;
-	struct sk_buff *skb;
-	struct cmdQ_ce *ce, *cq = Q->centries;
-	unsigned int entries_n = Q->entries_n, cidx = Q->cidx,
-		     i = credits_pend;
+	unsigned int cidx = q->cidx;
 
-
-	ce = &cq[cidx];
-	while (i--) {
-		if (ce->single)
+	q->in_use -= n;
+	ce = &q->centries[cidx];
+	while (n--) {
+		if (q->sop)
 			pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
-					 pci_unmap_len(ce, dma_len),
+			 		 pci_unmap_len(ce, dma_len),
 					 PCI_DMA_TODEVICE);
 		else
 			pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr),
-				       pci_unmap_len(ce, dma_len),
+			 	       pci_unmap_len(ce, dma_len),
 				       PCI_DMA_TODEVICE);
-		if (totpayload)
-			*totpayload += pci_unmap_len(ce, dma_len);
-
-		skb = ce->skb;
-		if (skb)
-			dev_kfree_skb_irq(skb);
-
+		q->sop = 0;
+		if (ce->skb) {
+			dev_kfree_skb(ce->skb);
+			q->sop = 1;
+		}
 		ce++;
-		if (++cidx == entries_n) {
+		if (++cidx == q->size) {
 			cidx = 0;
-			ce = cq;
+			ce = q->centries;
 		}
 	}
-
-	Q->cidx = cidx;
-	atomic_add(credits_pend, &Q->credits);
+	q->cidx = cidx;
 }
 
 /*
@@ -512,20 +423,17 @@
 	unsigned int size, i;
 
 	for (i = 0; i < SGE_CMDQ_N; i++) {
-		struct cmdQ *Q = &sge->cmdQ[i];
+		struct cmdQ *q = &sge->cmdQ[i];
 
-		if (Q->centries) {
-			unsigned int pending = Q->entries_n -
-					       atomic_read(&Q->credits);
-
-			if (pending)
-				free_cmdQ_buffers(sge, Q, pending, NULL);
-			kfree(Q->centries);
+		if (q->centries) {
+			if (q->in_use)
+				free_cmdQ_buffers(sge, q, q->in_use);
+			kfree(q->centries);
 		}
-		if (Q->entries) {
-			size = sizeof(struct cmdQ_e) * Q->entries_n;
-			pci_free_consistent(pdev, size, Q->entries,
-					    Q->dma_addr);
+		if (q->entries) {
+			size = sizeof(struct cmdQ_e) * q->size;
+			pci_free_consistent(pdev, size, q->entries,
+					    q->dma_addr);
 		}
 	}
 }
@@ -539,25 +447,38 @@
 	unsigned int size, i;
 
 	for (i = 0; i < SGE_CMDQ_N; i++) {
-		struct cmdQ *Q = &sge->cmdQ[i];
+		struct cmdQ *q = &sge->cmdQ[i];
 
-		Q->genbit = 1;
-		Q->entries_n = p->cmdQ_size[i];
-		atomic_set(&Q->credits, Q->entries_n);
-		atomic_set(&Q->asleep, 1);
-		spin_lock_init(&Q->Qlock);
-		size = sizeof(struct cmdQ_e) * Q->entries_n;
-		Q->entries = (struct cmdQ_e *)
-			      pci_alloc_consistent(pdev, size, &Q->dma_addr);
-		if (!Q->entries)
+		q->genbit = 1;
+		q->sop = 1;
+		q->size = p->cmdQ_size[i];
+		q->in_use = 0;
+		q->status = 0;
+		q->processed = q->cleaned = 0;
+		q->stop_thres = 0;
+		spin_lock_init(&q->lock);
+		size = sizeof(struct cmdQ_e) * q->size;
+		q->entries = (struct cmdQ_e *)
+			      pci_alloc_consistent(pdev, size, &q->dma_addr);
+		if (!q->entries)
 			goto err_no_mem;
-		memset(Q->entries, 0, size);
-		Q->centries = kcalloc(Q->entries_n, sizeof(struct cmdQ_ce),
-				      GFP_KERNEL);
-		if (!Q->centries)
+		memset(q->entries, 0, size);
+		size = sizeof(struct cmdQ_ce) * q->size;
+		q->centries = kmalloc(size, GFP_KERNEL);
+		if (!q->centries)
 			goto err_no_mem;
+		memset(q->centries, 0, size);
 	}
 
+	/*
+	 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
+	 * only.  For queue 0 set the stop threshold so we can handle one more
+	 * packet from each port, plus reserve an additional 24 entries for
+	 * Ethernet packets only.  Queue 1 never suspends nor do we reserve
+	 * space for Ethernet packets.
+	 */
+	sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
+		(MAX_SKB_FRAGS + 1);
 	return 0;
 
 err_no_mem:
@@ -569,9 +490,9 @@
 				     u32 size, int base_reg_lo,
 				     int base_reg_hi, int size_reg)
 {
-	t1_write_reg_4(adapter, base_reg_lo, (u32)addr);
-	t1_write_reg_4(adapter, base_reg_hi, addr >> 32);
-	t1_write_reg_4(adapter, size_reg, size);
+	writel((u32)addr, adapter->regs + base_reg_lo);
+	writel(addr >> 32, adapter->regs + base_reg_hi);
+	writel(size, adapter->regs + size_reg);
 }
 
 /*
@@ -585,97 +506,52 @@
 	if (on_off)
 		sge->sge_control |= F_VLAN_XTRACT;
 	if (adapter->open_device_map) {
-		t1_write_reg_4(adapter, A_SG_CONTROL, sge->sge_control);
-		t1_read_reg_4(adapter, A_SG_CONTROL);	/* flush */
+		writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
+		readl(adapter->regs + A_SG_CONTROL); /* flush */
 	}
 }
 
 /*
- * Sets the interrupt latency timer when the adaptive Rx coalescing
- * is turned off. Do nothing when it is turned on again.
- *
- * This routine relies on the fact that the caller has already set
- * the adaptive policy in adapter->sge_params before calling it.
-*/
-int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
-{
-	if (!p->coalesce_enable) {
-		u32 newTimer = p->rx_coalesce_usecs *
-			(board_info(sge->adapter)->clock_core / 1000000);
-
-		t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, newTimer);
-	}
-	return 0;
-}
-
-/*
  * Programs the various SGE registers. However, the engine is not yet enabled,
  * but sge->sge_control is setup and ready to go.
  */
 static void configure_sge(struct sge *sge, struct sge_params *p)
 {
 	struct adapter *ap = sge->adapter;
-	int i;
-
-	t1_write_reg_4(ap, A_SG_CONTROL, 0);
-	setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].entries_n,
+	
+	writel(0, ap->regs + A_SG_CONTROL);
+	setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
 			  A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
-	setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].entries_n,
+	setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
 			  A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
 	setup_ring_params(ap, sge->freelQ[0].dma_addr,
-			  sge->freelQ[0].entries_n, A_SG_FL0BASELWR,
+			  sge->freelQ[0].size, A_SG_FL0BASELWR,
 			  A_SG_FL0BASEUPR, A_SG_FL0SIZE);
 	setup_ring_params(ap, sge->freelQ[1].dma_addr,
-			  sge->freelQ[1].entries_n, A_SG_FL1BASELWR,
+			  sge->freelQ[1].size, A_SG_FL1BASELWR,
 			  A_SG_FL1BASEUPR, A_SG_FL1SIZE);
 
 	/* The threshold comparison uses <. */
-	t1_write_reg_4(ap, A_SG_FLTHRESHOLD, SGE_RX_SM_BUF_SIZE + 1);
+	writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
 
-	setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.entries_n,
-			A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
-	t1_write_reg_4(ap, A_SG_RSPQUEUECREDIT, (u32)sge->respQ.entries_n);
+	setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
+			  A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
+	writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
 
 	sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
 		F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
 		V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
+		F_DISABLE_FL0_GTS | F_DISABLE_FL1_GTS |
 		V_RX_PKT_OFFSET(sge->rx_pkt_pad);
 
 #if defined(__BIG_ENDIAN_BITFIELD)
 	sge->sge_control |= F_ENABLE_BIG_ENDIAN;
 #endif
 
-	/*
-	 * Initialize the SGE Interrupt Timer arrray:
-	 * intrtimer[0]	      = (SGE_INTRTIMER0) usec
-	 * intrtimer[0<i<5]   = (SGE_INTRTIMER0 + i*2) usec
-	 * intrtimer[4<i<10]  = ((i - 3) * 6) usec
-	 * intrtimer[10]      = (SGE_INTRTIMER1) usec
-	 *
-	 */
-	sge->intrtimer[0] = board_info(sge->adapter)->clock_core / 1000000;
-	for (i = 1; i < SGE_INTR_LATBUCKETS; ++i) {
-		sge->intrtimer[i] = SGE_INTRTIMER0 + (2 * i);
-		sge->intrtimer[i] *= sge->intrtimer[0];
-	}
-	for (i = SGE_INTR_LATBUCKETS; i < SGE_INTR_MAXBUCKETS - 1; ++i) {
-		sge->intrtimer[i] = (i - 3) * 6;
-		sge->intrtimer[i] *= sge->intrtimer[0];
-	}
-	sge->intrtimer[SGE_INTR_MAXBUCKETS - 1] =
-	  sge->intrtimer[0] * SGE_INTRTIMER1;
-	/* Initialize resource timer */
-	sge->intrtimer_nres = sge->intrtimer[0] * SGE_INTRTIMER_NRES;
-	/* Finally finish initialization of intrtimer[0] */
-	sge->intrtimer[0] *= SGE_INTRTIMER0;
-	/* Initialize for a throughput oriented workload */
-	sge->currIndex = SGE_INTR_MAXBUCKETS - 1;
+	/* Initialize no-resource timer */
+	sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
 
-	if (p->coalesce_enable)
-		t1_write_reg_4(ap, A_SG_INTRTIMER,
-			       sge->intrtimer[sge->currIndex]);
-	else
-		t1_sge_set_coalesce_params(sge, p);
+	t1_sge_set_coalesce_params(sge, p);
 }
 
 /*
@@ -684,7 +560,998 @@
 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
 {
 	return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
-		sizeof(struct cpl_rx_data) - SGE_RX_OFFSET + sge->rx_pkt_pad;
+		sge->freelQ[sge->jumbo_fl].dma_offset -
+		sizeof(struct cpl_rx_data);
+}
+
+/*
+ * Frees all SGE related resources and the sge structure itself
+ */
+void t1_sge_destroy(struct sge *sge)
+{
+	if (sge->espibug_skb)
+		kfree_skb(sge->espibug_skb);
+
+	free_tx_resources(sge);
+	free_rx_resources(sge);
+	kfree(sge);
+}
+
+/*
+ * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
+ * context Q) until the Q is full or alloc_skb fails.
+ *
+ * It is possible that the generation bits already match, indicating that the
+ * buffer is already valid and nothing needs to be done. This happens when we
+ * copied a received buffer into a new sk_buff during the interrupt processing.
+ *
+ * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
+ * we specify a RX_OFFSET in order to make sure that the IP header is 4B
+ * aligned.
+ */
+static void refill_free_list(struct sge *sge, struct freelQ *q)
+{
+	struct pci_dev *pdev = sge->adapter->pdev;
+	struct freelQ_ce *ce = &q->centries[q->pidx];
+	struct freelQ_e *e = &q->entries[q->pidx];
+	unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
+
+
+	while (q->credits < q->size) {
+		struct sk_buff *skb;
+		dma_addr_t mapping;
+
+		skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
+		if (!skb)
+			break;
+
+		skb_reserve(skb, q->dma_offset);
+		mapping = pci_map_single(pdev, skb->data, dma_len,
+					 PCI_DMA_FROMDEVICE);
+		ce->skb = skb;
+		pci_unmap_addr_set(ce, dma_addr, mapping);
+		pci_unmap_len_set(ce, dma_len, dma_len);
+		e->addr_lo = (u32)mapping;
+		e->addr_hi = (u64)mapping >> 32;
+		e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
+		wmb();
+		e->gen2 = V_CMD_GEN2(q->genbit);
+
+		e++;
+		ce++;
+		if (++q->pidx == q->size) {
+			q->pidx = 0;
+			q->genbit ^= 1;
+			ce = q->centries;
+			e = q->entries;
+		}
+		q->credits++;
+	}
+
+}
+
+/*
+ * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
+ * of both rings, we go into 'few interrupt mode' in order to give the system
+ * time to free up resources.
+ */
+static void freelQs_empty(struct sge *sge)
+{
+	struct adapter *adapter = sge->adapter;
+	u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
+	u32 irqholdoff_reg;
+
+	refill_free_list(sge, &sge->freelQ[0]);
+	refill_free_list(sge, &sge->freelQ[1]);
+
+	if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
+	    sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
+		irq_reg |= F_FL_EXHAUSTED;
+		irqholdoff_reg = sge->fixed_intrtimer;
+	} else {
+		/* Clear the F_FL_EXHAUSTED interrupts for now */
+		irq_reg &= ~F_FL_EXHAUSTED;
+		irqholdoff_reg = sge->intrtimer_nres;
+	}
+	writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
+	writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
+
+	/* We reenable the Qs to force a freelist GTS interrupt later */
+	doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
+}
+
+#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
+#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
+#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
+			F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
+
+/*
+ * Disable SGE Interrupts
+ */
+void t1_sge_intr_disable(struct sge *sge)
+{
+	u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
+
+	writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
+	writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
+}
+
+/*
+ * Enable SGE interrupts.
+ */
+void t1_sge_intr_enable(struct sge *sge)
+{
+	u32 en = SGE_INT_ENABLE;
+	u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
+
+	if (sge->adapter->flags & TSO_CAPABLE)
+		en &= ~F_PACKET_TOO_BIG;
+	writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
+	writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
+}
+
+/*
+ * Clear SGE interrupts.
+ */
+void t1_sge_intr_clear(struct sge *sge)
+{
+	writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
+	writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
+}
+
+/*
+ * SGE 'Error' interrupt handler
+ */
+int t1_sge_intr_error_handler(struct sge *sge)
+{
+	struct adapter *adapter = sge->adapter;
+	u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
+
+	if (adapter->flags & TSO_CAPABLE)
+		cause &= ~F_PACKET_TOO_BIG;
+	if (cause & F_RESPQ_EXHAUSTED)
+		sge->stats.respQ_empty++;
+	if (cause & F_RESPQ_OVERFLOW) {
+		sge->stats.respQ_overflow++;
+		CH_ALERT("%s: SGE response queue overflow\n",
+			 adapter->name);
+	}
+	if (cause & F_FL_EXHAUSTED) {
+		sge->stats.freelistQ_empty++;
+		freelQs_empty(sge);
+	}
+	if (cause & F_PACKET_TOO_BIG) {
+		sge->stats.pkt_too_big++;
+		CH_ALERT("%s: SGE max packet size exceeded\n",
+			 adapter->name);
+	}
+	if (cause & F_PACKET_MISMATCH) {
+		sge->stats.pkt_mismatch++;
+		CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
+	}
+	if (cause & SGE_INT_FATAL)
+		t1_fatal_err(adapter);
+
+	writel(cause, adapter->regs + A_SG_INT_CAUSE);
+	return 0;
+}
+
+const struct sge_intr_counts *t1_sge_get_intr_counts(struct sge *sge)
+{
+	return &sge->stats;
+}
+
+const struct sge_port_stats *t1_sge_get_port_stats(struct sge *sge, int port)
+{
+	return &sge->port_stats[port];
+}
+
+/**
+ *	recycle_fl_buf - recycle a free list buffer
+ *	@fl: the free list
+ *	@idx: index of buffer to recycle
+ *
+ *	Recycles the specified buffer on the given free list by adding it at
+ *	the next available slot on the list.
+ */
+static void recycle_fl_buf(struct freelQ *fl, int idx)
+{
+	struct freelQ_e *from = &fl->entries[idx];
+	struct freelQ_e *to = &fl->entries[fl->pidx];
+
+	fl->centries[fl->pidx] = fl->centries[idx];
+	to->addr_lo = from->addr_lo;
+	to->addr_hi = from->addr_hi;
+	to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
+	wmb();
+	to->gen2 = V_CMD_GEN2(fl->genbit);
+	fl->credits++;
+
+	if (++fl->pidx == fl->size) {
+		fl->pidx = 0;
+		fl->genbit ^= 1;
+	}
+}
+
+/**
+ *	get_packet - return the next ingress packet buffer
+ *	@pdev: the PCI device that received the packet
+ *	@fl: the SGE free list holding the packet
+ *	@len: the actual packet length, excluding any SGE padding
+ *	@dma_pad: padding at beginning of buffer left by SGE DMA
+ *	@skb_pad: padding to be used if the packet is copied
+ *	@copy_thres: length threshold under which a packet should be copied
+ *	@drop_thres: # of remaining buffers before we start dropping packets
+ *
+ *	Get the next packet from a free list and complete setup of the
+ *	sk_buff.  If the packet is small we make a copy and recycle the
+ *	original buffer, otherwise we use the original buffer itself.  If a
+ *	positive drop threshold is supplied packets are dropped and their
+ *	buffers recycled if (a) the number of remaining buffers is under the
+ *	threshold and the packet is too big to copy, or (b) the packet should
+ *	be copied but there is no memory for the copy.
+ */
+static inline struct sk_buff *get_packet(struct pci_dev *pdev,
+					 struct freelQ *fl, unsigned int len,
+					 int dma_pad, int skb_pad,
+					 unsigned int copy_thres,
+					 unsigned int drop_thres)
+{
+	struct sk_buff *skb;
+	struct freelQ_ce *ce = &fl->centries[fl->cidx];
+
+	if (len < copy_thres) {
+		skb = alloc_skb(len + skb_pad, GFP_ATOMIC);
+		if (likely(skb != NULL)) {
+			skb_reserve(skb, skb_pad);
+			skb_put(skb, len);
+			pci_dma_sync_single_for_cpu(pdev,
+					    pci_unmap_addr(ce, dma_addr),
+ 					    pci_unmap_len(ce, dma_len),
+					    PCI_DMA_FROMDEVICE);
+			memcpy(skb->data, ce->skb->data + dma_pad, len);
+			pci_dma_sync_single_for_device(pdev,
+					    pci_unmap_addr(ce, dma_addr),
+ 					    pci_unmap_len(ce, dma_len),
+					    PCI_DMA_FROMDEVICE);
+		} else if (!drop_thres)
+			goto use_orig_buf;
+
+		recycle_fl_buf(fl, fl->cidx);
+		return skb;
+	}
+
+	if (fl->credits < drop_thres) {
+		recycle_fl_buf(fl, fl->cidx);
+		return NULL;
+	}
+
+use_orig_buf:
+	pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
+			 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
+	skb = ce->skb;
+	skb_reserve(skb, dma_pad);
+	skb_put(skb, len);
+	return skb;
+}
+
+/**
+ *	unexpected_offload - handle an unexpected offload packet
+ *	@adapter: the adapter
+ *	@fl: the free list that received the packet
+ *
+ *	Called when we receive an unexpected offload packet (e.g., the TOE
+ *	function is disabled or the card is a NIC).  Prints a message and
+ *	recycles the buffer.
+ */
+static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
+{
+	struct freelQ_ce *ce = &fl->centries[fl->cidx];
+	struct sk_buff *skb = ce->skb;
+
+	pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
+			    pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
+	CH_ERR("%s: unexpected offload packet, cmd %u\n",
+	       adapter->name, *skb->data);
+	recycle_fl_buf(fl, fl->cidx);
+}
+
+/*
+ * Write the command descriptors to transmit the given skb starting at
+ * descriptor pidx with the given generation.
+ */
+static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
+				  unsigned int pidx, unsigned int gen,
+				  struct cmdQ *q)
+{
+	dma_addr_t mapping;
+	struct cmdQ_e *e, *e1;
+	struct cmdQ_ce *ce;
+	unsigned int i, flags, nfrags = skb_shinfo(skb)->nr_frags;
+
+	mapping = pci_map_single(adapter->pdev, skb->data,
+				 skb->len - skb->data_len, PCI_DMA_TODEVICE);
+	ce = &q->centries[pidx];
+	ce->skb = NULL;
+	pci_unmap_addr_set(ce, dma_addr, mapping);
+	pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
+
+	flags = F_CMD_DATAVALID | F_CMD_SOP | V_CMD_EOP(nfrags == 0) |
+		V_CMD_GEN2(gen);
+	e = &q->entries[pidx];
+	e->addr_lo = (u32)mapping;
+	e->addr_hi = (u64)mapping >> 32;
+	e->len_gen = V_CMD_LEN(skb->len - skb->data_len) | V_CMD_GEN1(gen);
+	for (e1 = e, i = 0; nfrags--; i++) {
+		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
+
+		ce++;
+		e1++;
+		if (++pidx == q->size) {
+			pidx = 0;
+			gen ^= 1;
+			ce = q->centries;
+			e1 = q->entries;
+		}
+
+		mapping = pci_map_page(adapter->pdev, frag->page,
+				       frag->page_offset, frag->size,
+				       PCI_DMA_TODEVICE);
+		ce->skb = NULL;
+		pci_unmap_addr_set(ce, dma_addr, mapping);
+		pci_unmap_len_set(ce, dma_len, frag->size);
+
+		e1->addr_lo = (u32)mapping;
+		e1->addr_hi = (u64)mapping >> 32;
+		e1->len_gen = V_CMD_LEN(frag->size) | V_CMD_GEN1(gen);
+		e1->flags = F_CMD_DATAVALID | V_CMD_EOP(nfrags == 0) |
+			    V_CMD_GEN2(gen);
+	}
+
+	ce->skb = skb;
+	wmb();
+	e->flags = flags;
+}
+
+/*
+ * Clean up completed Tx buffers.
+ */
+static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
+{
+	unsigned int reclaim = q->processed - q->cleaned;
+
+	if (reclaim) {
+		free_cmdQ_buffers(sge, q, reclaim);
+		q->cleaned += reclaim;
+	}
+}
+
+#ifndef SET_ETHTOOL_OPS
+# define __netif_rx_complete(dev) netif_rx_complete(dev)
+#endif
+
+/*
+ * We cannot use the standard netif_rx_schedule_prep() because we have multiple
+ * ports plus the TOE all multiplexing onto a single response queue, therefore
+ * accepting new responses cannot depend on the state of any particular port.
+ * So define our own equivalent that omits the netif_running() test.
+ */
+static inline int napi_schedule_prep(struct net_device *dev)
+{
+	return !test_and_set_bit(__LINK_STATE_RX_SCHED, &dev->state);
+}
+
+
+/**
+ *	sge_rx - process an ingress ethernet packet
+ *	@sge: the sge structure
+ *	@fl: the free list that contains the packet buffer
+ *	@len: the packet length
+ *
+ *	Process an ingress ethernet pakcet and deliver it to the stack.
+ */
+static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
+{
+	struct sk_buff *skb;
+	struct cpl_rx_pkt *p;
+	struct adapter *adapter = sge->adapter;
+
+	sge->stats.ethernet_pkts++;
+	skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad,
+			 sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES,
+			 SGE_RX_DROP_THRES);
+	if (!skb) {
+		sge->port_stats[0].rx_drops++; /* charge only port 0 for now */
+		return 0;
+	}
+
+	p = (struct cpl_rx_pkt *)skb->data;
+	skb_pull(skb, sizeof(*p));
+	skb->dev = adapter->port[p->iff].dev;
+	skb->dev->last_rx = jiffies;
+	skb->protocol = eth_type_trans(skb, skb->dev);
+	if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
+	    skb->protocol == htons(ETH_P_IP) &&
+	    (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
+		sge->port_stats[p->iff].rx_cso_good++;
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	} else
+		skb->ip_summed = CHECKSUM_NONE;
+
+	if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
+		sge->port_stats[p->iff].vlan_xtract++;
+		if (adapter->params.sge.polling)
+			vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
+						 ntohs(p->vlan));
+		else
+			vlan_hwaccel_rx(skb, adapter->vlan_grp,
+					ntohs(p->vlan));
+	} else if (adapter->params.sge.polling)
+		netif_receive_skb(skb);
+	else
+		netif_rx(skb);
+	return 0;
+}
+
+/*
+ * Returns true if a command queue has enough available descriptors that
+ * we can resume Tx operation after temporarily disabling its packet queue.
+ */
+static inline int enough_free_Tx_descs(const struct cmdQ *q)
+{
+	unsigned int r = q->processed - q->cleaned;
+
+	return q->in_use - r < (q->size >> 1);
+}
+
+/*
+ * Called when sufficient space has become available in the SGE command queues
+ * after the Tx packet schedulers have been suspended to restart the Tx path.
+ */
+static void restart_tx_queues(struct sge *sge)
+{
+	struct adapter *adap = sge->adapter;
+
+	if (enough_free_Tx_descs(&sge->cmdQ[0])) {
+		int i;
+
+		for_each_port(adap, i) {
+			struct net_device *nd = adap->port[i].dev;
+
+			if (test_and_clear_bit(nd->if_port,
+					       &sge->stopped_tx_queues) &&
+			    netif_running(nd)) {
+				sge->stats.cmdQ_restarted[3]++;
+				netif_wake_queue(nd);
+			}
+		}
+	}
+}
+
+/*
+ * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0 
+ * information.
+ */
+static unsigned int update_tx_info(struct adapter *adapter, 
+					  unsigned int flags, 
+					  unsigned int pr0)
+{
+	struct sge *sge = adapter->sge;
+	struct cmdQ *cmdq = &sge->cmdQ[0];
+
+	cmdq->processed += pr0;
+
+	if (flags & F_CMDQ0_ENABLE) {
+		clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
+	
+		if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
+		    !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
+			set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
+			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
+		}
+	 	flags &= ~F_CMDQ0_ENABLE;
+	}
+	
+	if (unlikely(sge->stopped_tx_queues != 0))
+		restart_tx_queues(sge);
+
+	return flags;
+}
+
+/*
+ * Process SGE responses, up to the supplied budget.  Returns the number of
+ * responses processed.  A negative budget is effectively unlimited.
+ */
+static int process_responses(struct adapter *adapter, int budget)
+{
+	struct sge *sge = adapter->sge;
+	struct respQ *q = &sge->respQ;
+	struct respQ_e *e = &q->entries[q->cidx];
+	int budget_left = budget;
+	unsigned int flags = 0;
+	unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
+	
+
+	while (likely(budget_left && e->GenerationBit == q->genbit)) {
+		flags |= e->Qsleeping;
+		
+		cmdq_processed[0] += e->Cmdq0CreditReturn;
+		cmdq_processed[1] += e->Cmdq1CreditReturn;
+		
+		/* We batch updates to the TX side to avoid cacheline
+		 * ping-pong of TX state information on MP where the sender
+		 * might run on a different CPU than this function...
+		 */
+		if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) {
+			flags = update_tx_info(adapter, flags, cmdq_processed[0]);
+			cmdq_processed[0] = 0;
+		}
+		if (unlikely(cmdq_processed[1] > 16)) {
+			sge->cmdQ[1].processed += cmdq_processed[1];
+			cmdq_processed[1] = 0;
+		}
+		if (likely(e->DataValid)) {
+			struct freelQ *fl = &sge->freelQ[e->FreelistQid];
+
+			if (unlikely(!e->Sop || !e->Eop))
+				BUG();
+			if (unlikely(e->Offload))
+				unexpected_offload(adapter, fl);
+			else
+				sge_rx(sge, fl, e->BufferLength);
+
+			/*
+			 * Note: this depends on each packet consuming a
+			 * single free-list buffer; cf. the BUG above.
+			 */
+			if (++fl->cidx == fl->size)
+				fl->cidx = 0;
+			if (unlikely(--fl->credits <
+				     fl->size - SGE_FREEL_REFILL_THRESH))
+				refill_free_list(sge, fl);
+		} else
+			sge->stats.pure_rsps++;
+
+		e++;
+		if (unlikely(++q->cidx == q->size)) {
+			q->cidx = 0;
+			q->genbit ^= 1;
+			e = q->entries;
+		}
+		prefetch(e);
+
+		if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
+			writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
+			q->credits = 0;
+		}
+		--budget_left;
+	}
+
+	flags = update_tx_info(adapter, flags, cmdq_processed[0]); 
+	sge->cmdQ[1].processed += cmdq_processed[1];
+
+	budget -= budget_left;
+	return budget;
+}
+
+/*
+ * A simpler version of process_responses() that handles only pure (i.e.,
+ * non data-carrying) responses.  Such respones are too light-weight to justify
+ * calling a softirq when using NAPI, so we handle them specially in hard
+ * interrupt context.  The function is called with a pointer to a response,
+ * which the caller must ensure is a valid pure response.  Returns 1 if it
+ * encounters a valid data-carrying response, 0 otherwise.
+ */
+static int process_pure_responses(struct adapter *adapter, struct respQ_e *e)
+{
+	struct sge *sge = adapter->sge;
+	struct respQ *q = &sge->respQ;
+	unsigned int flags = 0;
+	unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
+
+	do {
+		flags |= e->Qsleeping;
+
+		cmdq_processed[0] += e->Cmdq0CreditReturn;
+		cmdq_processed[1] += e->Cmdq1CreditReturn;
+		
+		e++;
+		if (unlikely(++q->cidx == q->size)) {
+			q->cidx = 0;
+			q->genbit ^= 1;
+			e = q->entries;
+		}
+		prefetch(e);
+
+		if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
+			writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
+			q->credits = 0;
+		}
+		sge->stats.pure_rsps++;
+	} while (e->GenerationBit == q->genbit && !e->DataValid);
+
+	flags = update_tx_info(adapter, flags, cmdq_processed[0]); 
+	sge->cmdQ[1].processed += cmdq_processed[1];
+
+	return e->GenerationBit == q->genbit;
+}
+
+/*
+ * Handler for new data events when using NAPI.  This does not need any locking
+ * or protection from interrupts as data interrupts are off at this point and
+ * other adapter interrupts do not interfere.
+ */
+static int t1_poll(struct net_device *dev, int *budget)
+{
+	struct adapter *adapter = dev->priv;
+	int effective_budget = min(*budget, dev->quota);
+
+	int work_done = process_responses(adapter, effective_budget);
+	*budget -= work_done;
+	dev->quota -= work_done;
+
+	if (work_done >= effective_budget)
+		return 1;
+
+	__netif_rx_complete(dev);
+
+	/*
+	 * Because we don't atomically flush the following write it is
+	 * possible that in very rare cases it can reach the device in a way
+	 * that races with a new response being written plus an error interrupt
+	 * causing the NAPI interrupt handler below to return unhandled status
+	 * to the OS.  To protect against this would require flushing the write
+	 * and doing both the write and the flush with interrupts off.  Way too
+	 * expensive and unjustifiable given the rarity of the race.
+	 */
+	writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
+	return 0;
+}
+
+/*
+ * Returns true if the device is already scheduled for polling.
+ */
+static inline int napi_is_scheduled(struct net_device *dev)
+{
+	return test_bit(__LINK_STATE_RX_SCHED, &dev->state);
+}
+
+/*
+ * NAPI version of the main interrupt handler.
+ */
+static irqreturn_t t1_interrupt_napi(int irq, void *data, struct pt_regs *regs)
+{
+	int handled;
+	struct adapter *adapter = data;
+	struct sge *sge = adapter->sge;
+	struct respQ *q = &adapter->sge->respQ;
+
+	/*
+	 * Clear the SGE_DATA interrupt first thing.  Normally the NAPI
+	 * handler has control of the response queue and the interrupt handler
+	 * can look at the queue reliably only once it knows NAPI is off.
+	 * We can't wait that long to clear the SGE_DATA interrupt because we
+	 * could race with t1_poll rearming the SGE interrupt, so we need to
+	 * clear the interrupt speculatively and really early on.
+	 */
+	writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
+
+	spin_lock(&adapter->async_lock);
+	if (!napi_is_scheduled(sge->netdev)) {
+		struct respQ_e *e = &q->entries[q->cidx];
+
+		if (e->GenerationBit == q->genbit) {
+			if (e->DataValid ||
+			    process_pure_responses(adapter, e)) {
+				if (likely(napi_schedule_prep(sge->netdev)))
+					__netif_rx_schedule(sge->netdev);
+				else
+					printk(KERN_CRIT
+					       "NAPI schedule failure!\n");
+			} else
+			writel(q->cidx, adapter->regs + A_SG_SLEEPING);
+			handled = 1;
+			goto unlock;
+		} else
+		writel(q->cidx, adapter->regs + A_SG_SLEEPING);
+	}  else
+	if (readl(adapter->regs + A_PL_CAUSE) & F_PL_INTR_SGE_DATA)
+		printk(KERN_ERR "data interrupt while NAPI running\n");
+	
+	handled = t1_slow_intr_handler(adapter);
+	if (!handled)
+		sge->stats.unhandled_irqs++;
+ unlock:
+	spin_unlock(&adapter->async_lock);
+	return IRQ_RETVAL(handled != 0);
+}
+
+/*
+ * Main interrupt handler, optimized assuming that we took a 'DATA'
+ * interrupt.
+ *
+ * 1. Clear the interrupt
+ * 2. Loop while we find valid descriptors and process them; accumulate
+ *      information that can be processed after the loop
+ * 3. Tell the SGE at which index we stopped processing descriptors
+ * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
+ *      outstanding TX buffers waiting, replenish RX buffers, potentially
+ *      reenable upper layers if they were turned off due to lack of TX
+ *      resources which are available again.
+ * 5. If we took an interrupt, but no valid respQ descriptors was found we
+ *      let the slow_intr_handler run and do error handling.
+ */
+static irqreturn_t t1_interrupt(int irq, void *cookie, struct pt_regs *regs)
+{
+	int work_done;
+	struct respQ_e *e;
+	struct adapter *adapter = cookie;
+	struct respQ *Q = &adapter->sge->respQ;
+
+	spin_lock(&adapter->async_lock);
+	e = &Q->entries[Q->cidx];
+	prefetch(e);
+
+	writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
+
+	if (likely(e->GenerationBit == Q->genbit))
+		work_done = process_responses(adapter, -1);
+	else
+		work_done = t1_slow_intr_handler(adapter);
+
+	/*
+	 * The unconditional clearing of the PL_CAUSE above may have raced
+	 * with DMA completion and the corresponding generation of a response
+	 * to cause us to miss the resulting data interrupt.  The next write
+	 * is also unconditional to recover the missed interrupt and render
+	 * this race harmless.
+	 */
+	writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
+
+	if (!work_done)
+		adapter->sge->stats.unhandled_irqs++;
+	spin_unlock(&adapter->async_lock);
+	return IRQ_RETVAL(work_done != 0);
+}
+
+intr_handler_t t1_select_intr_handler(adapter_t *adapter)
+{
+	return adapter->params.sge.polling ? t1_interrupt_napi : t1_interrupt;
+}
+
+/*
+ * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
+ *
+ * The code figures out how many entries the sk_buff will require in the
+ * cmdQ and updates the cmdQ data structure with the state once the enqueue
+ * has complete. Then, it doesn't access the global structure anymore, but
+ * uses the corresponding fields on the stack. In conjuction with a spinlock
+ * around that code, we can make the function reentrant without holding the
+ * lock when we actually enqueue (which might be expensive, especially on
+ * architectures with IO MMUs).
+ *
+ * This runs with softirqs disabled.
+ */
+unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
+		       unsigned int qid, struct net_device *dev)
+{
+	struct sge *sge = adapter->sge;
+	struct cmdQ *q = &sge->cmdQ[qid];
+	unsigned int credits, pidx, genbit, count;
+
+	spin_lock(&q->lock);
+	reclaim_completed_tx(sge, q);
+
+	pidx = q->pidx;
+	credits = q->size - q->in_use;
+	count = 1 + skb_shinfo(skb)->nr_frags;
+
+	{	/* Ethernet packet */
+	 	if (unlikely(credits < count)) {
+			netif_stop_queue(dev);
+			set_bit(dev->if_port, &sge->stopped_tx_queues);
+			sge->stats.cmdQ_full[3]++;
+			spin_unlock(&q->lock);
+			CH_ERR("%s: Tx ring full while queue awake!\n",
+			       adapter->name);
+			return 1;
+		}
+		if (unlikely(credits - count < q->stop_thres)) {
+			sge->stats.cmdQ_full[3]++;
+			netif_stop_queue(dev);
+			set_bit(dev->if_port, &sge->stopped_tx_queues);
+		}
+	}
+	q->in_use += count;
+	genbit = q->genbit;
+	q->pidx += count;
+	if (q->pidx >= q->size) {
+		q->pidx -= q->size;
+		q->genbit ^= 1;
+	}
+	spin_unlock(&q->lock);
+
+	write_tx_descs(adapter, skb, pidx, genbit, q);
+
+	/*
+	 * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
+	 * the doorbell if the Q is asleep. There is a natural race, where
+	 * the hardware is going to sleep just after we checked, however,
+	 * then the interrupt handler will detect the outstanding TX packet
+	 * and ring the doorbell for us.
+	 */
+	if (qid)
+		doorbell_pio(adapter, F_CMDQ1_ENABLE);
+	else {
+		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
+		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
+			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
+			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
+		}
+	}
+	return 0;
+}
+
+#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
+
+/*
+ *	eth_hdr_len - return the length of an Ethernet header
+ *	@data: pointer to the start of the Ethernet header
+ *
+ *	Returns the length of an Ethernet header, including optional VLAN tag.
+ */
+static inline int eth_hdr_len(const void *data)
+{
+	const struct ethhdr *e = data;
+
+	return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
+}
+
+/*
+ * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
+ */
+int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+	struct adapter *adapter = dev->priv;
+	struct sge_port_stats *st = &adapter->sge->port_stats[dev->if_port];
+	struct sge *sge = adapter->sge;
+	struct cpl_tx_pkt *cpl;
+
+#ifdef NETIF_F_TSO
+	if (skb_shinfo(skb)->tso_size) {
+		int eth_type;
+		struct cpl_tx_pkt_lso *hdr;
+
+		st->tso++;
+
+		eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
+			CPL_ETH_II : CPL_ETH_II_VLAN;
+
+		hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
+		hdr->opcode = CPL_TX_PKT_LSO;
+		hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
+		hdr->ip_hdr_words = skb->nh.iph->ihl;
+		hdr->tcp_hdr_words = skb->h.th->doff;
+		hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
+						skb_shinfo(skb)->tso_size));
+		hdr->len = htonl(skb->len - sizeof(*hdr));
+		cpl = (struct cpl_tx_pkt *)hdr;
+		sge->stats.tx_lso_pkts++;
+	} else
+#endif
+	{
+		/*
+	 	 * Packets shorter than ETH_HLEN can break the MAC, drop them
+		 * early.  Also, we may get oversized packets because some
+		 * parts of the kernel don't handle our unusual hard_header_len
+		 * right, drop those too.
+		 */
+		if (unlikely(skb->len < ETH_HLEN ||
+			     skb->len > dev->mtu + eth_hdr_len(skb->data))) {
+			dev_kfree_skb_any(skb);
+			return NET_XMIT_SUCCESS;
+		}
+
+		/*
+		 * We are using a non-standard hard_header_len and some kernel
+		 * components, such as pktgen, do not handle it right.
+		 * Complain when this happens but try to fix things up.
+		 */
+		if (unlikely(skb_headroom(skb) <
+			     dev->hard_header_len - ETH_HLEN)) {
+			struct sk_buff *orig_skb = skb;
+
+			if (net_ratelimit())
+				printk(KERN_ERR "%s: inadequate headroom in "
+				       "Tx packet\n", dev->name);
+			skb = skb_realloc_headroom(skb, sizeof(*cpl));
+			dev_kfree_skb_any(orig_skb);
+			if (!skb)
+				return -ENOMEM;
+		}
+
+		if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
+		    skb->ip_summed == CHECKSUM_HW &&
+		    skb->nh.iph->protocol == IPPROTO_UDP)
+			if (unlikely(skb_checksum_help(skb, 0))) {
+				dev_kfree_skb_any(skb);
+				return -ENOMEM;
+			}
+
+		/* Hmmm, assuming to catch the gratious arp... and we'll use
+		 * it to flush out stuck espi packets...
+		  */
+		if (unlikely(!adapter->sge->espibug_skb)) {
+			if (skb->protocol == htons(ETH_P_ARP) &&
+			    skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) {
+				adapter->sge->espibug_skb = skb;
+				/* We want to re-use this skb later. We
+				 * simply bump the reference count and it
+				 * will not be freed...
+				 */
+				skb = skb_get(skb);
+			}
+		}
+
+		cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
+		cpl->opcode = CPL_TX_PKT;
+		cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
+		cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_HW ? 0 : 1;
+		/* the length field isn't used so don't bother setting it */
+
+		st->tx_cso += (skb->ip_summed == CHECKSUM_HW);
+		sge->stats.tx_do_cksum += (skb->ip_summed == CHECKSUM_HW);
+		sge->stats.tx_reg_pkts++;
+	}
+	cpl->iff = dev->if_port;
+
+#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
+	if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
+		cpl->vlan_valid = 1;
+		cpl->vlan = htons(vlan_tx_tag_get(skb));
+		st->vlan_insert++;
+	} else
+#endif
+		cpl->vlan_valid = 0;
+
+	dev->trans_start = jiffies;
+	return t1_sge_tx(skb, adapter, 0, dev);
+}
+
+/*
+ * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
+ */
+static void sge_tx_reclaim_cb(unsigned long data)
+{
+	int i;
+	struct sge *sge = (struct sge *)data;
+
+	for (i = 0; i < SGE_CMDQ_N; ++i) {
+		struct cmdQ *q = &sge->cmdQ[i];
+
+		if (!spin_trylock(&q->lock))
+			continue;
+
+		reclaim_completed_tx(sge, q);
+		if (i == 0 && q->in_use)   /* flush pending credits */
+			writel(F_CMDQ0_ENABLE,
+				sge->adapter->regs + A_SG_DOORBELL);
+
+		spin_unlock(&q->lock);
+	}
+	mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
+}
+
+/*
+ * Propagate changes of the SGE coalescing parameters to the HW.
+ */
+int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
+{
+	sge->netdev->poll = t1_poll;
+	sge->fixed_intrtimer = p->rx_coalesce_usecs *
+		core_ticks_per_usec(sge->adapter);
+	writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
+	return 0;
 }
 
 /*
@@ -712,740 +1579,106 @@
 }
 
 /*
- * Frees all SGE related resources and the sge structure itself
+ * Disables the DMA engine.
  */
-void t1_sge_destroy(struct sge *sge)
+void t1_sge_stop(struct sge *sge)
 {
-	if (sge->pskb)
-		dev_kfree_skb(sge->pskb);
-	free_tx_resources(sge);
-	free_rx_resources(sge);
-	kfree(sge);
+	writel(0, sge->adapter->regs + A_SG_CONTROL);
+	(void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
+	if (is_T2(sge->adapter))
+		del_timer_sync(&sge->espibug_timer);
+	del_timer_sync(&sge->tx_reclaim_timer);
 }
 
 /*
- * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
- * context Q) until the Q is full or alloc_skb fails.
- *
- * It is possible that the generation bits already match, indicating that the
- * buffer is already valid and nothing needs to be done. This happens when we
- * copied a received buffer into a new sk_buff during the interrupt processing.
- *
- * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
- * we specify a RX_OFFSET in order to make sure that the IP header is 4B
- * aligned.
+ * Enables the DMA engine.
  */
-static void refill_free_list(struct sge *sge, struct freelQ *Q)
+void t1_sge_start(struct sge *sge)
 {
-	struct pci_dev *pdev = sge->adapter->pdev;
-	struct freelQ_ce *ce = &Q->centries[Q->pidx];
-	struct freelQ_e *e = &Q->entries[Q->pidx];
-	unsigned int dma_len = Q->rx_buffer_size - Q->dma_offset;
-
-
-	while (Q->credits < Q->entries_n) {
-		if (e->GenerationBit != Q->genbit) {
-			struct sk_buff *skb;
-			dma_addr_t mapping;
-
-			skb = alloc_skb(Q->rx_buffer_size, GFP_ATOMIC);
-			if (!skb)
-				break;
-			if (Q->dma_offset)
-				skb_reserve(skb, Q->dma_offset);
-			mapping = pci_map_single(pdev, skb->data, dma_len,
-						 PCI_DMA_FROMDEVICE);
-			ce->skb = skb;
-			pci_unmap_addr_set(ce, dma_addr, mapping);
-			pci_unmap_len_set(ce, dma_len, dma_len);
-			e->AddrLow = (u32)mapping;
-			e->AddrHigh = (u64)mapping >> 32;
-			e->BufferLength = dma_len;
-			e->GenerationBit = e->GenerationBit2 = Q->genbit;
-		}
-
-		e++;
-		ce++;
-		if (++Q->pidx == Q->entries_n) {
-			Q->pidx = 0;
-			Q->genbit ^= 1;
-			ce = Q->centries;
-			e = Q->entries;
-		}
-		Q->credits++;
-	}
-
-}
-
-/*
- * Calls refill_free_list for both freelist Qs. If we cannot
- * fill at least 1/4 of both Qs, we go into 'few interrupt mode' in order
- * to give the system time to free up resources.
- */
-static void freelQs_empty(struct sge *sge)
-{
-	u32 irq_reg = t1_read_reg_4(sge->adapter, A_SG_INT_ENABLE);
-	u32 irqholdoff_reg;
-
 	refill_free_list(sge, &sge->freelQ[0]);
 	refill_free_list(sge, &sge->freelQ[1]);
 
-	if (sge->freelQ[0].credits > (sge->freelQ[0].entries_n >> 2) &&
-	    sge->freelQ[1].credits > (sge->freelQ[1].entries_n >> 2)) {
-		irq_reg |= F_FL_EXHAUSTED;
-		irqholdoff_reg = sge->intrtimer[sge->currIndex];
-	} else {
-		/* Clear the F_FL_EXHAUSTED interrupts for now */
-		irq_reg &= ~F_FL_EXHAUSTED;
-		irqholdoff_reg = sge->intrtimer_nres;
-	}
-	t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, irqholdoff_reg);
-	t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, irq_reg);
+	writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
+	doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
+	(void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
 
-	/* We reenable the Qs to force a freelist GTS interrupt later */
-	doorbell_pio(sge, F_FL0_ENABLE | F_FL1_ENABLE);
-}
+	mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
 
-#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
-#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
-#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
-			F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
-
-/*
- * Disable SGE Interrupts
- */
-void t1_sge_intr_disable(struct sge *sge)
-{
-	u32 val = t1_read_reg_4(sge->adapter, A_PL_ENABLE);
-
-	t1_write_reg_4(sge->adapter, A_PL_ENABLE, val & ~SGE_PL_INTR_MASK);
-	t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, 0);
+	if (is_T2(sge->adapter)) 
+		mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
 }
 
 /*
- * Enable SGE interrupts.
+ * Callback for the T2 ESPI 'stuck packet feature' workaorund
  */
-void t1_sge_intr_enable(struct sge *sge)
+static void espibug_workaround(void *data)
 {
-	u32 en = SGE_INT_ENABLE;
-	u32 val = t1_read_reg_4(sge->adapter, A_PL_ENABLE);
-
-	if (sge->adapter->flags & TSO_CAPABLE)
-		en &= ~F_PACKET_TOO_BIG;
-	t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, en);
-	t1_write_reg_4(sge->adapter, A_PL_ENABLE, val | SGE_PL_INTR_MASK);
-}
-
-/*
- * Clear SGE interrupts.
- */
-void t1_sge_intr_clear(struct sge *sge)
-{
-	t1_write_reg_4(sge->adapter, A_PL_CAUSE, SGE_PL_INTR_MASK);
-	t1_write_reg_4(sge->adapter, A_SG_INT_CAUSE, 0xffffffff);
-}
-
-/*
- * SGE 'Error' interrupt handler
- */
-int t1_sge_intr_error_handler(struct sge *sge)
-{
-	struct adapter *adapter = sge->adapter;
-	u32 cause = t1_read_reg_4(adapter, A_SG_INT_CAUSE);
-
-	if (adapter->flags & TSO_CAPABLE)
-		cause &= ~F_PACKET_TOO_BIG;
-	if (cause & F_RESPQ_EXHAUSTED)
-		sge->intr_cnt.respQ_empty++;
-	if (cause & F_RESPQ_OVERFLOW) {
-		sge->intr_cnt.respQ_overflow++;
-		CH_ALERT("%s: SGE response queue overflow\n",
-			 adapter->name);
-	}
-	if (cause & F_FL_EXHAUSTED) {
-		sge->intr_cnt.freelistQ_empty++;
-		freelQs_empty(sge);
-	}
-	if (cause & F_PACKET_TOO_BIG) {
-		sge->intr_cnt.pkt_too_big++;
-		CH_ALERT("%s: SGE max packet size exceeded\n",
-			 adapter->name);
-	}
-	if (cause & F_PACKET_MISMATCH) {
-		sge->intr_cnt.pkt_mismatch++;
-		CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
-	}
-	if (cause & SGE_INT_FATAL)
-		t1_fatal_err(adapter);
-
-	t1_write_reg_4(adapter, A_SG_INT_CAUSE, cause);
-	return 0;
-}
-
-/*
- * The following code is copied from 2.6, where the skb_pull is doing the
- * right thing and only pulls ETH_HLEN.
- *
- *	Determine the packet's protocol ID. The rule here is that we
- *	assume 802.3 if the type field is short enough to be a length.
- *	This is normal practice and works for any 'now in use' protocol.
- */
-static unsigned short sge_eth_type_trans(struct sk_buff *skb,
-					 struct net_device *dev)
-{
-	struct ethhdr *eth;
-	unsigned char *rawp;
-
-	skb->mac.raw = skb->data;
-	skb_pull(skb, ETH_HLEN);
-	eth = (struct ethhdr *)skb->mac.raw;
-
-	if (*eth->h_dest&1) {
-		if(memcmp(eth->h_dest, dev->broadcast, ETH_ALEN) == 0)
-			skb->pkt_type = PACKET_BROADCAST;
-		else
-			skb->pkt_type = PACKET_MULTICAST;
-	}
-
-	/*
-	 *	This ALLMULTI check should be redundant by 1.4
-	 *	so don't forget to remove it.
-	 *
-	 *	Seems, you forgot to remove it. All silly devices
-	 *	seems to set IFF_PROMISC.
-	 */
-
-	else if (1 /*dev->flags&IFF_PROMISC*/)
-	{
-		if(memcmp(eth->h_dest,dev->dev_addr, ETH_ALEN))
-			skb->pkt_type=PACKET_OTHERHOST;
-	}
-
-	if (ntohs(eth->h_proto) >= 1536)
-		return eth->h_proto;
-
-	rawp = skb->data;
-
-	/*
-	 * This is a magic hack to spot IPX packets. Older Novell breaks
-	 * the protocol design and runs IPX over 802.3 without an 802.2 LLC
-	 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
-	 * won't work for fault tolerant netware but does for the rest.
-	 */
-	if (*(unsigned short *)rawp == 0xFFFF)
-		return htons(ETH_P_802_3);
-
-	/*
-	 * Real 802.2 LLC
-	 */
-	return htons(ETH_P_802_2);
-}
-
-/*
- * Prepare the received buffer and pass it up the stack. If it is small enough
- * and allocation doesn't fail, we use a new sk_buff and copy the content.
- */
-static unsigned int t1_sge_rx(struct sge *sge, struct freelQ *Q,
-			      unsigned int len, unsigned int offload)
-{
-	struct sk_buff *skb;
-	struct adapter *adapter = sge->adapter;
-	struct freelQ_ce *ce = &Q->centries[Q->cidx];
-
-	if (len <= SGE_RX_COPY_THRESHOLD &&
-	    (skb = alloc_skb(len + NET_IP_ALIGN, GFP_ATOMIC))) {
-		struct freelQ_e *e;
-		char *src = ce->skb->data;
-
-		pci_dma_sync_single_for_cpu(adapter->pdev,
-					    pci_unmap_addr(ce, dma_addr),
-					    pci_unmap_len(ce, dma_len),
-					    PCI_DMA_FROMDEVICE);
-		if (!offload) {
-			skb_reserve(skb, NET_IP_ALIGN);
-			src += sge->rx_pkt_pad;
-		}
-		memcpy(skb->data, src, len);
-
-		/* Reuse the entry. */
-		e = &Q->entries[Q->cidx];
-		e->GenerationBit  ^= 1;
-		e->GenerationBit2 ^= 1;
-	} else {
-		pci_unmap_single(adapter->pdev, pci_unmap_addr(ce, dma_addr),
-				 pci_unmap_len(ce, dma_len),
-				 PCI_DMA_FROMDEVICE);
-		skb = ce->skb;
-		if (!offload && sge->rx_pkt_pad)
-			__skb_pull(skb, sge->rx_pkt_pad);
-	}
-
-	skb_put(skb, len);
-
-
-	if (unlikely(offload)) {
-		{
-			printk(KERN_ERR
-			       "%s: unexpected offloaded packet, cmd %u\n",
-			       adapter->name, *skb->data);
-			dev_kfree_skb_any(skb);
-		}
-	} else {
-		struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)skb->data;
-
-		skb_pull(skb, sizeof(*p));
-		skb->dev = adapter->port[p->iff].dev;
-		skb->dev->last_rx = jiffies;
-		skb->protocol = sge_eth_type_trans(skb, skb->dev);
-		if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
-		    skb->protocol == htons(ETH_P_IP) &&
-		    (skb->data[9] == IPPROTO_TCP ||
-		     skb->data[9] == IPPROTO_UDP))
-			skb->ip_summed = CHECKSUM_UNNECESSARY;
-		else
-			skb->ip_summed = CHECKSUM_NONE;
-		if (adapter->vlan_grp && p->vlan_valid)
-			vlan_hwaccel_rx(skb, adapter->vlan_grp,
-					ntohs(p->vlan));
-		else
-			netif_rx(skb);
-	}
-
-	if (++Q->cidx == Q->entries_n)
-		Q->cidx = 0;
-
-	if (unlikely(--Q->credits < Q->entries_n - SGE_FREEL_REFILL_THRESH))
-		refill_free_list(sge, Q);
-	return 1;
-}
-
-
-/*
- * Adaptive interrupt timer logic to keep the CPU utilization to
- * manageable levels. Basically, as the Average Packet Size (APS)
- * gets higher, the interrupt latency setting gets longer. Every
- * SGE_INTR_BUCKETSIZE (of 100B) causes a bump of 2usec to the
- * base value of SGE_INTRTIMER0. At large values of payload the
- * latency hits the ceiling value of SGE_INTRTIMER1 stored at
- * index SGE_INTR_MAXBUCKETS-1 in sge->intrtimer[].
- *
- * sge->currIndex caches the last index to save unneeded PIOs.
- */
-static inline void update_intr_timer(struct sge *sge, unsigned int avg_payload)
-{
-	unsigned int newIndex;
-
-	newIndex = avg_payload / SGE_INTR_BUCKETSIZE;
-	if (newIndex > SGE_INTR_MAXBUCKETS - 1) {
-		newIndex = SGE_INTR_MAXBUCKETS - 1;
-	}
-	/* Save a PIO with this check....maybe */
-	if (newIndex != sge->currIndex) {
-		t1_write_reg_4(sge->adapter, A_SG_INTRTIMER,
-			       sge->intrtimer[newIndex]);
-		sge->currIndex = newIndex;
-		sge->adapter->params.sge.last_rx_coalesce_raw =
-			sge->intrtimer[newIndex];
-	}
-}
-
-/*
- * Returns true if command queue q_num has enough available descriptors that
- * we can resume Tx operation after temporarily disabling its packet queue.
- */
-static inline int enough_free_Tx_descs(struct sge *sge, int q_num)
-{
-	return atomic_read(&sge->cmdQ[q_num].credits) >
-		(sge->cmdQ[q_num].entries_n >> 2);
-}
-
-/*
- * Main interrupt handler, optimized assuming that we took a 'DATA'
- * interrupt.
- *
- * 1. Clear the interrupt
- * 2. Loop while we find valid descriptors and process them; accumulate
- *	information that can be processed after the loop
- * 3. Tell the SGE at which index we stopped processing descriptors
- * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
- *	outstanding TX buffers waiting, replenish RX buffers, potentially
- *	reenable upper layers if they were turned off due to lack of TX
- *	resources which are available again.
- * 5. If we took an interrupt, but no valid respQ descriptors was found we
- *	let the slow_intr_handler run and do error handling.
- */
-irqreturn_t t1_interrupt(int irq, void *cookie, struct pt_regs *regs)
-{
-	struct net_device *netdev;
-	struct adapter *adapter = cookie;
+	struct adapter *adapter = (struct adapter *)data;
 	struct sge *sge = adapter->sge;
-	struct respQ *Q = &sge->respQ;
-	unsigned int credits = Q->credits, flags = 0, ret = 0;
-	unsigned int tot_rxpayload = 0, tot_txpayload = 0, n_rx = 0, n_tx = 0;
-	unsigned int credits_pend[SGE_CMDQ_N] = { 0, 0 };
 
-	struct respQ_e *e = &Q->entries[Q->cidx];
-	prefetch(e);
+	if (netif_running(adapter->port[0].dev)) {
+		struct sk_buff *skb = sge->espibug_skb;
 
-	t1_write_reg_4(adapter, A_PL_CAUSE, F_PL_INTR_SGE_DATA);
+		u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
 
-
-	while (e->GenerationBit == Q->genbit) {
-		if (--credits < SGE_RESPQ_REPLENISH_THRES) {
-			u32 n = Q->entries_n - credits - 1;
-
-			t1_write_reg_4(adapter, A_SG_RSPQUEUECREDIT, n);
-			credits += n;
-		}
-		if (likely(e->DataValid)) {
-			if (!e->Sop || !e->Eop)
-				BUG();
-			t1_sge_rx(sge, &sge->freelQ[e->FreelistQid],
-				  e->BufferLength, e->Offload);
-			tot_rxpayload += e->BufferLength;
-			++n_rx;
-		}
-		flags |= e->Qsleeping;
-		credits_pend[0] += e->Cmdq0CreditReturn;
-		credits_pend[1] += e->Cmdq1CreditReturn;
-
-#ifdef CONFIG_SMP
-		/*
-		 * If enough cmdQ0 buffers have finished DMAing free them so
-		 * anyone that may be waiting for their release can continue.
-		 * We do this only on MP systems to allow other CPUs to proceed
-		 * promptly.  UP systems can wait for the free_cmdQ_buffers()
-		 * calls after this loop as the sole CPU is currently busy in
-		 * this loop.
-		 */
-		if (unlikely(credits_pend[0] > SGE_FREEL_REFILL_THRESH)) {
-			free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0],
-					  &tot_txpayload);
-			n_tx += credits_pend[0];
-			credits_pend[0] = 0;
-		}
-#endif
-		ret++;
-		e++;
-		if (unlikely(++Q->cidx == Q->entries_n)) {
-			Q->cidx = 0;
-			Q->genbit ^= 1;
-			e = Q->entries;
-		}
-	}
-
-	Q->credits = credits;
-	t1_write_reg_4(adapter, A_SG_SLEEPING, Q->cidx);
-
-	if (credits_pend[0])
-		free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0], &tot_txpayload);
-	if (credits_pend[1])
-		free_cmdQ_buffers(sge, &sge->cmdQ[1], credits_pend[1], &tot_txpayload);
-
-	/* Do any coalescing and interrupt latency timer adjustments */
-	if (adapter->params.sge.coalesce_enable) {
-		unsigned int	avg_txpayload = 0, avg_rxpayload = 0;
-
-		n_tx += credits_pend[0] + credits_pend[1];
-
-		/*
-		 * Choose larger avg. payload size to increase
-		 * throughput and reduce [CPU util., intr/s.]
-		 *
-		 * Throughput behavior favored in mixed-mode.
-		 */
-		if (n_tx)
-			avg_txpayload = tot_txpayload/n_tx;
-		if (n_rx)
-			avg_rxpayload = tot_rxpayload/n_rx;
-
-		if (n_tx && avg_txpayload > avg_rxpayload){
-			update_intr_timer(sge, avg_txpayload);
-		} else if (n_rx) {
-			update_intr_timer(sge, avg_rxpayload);
-		}
-	}
-
-	if (flags & F_CMDQ0_ENABLE) {
-		struct cmdQ *cmdQ = &sge->cmdQ[0];
-
-		atomic_set(&cmdQ->asleep, 1);
-		if (atomic_read(&cmdQ->pio_pidx) != cmdQ->pidx) {
-			doorbell_pio(sge, F_CMDQ0_ENABLE);
-			atomic_set(&cmdQ->pio_pidx, cmdQ->pidx);
-		}
-	}
-	if (unlikely(flags & (F_FL0_ENABLE | F_FL1_ENABLE)))
-		freelQs_empty(sge);
-
-	netdev = adapter->port[0].dev;
-	if (unlikely(netif_queue_stopped(netdev) && netif_carrier_ok(netdev) &&
-		     enough_free_Tx_descs(sge, 0) &&
-		     enough_free_Tx_descs(sge, 1))) {
-		netif_wake_queue(netdev);
-	}
-	if (unlikely(!ret))
-		ret = t1_slow_intr_handler(adapter);
-
-	return IRQ_RETVAL(ret != 0);
-}
-
-/*
- * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
- *
- * The code figures out how many entries the sk_buff will require in the
- * cmdQ and updates the cmdQ data structure with the state once the enqueue
- * has complete. Then, it doesn't access the global structure anymore, but
- * uses the corresponding fields on the stack. In conjuction with a spinlock
- * around that code, we can make the function reentrant without holding the
- * lock when we actually enqueue (which might be expensive, especially on
- * architectures with IO MMUs).
- */
-static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
-		       unsigned int qid)
-{
-	struct sge *sge = adapter->sge;
-	struct cmdQ *Q = &sge->cmdQ[qid];
-	struct cmdQ_e *e;
-	struct cmdQ_ce *ce;
-	dma_addr_t mapping;
-	unsigned int credits, pidx, genbit;
-
-	unsigned int count = 1 + skb_shinfo(skb)->nr_frags;
-
-	/*
-	 * Coming from the timer
-	 */
-	if ((skb == sge->pskb)) {
-		/*
-		 * Quit if any cmdQ activities
-		 */
-		if (!spin_trylock(&Q->Qlock))
-			return 0;
-		if (atomic_read(&Q->credits) != Q->entries_n) {
-			spin_unlock(&Q->Qlock);
-			return 0;
-		}
-	}
-	else
-		spin_lock(&Q->Qlock);
-
-	genbit = Q->genbit;
-	pidx = Q->pidx;
-	credits = atomic_read(&Q->credits);
-
-	credits -= count;
-	atomic_sub(count, &Q->credits);
-	Q->pidx += count;
-	if (Q->pidx >= Q->entries_n) {
-		Q->pidx -= Q->entries_n;
-		Q->genbit ^= 1;
-	}
-
-	if (unlikely(credits < (MAX_SKB_FRAGS + 1))) {
-		sge->intr_cnt.cmdQ_full[qid]++;
-		netif_stop_queue(adapter->port[0].dev);
-	}
-	spin_unlock(&Q->Qlock);
-
-	mapping = pci_map_single(adapter->pdev, skb->data,
-				 skb->len - skb->data_len, PCI_DMA_TODEVICE);
-	ce = &Q->centries[pidx];
-	ce->skb = NULL;
-	pci_unmap_addr_set(ce, dma_addr, mapping);
-	pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
-	ce->single = 1;
-
-	e = &Q->entries[pidx];
-	e->Sop =  1;
-	e->DataValid = 1;
-	e->BufferLength = skb->len - skb->data_len;
-	e->AddrHigh = (u64)mapping >> 32;
-	e->AddrLow = (u32)mapping;
-
-	if (--count > 0) {
-		unsigned int i;
-
-		e->Eop = 0;
-		wmb();
-		e->GenerationBit = e->GenerationBit2 = genbit;
-
-		for (i = 0; i < count; i++) {
-			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
-
-			ce++; e++;
-			if (++pidx == Q->entries_n) {
-				pidx = 0;
-				genbit ^= 1;
-				ce = Q->centries;
-				e = Q->entries;
+		if ((seop & 0xfff0fff) == 0xfff && skb) {
+			if (!skb->cb[0]) {
+				u8 ch_mac_addr[ETH_ALEN] =
+				    {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
+				memcpy(skb->data + sizeof(struct cpl_tx_pkt),
+				    ch_mac_addr, ETH_ALEN);
+				memcpy(skb->data + skb->len - 10, ch_mac_addr,
+				    ETH_ALEN);
+				skb->cb[0] = 0xff;
 			}
 
-			mapping = pci_map_page(adapter->pdev, frag->page,
-					       frag->page_offset,
-					       frag->size,
-					       PCI_DMA_TODEVICE);
-			ce->skb = NULL;
-			pci_unmap_addr_set(ce, dma_addr, mapping);
-			pci_unmap_len_set(ce, dma_len, frag->size);
-			ce->single = 0;
-
-			e->Sop = 0;
-			e->DataValid = 1;
-			e->BufferLength = frag->size;
-			e->AddrHigh = (u64)mapping >> 32;
-			e->AddrLow = (u32)mapping;
-
-			if (i < count - 1) {
-				e->Eop = 0;
-				wmb();
-				e->GenerationBit = e->GenerationBit2 = genbit;
-			}
+			/* bump the reference count to avoid freeing of the
+			 * skb once the DMA has completed.
+			 */
+			skb = skb_get(skb);
+			t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
 		}
 	}
-
-	if (skb != sge->pskb)
-		ce->skb = skb;
-	e->Eop = 1;
-	wmb();
-	e->GenerationBit = e->GenerationBit2 = genbit;
-
-	/*
-	 * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
-	 * the doorbell if the Q is asleep. There is a natural race, where
-	 * the hardware is going to sleep just after we checked, however,
-	 * then the interrupt handler will detect the outstanding TX packet
-	 * and ring the doorbell for us.
-	 */
-	if (qid) {
-		doorbell_pio(sge, F_CMDQ1_ENABLE);
-	} else if (atomic_read(&Q->asleep)) {
-		atomic_set(&Q->asleep, 0);
-		doorbell_pio(sge, F_CMDQ0_ENABLE);
-		atomic_set(&Q->pio_pidx, Q->pidx);
-	}
-	return 0;
+	mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
 }
 
-#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
-
 /*
- * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
+ * Creates a t1_sge structure and returns suggested resource parameters.
  */
-int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
+struct sge * __devinit t1_sge_create(struct adapter *adapter,
+				     struct sge_params *p)
 {
-	struct adapter *adapter = dev->priv;
-	struct cpl_tx_pkt *cpl;
-	struct ethhdr *eth;
-	size_t max_len;
+	struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL);
 
-	/*
-	 * We are using a non-standard hard_header_len and some kernel
-	 * components, such as pktgen, do not handle it right.  Complain
-	 * when this happens but try to fix things up.
-	 */
-	if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
-		struct sk_buff *orig_skb = skb;
+	if (!sge)
+		return NULL;
+	memset(sge, 0, sizeof(*sge));
 
-		if (net_ratelimit())
-			printk(KERN_ERR
-			       "%s: Tx packet has inadequate headroom\n",
-			       dev->name);
-		skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
-		dev_kfree_skb_any(orig_skb);
-		if (!skb)
-			return -ENOMEM;
+	sge->adapter = adapter;
+	sge->netdev = adapter->port[0].dev;
+	sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
+	sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
+
+	init_timer(&sge->tx_reclaim_timer);
+	sge->tx_reclaim_timer.data = (unsigned long)sge;
+	sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
+
+	if (is_T2(sge->adapter)) {
+		init_timer(&sge->espibug_timer);
+		sge->espibug_timer.function = (void *)&espibug_workaround;
+		sge->espibug_timer.data = (unsigned long)sge->adapter;
+		sge->espibug_timeout = 1;
 	}
+	 
 
-	if (skb_shinfo(skb)->tso_size) {
-		int eth_type;
-		struct cpl_tx_pkt_lso *hdr;
+	p->cmdQ_size[0] = SGE_CMDQ0_E_N;
+	p->cmdQ_size[1] = SGE_CMDQ1_E_N;
+	p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
+	p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
+	p->rx_coalesce_usecs =  50;
+	p->coalesce_enable = 0;
+	p->sample_interval_usecs = 0;
+	p->polling = 0;
 
-		eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
-			CPL_ETH_II : CPL_ETH_II_VLAN;
-
-		hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
-		hdr->opcode = CPL_TX_PKT_LSO;
-		hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
-		hdr->ip_hdr_words = skb->nh.iph->ihl;
-		hdr->tcp_hdr_words = skb->h.th->doff;
-		hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
-						skb_shinfo(skb)->tso_size));
-		hdr->len = htonl(skb->len - sizeof(*hdr));
-		cpl = (struct cpl_tx_pkt *)hdr;
-	} else
-	{
-		/*
-		 * An Ethernet packet must have at least space for
-		 * the DIX Ethernet header and be no greater than
-		 * the device set MTU. Otherwise trash the packet.
-		 */
-		if (skb->len < ETH_HLEN)
-			goto t1_start_xmit_fail2;
-		eth = (struct ethhdr *)skb->data;
-		if (eth->h_proto == htons(ETH_P_8021Q))
-			max_len = dev->mtu + VLAN_ETH_HLEN;
-		else
-			max_len = dev->mtu + ETH_HLEN;
-		if (skb->len > max_len)
-			goto t1_start_xmit_fail2;
-
-		if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
-		    skb->ip_summed == CHECKSUM_HW &&
-		    skb->nh.iph->protocol == IPPROTO_UDP &&
-		    skb_checksum_help(skb, 0))
-			goto t1_start_xmit_fail3;
-
-
-		if (!adapter->sge->pskb) {
-			if (skb->protocol == htons(ETH_P_ARP) &&
-			    skb->nh.arph->ar_op == htons(ARPOP_REQUEST))
-				adapter->sge->pskb = skb;
-		}
-		cpl = (struct cpl_tx_pkt *)skb_push(skb, sizeof(*cpl));
-		cpl->opcode = CPL_TX_PKT;
-		cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
-		cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_HW ? 0 : 1;
-		/* the length field isn't used so don't bother setting it */
-	}
-	cpl->iff = dev->if_port;
-
-#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
-	if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
-		cpl->vlan_valid = 1;
-		cpl->vlan = htons(vlan_tx_tag_get(skb));
-	} else
-#endif
-		cpl->vlan_valid = 0;
-
-	dev->trans_start = jiffies;
-	return t1_sge_tx(skb, adapter, 0);
-
-t1_start_xmit_fail3:
-	printk(KERN_INFO "%s: Unable to complete checksum\n", dev->name);
-	goto t1_start_xmit_fail1;
-
-t1_start_xmit_fail2:
-	printk(KERN_INFO "%s: Invalid packet length %d, dropping\n",
-			dev->name, skb->len);
-
-t1_start_xmit_fail1:
-	dev_kfree_skb_any(skb);
-	return 0;
+	return sge;
 }
-
-void t1_sge_set_ptimeout(adapter_t *adapter, u32 val)
-{
-	struct sge *sge = adapter->sge;
-
-	if (is_T2(adapter))
-		sge->ptimeout = max((u32)((HZ * val) / 1000), (u32)1);
-}
-
-u32 t1_sge_get_ptimeout(adapter_t *adapter)
-{
-	struct sge *sge = adapter->sge;
-
-	return (is_T2(adapter) ? ((sge->ptimeout * 1000) / HZ) : 0);
-}
-