| /* |
| * sata_mv.c - Marvell SATA support |
| * |
| * Copyright 2008-2009: Marvell Corporation, all rights reserved. |
| * Copyright 2005: EMC Corporation, all rights reserved. |
| * Copyright 2005 Red Hat, Inc. All rights reserved. |
| * |
| * Originally written by Brett Russ. |
| * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. |
| * |
| * Please ALWAYS copy linux-ide@vger.kernel.org on emails. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| |
| /* |
| * sata_mv TODO list: |
| * |
| * --> Develop a low-power-consumption strategy, and implement it. |
| * |
| * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. |
| * |
| * --> [Experiment, Marvell value added] Is it possible to use target |
| * mode to cross-connect two Linux boxes with Marvell cards? If so, |
| * creating LibATA target mode support would be very interesting. |
| * |
| * Target mode, for those without docs, is the ability to directly |
| * connect two SATA ports. |
| */ |
| |
| /* |
| * 80x1-B2 errata PCI#11: |
| * |
| * Users of the 6041/6081 Rev.B2 chips (current is C0) |
| * should be careful to insert those cards only onto PCI-X bus #0, |
| * and only in device slots 0..7, not higher. The chips may not |
| * work correctly otherwise (note: this is a pretty rare condition). |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/dmapool.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/device.h> |
| #include <linux/clk.h> |
| #include <linux/phy/phy.h> |
| #include <linux/platform_device.h> |
| #include <linux/ata_platform.h> |
| #include <linux/mbus.h> |
| #include <linux/bitops.h> |
| #include <linux/gfp.h> |
| #include <linux/of.h> |
| #include <linux/of_irq.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_device.h> |
| #include <linux/libata.h> |
| |
| #define DRV_NAME "sata_mv" |
| #define DRV_VERSION "1.28" |
| |
| /* |
| * module options |
| */ |
| |
| #ifdef CONFIG_PCI |
| static int msi; |
| module_param(msi, int, S_IRUGO); |
| MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); |
| #endif |
| |
| static int irq_coalescing_io_count; |
| module_param(irq_coalescing_io_count, int, S_IRUGO); |
| MODULE_PARM_DESC(irq_coalescing_io_count, |
| "IRQ coalescing I/O count threshold (0..255)"); |
| |
| static int irq_coalescing_usecs; |
| module_param(irq_coalescing_usecs, int, S_IRUGO); |
| MODULE_PARM_DESC(irq_coalescing_usecs, |
| "IRQ coalescing time threshold in usecs"); |
| |
| enum { |
| /* BAR's are enumerated in terms of pci_resource_start() terms */ |
| MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ |
| MV_IO_BAR = 2, /* offset 0x18: IO space */ |
| MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ |
| |
| MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ |
| MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ |
| |
| /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ |
| COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ |
| MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ |
| MAX_COAL_IO_COUNT = 255, /* completed I/O count */ |
| |
| MV_PCI_REG_BASE = 0, |
| |
| /* |
| * Per-chip ("all ports") interrupt coalescing feature. |
| * This is only for GEN_II / GEN_IIE hardware. |
| * |
| * Coalescing defers the interrupt until either the IO_THRESHOLD |
| * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. |
| */ |
| COAL_REG_BASE = 0x18000, |
| IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), |
| ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ |
| |
| IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), |
| IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), |
| |
| /* |
| * Registers for the (unused here) transaction coalescing feature: |
| */ |
| TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), |
| TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), |
| |
| SATAHC0_REG_BASE = 0x20000, |
| FLASH_CTL = 0x1046c, |
| GPIO_PORT_CTL = 0x104f0, |
| RESET_CFG = 0x180d8, |
| |
| MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, |
| MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, |
| MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ |
| MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, |
| |
| MV_MAX_Q_DEPTH = 32, |
| MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, |
| |
| /* CRQB needs alignment on a 1KB boundary. Size == 1KB |
| * CRPB needs alignment on a 256B boundary. Size == 256B |
| * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B |
| */ |
| MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), |
| MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), |
| MV_MAX_SG_CT = 256, |
| MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), |
| |
| /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ |
| MV_PORT_HC_SHIFT = 2, |
| MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ |
| /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ |
| MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ |
| |
| /* Host Flags */ |
| MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ |
| |
| MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING, |
| |
| MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, |
| |
| MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | |
| ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, |
| |
| MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, |
| |
| CRQB_FLAG_READ = (1 << 0), |
| CRQB_TAG_SHIFT = 1, |
| CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ |
| CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ |
| CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ |
| CRQB_CMD_ADDR_SHIFT = 8, |
| CRQB_CMD_CS = (0x2 << 11), |
| CRQB_CMD_LAST = (1 << 15), |
| |
| CRPB_FLAG_STATUS_SHIFT = 8, |
| CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ |
| CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ |
| |
| EPRD_FLAG_END_OF_TBL = (1 << 31), |
| |
| /* PCI interface registers */ |
| |
| MV_PCI_COMMAND = 0xc00, |
| MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ |
| MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ |
| |
| PCI_MAIN_CMD_STS = 0xd30, |
| STOP_PCI_MASTER = (1 << 2), |
| PCI_MASTER_EMPTY = (1 << 3), |
| GLOB_SFT_RST = (1 << 4), |
| |
| MV_PCI_MODE = 0xd00, |
| MV_PCI_MODE_MASK = 0x30, |
| |
| MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, |
| MV_PCI_DISC_TIMER = 0xd04, |
| MV_PCI_MSI_TRIGGER = 0xc38, |
| MV_PCI_SERR_MASK = 0xc28, |
| MV_PCI_XBAR_TMOUT = 0x1d04, |
| MV_PCI_ERR_LOW_ADDRESS = 0x1d40, |
| MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, |
| MV_PCI_ERR_ATTRIBUTE = 0x1d48, |
| MV_PCI_ERR_COMMAND = 0x1d50, |
| |
| PCI_IRQ_CAUSE = 0x1d58, |
| PCI_IRQ_MASK = 0x1d5c, |
| PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ |
| |
| PCIE_IRQ_CAUSE = 0x1900, |
| PCIE_IRQ_MASK = 0x1910, |
| PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ |
| |
| /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ |
| PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, |
| PCI_HC_MAIN_IRQ_MASK = 0x1d64, |
| SOC_HC_MAIN_IRQ_CAUSE = 0x20020, |
| SOC_HC_MAIN_IRQ_MASK = 0x20024, |
| ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ |
| DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ |
| HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ |
| HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ |
| DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ |
| DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ |
| PCI_ERR = (1 << 18), |
| TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ |
| TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ |
| PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ |
| PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ |
| ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ |
| GPIO_INT = (1 << 22), |
| SELF_INT = (1 << 23), |
| TWSI_INT = (1 << 24), |
| HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ |
| HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ |
| HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ |
| |
| /* SATAHC registers */ |
| HC_CFG = 0x00, |
| |
| HC_IRQ_CAUSE = 0x14, |
| DMA_IRQ = (1 << 0), /* shift by port # */ |
| HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ |
| DEV_IRQ = (1 << 8), /* shift by port # */ |
| |
| /* |
| * Per-HC (Host-Controller) interrupt coalescing feature. |
| * This is present on all chip generations. |
| * |
| * Coalescing defers the interrupt until either the IO_THRESHOLD |
| * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. |
| */ |
| HC_IRQ_COAL_IO_THRESHOLD = 0x000c, |
| HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, |
| |
| SOC_LED_CTRL = 0x2c, |
| SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ |
| SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ |
| /* with dev activity LED */ |
| |
| /* Shadow block registers */ |
| SHD_BLK = 0x100, |
| SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ |
| |
| /* SATA registers */ |
| SATA_STATUS = 0x300, /* ctrl, err regs follow status */ |
| SATA_ACTIVE = 0x350, |
| FIS_IRQ_CAUSE = 0x364, |
| FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ |
| |
| LTMODE = 0x30c, /* requires read-after-write */ |
| LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ |
| |
| PHY_MODE2 = 0x330, |
| PHY_MODE3 = 0x310, |
| |
| PHY_MODE4 = 0x314, /* requires read-after-write */ |
| PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ |
| PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ |
| PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ |
| PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ |
| |
| SATA_IFCTL = 0x344, |
| SATA_TESTCTL = 0x348, |
| SATA_IFSTAT = 0x34c, |
| VENDOR_UNIQUE_FIS = 0x35c, |
| |
| FISCFG = 0x360, |
| FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ |
| FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ |
| |
| PHY_MODE9_GEN2 = 0x398, |
| PHY_MODE9_GEN1 = 0x39c, |
| PHYCFG_OFS = 0x3a0, /* only in 65n devices */ |
| |
| MV5_PHY_MODE = 0x74, |
| MV5_LTMODE = 0x30, |
| MV5_PHY_CTL = 0x0C, |
| SATA_IFCFG = 0x050, |
| LP_PHY_CTL = 0x058, |
| LP_PHY_CTL_PIN_PU_PLL = (1 << 0), |
| LP_PHY_CTL_PIN_PU_RX = (1 << 1), |
| LP_PHY_CTL_PIN_PU_TX = (1 << 2), |
| LP_PHY_CTL_GEN_TX_3G = (1 << 5), |
| LP_PHY_CTL_GEN_RX_3G = (1 << 9), |
| |
| MV_M2_PREAMP_MASK = 0x7e0, |
| |
| /* Port registers */ |
| EDMA_CFG = 0, |
| EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ |
| EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ |
| EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ |
| EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ |
| EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ |
| EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ |
| EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ |
| |
| EDMA_ERR_IRQ_CAUSE = 0x8, |
| EDMA_ERR_IRQ_MASK = 0xc, |
| EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ |
| EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ |
| EDMA_ERR_DEV = (1 << 2), /* device error */ |
| EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ |
| EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ |
| EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ |
| EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ |
| EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ |
| EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ |
| EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ |
| EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ |
| EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ |
| EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ |
| EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ |
| |
| EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ |
| EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ |
| EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ |
| EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ |
| EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ |
| |
| EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ |
| |
| EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ |
| EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ |
| EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ |
| EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ |
| EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ |
| EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ |
| |
| EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ |
| |
| EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ |
| EDMA_ERR_OVERRUN_5 = (1 << 5), |
| EDMA_ERR_UNDERRUN_5 = (1 << 6), |
| |
| EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | |
| EDMA_ERR_LNK_CTRL_RX_1 | |
| EDMA_ERR_LNK_CTRL_RX_3 | |
| EDMA_ERR_LNK_CTRL_TX, |
| |
| EDMA_EH_FREEZE = EDMA_ERR_D_PAR | |
| EDMA_ERR_PRD_PAR | |
| EDMA_ERR_DEV_DCON | |
| EDMA_ERR_DEV_CON | |
| EDMA_ERR_SERR | |
| EDMA_ERR_SELF_DIS | |
| EDMA_ERR_CRQB_PAR | |
| EDMA_ERR_CRPB_PAR | |
| EDMA_ERR_INTRL_PAR | |
| EDMA_ERR_IORDY | |
| EDMA_ERR_LNK_CTRL_RX_2 | |
| EDMA_ERR_LNK_DATA_RX | |
| EDMA_ERR_LNK_DATA_TX | |
| EDMA_ERR_TRANS_PROTO, |
| |
| EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | |
| EDMA_ERR_PRD_PAR | |
| EDMA_ERR_DEV_DCON | |
| EDMA_ERR_DEV_CON | |
| EDMA_ERR_OVERRUN_5 | |
| EDMA_ERR_UNDERRUN_5 | |
| EDMA_ERR_SELF_DIS_5 | |
| EDMA_ERR_CRQB_PAR | |
| EDMA_ERR_CRPB_PAR | |
| EDMA_ERR_INTRL_PAR | |
| EDMA_ERR_IORDY, |
| |
| EDMA_REQ_Q_BASE_HI = 0x10, |
| EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ |
| |
| EDMA_REQ_Q_OUT_PTR = 0x18, |
| EDMA_REQ_Q_PTR_SHIFT = 5, |
| |
| EDMA_RSP_Q_BASE_HI = 0x1c, |
| EDMA_RSP_Q_IN_PTR = 0x20, |
| EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ |
| EDMA_RSP_Q_PTR_SHIFT = 3, |
| |
| EDMA_CMD = 0x28, /* EDMA command register */ |
| EDMA_EN = (1 << 0), /* enable EDMA */ |
| EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ |
| EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ |
| |
| EDMA_STATUS = 0x30, /* EDMA engine status */ |
| EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ |
| EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ |
| |
| EDMA_IORDY_TMOUT = 0x34, |
| EDMA_ARB_CFG = 0x38, |
| |
| EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ |
| EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ |
| |
| BMDMA_CMD = 0x224, /* bmdma command register */ |
| BMDMA_STATUS = 0x228, /* bmdma status register */ |
| BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ |
| BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ |
| |
| /* Host private flags (hp_flags) */ |
| MV_HP_FLAG_MSI = (1 << 0), |
| MV_HP_ERRATA_50XXB0 = (1 << 1), |
| MV_HP_ERRATA_50XXB2 = (1 << 2), |
| MV_HP_ERRATA_60X1B2 = (1 << 3), |
| MV_HP_ERRATA_60X1C0 = (1 << 4), |
| MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ |
| MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ |
| MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ |
| MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ |
| MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ |
| MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ |
| MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ |
| MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */ |
| |
| /* Port private flags (pp_flags) */ |
| MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ |
| MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ |
| MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ |
| MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ |
| MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ |
| }; |
| |
| #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) |
| #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) |
| #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) |
| #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) |
| #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) |
| |
| #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) |
| #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) |
| |
| enum { |
| /* DMA boundary 0xffff is required by the s/g splitting |
| * we need on /length/ in mv_fill-sg(). |
| */ |
| MV_DMA_BOUNDARY = 0xffffU, |
| |
| /* mask of register bits containing lower 32 bits |
| * of EDMA request queue DMA address |
| */ |
| EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, |
| |
| /* ditto, for response queue */ |
| EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, |
| }; |
| |
| enum chip_type { |
| chip_504x, |
| chip_508x, |
| chip_5080, |
| chip_604x, |
| chip_608x, |
| chip_6042, |
| chip_7042, |
| chip_soc, |
| }; |
| |
| /* Command ReQuest Block: 32B */ |
| struct mv_crqb { |
| __le32 sg_addr; |
| __le32 sg_addr_hi; |
| __le16 ctrl_flags; |
| __le16 ata_cmd[11]; |
| }; |
| |
| struct mv_crqb_iie { |
| __le32 addr; |
| __le32 addr_hi; |
| __le32 flags; |
| __le32 len; |
| __le32 ata_cmd[4]; |
| }; |
| |
| /* Command ResPonse Block: 8B */ |
| struct mv_crpb { |
| __le16 id; |
| __le16 flags; |
| __le32 tmstmp; |
| }; |
| |
| /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ |
| struct mv_sg { |
| __le32 addr; |
| __le32 flags_size; |
| __le32 addr_hi; |
| __le32 reserved; |
| }; |
| |
| /* |
| * We keep a local cache of a few frequently accessed port |
| * registers here, to avoid having to read them (very slow) |
| * when switching between EDMA and non-EDMA modes. |
| */ |
| struct mv_cached_regs { |
| u32 fiscfg; |
| u32 ltmode; |
| u32 haltcond; |
| u32 unknown_rsvd; |
| }; |
| |
| struct mv_port_priv { |
| struct mv_crqb *crqb; |
| dma_addr_t crqb_dma; |
| struct mv_crpb *crpb; |
| dma_addr_t crpb_dma; |
| struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; |
| dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; |
| |
| unsigned int req_idx; |
| unsigned int resp_idx; |
| |
| u32 pp_flags; |
| struct mv_cached_regs cached; |
| unsigned int delayed_eh_pmp_map; |
| }; |
| |
| struct mv_port_signal { |
| u32 amps; |
| u32 pre; |
| }; |
| |
| struct mv_host_priv { |
| u32 hp_flags; |
| unsigned int board_idx; |
| u32 main_irq_mask; |
| struct mv_port_signal signal[8]; |
| const struct mv_hw_ops *ops; |
| int n_ports; |
| void __iomem *base; |
| void __iomem *main_irq_cause_addr; |
| void __iomem *main_irq_mask_addr; |
| u32 irq_cause_offset; |
| u32 irq_mask_offset; |
| u32 unmask_all_irqs; |
| |
| /* |
| * Needed on some devices that require their clocks to be enabled. |
| * These are optional: if the platform device does not have any |
| * clocks, they won't be used. Also, if the underlying hardware |
| * does not support the common clock framework (CONFIG_HAVE_CLK=n), |
| * all the clock operations become no-ops (see clk.h). |
| */ |
| struct clk *clk; |
| struct clk **port_clks; |
| /* |
| * Some devices have a SATA PHY which can be enabled/disabled |
| * in order to save power. These are optional: if the platform |
| * devices does not have any phy, they won't be used. |
| */ |
| struct phy **port_phys; |
| /* |
| * These consistent DMA memory pools give us guaranteed |
| * alignment for hardware-accessed data structures, |
| * and less memory waste in accomplishing the alignment. |
| */ |
| struct dma_pool *crqb_pool; |
| struct dma_pool *crpb_pool; |
| struct dma_pool *sg_tbl_pool; |
| }; |
| |
| struct mv_hw_ops { |
| void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port); |
| void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); |
| void (*read_preamp)(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc); |
| void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); |
| void (*reset_bus)(struct ata_host *host, void __iomem *mmio); |
| }; |
| |
| static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); |
| static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); |
| static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); |
| static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); |
| static int mv_port_start(struct ata_port *ap); |
| static void mv_port_stop(struct ata_port *ap); |
| static int mv_qc_defer(struct ata_queued_cmd *qc); |
| static void mv_qc_prep(struct ata_queued_cmd *qc); |
| static void mv_qc_prep_iie(struct ata_queued_cmd *qc); |
| static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); |
| static int mv_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline); |
| static void mv_eh_freeze(struct ata_port *ap); |
| static void mv_eh_thaw(struct ata_port *ap); |
| static void mv6_dev_config(struct ata_device *dev); |
| |
| static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port); |
| static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc); |
| static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); |
| |
| static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port); |
| static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc); |
| static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv_soc_enable_leds(struct mv_host_priv *hpriv, |
| void __iomem *mmio); |
| static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| static int mv_soc_reset_hc(struct mv_host_priv *hpriv, |
| void __iomem *mmio, unsigned int n_hc); |
| static void mv_soc_reset_flash(struct mv_host_priv *hpriv, |
| void __iomem *mmio); |
| static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); |
| static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, |
| void __iomem *mmio, unsigned int port); |
| static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); |
| static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port_no); |
| static int mv_stop_edma(struct ata_port *ap); |
| static int mv_stop_edma_engine(void __iomem *port_mmio); |
| static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); |
| |
| static void mv_pmp_select(struct ata_port *ap, int pmp); |
| static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline); |
| static int mv_softreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline); |
| static void mv_pmp_error_handler(struct ata_port *ap); |
| static void mv_process_crpb_entries(struct ata_port *ap, |
| struct mv_port_priv *pp); |
| |
| static void mv_sff_irq_clear(struct ata_port *ap); |
| static int mv_check_atapi_dma(struct ata_queued_cmd *qc); |
| static void mv_bmdma_setup(struct ata_queued_cmd *qc); |
| static void mv_bmdma_start(struct ata_queued_cmd *qc); |
| static void mv_bmdma_stop(struct ata_queued_cmd *qc); |
| static u8 mv_bmdma_status(struct ata_port *ap); |
| static u8 mv_sff_check_status(struct ata_port *ap); |
| |
| /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below |
| * because we have to allow room for worst case splitting of |
| * PRDs for 64K boundaries in mv_fill_sg(). |
| */ |
| #ifdef CONFIG_PCI |
| static struct scsi_host_template mv5_sht = { |
| ATA_BASE_SHT(DRV_NAME), |
| .sg_tablesize = MV_MAX_SG_CT / 2, |
| .dma_boundary = MV_DMA_BOUNDARY, |
| }; |
| #endif |
| static struct scsi_host_template mv6_sht = { |
| ATA_NCQ_SHT(DRV_NAME), |
| .can_queue = MV_MAX_Q_DEPTH - 1, |
| .sg_tablesize = MV_MAX_SG_CT / 2, |
| .dma_boundary = MV_DMA_BOUNDARY, |
| }; |
| |
| static struct ata_port_operations mv5_ops = { |
| .inherits = &ata_sff_port_ops, |
| |
| .lost_interrupt = ATA_OP_NULL, |
| |
| .qc_defer = mv_qc_defer, |
| .qc_prep = mv_qc_prep, |
| .qc_issue = mv_qc_issue, |
| |
| .freeze = mv_eh_freeze, |
| .thaw = mv_eh_thaw, |
| .hardreset = mv_hardreset, |
| |
| .scr_read = mv5_scr_read, |
| .scr_write = mv5_scr_write, |
| |
| .port_start = mv_port_start, |
| .port_stop = mv_port_stop, |
| }; |
| |
| static struct ata_port_operations mv6_ops = { |
| .inherits = &ata_bmdma_port_ops, |
| |
| .lost_interrupt = ATA_OP_NULL, |
| |
| .qc_defer = mv_qc_defer, |
| .qc_prep = mv_qc_prep, |
| .qc_issue = mv_qc_issue, |
| |
| .dev_config = mv6_dev_config, |
| |
| .freeze = mv_eh_freeze, |
| .thaw = mv_eh_thaw, |
| .hardreset = mv_hardreset, |
| .softreset = mv_softreset, |
| .pmp_hardreset = mv_pmp_hardreset, |
| .pmp_softreset = mv_softreset, |
| .error_handler = mv_pmp_error_handler, |
| |
| .scr_read = mv_scr_read, |
| .scr_write = mv_scr_write, |
| |
| .sff_check_status = mv_sff_check_status, |
| .sff_irq_clear = mv_sff_irq_clear, |
| .check_atapi_dma = mv_check_atapi_dma, |
| .bmdma_setup = mv_bmdma_setup, |
| .bmdma_start = mv_bmdma_start, |
| .bmdma_stop = mv_bmdma_stop, |
| .bmdma_status = mv_bmdma_status, |
| |
| .port_start = mv_port_start, |
| .port_stop = mv_port_stop, |
| }; |
| |
| static struct ata_port_operations mv_iie_ops = { |
| .inherits = &mv6_ops, |
| .dev_config = ATA_OP_NULL, |
| .qc_prep = mv_qc_prep_iie, |
| }; |
| |
| static const struct ata_port_info mv_port_info[] = { |
| { /* chip_504x */ |
| .flags = MV_GEN_I_FLAGS, |
| .pio_mask = ATA_PIO4, |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv5_ops, |
| }, |
| { /* chip_508x */ |
| .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, |
| .pio_mask = ATA_PIO4, |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv5_ops, |
| }, |
| { /* chip_5080 */ |
| .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, |
| .pio_mask = ATA_PIO4, |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv5_ops, |
| }, |
| { /* chip_604x */ |
| .flags = MV_GEN_II_FLAGS, |
| .pio_mask = ATA_PIO4, |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv6_ops, |
| }, |
| { /* chip_608x */ |
| .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, |
| .pio_mask = ATA_PIO4, |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv6_ops, |
| }, |
| { /* chip_6042 */ |
| .flags = MV_GEN_IIE_FLAGS, |
| .pio_mask = ATA_PIO4, |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv_iie_ops, |
| }, |
| { /* chip_7042 */ |
| .flags = MV_GEN_IIE_FLAGS, |
| .pio_mask = ATA_PIO4, |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv_iie_ops, |
| }, |
| { /* chip_soc */ |
| .flags = MV_GEN_IIE_FLAGS, |
| .pio_mask = ATA_PIO4, |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &mv_iie_ops, |
| }, |
| }; |
| |
| static const struct pci_device_id mv_pci_tbl[] = { |
| { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, |
| { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, |
| { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, |
| { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, |
| /* RocketRAID 1720/174x have different identifiers */ |
| { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, |
| { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, |
| { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, |
| |
| { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, |
| { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, |
| { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, |
| { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, |
| { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, |
| |
| { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, |
| |
| /* Adaptec 1430SA */ |
| { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, |
| |
| /* Marvell 7042 support */ |
| { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, |
| |
| /* Highpoint RocketRAID PCIe series */ |
| { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, |
| { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, |
| |
| { } /* terminate list */ |
| }; |
| |
| static const struct mv_hw_ops mv5xxx_ops = { |
| .phy_errata = mv5_phy_errata, |
| .enable_leds = mv5_enable_leds, |
| .read_preamp = mv5_read_preamp, |
| .reset_hc = mv5_reset_hc, |
| .reset_flash = mv5_reset_flash, |
| .reset_bus = mv5_reset_bus, |
| }; |
| |
| static const struct mv_hw_ops mv6xxx_ops = { |
| .phy_errata = mv6_phy_errata, |
| .enable_leds = mv6_enable_leds, |
| .read_preamp = mv6_read_preamp, |
| .reset_hc = mv6_reset_hc, |
| .reset_flash = mv6_reset_flash, |
| .reset_bus = mv_reset_pci_bus, |
| }; |
| |
| static const struct mv_hw_ops mv_soc_ops = { |
| .phy_errata = mv6_phy_errata, |
| .enable_leds = mv_soc_enable_leds, |
| .read_preamp = mv_soc_read_preamp, |
| .reset_hc = mv_soc_reset_hc, |
| .reset_flash = mv_soc_reset_flash, |
| .reset_bus = mv_soc_reset_bus, |
| }; |
| |
| static const struct mv_hw_ops mv_soc_65n_ops = { |
| .phy_errata = mv_soc_65n_phy_errata, |
| .enable_leds = mv_soc_enable_leds, |
| .reset_hc = mv_soc_reset_hc, |
| .reset_flash = mv_soc_reset_flash, |
| .reset_bus = mv_soc_reset_bus, |
| }; |
| |
| /* |
| * Functions |
| */ |
| |
| static inline void writelfl(unsigned long data, void __iomem *addr) |
| { |
| writel(data, addr); |
| (void) readl(addr); /* flush to avoid PCI posted write */ |
| } |
| |
| static inline unsigned int mv_hc_from_port(unsigned int port) |
| { |
| return port >> MV_PORT_HC_SHIFT; |
| } |
| |
| static inline unsigned int mv_hardport_from_port(unsigned int port) |
| { |
| return port & MV_PORT_MASK; |
| } |
| |
| /* |
| * Consolidate some rather tricky bit shift calculations. |
| * This is hot-path stuff, so not a function. |
| * Simple code, with two return values, so macro rather than inline. |
| * |
| * port is the sole input, in range 0..7. |
| * shift is one output, for use with main_irq_cause / main_irq_mask registers. |
| * hardport is the other output, in range 0..3. |
| * |
| * Note that port and hardport may be the same variable in some cases. |
| */ |
| #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ |
| { \ |
| shift = mv_hc_from_port(port) * HC_SHIFT; \ |
| hardport = mv_hardport_from_port(port); \ |
| shift += hardport * 2; \ |
| } |
| |
| static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) |
| { |
| return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); |
| } |
| |
| static inline void __iomem *mv_hc_base_from_port(void __iomem *base, |
| unsigned int port) |
| { |
| return mv_hc_base(base, mv_hc_from_port(port)); |
| } |
| |
| static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) |
| { |
| return mv_hc_base_from_port(base, port) + |
| MV_SATAHC_ARBTR_REG_SZ + |
| (mv_hardport_from_port(port) * MV_PORT_REG_SZ); |
| } |
| |
| static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) |
| { |
| void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); |
| unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; |
| |
| return hc_mmio + ofs; |
| } |
| |
| static inline void __iomem *mv_host_base(struct ata_host *host) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| return hpriv->base; |
| } |
| |
| static inline void __iomem *mv_ap_base(struct ata_port *ap) |
| { |
| return mv_port_base(mv_host_base(ap->host), ap->port_no); |
| } |
| |
| static inline int mv_get_hc_count(unsigned long port_flags) |
| { |
| return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); |
| } |
| |
| /** |
| * mv_save_cached_regs - (re-)initialize cached port registers |
| * @ap: the port whose registers we are caching |
| * |
| * Initialize the local cache of port registers, |
| * so that reading them over and over again can |
| * be avoided on the hotter paths of this driver. |
| * This saves a few microseconds each time we switch |
| * to/from EDMA mode to perform (eg.) a drive cache flush. |
| */ |
| static void mv_save_cached_regs(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct mv_port_priv *pp = ap->private_data; |
| |
| pp->cached.fiscfg = readl(port_mmio + FISCFG); |
| pp->cached.ltmode = readl(port_mmio + LTMODE); |
| pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); |
| pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); |
| } |
| |
| /** |
| * mv_write_cached_reg - write to a cached port register |
| * @addr: hardware address of the register |
| * @old: pointer to cached value of the register |
| * @new: new value for the register |
| * |
| * Write a new value to a cached register, |
| * but only if the value is different from before. |
| */ |
| static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) |
| { |
| if (new != *old) { |
| unsigned long laddr; |
| *old = new; |
| /* |
| * Workaround for 88SX60x1-B2 FEr SATA#13: |
| * Read-after-write is needed to prevent generating 64-bit |
| * write cycles on the PCI bus for SATA interface registers |
| * at offsets ending in 0x4 or 0xc. |
| * |
| * Looks like a lot of fuss, but it avoids an unnecessary |
| * +1 usec read-after-write delay for unaffected registers. |
| */ |
| laddr = (long)addr & 0xffff; |
| if (laddr >= 0x300 && laddr <= 0x33c) { |
| laddr &= 0x000f; |
| if (laddr == 0x4 || laddr == 0xc) { |
| writelfl(new, addr); /* read after write */ |
| return; |
| } |
| } |
| writel(new, addr); /* unaffected by the errata */ |
| } |
| } |
| |
| static void mv_set_edma_ptrs(void __iomem *port_mmio, |
| struct mv_host_priv *hpriv, |
| struct mv_port_priv *pp) |
| { |
| u32 index; |
| |
| /* |
| * initialize request queue |
| */ |
| pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ |
| index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; |
| |
| WARN_ON(pp->crqb_dma & 0x3ff); |
| writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); |
| writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, |
| port_mmio + EDMA_REQ_Q_IN_PTR); |
| writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); |
| |
| /* |
| * initialize response queue |
| */ |
| pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ |
| index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; |
| |
| WARN_ON(pp->crpb_dma & 0xff); |
| writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); |
| writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); |
| writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, |
| port_mmio + EDMA_RSP_Q_OUT_PTR); |
| } |
| |
| static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) |
| { |
| /* |
| * When writing to the main_irq_mask in hardware, |
| * we must ensure exclusivity between the interrupt coalescing bits |
| * and the corresponding individual port DONE_IRQ bits. |
| * |
| * Note that this register is really an "IRQ enable" register, |
| * not an "IRQ mask" register as Marvell's naming might suggest. |
| */ |
| if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) |
| mask &= ~DONE_IRQ_0_3; |
| if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) |
| mask &= ~DONE_IRQ_4_7; |
| writelfl(mask, hpriv->main_irq_mask_addr); |
| } |
| |
| static void mv_set_main_irq_mask(struct ata_host *host, |
| u32 disable_bits, u32 enable_bits) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| u32 old_mask, new_mask; |
| |
| old_mask = hpriv->main_irq_mask; |
| new_mask = (old_mask & ~disable_bits) | enable_bits; |
| if (new_mask != old_mask) { |
| hpriv->main_irq_mask = new_mask; |
| mv_write_main_irq_mask(new_mask, hpriv); |
| } |
| } |
| |
| static void mv_enable_port_irqs(struct ata_port *ap, |
| unsigned int port_bits) |
| { |
| unsigned int shift, hardport, port = ap->port_no; |
| u32 disable_bits, enable_bits; |
| |
| MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); |
| |
| disable_bits = (DONE_IRQ | ERR_IRQ) << shift; |
| enable_bits = port_bits << shift; |
| mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); |
| } |
| |
| static void mv_clear_and_enable_port_irqs(struct ata_port *ap, |
| void __iomem *port_mmio, |
| unsigned int port_irqs) |
| { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| int hardport = mv_hardport_from_port(ap->port_no); |
| void __iomem *hc_mmio = mv_hc_base_from_port( |
| mv_host_base(ap->host), ap->port_no); |
| u32 hc_irq_cause; |
| |
| /* clear EDMA event indicators, if any */ |
| writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); |
| |
| /* clear pending irq events */ |
| hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); |
| writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); |
| |
| /* clear FIS IRQ Cause */ |
| if (IS_GEN_IIE(hpriv)) |
| writelfl(0, port_mmio + FIS_IRQ_CAUSE); |
| |
| mv_enable_port_irqs(ap, port_irqs); |
| } |
| |
| static void mv_set_irq_coalescing(struct ata_host *host, |
| unsigned int count, unsigned int usecs) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| void __iomem *mmio = hpriv->base, *hc_mmio; |
| u32 coal_enable = 0; |
| unsigned long flags; |
| unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; |
| const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | |
| ALL_PORTS_COAL_DONE; |
| |
| /* Disable IRQ coalescing if either threshold is zero */ |
| if (!usecs || !count) { |
| clks = count = 0; |
| } else { |
| /* Respect maximum limits of the hardware */ |
| clks = usecs * COAL_CLOCKS_PER_USEC; |
| if (clks > MAX_COAL_TIME_THRESHOLD) |
| clks = MAX_COAL_TIME_THRESHOLD; |
| if (count > MAX_COAL_IO_COUNT) |
| count = MAX_COAL_IO_COUNT; |
| } |
| |
| spin_lock_irqsave(&host->lock, flags); |
| mv_set_main_irq_mask(host, coal_disable, 0); |
| |
| if (is_dual_hc && !IS_GEN_I(hpriv)) { |
| /* |
| * GEN_II/GEN_IIE with dual host controllers: |
| * one set of global thresholds for the entire chip. |
| */ |
| writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); |
| writel(count, mmio + IRQ_COAL_IO_THRESHOLD); |
| /* clear leftover coal IRQ bit */ |
| writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); |
| if (count) |
| coal_enable = ALL_PORTS_COAL_DONE; |
| clks = count = 0; /* force clearing of regular regs below */ |
| } |
| |
| /* |
| * All chips: independent thresholds for each HC on the chip. |
| */ |
| hc_mmio = mv_hc_base_from_port(mmio, 0); |
| writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); |
| writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); |
| writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); |
| if (count) |
| coal_enable |= PORTS_0_3_COAL_DONE; |
| if (is_dual_hc) { |
| hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); |
| writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); |
| writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); |
| writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); |
| if (count) |
| coal_enable |= PORTS_4_7_COAL_DONE; |
| } |
| |
| mv_set_main_irq_mask(host, 0, coal_enable); |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /** |
| * mv_start_edma - Enable eDMA engine |
| * @base: port base address |
| * @pp: port private data |
| * |
| * Verify the local cache of the eDMA state is accurate with a |
| * WARN_ON. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, |
| struct mv_port_priv *pp, u8 protocol) |
| { |
| int want_ncq = (protocol == ATA_PROT_NCQ); |
| |
| if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { |
| int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); |
| if (want_ncq != using_ncq) |
| mv_stop_edma(ap); |
| } |
| if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| |
| mv_edma_cfg(ap, want_ncq, 1); |
| |
| mv_set_edma_ptrs(port_mmio, hpriv, pp); |
| mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); |
| |
| writelfl(EDMA_EN, port_mmio + EDMA_CMD); |
| pp->pp_flags |= MV_PP_FLAG_EDMA_EN; |
| } |
| } |
| |
| static void mv_wait_for_edma_empty_idle(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); |
| const int per_loop = 5, timeout = (15 * 1000 / per_loop); |
| int i; |
| |
| /* |
| * Wait for the EDMA engine to finish transactions in progress. |
| * No idea what a good "timeout" value might be, but measurements |
| * indicate that it often requires hundreds of microseconds |
| * with two drives in-use. So we use the 15msec value above |
| * as a rough guess at what even more drives might require. |
| */ |
| for (i = 0; i < timeout; ++i) { |
| u32 edma_stat = readl(port_mmio + EDMA_STATUS); |
| if ((edma_stat & empty_idle) == empty_idle) |
| break; |
| udelay(per_loop); |
| } |
| /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */ |
| } |
| |
| /** |
| * mv_stop_edma_engine - Disable eDMA engine |
| * @port_mmio: io base address |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_stop_edma_engine(void __iomem *port_mmio) |
| { |
| int i; |
| |
| /* Disable eDMA. The disable bit auto clears. */ |
| writelfl(EDMA_DS, port_mmio + EDMA_CMD); |
| |
| /* Wait for the chip to confirm eDMA is off. */ |
| for (i = 10000; i > 0; i--) { |
| u32 reg = readl(port_mmio + EDMA_CMD); |
| if (!(reg & EDMA_EN)) |
| return 0; |
| udelay(10); |
| } |
| return -EIO; |
| } |
| |
| static int mv_stop_edma(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct mv_port_priv *pp = ap->private_data; |
| int err = 0; |
| |
| if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) |
| return 0; |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| mv_wait_for_edma_empty_idle(ap); |
| if (mv_stop_edma_engine(port_mmio)) { |
| ata_port_err(ap, "Unable to stop eDMA\n"); |
| err = -EIO; |
| } |
| mv_edma_cfg(ap, 0, 0); |
| return err; |
| } |
| |
| #ifdef ATA_DEBUG |
| static void mv_dump_mem(void __iomem *start, unsigned bytes) |
| { |
| int b, w; |
| for (b = 0; b < bytes; ) { |
| DPRINTK("%p: ", start + b); |
| for (w = 0; b < bytes && w < 4; w++) { |
| printk("%08x ", readl(start + b)); |
| b += sizeof(u32); |
| } |
| printk("\n"); |
| } |
| } |
| #endif |
| #if defined(ATA_DEBUG) || defined(CONFIG_PCI) |
| static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) |
| { |
| #ifdef ATA_DEBUG |
| int b, w; |
| u32 dw; |
| for (b = 0; b < bytes; ) { |
| DPRINTK("%02x: ", b); |
| for (w = 0; b < bytes && w < 4; w++) { |
| (void) pci_read_config_dword(pdev, b, &dw); |
| printk("%08x ", dw); |
| b += sizeof(u32); |
| } |
| printk("\n"); |
| } |
| #endif |
| } |
| #endif |
| static void mv_dump_all_regs(void __iomem *mmio_base, int port, |
| struct pci_dev *pdev) |
| { |
| #ifdef ATA_DEBUG |
| void __iomem *hc_base = mv_hc_base(mmio_base, |
| port >> MV_PORT_HC_SHIFT); |
| void __iomem *port_base; |
| int start_port, num_ports, p, start_hc, num_hcs, hc; |
| |
| if (0 > port) { |
| start_hc = start_port = 0; |
| num_ports = 8; /* shld be benign for 4 port devs */ |
| num_hcs = 2; |
| } else { |
| start_hc = port >> MV_PORT_HC_SHIFT; |
| start_port = port; |
| num_ports = num_hcs = 1; |
| } |
| DPRINTK("All registers for port(s) %u-%u:\n", start_port, |
| num_ports > 1 ? num_ports - 1 : start_port); |
| |
| if (NULL != pdev) { |
| DPRINTK("PCI config space regs:\n"); |
| mv_dump_pci_cfg(pdev, 0x68); |
| } |
| DPRINTK("PCI regs:\n"); |
| mv_dump_mem(mmio_base+0xc00, 0x3c); |
| mv_dump_mem(mmio_base+0xd00, 0x34); |
| mv_dump_mem(mmio_base+0xf00, 0x4); |
| mv_dump_mem(mmio_base+0x1d00, 0x6c); |
| for (hc = start_hc; hc < start_hc + num_hcs; hc++) { |
| hc_base = mv_hc_base(mmio_base, hc); |
| DPRINTK("HC regs (HC %i):\n", hc); |
| mv_dump_mem(hc_base, 0x1c); |
| } |
| for (p = start_port; p < start_port + num_ports; p++) { |
| port_base = mv_port_base(mmio_base, p); |
| DPRINTK("EDMA regs (port %i):\n", p); |
| mv_dump_mem(port_base, 0x54); |
| DPRINTK("SATA regs (port %i):\n", p); |
| mv_dump_mem(port_base+0x300, 0x60); |
| } |
| #endif |
| } |
| |
| static unsigned int mv_scr_offset(unsigned int sc_reg_in) |
| { |
| unsigned int ofs; |
| |
| switch (sc_reg_in) { |
| case SCR_STATUS: |
| case SCR_CONTROL: |
| case SCR_ERROR: |
| ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); |
| break; |
| case SCR_ACTIVE: |
| ofs = SATA_ACTIVE; /* active is not with the others */ |
| break; |
| default: |
| ofs = 0xffffffffU; |
| break; |
| } |
| return ofs; |
| } |
| |
| static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) |
| { |
| unsigned int ofs = mv_scr_offset(sc_reg_in); |
| |
| if (ofs != 0xffffffffU) { |
| *val = readl(mv_ap_base(link->ap) + ofs); |
| return 0; |
| } else |
| return -EINVAL; |
| } |
| |
| static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) |
| { |
| unsigned int ofs = mv_scr_offset(sc_reg_in); |
| |
| if (ofs != 0xffffffffU) { |
| void __iomem *addr = mv_ap_base(link->ap) + ofs; |
| struct mv_host_priv *hpriv = link->ap->host->private_data; |
| if (sc_reg_in == SCR_CONTROL) { |
| /* |
| * Workaround for 88SX60x1 FEr SATA#26: |
| * |
| * COMRESETs have to take care not to accidentally |
| * put the drive to sleep when writing SCR_CONTROL. |
| * Setting bits 12..15 prevents this problem. |
| * |
| * So if we see an outbound COMMRESET, set those bits. |
| * Ditto for the followup write that clears the reset. |
| * |
| * The proprietary driver does this for |
| * all chip versions, and so do we. |
| */ |
| if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) |
| val |= 0xf000; |
| |
| if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) { |
| void __iomem *lp_phy_addr = |
| mv_ap_base(link->ap) + LP_PHY_CTL; |
| /* |
| * Set PHY speed according to SControl speed. |
| */ |
| u32 lp_phy_val = |
| LP_PHY_CTL_PIN_PU_PLL | |
| LP_PHY_CTL_PIN_PU_RX | |
| LP_PHY_CTL_PIN_PU_TX; |
| |
| if ((val & 0xf0) != 0x10) |
| lp_phy_val |= |
| LP_PHY_CTL_GEN_TX_3G | |
| LP_PHY_CTL_GEN_RX_3G; |
| |
| writelfl(lp_phy_val, lp_phy_addr); |
| } |
| } |
| writelfl(val, addr); |
| return 0; |
| } else |
| return -EINVAL; |
| } |
| |
| static void mv6_dev_config(struct ata_device *adev) |
| { |
| /* |
| * Deal with Gen-II ("mv6") hardware quirks/restrictions: |
| * |
| * Gen-II does not support NCQ over a port multiplier |
| * (no FIS-based switching). |
| */ |
| if (adev->flags & ATA_DFLAG_NCQ) { |
| if (sata_pmp_attached(adev->link->ap)) { |
| adev->flags &= ~ATA_DFLAG_NCQ; |
| ata_dev_info(adev, |
| "NCQ disabled for command-based switching\n"); |
| } |
| } |
| } |
| |
| static int mv_qc_defer(struct ata_queued_cmd *qc) |
| { |
| struct ata_link *link = qc->dev->link; |
| struct ata_port *ap = link->ap; |
| struct mv_port_priv *pp = ap->private_data; |
| |
| /* |
| * Don't allow new commands if we're in a delayed EH state |
| * for NCQ and/or FIS-based switching. |
| */ |
| if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) |
| return ATA_DEFER_PORT; |
| |
| /* PIO commands need exclusive link: no other commands [DMA or PIO] |
| * can run concurrently. |
| * set excl_link when we want to send a PIO command in DMA mode |
| * or a non-NCQ command in NCQ mode. |
| * When we receive a command from that link, and there are no |
| * outstanding commands, mark a flag to clear excl_link and let |
| * the command go through. |
| */ |
| if (unlikely(ap->excl_link)) { |
| if (link == ap->excl_link) { |
| if (ap->nr_active_links) |
| return ATA_DEFER_PORT; |
| qc->flags |= ATA_QCFLAG_CLEAR_EXCL; |
| return 0; |
| } else |
| return ATA_DEFER_PORT; |
| } |
| |
| /* |
| * If the port is completely idle, then allow the new qc. |
| */ |
| if (ap->nr_active_links == 0) |
| return 0; |
| |
| /* |
| * The port is operating in host queuing mode (EDMA) with NCQ |
| * enabled, allow multiple NCQ commands. EDMA also allows |
| * queueing multiple DMA commands but libata core currently |
| * doesn't allow it. |
| */ |
| if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && |
| (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { |
| if (ata_is_ncq(qc->tf.protocol)) |
| return 0; |
| else { |
| ap->excl_link = link; |
| return ATA_DEFER_PORT; |
| } |
| } |
| |
| return ATA_DEFER_PORT; |
| } |
| |
| static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) |
| { |
| struct mv_port_priv *pp = ap->private_data; |
| void __iomem *port_mmio; |
| |
| u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; |
| u32 ltmode, *old_ltmode = &pp->cached.ltmode; |
| u32 haltcond, *old_haltcond = &pp->cached.haltcond; |
| |
| ltmode = *old_ltmode & ~LTMODE_BIT8; |
| haltcond = *old_haltcond | EDMA_ERR_DEV; |
| |
| if (want_fbs) { |
| fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; |
| ltmode = *old_ltmode | LTMODE_BIT8; |
| if (want_ncq) |
| haltcond &= ~EDMA_ERR_DEV; |
| else |
| fiscfg |= FISCFG_WAIT_DEV_ERR; |
| } else { |
| fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); |
| } |
| |
| port_mmio = mv_ap_base(ap); |
| mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); |
| mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); |
| mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); |
| } |
| |
| static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) |
| { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| u32 old, new; |
| |
| /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ |
| old = readl(hpriv->base + GPIO_PORT_CTL); |
| if (want_ncq) |
| new = old | (1 << 22); |
| else |
| new = old & ~(1 << 22); |
| if (new != old) |
| writel(new, hpriv->base + GPIO_PORT_CTL); |
| } |
| |
| /** |
| * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma |
| * @ap: Port being initialized |
| * |
| * There are two DMA modes on these chips: basic DMA, and EDMA. |
| * |
| * Bit-0 of the "EDMA RESERVED" register enables/disables use |
| * of basic DMA on the GEN_IIE versions of the chips. |
| * |
| * This bit survives EDMA resets, and must be set for basic DMA |
| * to function, and should be cleared when EDMA is active. |
| */ |
| static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) |
| { |
| struct mv_port_priv *pp = ap->private_data; |
| u32 new, *old = &pp->cached.unknown_rsvd; |
| |
| if (enable_bmdma) |
| new = *old | 1; |
| else |
| new = *old & ~1; |
| mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); |
| } |
| |
| /* |
| * SOC chips have an issue whereby the HDD LEDs don't always blink |
| * during I/O when NCQ is enabled. Enabling a special "LED blink" mode |
| * of the SOC takes care of it, generating a steady blink rate when |
| * any drive on the chip is active. |
| * |
| * Unfortunately, the blink mode is a global hardware setting for the SOC, |
| * so we must use it whenever at least one port on the SOC has NCQ enabled. |
| * |
| * We turn "LED blink" off when NCQ is not in use anywhere, because the normal |
| * LED operation works then, and provides better (more accurate) feedback. |
| * |
| * Note that this code assumes that an SOC never has more than one HC onboard. |
| */ |
| static void mv_soc_led_blink_enable(struct ata_port *ap) |
| { |
| struct ata_host *host = ap->host; |
| struct mv_host_priv *hpriv = host->private_data; |
| void __iomem *hc_mmio; |
| u32 led_ctrl; |
| |
| if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) |
| return; |
| hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; |
| hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); |
| led_ctrl = readl(hc_mmio + SOC_LED_CTRL); |
| writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); |
| } |
| |
| static void mv_soc_led_blink_disable(struct ata_port *ap) |
| { |
| struct ata_host *host = ap->host; |
| struct mv_host_priv *hpriv = host->private_data; |
| void __iomem *hc_mmio; |
| u32 led_ctrl; |
| unsigned int port; |
| |
| if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) |
| return; |
| |
| /* disable led-blink only if no ports are using NCQ */ |
| for (port = 0; port < hpriv->n_ports; port++) { |
| struct ata_port *this_ap = host->ports[port]; |
| struct mv_port_priv *pp = this_ap->private_data; |
| |
| if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) |
| return; |
| } |
| |
| hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; |
| hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); |
| led_ctrl = readl(hc_mmio + SOC_LED_CTRL); |
| writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); |
| } |
| |
| static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) |
| { |
| u32 cfg; |
| struct mv_port_priv *pp = ap->private_data; |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| void __iomem *port_mmio = mv_ap_base(ap); |
| |
| /* set up non-NCQ EDMA configuration */ |
| cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ |
| pp->pp_flags &= |
| ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); |
| |
| if (IS_GEN_I(hpriv)) |
| cfg |= (1 << 8); /* enab config burst size mask */ |
| |
| else if (IS_GEN_II(hpriv)) { |
| cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; |
| mv_60x1_errata_sata25(ap, want_ncq); |
| |
| } else if (IS_GEN_IIE(hpriv)) { |
| int want_fbs = sata_pmp_attached(ap); |
| /* |
| * Possible future enhancement: |
| * |
| * The chip can use FBS with non-NCQ, if we allow it, |
| * But first we need to have the error handling in place |
| * for this mode (datasheet section 7.3.15.4.2.3). |
| * So disallow non-NCQ FBS for now. |
| */ |
| want_fbs &= want_ncq; |
| |
| mv_config_fbs(ap, want_ncq, want_fbs); |
| |
| if (want_fbs) { |
| pp->pp_flags |= MV_PP_FLAG_FBS_EN; |
| cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ |
| } |
| |
| cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ |
| if (want_edma) { |
| cfg |= (1 << 22); /* enab 4-entry host queue cache */ |
| if (!IS_SOC(hpriv)) |
| cfg |= (1 << 18); /* enab early completion */ |
| } |
| if (hpriv->hp_flags & MV_HP_CUT_THROUGH) |
| cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ |
| mv_bmdma_enable_iie(ap, !want_edma); |
| |
| if (IS_SOC(hpriv)) { |
| if (want_ncq) |
| mv_soc_led_blink_enable(ap); |
| else |
| mv_soc_led_blink_disable(ap); |
| } |
| } |
| |
| if (want_ncq) { |
| cfg |= EDMA_CFG_NCQ; |
| pp->pp_flags |= MV_PP_FLAG_NCQ_EN; |
| } |
| |
| writelfl(cfg, port_mmio + EDMA_CFG); |
| } |
| |
| static void mv_port_free_dma_mem(struct ata_port *ap) |
| { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| struct mv_port_priv *pp = ap->private_data; |
| int tag; |
| |
| if (pp->crqb) { |
| dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); |
| pp->crqb = NULL; |
| } |
| if (pp->crpb) { |
| dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); |
| pp->crpb = NULL; |
| } |
| /* |
| * For GEN_I, there's no NCQ, so we have only a single sg_tbl. |
| * For later hardware, we have one unique sg_tbl per NCQ tag. |
| */ |
| for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { |
| if (pp->sg_tbl[tag]) { |
| if (tag == 0 || !IS_GEN_I(hpriv)) |
| dma_pool_free(hpriv->sg_tbl_pool, |
| pp->sg_tbl[tag], |
| pp->sg_tbl_dma[tag]); |
| pp->sg_tbl[tag] = NULL; |
| } |
| } |
| } |
| |
| /** |
| * mv_port_start - Port specific init/start routine. |
| * @ap: ATA channel to manipulate |
| * |
| * Allocate and point to DMA memory, init port private memory, |
| * zero indices. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_port_start(struct ata_port *ap) |
| { |
| struct device *dev = ap->host->dev; |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| struct mv_port_priv *pp; |
| unsigned long flags; |
| int tag; |
| |
| pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); |
| if (!pp) |
| return -ENOMEM; |
| ap->private_data = pp; |
| |
| pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); |
| if (!pp->crqb) |
| return -ENOMEM; |
| memset(pp->crqb, 0, MV_CRQB_Q_SZ); |
| |
| pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); |
| if (!pp->crpb) |
| goto out_port_free_dma_mem; |
| memset(pp->crpb, 0, MV_CRPB_Q_SZ); |
| |
| /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ |
| if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) |
| ap->flags |= ATA_FLAG_AN; |
| /* |
| * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. |
| * For later hardware, we need one unique sg_tbl per NCQ tag. |
| */ |
| for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { |
| if (tag == 0 || !IS_GEN_I(hpriv)) { |
| pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, |
| GFP_KERNEL, &pp->sg_tbl_dma[tag]); |
| if (!pp->sg_tbl[tag]) |
| goto out_port_free_dma_mem; |
| } else { |
| pp->sg_tbl[tag] = pp->sg_tbl[0]; |
| pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; |
| } |
| } |
| |
| spin_lock_irqsave(ap->lock, flags); |
| mv_save_cached_regs(ap); |
| mv_edma_cfg(ap, 0, 0); |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| return 0; |
| |
| out_port_free_dma_mem: |
| mv_port_free_dma_mem(ap); |
| return -ENOMEM; |
| } |
| |
| /** |
| * mv_port_stop - Port specific cleanup/stop routine. |
| * @ap: ATA channel to manipulate |
| * |
| * Stop DMA, cleanup port memory. |
| * |
| * LOCKING: |
| * This routine uses the host lock to protect the DMA stop. |
| */ |
| static void mv_port_stop(struct ata_port *ap) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(ap->lock, flags); |
| mv_stop_edma(ap); |
| mv_enable_port_irqs(ap, 0); |
| spin_unlock_irqrestore(ap->lock, flags); |
| mv_port_free_dma_mem(ap); |
| } |
| |
| /** |
| * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries |
| * @qc: queued command whose SG list to source from |
| * |
| * Populate the SG list and mark the last entry. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_fill_sg(struct ata_queued_cmd *qc) |
| { |
| struct mv_port_priv *pp = qc->ap->private_data; |
| struct scatterlist *sg; |
| struct mv_sg *mv_sg, *last_sg = NULL; |
| unsigned int si; |
| |
| mv_sg = pp->sg_tbl[qc->tag]; |
| for_each_sg(qc->sg, sg, qc->n_elem, si) { |
| dma_addr_t addr = sg_dma_address(sg); |
| u32 sg_len = sg_dma_len(sg); |
| |
| while (sg_len) { |
| u32 offset = addr & 0xffff; |
| u32 len = sg_len; |
| |
| if (offset + len > 0x10000) |
| len = 0x10000 - offset; |
| |
| mv_sg->addr = cpu_to_le32(addr & 0xffffffff); |
| mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); |
| mv_sg->flags_size = cpu_to_le32(len & 0xffff); |
| mv_sg->reserved = 0; |
| |
| sg_len -= len; |
| addr += len; |
| |
| last_sg = mv_sg; |
| mv_sg++; |
| } |
| } |
| |
| if (likely(last_sg)) |
| last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); |
| mb(); /* ensure data structure is visible to the chipset */ |
| } |
| |
| static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) |
| { |
| u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | |
| (last ? CRQB_CMD_LAST : 0); |
| *cmdw = cpu_to_le16(tmp); |
| } |
| |
| /** |
| * mv_sff_irq_clear - Clear hardware interrupt after DMA. |
| * @ap: Port associated with this ATA transaction. |
| * |
| * We need this only for ATAPI bmdma transactions, |
| * as otherwise we experience spurious interrupts |
| * after libata-sff handles the bmdma interrupts. |
| */ |
| static void mv_sff_irq_clear(struct ata_port *ap) |
| { |
| mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); |
| } |
| |
| /** |
| * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. |
| * @qc: queued command to check for chipset/DMA compatibility. |
| * |
| * The bmdma engines cannot handle speculative data sizes |
| * (bytecount under/over flow). So only allow DMA for |
| * data transfer commands with known data sizes. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_check_atapi_dma(struct ata_queued_cmd *qc) |
| { |
| struct scsi_cmnd *scmd = qc->scsicmd; |
| |
| if (scmd) { |
| switch (scmd->cmnd[0]) { |
| case READ_6: |
| case READ_10: |
| case READ_12: |
| case WRITE_6: |
| case WRITE_10: |
| case WRITE_12: |
| case GPCMD_READ_CD: |
| case GPCMD_SEND_DVD_STRUCTURE: |
| case GPCMD_SEND_CUE_SHEET: |
| return 0; /* DMA is safe */ |
| } |
| } |
| return -EOPNOTSUPP; /* use PIO instead */ |
| } |
| |
| /** |
| * mv_bmdma_setup - Set up BMDMA transaction |
| * @qc: queued command to prepare DMA for. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_bmdma_setup(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct mv_port_priv *pp = ap->private_data; |
| |
| mv_fill_sg(qc); |
| |
| /* clear all DMA cmd bits */ |
| writel(0, port_mmio + BMDMA_CMD); |
| |
| /* load PRD table addr. */ |
| writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, |
| port_mmio + BMDMA_PRD_HIGH); |
| writelfl(pp->sg_tbl_dma[qc->tag], |
| port_mmio + BMDMA_PRD_LOW); |
| |
| /* issue r/w command */ |
| ap->ops->sff_exec_command(ap, &qc->tf); |
| } |
| |
| /** |
| * mv_bmdma_start - Start a BMDMA transaction |
| * @qc: queued command to start DMA on. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_bmdma_start(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| void __iomem *port_mmio = mv_ap_base(ap); |
| unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); |
| u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; |
| |
| /* start host DMA transaction */ |
| writelfl(cmd, port_mmio + BMDMA_CMD); |
| } |
| |
| /** |
| * mv_bmdma_stop - Stop BMDMA transfer |
| * @qc: queued command to stop DMA on. |
| * |
| * Clears the ATA_DMA_START flag in the bmdma control register |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_bmdma_stop_ap(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 cmd; |
| |
| /* clear start/stop bit */ |
| cmd = readl(port_mmio + BMDMA_CMD); |
| if (cmd & ATA_DMA_START) { |
| cmd &= ~ATA_DMA_START; |
| writelfl(cmd, port_mmio + BMDMA_CMD); |
| |
| /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ |
| ata_sff_dma_pause(ap); |
| } |
| } |
| |
| static void mv_bmdma_stop(struct ata_queued_cmd *qc) |
| { |
| mv_bmdma_stop_ap(qc->ap); |
| } |
| |
| /** |
| * mv_bmdma_status - Read BMDMA status |
| * @ap: port for which to retrieve DMA status. |
| * |
| * Read and return equivalent of the sff BMDMA status register. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static u8 mv_bmdma_status(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 reg, status; |
| |
| /* |
| * Other bits are valid only if ATA_DMA_ACTIVE==0, |
| * and the ATA_DMA_INTR bit doesn't exist. |
| */ |
| reg = readl(port_mmio + BMDMA_STATUS); |
| if (reg & ATA_DMA_ACTIVE) |
| status = ATA_DMA_ACTIVE; |
| else if (reg & ATA_DMA_ERR) |
| status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; |
| else { |
| /* |
| * Just because DMA_ACTIVE is 0 (DMA completed), |
| * this does _not_ mean the device is "done". |
| * So we should not yet be signalling ATA_DMA_INTR |
| * in some cases. Eg. DSM/TRIM, and perhaps others. |
| */ |
| mv_bmdma_stop_ap(ap); |
| if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY) |
| status = 0; |
| else |
| status = ATA_DMA_INTR; |
| } |
| return status; |
| } |
| |
| static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) |
| { |
| struct ata_taskfile *tf = &qc->tf; |
| /* |
| * Workaround for 88SX60x1 FEr SATA#24. |
| * |
| * Chip may corrupt WRITEs if multi_count >= 4kB. |
| * Note that READs are unaffected. |
| * |
| * It's not clear if this errata really means "4K bytes", |
| * or if it always happens for multi_count > 7 |
| * regardless of device sector_size. |
| * |
| * So, for safety, any write with multi_count > 7 |
| * gets converted here into a regular PIO write instead: |
| */ |
| if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { |
| if (qc->dev->multi_count > 7) { |
| switch (tf->command) { |
| case ATA_CMD_WRITE_MULTI: |
| tf->command = ATA_CMD_PIO_WRITE; |
| break; |
| case ATA_CMD_WRITE_MULTI_FUA_EXT: |
| tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ |
| /* fall through */ |
| case ATA_CMD_WRITE_MULTI_EXT: |
| tf->command = ATA_CMD_PIO_WRITE_EXT; |
| break; |
| } |
| } |
| } |
| } |
| |
| /** |
| * mv_qc_prep - Host specific command preparation. |
| * @qc: queued command to prepare |
| * |
| * This routine simply redirects to the general purpose routine |
| * if command is not DMA. Else, it handles prep of the CRQB |
| * (command request block), does some sanity checking, and calls |
| * the SG load routine. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_qc_prep(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct mv_port_priv *pp = ap->private_data; |
| __le16 *cw; |
| struct ata_taskfile *tf = &qc->tf; |
| u16 flags = 0; |
| unsigned in_index; |
| |
| switch (tf->protocol) { |
| case ATA_PROT_DMA: |
| if (tf->command == ATA_CMD_DSM) |
| return; |
| /* fall-thru */ |
| case ATA_PROT_NCQ: |
| break; /* continue below */ |
| case ATA_PROT_PIO: |
| mv_rw_multi_errata_sata24(qc); |
| return; |
| default: |
| return; |
| } |
| |
| /* Fill in command request block |
| */ |
| if (!(tf->flags & ATA_TFLAG_WRITE)) |
| flags |= CRQB_FLAG_READ; |
| WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); |
| flags |= qc->tag << CRQB_TAG_SHIFT; |
| flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; |
| |
| /* get current queue index from software */ |
| in_index = pp->req_idx; |
| |
| pp->crqb[in_index].sg_addr = |
| cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); |
| pp->crqb[in_index].sg_addr_hi = |
| cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); |
| pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); |
| |
| cw = &pp->crqb[in_index].ata_cmd[0]; |
| |
| /* Sadly, the CRQB cannot accommodate all registers--there are |
| * only 11 bytes...so we must pick and choose required |
| * registers based on the command. So, we drop feature and |
| * hob_feature for [RW] DMA commands, but they are needed for |
| * NCQ. NCQ will drop hob_nsect, which is not needed there |
| * (nsect is used only for the tag; feat/hob_feat hold true nsect). |
| */ |
| switch (tf->command) { |
| case ATA_CMD_READ: |
| case ATA_CMD_READ_EXT: |
| case ATA_CMD_WRITE: |
| case ATA_CMD_WRITE_EXT: |
| case ATA_CMD_WRITE_FUA_EXT: |
| mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); |
| break; |
| case ATA_CMD_FPDMA_READ: |
| case ATA_CMD_FPDMA_WRITE: |
| mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); |
| mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); |
| break; |
| default: |
| /* The only other commands EDMA supports in non-queued and |
| * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none |
| * of which are defined/used by Linux. If we get here, this |
| * driver needs work. |
| * |
| * FIXME: modify libata to give qc_prep a return value and |
| * return error here. |
| */ |
| BUG_ON(tf->command); |
| break; |
| } |
| mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); |
| mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); |
| mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); |
| mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); |
| mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); |
| mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); |
| mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); |
| mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); |
| mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ |
| |
| if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
| return; |
| mv_fill_sg(qc); |
| } |
| |
| /** |
| * mv_qc_prep_iie - Host specific command preparation. |
| * @qc: queued command to prepare |
| * |
| * This routine simply redirects to the general purpose routine |
| * if command is not DMA. Else, it handles prep of the CRQB |
| * (command request block), does some sanity checking, and calls |
| * the SG load routine. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_qc_prep_iie(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct mv_port_priv *pp = ap->private_data; |
| struct mv_crqb_iie *crqb; |
| struct ata_taskfile *tf = &qc->tf; |
| unsigned in_index; |
| u32 flags = 0; |
| |
| if ((tf->protocol != ATA_PROT_DMA) && |
| (tf->protocol != ATA_PROT_NCQ)) |
| return; |
| if (tf->command == ATA_CMD_DSM) |
| return; /* use bmdma for this */ |
| |
| /* Fill in Gen IIE command request block */ |
| if (!(tf->flags & ATA_TFLAG_WRITE)) |
| flags |= CRQB_FLAG_READ; |
| |
| WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); |
| flags |= qc->tag << CRQB_TAG_SHIFT; |
| flags |= qc->tag << CRQB_HOSTQ_SHIFT; |
| flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; |
| |
| /* get current queue index from software */ |
| in_index = pp->req_idx; |
| |
| crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; |
| crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); |
| crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); |
| crqb->flags = cpu_to_le32(flags); |
| |
| crqb->ata_cmd[0] = cpu_to_le32( |
| (tf->command << 16) | |
| (tf->feature << 24) |
| ); |
| crqb->ata_cmd[1] = cpu_to_le32( |
| (tf->lbal << 0) | |
| (tf->lbam << 8) | |
| (tf->lbah << 16) | |
| (tf->device << 24) |
| ); |
| crqb->ata_cmd[2] = cpu_to_le32( |
| (tf->hob_lbal << 0) | |
| (tf->hob_lbam << 8) | |
| (tf->hob_lbah << 16) | |
| (tf->hob_feature << 24) |
| ); |
| crqb->ata_cmd[3] = cpu_to_le32( |
| (tf->nsect << 0) | |
| (tf->hob_nsect << 8) |
| ); |
| |
| if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
| return; |
| mv_fill_sg(qc); |
| } |
| |
| /** |
| * mv_sff_check_status - fetch device status, if valid |
| * @ap: ATA port to fetch status from |
| * |
| * When using command issue via mv_qc_issue_fis(), |
| * the initial ATA_BUSY state does not show up in the |
| * ATA status (shadow) register. This can confuse libata! |
| * |
| * So we have a hook here to fake ATA_BUSY for that situation, |
| * until the first time a BUSY, DRQ, or ERR bit is seen. |
| * |
| * The rest of the time, it simply returns the ATA status register. |
| */ |
| static u8 mv_sff_check_status(struct ata_port *ap) |
| { |
| u8 stat = ioread8(ap->ioaddr.status_addr); |
| struct mv_port_priv *pp = ap->private_data; |
| |
| if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { |
| if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) |
| pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; |
| else |
| stat = ATA_BUSY; |
| } |
| return stat; |
| } |
| |
| /** |
| * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register |
| * @fis: fis to be sent |
| * @nwords: number of 32-bit words in the fis |
| */ |
| static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 ifctl, old_ifctl, ifstat; |
| int i, timeout = 200, final_word = nwords - 1; |
| |
| /* Initiate FIS transmission mode */ |
| old_ifctl = readl(port_mmio + SATA_IFCTL); |
| ifctl = 0x100 | (old_ifctl & 0xf); |
| writelfl(ifctl, port_mmio + SATA_IFCTL); |
| |
| /* Send all words of the FIS except for the final word */ |
| for (i = 0; i < final_word; ++i) |
| writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); |
| |
| /* Flag end-of-transmission, and then send the final word */ |
| writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); |
| writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); |
| |
| /* |
| * Wait for FIS transmission to complete. |
| * This typically takes just a single iteration. |
| */ |
| do { |
| ifstat = readl(port_mmio + SATA_IFSTAT); |
| } while (!(ifstat & 0x1000) && --timeout); |
| |
| /* Restore original port configuration */ |
| writelfl(old_ifctl, port_mmio + SATA_IFCTL); |
| |
| /* See if it worked */ |
| if ((ifstat & 0x3000) != 0x1000) { |
| ata_port_warn(ap, "%s transmission error, ifstat=%08x\n", |
| __func__, ifstat); |
| return AC_ERR_OTHER; |
| } |
| return 0; |
| } |
| |
| /** |
| * mv_qc_issue_fis - Issue a command directly as a FIS |
| * @qc: queued command to start |
| * |
| * Note that the ATA shadow registers are not updated |
| * after command issue, so the device will appear "READY" |
| * if polled, even while it is BUSY processing the command. |
| * |
| * So we use a status hook to fake ATA_BUSY until the drive changes state. |
| * |
| * Note: we don't get updated shadow regs on *completion* |
| * of non-data commands. So avoid sending them via this function, |
| * as they will appear to have completed immediately. |
| * |
| * GEN_IIE has special registers that we could get the result tf from, |
| * but earlier chipsets do not. For now, we ignore those registers. |
| */ |
| static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct mv_port_priv *pp = ap->private_data; |
| struct ata_link *link = qc->dev->link; |
| u32 fis[5]; |
| int err = 0; |
| |
| ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); |
| err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); |
| if (err) |
| return err; |
| |
| switch (qc->tf.protocol) { |
| case ATAPI_PROT_PIO: |
| pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; |
| /* fall through */ |
| case ATAPI_PROT_NODATA: |
| ap->hsm_task_state = HSM_ST_FIRST; |
| break; |
| case ATA_PROT_PIO: |
| pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; |
| if (qc->tf.flags & ATA_TFLAG_WRITE) |
| ap->hsm_task_state = HSM_ST_FIRST; |
| else |
| ap->hsm_task_state = HSM_ST; |
| break; |
| default: |
| ap->hsm_task_state = HSM_ST_LAST; |
| break; |
| } |
| |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_sff_queue_pio_task(link, 0); |
| return 0; |
| } |
| |
| /** |
| * mv_qc_issue - Initiate a command to the host |
| * @qc: queued command to start |
| * |
| * This routine simply redirects to the general purpose routine |
| * if command is not DMA. Else, it sanity checks our local |
| * caches of the request producer/consumer indices then enables |
| * DMA and bumps the request producer index. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) |
| { |
| static int limit_warnings = 10; |
| struct ata_port *ap = qc->ap; |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct mv_port_priv *pp = ap->private_data; |
| u32 in_index; |
| unsigned int port_irqs; |
| |
| pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ |
| |
| switch (qc->tf.protocol) { |
| case ATA_PROT_DMA: |
| if (qc->tf.command == ATA_CMD_DSM) { |
| if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */ |
| return AC_ERR_OTHER; |
| break; /* use bmdma for this */ |
| } |
| /* fall thru */ |
| case ATA_PROT_NCQ: |
| mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); |
| pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; |
| in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; |
| |
| /* Write the request in pointer to kick the EDMA to life */ |
| writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, |
| port_mmio + EDMA_REQ_Q_IN_PTR); |
| return 0; |
| |
| case ATA_PROT_PIO: |
| /* |
| * Errata SATA#16, SATA#24: warn if multiple DRQs expected. |
| * |
| * Someday, we might implement special polling workarounds |
| * for these, but it all seems rather unnecessary since we |
| * normally use only DMA for commands which transfer more |
| * than a single block of data. |
| * |
| * Much of the time, this could just work regardless. |
| * So for now, just log the incident, and allow the attempt. |
| */ |
| if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { |
| --limit_warnings; |
| ata_link_warn(qc->dev->link, DRV_NAME |
| ": attempting PIO w/multiple DRQ: " |
| "this may fail due to h/w errata\n"); |
| } |
| /* drop through */ |
| case ATA_PROT_NODATA: |
| case ATAPI_PROT_PIO: |
| case ATAPI_PROT_NODATA: |
| if (ap->flags & ATA_FLAG_PIO_POLLING) |
| qc->tf.flags |= ATA_TFLAG_POLLING; |
| break; |
| } |
| |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| port_irqs = ERR_IRQ; /* mask device interrupt when polling */ |
| else |
| port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ |
| |
| /* |
| * We're about to send a non-EDMA capable command to the |
| * port. Turn off EDMA so there won't be problems accessing |
| * shadow block, etc registers. |
| */ |
| mv_stop_edma(ap); |
| mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); |
| mv_pmp_select(ap, qc->dev->link->pmp); |
| |
| if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| /* |
| * Workaround for 88SX60x1 FEr SATA#25 (part 2). |
| * |
| * After any NCQ error, the READ_LOG_EXT command |
| * from libata-eh *must* use mv_qc_issue_fis(). |
| * Otherwise it might fail, due to chip errata. |
| * |
| * Rather than special-case it, we'll just *always* |
| * use this method here for READ_LOG_EXT, making for |
| * easier testing. |
| */ |
| if (IS_GEN_II(hpriv)) |
| return mv_qc_issue_fis(qc); |
| } |
| return ata_bmdma_qc_issue(qc); |
| } |
| |
| static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) |
| { |
| struct mv_port_priv *pp = ap->private_data; |
| struct ata_queued_cmd *qc; |
| |
| if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) |
| return NULL; |
| qc = ata_qc_from_tag(ap, ap->link.active_tag); |
| if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) |
| return qc; |
| return NULL; |
| } |
| |
| static void mv_pmp_error_handler(struct ata_port *ap) |
| { |
| unsigned int pmp, pmp_map; |
| struct mv_port_priv *pp = ap->private_data; |
| |
| if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { |
| /* |
| * Perform NCQ error analysis on failed PMPs |
| * before we freeze the port entirely. |
| * |
| * The failed PMPs are marked earlier by mv_pmp_eh_prep(). |
| */ |
| pmp_map = pp->delayed_eh_pmp_map; |
| pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; |
| for (pmp = 0; pmp_map != 0; pmp++) { |
| unsigned int this_pmp = (1 << pmp); |
| if (pmp_map & this_pmp) { |
| struct ata_link *link = &ap->pmp_link[pmp]; |
| pmp_map &= ~this_pmp; |
| ata_eh_analyze_ncq_error(link); |
| } |
| } |
| ata_port_freeze(ap); |
| } |
| sata_pmp_error_handler(ap); |
| } |
| |
| static unsigned int mv_get_err_pmp_map(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| |
| return readl(port_mmio + SATA_TESTCTL) >> 16; |
| } |
| |
| static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) |
| { |
| struct ata_eh_info *ehi; |
| unsigned int pmp; |
| |
| /* |
| * Initialize EH info for PMPs which saw device errors |
| */ |
| ehi = &ap->link.eh_info; |
| for (pmp = 0; pmp_map != 0; pmp++) { |
| unsigned int this_pmp = (1 << pmp); |
| if (pmp_map & this_pmp) { |
| struct ata_link *link = &ap->pmp_link[pmp]; |
| |
| pmp_map &= ~this_pmp; |
| ehi = &link->eh_info; |
| ata_ehi_clear_desc(ehi); |
| ata_ehi_push_desc(ehi, "dev err"); |
| ehi->err_mask |= AC_ERR_DEV; |
| ehi->action |= ATA_EH_RESET; |
| ata_link_abort(link); |
| } |
| } |
| } |
| |
| static int mv_req_q_empty(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 in_ptr, out_ptr; |
| |
| in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) |
| >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
| out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) |
| >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
| return (in_ptr == out_ptr); /* 1 == queue_is_empty */ |
| } |
| |
| static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) |
| { |
| struct mv_port_priv *pp = ap->private_data; |
| int failed_links; |
| unsigned int old_map, new_map; |
| |
| /* |
| * Device error during FBS+NCQ operation: |
| * |
| * Set a port flag to prevent further I/O being enqueued. |
| * Leave the EDMA running to drain outstanding commands from this port. |
| * Perform the post-mortem/EH only when all responses are complete. |
| * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). |
| */ |
| if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { |
| pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; |
| pp->delayed_eh_pmp_map = 0; |
| } |
| old_map = pp->delayed_eh_pmp_map; |
| new_map = old_map | mv_get_err_pmp_map(ap); |
| |
| if (old_map != new_map) { |
| pp->delayed_eh_pmp_map = new_map; |
| mv_pmp_eh_prep(ap, new_map & ~old_map); |
| } |
| failed_links = hweight16(new_map); |
| |
| ata_port_info(ap, |
| "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n", |
| __func__, pp->delayed_eh_pmp_map, |
| ap->qc_active, failed_links, |
| ap->nr_active_links); |
| |
| if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { |
| mv_process_crpb_entries(ap, pp); |
| mv_stop_edma(ap); |
| mv_eh_freeze(ap); |
| ata_port_info(ap, "%s: done\n", __func__); |
| return 1; /* handled */ |
| } |
| ata_port_info(ap, "%s: waiting\n", __func__); |
| return 1; /* handled */ |
| } |
| |
| static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) |
| { |
| /* |
| * Possible future enhancement: |
| * |
| * FBS+non-NCQ operation is not yet implemented. |
| * See related notes in mv_edma_cfg(). |
| * |
| * Device error during FBS+non-NCQ operation: |
| * |
| * We need to snapshot the shadow registers for each failed command. |
| * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). |
| */ |
| return 0; /* not handled */ |
| } |
| |
| static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) |
| { |
| struct mv_port_priv *pp = ap->private_data; |
| |
| if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) |
| return 0; /* EDMA was not active: not handled */ |
| if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) |
| return 0; /* FBS was not active: not handled */ |
| |
| if (!(edma_err_cause & EDMA_ERR_DEV)) |
| return 0; /* non DEV error: not handled */ |
| edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; |
| if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) |
| return 0; /* other problems: not handled */ |
| |
| if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { |
| /* |
| * EDMA should NOT have self-disabled for this case. |
| * If it did, then something is wrong elsewhere, |
| * and we cannot handle it here. |
| */ |
| if (edma_err_cause & EDMA_ERR_SELF_DIS) { |
| ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", |
| __func__, edma_err_cause, pp->pp_flags); |
| return 0; /* not handled */ |
| } |
| return mv_handle_fbs_ncq_dev_err(ap); |
| } else { |
| /* |
| * EDMA should have self-disabled for this case. |
| * If it did not, then something is wrong elsewhere, |
| * and we cannot handle it here. |
| */ |
| if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { |
| ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", |
| __func__, edma_err_cause, pp->pp_flags); |
| return 0; /* not handled */ |
| } |
| return mv_handle_fbs_non_ncq_dev_err(ap); |
| } |
| return 0; /* not handled */ |
| } |
| |
| static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) |
| { |
| struct ata_eh_info *ehi = &ap->link.eh_info; |
| char *when = "idle"; |
| |
| ata_ehi_clear_desc(ehi); |
| if (edma_was_enabled) { |
| when = "EDMA enabled"; |
| } else { |
| struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); |
| if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) |
| when = "polling"; |
| } |
| ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); |
| ehi->err_mask |= AC_ERR_OTHER; |
| ehi->action |= ATA_EH_RESET; |
| ata_port_freeze(ap); |
| } |
| |
| /** |
| * mv_err_intr - Handle error interrupts on the port |
| * @ap: ATA channel to manipulate |
| * |
| * Most cases require a full reset of the chip's state machine, |
| * which also performs a COMRESET. |
| * Also, if the port disabled DMA, update our cached copy to match. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_err_intr(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 edma_err_cause, eh_freeze_mask, serr = 0; |
| u32 fis_cause = 0; |
| struct mv_port_priv *pp = ap->private_data; |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| unsigned int action = 0, err_mask = 0; |
| struct ata_eh_info *ehi = &ap->link.eh_info; |
| struct ata_queued_cmd *qc; |
| int abort = 0; |
| |
| /* |
| * Read and clear the SError and err_cause bits. |
| * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear |
| * the FIS_IRQ_CAUSE register before clearing edma_err_cause. |
| */ |
| sata_scr_read(&ap->link, SCR_ERROR, &serr); |
| sata_scr_write_flush(&ap->link, SCR_ERROR, serr); |
| |
| edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); |
| if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { |
| fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); |
| writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); |
| } |
| writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); |
| |
| if (edma_err_cause & EDMA_ERR_DEV) { |
| /* |
| * Device errors during FIS-based switching operation |
| * require special handling. |
| */ |
| if (mv_handle_dev_err(ap, edma_err_cause)) |
| return; |
| } |
| |
| qc = mv_get_active_qc(ap); |
| ata_ehi_clear_desc(ehi); |
| ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", |
| edma_err_cause, pp->pp_flags); |
| |
| if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { |
| ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); |
| if (fis_cause & FIS_IRQ_CAUSE_AN) { |
| u32 ec = edma_err_cause & |
| ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); |
| sata_async_notification(ap); |
| if (!ec) |
| return; /* Just an AN; no need for the nukes */ |
| ata_ehi_push_desc(ehi, "SDB notify"); |
| } |
| } |
| /* |
| * All generations share these EDMA error cause bits: |
| */ |
| if (edma_err_cause & EDMA_ERR_DEV) { |
| err_mask |= AC_ERR_DEV; |
| action |= ATA_EH_RESET; |
| ata_ehi_push_desc(ehi, "dev error"); |
| } |
| if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | |
| EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | |
| EDMA_ERR_INTRL_PAR)) { |
| err_mask |= AC_ERR_ATA_BUS; |
| action |= ATA_EH_RESET; |
| ata_ehi_push_desc(ehi, "parity error"); |
| } |
| if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { |
| ata_ehi_hotplugged(ehi); |
| ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? |
| "dev disconnect" : "dev connect"); |
| action |= ATA_EH_RESET; |
| } |
| |
| /* |
| * Gen-I has a different SELF_DIS bit, |
| * different FREEZE bits, and no SERR bit: |
| */ |
| if (IS_GEN_I(hpriv)) { |
| eh_freeze_mask = EDMA_EH_FREEZE_5; |
| if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| ata_ehi_push_desc(ehi, "EDMA self-disable"); |
| } |
| } else { |
| eh_freeze_mask = EDMA_EH_FREEZE; |
| if (edma_err_cause & EDMA_ERR_SELF_DIS) { |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| ata_ehi_push_desc(ehi, "EDMA self-disable"); |
| } |
| if (edma_err_cause & EDMA_ERR_SERR) { |
| ata_ehi_push_desc(ehi, "SError=%08x", serr); |
| err_mask |= AC_ERR_ATA_BUS; |
| action |= ATA_EH_RESET; |
| } |
| } |
| |
| if (!err_mask) { |
| err_mask = AC_ERR_OTHER; |
| action |= ATA_EH_RESET; |
| } |
| |
| ehi->serror |= serr; |
| ehi->action |= action; |
| |
| if (qc) |
| qc->err_mask |= err_mask; |
| else |
| ehi->err_mask |= err_mask; |
| |
| if (err_mask == AC_ERR_DEV) { |
| /* |
| * Cannot do ata_port_freeze() here, |
| * because it would kill PIO access, |
| * which is needed for further diagnosis. |
| */ |
| mv_eh_freeze(ap); |
| abort = 1; |
| } else if (edma_err_cause & eh_freeze_mask) { |
| /* |
| * Note to self: ata_port_freeze() calls ata_port_abort() |
| */ |
| ata_port_freeze(ap); |
| } else { |
| abort = 1; |
| } |
| |
| if (abort) { |
| if (qc) |
| ata_link_abort(qc->dev->link); |
| else |
| ata_port_abort(ap); |
| } |
| } |
| |
| static bool mv_process_crpb_response(struct ata_port *ap, |
| struct mv_crpb *response, unsigned int tag, int ncq_enabled) |
| { |
| u8 ata_status; |
| u16 edma_status = le16_to_cpu(response->flags); |
| |
| /* |
| * edma_status from a response queue entry: |
| * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). |
| * MSB is saved ATA status from command completion. |
| */ |
| if (!ncq_enabled) { |
| u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; |
| if (err_cause) { |
| /* |
| * Error will be seen/handled by |
| * mv_err_intr(). So do nothing at all here. |
| */ |
| return false; |
| } |
| } |
| ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; |
| if (!ac_err_mask(ata_status)) |
| return true; |
| /* else: leave it for mv_err_intr() */ |
| return false; |
| } |
| |
| static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| u32 in_index; |
| bool work_done = false; |
| u32 done_mask = 0; |
| int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); |
| |
| /* Get the hardware queue position index */ |
| in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) |
| >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
| |
| /* Process new responses from since the last time we looked */ |
| while (in_index != pp->resp_idx) { |
| unsigned int tag; |
| struct mv_crpb *response = &pp->crpb[pp->resp_idx]; |
| |
| pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; |
| |
| if (IS_GEN_I(hpriv)) { |
| /* 50xx: no NCQ, only one command active at a time */ |
| tag = ap->link.active_tag; |
| } else { |
| /* Gen II/IIE: get command tag from CRPB entry */ |
| tag = le16_to_cpu(response->id) & 0x1f; |
| } |
| if (mv_process_crpb_response(ap, response, tag, ncq_enabled)) |
| done_mask |= 1 << tag; |
| work_done = true; |
| } |
| |
| if (work_done) { |
| ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); |
| |
| /* Update the software queue position index in hardware */ |
| writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | |
| (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), |
| port_mmio + EDMA_RSP_Q_OUT_PTR); |
| } |
| } |
| |
| static void mv_port_intr(struct ata_port *ap, u32 port_cause) |
| { |
| struct mv_port_priv *pp; |
| int edma_was_enabled; |
| |
| /* |
| * Grab a snapshot of the EDMA_EN flag setting, |
| * so that we have a consistent view for this port, |
| * even if something we call of our routines changes it. |
| */ |
| pp = ap->private_data; |
| edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); |
| /* |
| * Process completed CRPB response(s) before other events. |
| */ |
| if (edma_was_enabled && (port_cause & DONE_IRQ)) { |
| mv_process_crpb_entries(ap, pp); |
| if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) |
| mv_handle_fbs_ncq_dev_err(ap); |
| } |
| /* |
| * Handle chip-reported errors, or continue on to handle PIO. |
| */ |
| if (unlikely(port_cause & ERR_IRQ)) { |
| mv_err_intr(ap); |
| } else if (!edma_was_enabled) { |
| struct ata_queued_cmd *qc = mv_get_active_qc(ap); |
| if (qc) |
| ata_bmdma_port_intr(ap, qc); |
| else |
| mv_unexpected_intr(ap, edma_was_enabled); |
| } |
| } |
| |
| /** |
| * mv_host_intr - Handle all interrupts on the given host controller |
| * @host: host specific structure |
| * @main_irq_cause: Main interrupt cause register for the chip. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| void __iomem *mmio = hpriv->base, *hc_mmio; |
| unsigned int handled = 0, port; |
| |
| /* If asserted, clear the "all ports" IRQ coalescing bit */ |
| if (main_irq_cause & ALL_PORTS_COAL_DONE) |
| writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); |
| |
| for (port = 0; port < hpriv->n_ports; port++) { |
| struct ata_port *ap = host->ports[port]; |
| unsigned int p, shift, hardport, port_cause; |
| |
| MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); |
| /* |
| * Each hc within the host has its own hc_irq_cause register, |
| * where the interrupting ports bits get ack'd. |
| */ |
| if (hardport == 0) { /* first port on this hc ? */ |
| u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; |
| u32 port_mask, ack_irqs; |
| /* |
| * Skip this entire hc if nothing pending for any ports |
| */ |
| if (!hc_cause) { |
| port += MV_PORTS_PER_HC - 1; |
| continue; |
| } |
| /* |
| * We don't need/want to read the hc_irq_cause register, |
| * because doing so hurts performance, and |
| * main_irq_cause already gives us everything we need. |
| * |
| * But we do have to *write* to the hc_irq_cause to ack |
| * the ports that we are handling this time through. |
| * |
| * This requires that we create a bitmap for those |
| * ports which interrupted us, and use that bitmap |
| * to ack (only) those ports via hc_irq_cause. |
| */ |
| ack_irqs = 0; |
| if (hc_cause & PORTS_0_3_COAL_DONE) |
| ack_irqs = HC_COAL_IRQ; |
| for (p = 0; p < MV_PORTS_PER_HC; ++p) { |
| if ((port + p) >= hpriv->n_ports) |
| break; |
| port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); |
| if (hc_cause & port_mask) |
| ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; |
| } |
| hc_mmio = mv_hc_base_from_port(mmio, port); |
| writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); |
| handled = 1; |
| } |
| /* |
| * Handle interrupts signalled for this port: |
| */ |
| port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); |
| if (port_cause) |
| mv_port_intr(ap, port_cause); |
| } |
| return handled; |
| } |
| |
| static int mv_pci_error(struct ata_host *host, void __iomem *mmio) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| struct ata_port *ap; |
| struct ata_queued_cmd *qc; |
| struct ata_eh_info *ehi; |
| unsigned int i, err_mask, printed = 0; |
| u32 err_cause; |
| |
| err_cause = readl(mmio + hpriv->irq_cause_offset); |
| |
| dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause); |
| |
| DPRINTK("All regs @ PCI error\n"); |
| mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); |
| |
| writelfl(0, mmio + hpriv->irq_cause_offset); |
| |
| for (i = 0; i < host->n_ports; i++) { |
| ap = host->ports[i]; |
| if (!ata_link_offline(&ap->link)) { |
| ehi = &ap->link.eh_info; |
| ata_ehi_clear_desc(ehi); |
| if (!printed++) |
| ata_ehi_push_desc(ehi, |
| "PCI err cause 0x%08x", err_cause); |
| err_mask = AC_ERR_HOST_BUS; |
| ehi->action = ATA_EH_RESET; |
| qc = ata_qc_from_tag(ap, ap->link.active_tag); |
| if (qc) |
| qc->err_mask |= err_mask; |
| else |
| ehi->err_mask |= err_mask; |
| |
| ata_port_freeze(ap); |
| } |
| } |
| return 1; /* handled */ |
| } |
| |
| /** |
| * mv_interrupt - Main interrupt event handler |
| * @irq: unused |
| * @dev_instance: private data; in this case the host structure |
| * |
| * Read the read only register to determine if any host |
| * controllers have pending interrupts. If so, call lower level |
| * routine to handle. Also check for PCI errors which are only |
| * reported here. |
| * |
| * LOCKING: |
| * This routine holds the host lock while processing pending |
| * interrupts. |
| */ |
| static irqreturn_t mv_interrupt(int irq, void *dev_instance) |
| { |
| struct ata_host *host = dev_instance; |
| struct mv_host_priv *hpriv = host->private_data; |
| unsigned int handled = 0; |
| int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; |
| u32 main_irq_cause, pending_irqs; |
| |
| spin_lock(&host->lock); |
| |
| /* for MSI: block new interrupts while in here */ |
| if (using_msi) |
| mv_write_main_irq_mask(0, hpriv); |
| |
| main_irq_cause = readl(hpriv->main_irq_cause_addr); |
| pending_irqs = main_irq_cause & hpriv->main_irq_mask; |
| /* |
| * Deal with cases where we either have nothing pending, or have read |
| * a bogus register value which can indicate HW removal or PCI fault. |
| */ |
| if (pending_irqs && main_irq_cause != 0xffffffffU) { |
| if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) |
| handled = mv_pci_error(host, hpriv->base); |
| else |
| handled = mv_host_intr(host, pending_irqs); |
| } |
| |
| /* for MSI: unmask; interrupt cause bits will retrigger now */ |
| if (using_msi) |
| mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); |
| |
| spin_unlock(&host->lock); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| static unsigned int mv5_scr_offset(unsigned int sc_reg_in) |
| { |
| unsigned int ofs; |
| |
| switch (sc_reg_in) { |
| case SCR_STATUS: |
| case SCR_ERROR: |
| case SCR_CONTROL: |
| ofs = sc_reg_in * sizeof(u32); |
| break; |
| default: |
| ofs = 0xffffffffU; |
| break; |
| } |
| return ofs; |
| } |
| |
| static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) |
| { |
| struct mv_host_priv *hpriv = link->ap->host->private_data; |
| void __iomem *mmio = hpriv->base; |
| void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); |
| unsigned int ofs = mv5_scr_offset(sc_reg_in); |
| |
| if (ofs != 0xffffffffU) { |
| *val = readl(addr + ofs); |
| return 0; |
| } else |
| return -EINVAL; |
| } |
| |
| static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) |
| { |
| struct mv_host_priv *hpriv = link->ap->host->private_data; |
| void __iomem *mmio = hpriv->base; |
| void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); |
| unsigned int ofs = mv5_scr_offset(sc_reg_in); |
| |
| if (ofs != 0xffffffffU) { |
| writelfl(val, addr + ofs); |
| return 0; |
| } else |
| return -EINVAL; |
| } |
| |
| static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) |
| { |
| struct pci_dev *pdev = to_pci_dev(host->dev); |
| int early_5080; |
| |
| early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); |
| |
| if (!early_5080) { |
| u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| tmp |= (1 << 0); |
| writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| } |
| |
| mv_reset_pci_bus(host, mmio); |
| } |
| |
| static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| writel(0x0fcfffff, mmio + FLASH_CTL); |
| } |
| |
| static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio) |
| { |
| void __iomem *phy_mmio = mv5_phy_base(mmio, idx); |
| u32 tmp; |
| |
| tmp = readl(phy_mmio + MV5_PHY_MODE); |
| |
| hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ |
| hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ |
| } |
| |
| static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| u32 tmp; |
| |
| writel(0, mmio + GPIO_PORT_CTL); |
| |
| /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ |
| |
| tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| tmp |= ~(1 << 0); |
| writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| } |
| |
| static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port) |
| { |
| void __iomem *phy_mmio = mv5_phy_base(mmio, port); |
| const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); |
| u32 tmp; |
| int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); |
| |
| if (fix_apm_sq) { |
| tmp = readl(phy_mmio + MV5_LTMODE); |
| tmp |= (1 << 19); |
| writel(tmp, phy_mmio + MV5_LTMODE); |
| |
| tmp = readl(phy_mmio + MV5_PHY_CTL); |
| tmp &= ~0x3; |
| tmp |= 0x1; |
| writel(tmp, phy_mmio + MV5_PHY_CTL); |
| } |
| |
| tmp = readl(phy_mmio + MV5_PHY_MODE); |
| tmp &= ~mask; |
| tmp |= hpriv->signal[port].pre; |
| tmp |= hpriv->signal[port].amps; |
| writel(tmp, phy_mmio + MV5_PHY_MODE); |
| } |
| |
| |
| #undef ZERO |
| #define ZERO(reg) writel(0, port_mmio + (reg)) |
| static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| mv_reset_channel(hpriv, mmio, port); |
| |
| ZERO(0x028); /* command */ |
| writel(0x11f, port_mmio + EDMA_CFG); |
| ZERO(0x004); /* timer */ |
| ZERO(0x008); /* irq err cause */ |
| ZERO(0x00c); /* irq err mask */ |
| ZERO(0x010); /* rq bah */ |
| ZERO(0x014); /* rq inp */ |
| ZERO(0x018); /* rq outp */ |
| ZERO(0x01c); /* respq bah */ |
| ZERO(0x024); /* respq outp */ |
| ZERO(0x020); /* respq inp */ |
| ZERO(0x02c); /* test control */ |
| writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); |
| } |
| #undef ZERO |
| |
| #define ZERO(reg) writel(0, hc_mmio + (reg)) |
| static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int hc) |
| { |
| void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
| u32 tmp; |
| |
| ZERO(0x00c); |
| ZERO(0x010); |
| ZERO(0x014); |
| ZERO(0x018); |
| |
| tmp = readl(hc_mmio + 0x20); |
| tmp &= 0x1c1c1c1c; |
| tmp |= 0x03030303; |
| writel(tmp, hc_mmio + 0x20); |
| } |
| #undef ZERO |
| |
| static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc) |
| { |
| unsigned int hc, port; |
| |
| for (hc = 0; hc < n_hc; hc++) { |
| for (port = 0; port < MV_PORTS_PER_HC; port++) |
| mv5_reset_hc_port(hpriv, mmio, |
| (hc * MV_PORTS_PER_HC) + port); |
| |
| mv5_reset_one_hc(hpriv, mmio, hc); |
| } |
| |
| return 0; |
| } |
| |
| #undef ZERO |
| #define ZERO(reg) writel(0, mmio + (reg)) |
| static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| u32 tmp; |
| |
| tmp = readl(mmio + MV_PCI_MODE); |
| tmp &= 0xff00ffff; |
| writel(tmp, mmio + MV_PCI_MODE); |
| |
| ZERO(MV_PCI_DISC_TIMER); |
| ZERO(MV_PCI_MSI_TRIGGER); |
| writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); |
| ZERO(MV_PCI_SERR_MASK); |
| ZERO(hpriv->irq_cause_offset); |
| ZERO(hpriv->irq_mask_offset); |
| ZERO(MV_PCI_ERR_LOW_ADDRESS); |
| ZERO(MV_PCI_ERR_HIGH_ADDRESS); |
| ZERO(MV_PCI_ERR_ATTRIBUTE); |
| ZERO(MV_PCI_ERR_COMMAND); |
| } |
| #undef ZERO |
| |
| static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| u32 tmp; |
| |
| mv5_reset_flash(hpriv, mmio); |
| |
| tmp = readl(mmio + GPIO_PORT_CTL); |
| tmp &= 0x3; |
| tmp |= (1 << 5) | (1 << 6); |
| writel(tmp, mmio + GPIO_PORT_CTL); |
| } |
| |
| /** |
| * mv6_reset_hc - Perform the 6xxx global soft reset |
| * @mmio: base address of the HBA |
| * |
| * This routine only applies to 6xxx parts. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc) |
| { |
| void __iomem *reg = mmio + PCI_MAIN_CMD_STS; |
| int i, rc = 0; |
| u32 t; |
| |
| /* Following procedure defined in PCI "main command and status |
| * register" table. |
| */ |
| t = readl(reg); |
| writel(t | STOP_PCI_MASTER, reg); |
| |
| for (i = 0; i < 1000; i++) { |
| udelay(1); |
| t = readl(reg); |
| if (PCI_MASTER_EMPTY & t) |
| break; |
| } |
| if (!(PCI_MASTER_EMPTY & t)) { |
| printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); |
| rc = 1; |
| goto done; |
| } |
| |
| /* set reset */ |
| i = 5; |
| do { |
| writel(t | GLOB_SFT_RST, reg); |
| t = readl(reg); |
| udelay(1); |
| } while (!(GLOB_SFT_RST & t) && (i-- > 0)); |
| |
| if (!(GLOB_SFT_RST & t)) { |
| printk(KERN_ERR DRV_NAME ": can't set global reset\n"); |
| rc = 1; |
| goto done; |
| } |
| |
| /* clear reset and *reenable the PCI master* (not mentioned in spec) */ |
| i = 5; |
| do { |
| writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); |
| t = readl(reg); |
| udelay(1); |
| } while ((GLOB_SFT_RST & t) && (i-- > 0)); |
| |
| if (GLOB_SFT_RST & t) { |
| printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); |
| rc = 1; |
| } |
| done: |
| return rc; |
| } |
| |
| static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio) |
| { |
| void __iomem *port_mmio; |
| u32 tmp; |
| |
| tmp = readl(mmio + RESET_CFG); |
| if ((tmp & (1 << 0)) == 0) { |
| hpriv->signal[idx].amps = 0x7 << 8; |
| hpriv->signal[idx].pre = 0x1 << 5; |
| return; |
| } |
| |
| port_mmio = mv_port_base(mmio, idx); |
| tmp = readl(port_mmio + PHY_MODE2); |
| |
| hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ |
| hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ |
| } |
| |
| static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| writel(0x00000060, mmio + GPIO_PORT_CTL); |
| } |
| |
| static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| u32 hp_flags = hpriv->hp_flags; |
| int fix_phy_mode2 = |
| hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); |
| int fix_phy_mode4 = |
| hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); |
| u32 m2, m3; |
| |
| if (fix_phy_mode2) { |
| m2 = readl(port_mmio + PHY_MODE2); |
| m2 &= ~(1 << 16); |
| m2 |= (1 << 31); |
| writel(m2, port_mmio + PHY_MODE2); |
| |
| udelay(200); |
| |
| m2 = readl(port_mmio + PHY_MODE2); |
| m2 &= ~((1 << 16) | (1 << 31)); |
| writel(m2, port_mmio + PHY_MODE2); |
| |
| udelay(200); |
| } |
| |
| /* |
| * Gen-II/IIe PHY_MODE3 errata RM#2: |
| * Achieves better receiver noise performance than the h/w default: |
| */ |
| m3 = readl(port_mmio + PHY_MODE3); |
| m3 = (m3 & 0x1f) | (0x5555601 << 5); |
| |
| /* Guideline 88F5182 (GL# SATA-S11) */ |
| if (IS_SOC(hpriv)) |
| m3 &= ~0x1c; |
| |
| if (fix_phy_mode4) { |
| u32 m4 = readl(port_mmio + PHY_MODE4); |
| /* |
| * Enforce reserved-bit restrictions on GenIIe devices only. |
| * For earlier chipsets, force only the internal config field |
| * (workaround for errata FEr SATA#10 part 1). |
| */ |
| if (IS_GEN_IIE(hpriv)) |
| m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; |
| else |
| m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; |
| writel(m4, port_mmio + PHY_MODE4); |
| } |
| /* |
| * Workaround for 60x1-B2 errata SATA#13: |
| * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, |
| * so we must always rewrite PHY_MODE3 after PHY_MODE4. |
| * Or ensure we use writelfl() when writing PHY_MODE4. |
| */ |
| writel(m3, port_mmio + PHY_MODE3); |
| |
| /* Revert values of pre-emphasis and signal amps to the saved ones */ |
| m2 = readl(port_mmio + PHY_MODE2); |
| |
| m2 &= ~MV_M2_PREAMP_MASK; |
| m2 |= hpriv->signal[port].amps; |
| m2 |= hpriv->signal[port].pre; |
| m2 &= ~(1 << 16); |
| |
| /* according to mvSata 3.6.1, some IIE values are fixed */ |
| if (IS_GEN_IIE(hpriv)) { |
| m2 &= ~0xC30FF01F; |
| m2 |= 0x0000900F; |
| } |
| |
| writel(m2, port_mmio + PHY_MODE2); |
| } |
| |
| /* TODO: use the generic LED interface to configure the SATA Presence */ |
| /* & Acitivy LEDs on the board */ |
| static void mv_soc_enable_leds(struct mv_host_priv *hpriv, |
| void __iomem *mmio) |
| { |
| return; |
| } |
| |
| static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio) |
| { |
| void __iomem *port_mmio; |
| u32 tmp; |
| |
| port_mmio = mv_port_base(mmio, idx); |
| tmp = readl(port_mmio + PHY_MODE2); |
| |
| hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ |
| hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ |
| } |
| |
| #undef ZERO |
| #define ZERO(reg) writel(0, port_mmio + (reg)) |
| static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, |
| void __iomem *mmio, unsigned int port) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| mv_reset_channel(hpriv, mmio, port); |
| |
| ZERO(0x028); /* command */ |
| writel(0x101f, port_mmio + EDMA_CFG); |
| ZERO(0x004); /* timer */ |
| ZERO(0x008); /* irq err cause */ |
| ZERO(0x00c); /* irq err mask */ |
| ZERO(0x010); /* rq bah */ |
| ZERO(0x014); /* rq inp */ |
| ZERO(0x018); /* rq outp */ |
| ZERO(0x01c); /* respq bah */ |
| ZERO(0x024); /* respq outp */ |
| ZERO(0x020); /* respq inp */ |
| ZERO(0x02c); /* test control */ |
| writel(0x800, port_mmio + EDMA_IORDY_TMOUT); |
| } |
| |
| #undef ZERO |
| |
| #define ZERO(reg) writel(0, hc_mmio + (reg)) |
| static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, |
| void __iomem *mmio) |
| { |
| void __iomem *hc_mmio = mv_hc_base(mmio, 0); |
| |
| ZERO(0x00c); |
| ZERO(0x010); |
| ZERO(0x014); |
| |
| } |
| |
| #undef ZERO |
| |
| static int mv_soc_reset_hc(struct mv_host_priv *hpriv, |
| void __iomem *mmio, unsigned int n_hc) |
| { |
| unsigned int port; |
| |
| for (port = 0; port < hpriv->n_ports; port++) |
| mv_soc_reset_hc_port(hpriv, mmio, port); |
| |
| mv_soc_reset_one_hc(hpriv, mmio); |
| |
| return 0; |
| } |
| |
| static void mv_soc_reset_flash(struct mv_host_priv *hpriv, |
| void __iomem *mmio) |
| { |
| return; |
| } |
| |
| static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) |
| { |
| return; |
| } |
| |
| static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, |
| void __iomem *mmio, unsigned int port) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| u32 reg; |
| |
| reg = readl(port_mmio + PHY_MODE3); |
| reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ |
| reg |= (0x1 << 27); |
| reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ |
| reg |= (0x1 << 29); |
| writel(reg, port_mmio + PHY_MODE3); |
| |
| reg = readl(port_mmio + PHY_MODE4); |
| reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ |
| reg |= (0x1 << 16); |
| writel(reg, port_mmio + PHY_MODE4); |
| |
| reg = readl(port_mmio + PHY_MODE9_GEN2); |
| reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ |
| reg |= 0x8; |
| reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ |
| writel(reg, port_mmio + PHY_MODE9_GEN2); |
| |
| reg = readl(port_mmio + PHY_MODE9_GEN1); |
| reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ |
| reg |= 0x8; |
| reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ |
| writel(reg, port_mmio + PHY_MODE9_GEN1); |
| } |
| |
| /** |
| * soc_is_65 - check if the soc is 65 nano device |
| * |
| * Detect the type of the SoC, this is done by reading the PHYCFG_OFS |
| * register, this register should contain non-zero value and it exists only |
| * in the 65 nano devices, when reading it from older devices we get 0. |
| */ |
| static bool soc_is_65n(struct mv_host_priv *hpriv) |
| { |
| void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); |
| |
| if (readl(port0_mmio + PHYCFG_OFS)) |
| return true; |
| return false; |
| } |
| |
| static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) |
| { |
| u32 ifcfg = readl(port_mmio + SATA_IFCFG); |
| |
| ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ |
| if (want_gen2i) |
| ifcfg |= (1 << 7); /* enable gen2i speed */ |
| writelfl(ifcfg, port_mmio + SATA_IFCFG); |
| } |
| |
| static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port_no) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port_no); |
| |
| /* |
| * The datasheet warns against setting EDMA_RESET when EDMA is active |
| * (but doesn't say what the problem might be). So we first try |
| * to disable the EDMA engine before doing the EDMA_RESET operation. |
| */ |
| mv_stop_edma_engine(port_mmio); |
| writelfl(EDMA_RESET, port_mmio + EDMA_CMD); |
| |
| if (!IS_GEN_I(hpriv)) { |
| /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ |
| mv_setup_ifcfg(port_mmio, 1); |
| } |
| /* |
| * Strobing EDMA_RESET here causes a hard reset of the SATA transport, |
| * link, and physical layers. It resets all SATA interface registers |
| * (except for SATA_IFCFG), and issues a COMRESET to the dev. |
| */ |
| writelfl(EDMA_RESET, port_mmio + EDMA_CMD); |
| udelay(25); /* allow reset propagation */ |
| writelfl(0, port_mmio + EDMA_CMD); |
| |
| hpriv->ops->phy_errata(hpriv, mmio, port_no); |
| |
| if (IS_GEN_I(hpriv)) |
| mdelay(1); |
| } |
| |
| static void mv_pmp_select(struct ata_port *ap, int pmp) |
| { |
| if (sata_pmp_supported(ap)) { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 reg = readl(port_mmio + SATA_IFCTL); |
| int old = reg & 0xf; |
| |
| if (old != pmp) { |
| reg = (reg & ~0xf) | pmp; |
| writelfl(reg, port_mmio + SATA_IFCTL); |
| } |
| } |
| } |
| |
| static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline) |
| { |
| mv_pmp_select(link->ap, sata_srst_pmp(link)); |
| return sata_std_hardreset(link, class, deadline); |
| } |
| |
| static int mv_softreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline) |
| { |
| mv_pmp_select(link->ap, sata_srst_pmp(link)); |
| return ata_sff_softreset(link, class, deadline); |
| } |
| |
| static int mv_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline) |
| { |
| struct ata_port *ap = link->ap; |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| struct mv_port_priv *pp = ap->private_data; |
| void __iomem *mmio = hpriv->base; |
| int rc, attempts = 0, extra = 0; |
| u32 sstatus; |
| bool online; |
| |
| mv_reset_channel(hpriv, mmio, ap->port_no); |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| pp->pp_flags &= |
| ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); |
| |
| /* Workaround for errata FEr SATA#10 (part 2) */ |
| do { |
| const unsigned long *timing = |
| sata_ehc_deb_timing(&link->eh_context); |
| |
| rc = sata_link_hardreset(link, timing, deadline + extra, |
| &online, NULL); |
| rc = online ? -EAGAIN : rc; |
| if (rc) |
| return rc; |
| sata_scr_read(link, SCR_STATUS, &sstatus); |
| if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { |
| /* Force 1.5gb/s link speed and try again */ |
| mv_setup_ifcfg(mv_ap_base(ap), 0); |
| if (time_after(jiffies + HZ, deadline)) |
| extra = HZ; /* only extend it once, max */ |
| } |
| } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); |
| mv_save_cached_regs(ap); |
| mv_edma_cfg(ap, 0, 0); |
| |
| return rc; |
| } |
| |
| static void mv_eh_freeze(struct ata_port *ap) |
| { |
| mv_stop_edma(ap); |
| mv_enable_port_irqs(ap, 0); |
| } |
| |
| static void mv_eh_thaw(struct ata_port *ap) |
| { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| unsigned int port = ap->port_no; |
| unsigned int hardport = mv_hardport_from_port(port); |
| void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 hc_irq_cause; |
| |
| /* clear EDMA errors on this port */ |
| writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); |
| |
| /* clear pending irq events */ |
| hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); |
| writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); |
| |
| mv_enable_port_irqs(ap, ERR_IRQ); |
| } |
| |
| /** |
| * mv_port_init - Perform some early initialization on a single port. |
| * @port: libata data structure storing shadow register addresses |
| * @port_mmio: base address of the port |
| * |
| * Initialize shadow register mmio addresses, clear outstanding |
| * interrupts on the port, and unmask interrupts for the future |
| * start of the port. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) |
| { |
| void __iomem *serr, *shd_base = port_mmio + SHD_BLK; |
| |
| /* PIO related setup |
| */ |
| port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); |
| port->error_addr = |
| port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); |
| port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); |
| port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); |
| port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); |
| port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); |
| port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); |
| port->status_addr = |
| port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); |
| /* special case: control/altstatus doesn't have ATA_REG_ address */ |
| port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; |
| |
| /* Clear any currently outstanding port interrupt conditions */ |
| serr = port_mmio + mv_scr_offset(SCR_ERROR); |
| writelfl(readl(serr), serr); |
| writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); |
| |
| /* unmask all non-transient EDMA error interrupts */ |
| writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); |
| |
| VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", |
| readl(port_mmio + EDMA_CFG), |
| readl(port_mmio + EDMA_ERR_IRQ_CAUSE), |
| readl(port_mmio + EDMA_ERR_IRQ_MASK)); |
| } |
| |
| static unsigned int mv_in_pcix_mode(struct ata_host *host) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| void __iomem *mmio = hpriv->base; |
| u32 reg; |
| |
| if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) |
| return 0; /* not PCI-X capable */ |
| reg = readl(mmio + MV_PCI_MODE); |
| if ((reg & MV_PCI_MODE_MASK) == 0) |
| return 0; /* conventional PCI mode */ |
| return 1; /* chip is in PCI-X mode */ |
| } |
| |
| static int mv_pci_cut_through_okay(struct ata_host *host) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| void __iomem *mmio = hpriv->base; |
| u32 reg; |
| |
| if (!mv_in_pcix_mode(host)) { |
| reg = readl(mmio + MV_PCI_COMMAND); |
| if (reg & MV_PCI_COMMAND_MRDTRIG) |
| return 0; /* not okay */ |
| } |
| return 1; /* okay */ |
| } |
| |
| static void mv_60x1b2_errata_pci7(struct ata_host *host) |
| { |
| struct mv_host_priv *hpriv = host->private_data; |
| void __iomem *mmio = hpriv->base; |
| |
| /* workaround for 60x1-B2 errata PCI#7 */ |
| if (mv_in_pcix_mode(host)) { |
| u32 reg = readl(mmio + MV_PCI_COMMAND); |
| writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); |
| } |
| } |
| |
| static int mv_chip_id(struct ata_host *host, unsigned int board_idx) |
| { |
| struct pci_dev *pdev = to_pci_dev(host->dev); |
| struct mv_host_priv *hpriv = host->private_data; |
| u32 hp_flags = hpriv->hp_flags; |
| |
| switch (board_idx) { |
| case chip_5080: |
| hpriv->ops = &mv5xxx_ops; |
| hp_flags |= MV_HP_GEN_I; |
| |
| switch (pdev->revision) { |
| case 0x1: |
| hp_flags |= MV_HP_ERRATA_50XXB0; |
| break; |
| case 0x3: |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| default: |
| dev_warn(&pdev->dev, |
| "Applying 50XXB2 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| } |
| break; |
| |
| case chip_504x: |
| case chip_508x: |
| hpriv->ops = &mv5xxx_ops; |
| hp_flags |= MV_HP_GEN_I; |
| |
| switch (pdev->revision) { |
| case 0x0: |
| hp_flags |= MV_HP_ERRATA_50XXB0; |
| break; |
| case 0x3: |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| default: |
| dev_warn(&pdev->dev, |
| "Applying B2 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| } |
| break; |
| |
| case chip_604x: |
| case chip_608x: |
| hpriv->ops = &mv6xxx_ops; |
| hp_flags |= MV_HP_GEN_II; |
| |
| switch (pdev->revision) { |
| case 0x7: |
| mv_60x1b2_errata_pci7(host); |
| hp_flags |= MV_HP_ERRATA_60X1B2; |
| break; |
| case 0x9: |
| hp_flags |= MV_HP_ERRATA_60X1C0; |
| break; |
| default: |
| dev_warn(&pdev->dev, |
| "Applying B2 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_60X1B2; |
| break; |
| } |
| break; |
| |
| case chip_7042: |
| hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; |
| if (pdev->vendor == PCI_VENDOR_ID_TTI && |
| (pdev->device == 0x2300 || pdev->device == 0x2310)) |
| { |
| /* |
| * Highpoint RocketRAID PCIe 23xx series cards: |
| * |
| * Unconfigured drives are treated as "Legacy" |
| * by the BIOS, and it overwrites sector 8 with |
| * a "Lgcy" metadata block prior to Linux boot. |
| * |
| * Configured drives (RAID or JBOD) leave sector 8 |
| * alone, but instead overwrite a high numbered |
| * sector for the RAID metadata. This sector can |
| * be determined exactly, by truncating the physical |
| * drive capacity to a nice even GB value. |
| * |
| * RAID metadata is at: (dev->n_sectors & ~0xfffff) |
| * |
| * Warn the user, lest they think we're just buggy. |
| */ |
| printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" |
| " BIOS CORRUPTS DATA on all attached drives," |
| " regardless of if/how they are configured." |
| " BEWARE!\n"); |
| printk(KERN_WARNING DRV_NAME ": For data safety, do not" |
| " use sectors 8-9 on \"Legacy\" drives," |
| " and avoid the final two gigabytes on" |
| " all RocketRAID BIOS initialized drives.\n"); |
| } |
| /* drop through */ |
| case chip_6042: |
| hpriv->ops = &mv6xxx_ops; |
| hp_flags |= MV_HP_GEN_IIE; |
| if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) |
| hp_flags |= MV_HP_CUT_THROUGH; |
| |
| switch (pdev->revision) { |
| case 0x2: /* Rev.B0: the first/only public release */ |
| hp_flags |= MV_HP_ERRATA_60X1C0; |
| break; |
| default: |
| dev_warn(&pdev->dev, |
| "Applying 60X1C0 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_60X1C0; |
| break; |
| } |
| break; |
| case chip_soc: |
| if (soc_is_65n(hpriv)) |
| hpriv->ops = &mv_soc_65n_ops; |
| else |
| hpriv->ops = &mv_soc_ops; |
| hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | |
| MV_HP_ERRATA_60X1C0; |
| break; |
| |
| default: |
| dev_err(host->dev, "BUG: invalid board index %u\n", board_idx); |
| return 1; |
| } |
| |
| hpriv->hp_flags = hp_flags; |
| if (hp_flags & MV_HP_PCIE) { |
| hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; |
| hpriv->irq_mask_offset = PCIE_IRQ_MASK; |
| hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; |
| } else { |
| hpriv->irq_cause_offset = PCI_IRQ_CAUSE; |
| hpriv->irq_mask_offset = PCI_IRQ_MASK; |
| hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * mv_init_host - Perform some early initialization of the host. |
| * @host: ATA host to initialize |
| * |
| * If possible, do an early global reset of the host. Then do |
| * our port init and clear/unmask all/relevant host interrupts. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_init_host(struct ata_host *host) |
| { |
| int rc = 0, n_hc, port, hc; |
| struct mv_host_priv *hpriv = host->private_data; |
| void __iomem *mmio = hpriv->base; |
| |
| rc = mv_chip_id(host, hpriv->board_idx); |
| if (rc) |
| goto done; |
| |
| if (IS_SOC(hpriv)) { |
| hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; |
| hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; |
| } else { |
| hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; |
| hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; |
| } |
| |
| /* initialize shadow irq mask with register's value */ |
| hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); |
| |
| /* global interrupt mask: 0 == mask everything */ |
| mv_set_main_irq_mask(host, ~0, 0); |
| |
| n_hc = mv_get_hc_count(host->ports[0]->flags); |
| |
| for (port = 0; port < host->n_ports; port++) |
| if (hpriv->ops->read_preamp) |
| hpriv->ops->read_preamp(hpriv, port, mmio); |
| |
| rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); |
| if (rc) |
| goto done; |
| |
| hpriv->ops->reset_flash(hpriv, mmio); |
| hpriv->ops->reset_bus(host, mmio); |
| hpriv->ops->enable_leds(hpriv, mmio); |
| |
| for (port = 0; port < host->n_ports; port++) { |
| struct ata_port *ap = host->ports[port]; |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| mv_port_init(&ap->ioaddr, port_mmio); |
| } |
| |
| for (hc = 0; hc < n_hc; hc++) { |
| void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
| |
| VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " |
| "(before clear)=0x%08x\n", hc, |
| readl(hc_mmio + HC_CFG), |
| readl(hc_mmio + HC_IRQ_CAUSE)); |
| |
| /* Clear any currently outstanding hc interrupt conditions */ |
| writelfl(0, hc_mmio + HC_IRQ_CAUSE); |
| } |
| |
| if (!IS_SOC(hpriv)) { |
| /* Clear any currently outstanding host interrupt conditions */ |
| writelfl(0, mmio + hpriv->irq_cause_offset); |
| |
| /* and unmask interrupt generation for host regs */ |
| writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); |
| } |
| |
| /* |
| * enable only global host interrupts for now. |
| * The per-port interrupts get done later as ports are set up. |
| */ |
| mv_set_main_irq_mask(host, 0, PCI_ERR); |
| mv_set_irq_coalescing(host, irq_coalescing_io_count, |
| irq_coalescing_usecs); |
| done: |
| return rc; |
| } |
| |
| static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) |
| { |
| hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, |
| MV_CRQB_Q_SZ, 0); |
| if (!hpriv->crqb_pool) |
| return -ENOMEM; |
| |
| hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, |
| MV_CRPB_Q_SZ, 0); |
| if (!hpriv->crpb_pool) |
| return -ENOMEM; |
| |
| hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, |
| MV_SG_TBL_SZ, 0); |
| if (!hpriv->sg_tbl_pool) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, |
| const struct mbus_dram_target_info *dram) |
| { |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| writel(0, hpriv->base + WINDOW_CTRL(i)); |
| writel(0, hpriv->base + WINDOW_BASE(i)); |
| } |
| |
| for (i = 0; i < dram->num_cs; i++) { |
| const struct mbus_dram_window *cs = dram->cs + i; |
| |
| writel(((cs->size - 1) & 0xffff0000) | |
| (cs->mbus_attr << 8) | |
| (dram->mbus_dram_target_id << 4) | 1, |
| hpriv->base + WINDOW_CTRL(i)); |
| writel(cs->base, hpriv->base + WINDOW_BASE(i)); |
| } |
| } |
| |
| /** |
| * mv_platform_probe - handle a positive probe of an soc Marvell |
| * host |
| * @pdev: platform device found |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_platform_probe(struct platform_device *pdev) |
| { |
| const struct mv_sata_platform_data *mv_platform_data; |
| const struct mbus_dram_target_info *dram; |
| const struct ata_port_info *ppi[] = |
| { &mv_port_info[chip_soc], NULL }; |
| struct ata_host *host; |
| struct mv_host_priv *hpriv; |
| struct resource *res; |
| int n_ports = 0, irq = 0; |
| int rc; |
| int port; |
| |
| ata_print_version_once(&pdev->dev, DRV_VERSION); |
| |
| /* |
| * Simple resource validation .. |
| */ |
| if (unlikely(pdev->num_resources != 2)) { |
| dev_err(&pdev->dev, "invalid number of resources\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Get the register base first |
| */ |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (res == NULL) |
| return -EINVAL; |
| |
| /* allocate host */ |
| if (pdev->dev.of_node) { |
| of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports); |
| irq = irq_of_parse_and_map(pdev->dev.of_node, 0); |
| } else { |
| mv_platform_data = dev_get_platdata(&pdev->dev); |
| n_ports = mv_platform_data->n_ports; |
| irq = platform_get_irq(pdev, 0); |
| } |
| |
| host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); |
| hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); |
| |
| if (!host || !hpriv) |
| return -ENOMEM; |
| hpriv->port_clks = devm_kzalloc(&pdev->dev, |
| sizeof(struct clk *) * n_ports, |
| GFP_KERNEL); |
| if (!hpriv->port_clks) |
| return -ENOMEM; |
| hpriv->port_phys = devm_kzalloc(&pdev->dev, |
| sizeof(struct phy *) * n_ports, |
| GFP_KERNEL); |
| if (!hpriv->port_phys) |
| return -ENOMEM; |
| host->private_data = hpriv; |
| hpriv->board_idx = chip_soc; |
| |
| host->iomap = NULL; |
| hpriv->base = devm_ioremap(&pdev->dev, res->start, |
| resource_size(res)); |
| if (!hpriv->base) |
| return -ENOMEM; |
| |
| hpriv->base -= SATAHC0_REG_BASE; |
| |
| hpriv->clk = clk_get(&pdev->dev, NULL); |
| if (IS_ERR(hpriv->clk)) |
| dev_notice(&pdev->dev, "cannot get optional clkdev\n"); |
| else |
| clk_prepare_enable(hpriv->clk); |
| |
| for (port = 0; port < n_ports; port++) { |
| char port_number[16]; |
| sprintf(port_number, "%d", port); |
| hpriv->port_clks[port] = clk_get(&pdev->dev, port_number); |
| if (!IS_ERR(hpriv->port_clks[port])) |
| clk_prepare_enable(hpriv->port_clks[port]); |
| |
| sprintf(port_number, "port%d", port); |
| hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev, |
| port_number); |
| if (IS_ERR(hpriv->port_phys[port])) { |
| rc = PTR_ERR(hpriv->port_phys[port]); |
| hpriv->port_phys[port] = NULL; |
| if (rc != -EPROBE_DEFER) |
| dev_warn(&pdev->dev, "error getting phy %d", rc); |
| |
| /* Cleanup only the initialized ports */ |
| hpriv->n_ports = port; |
| goto err; |
| } else |
| phy_power_on(hpriv->port_phys[port]); |
| } |
| |
| /* All the ports have been initialized */ |
| hpriv->n_ports = n_ports; |
| |
| /* |
| * (Re-)program MBUS remapping windows if we are asked to. |
| */ |
| dram = mv_mbus_dram_info(); |
| if (dram) |
| mv_conf_mbus_windows(hpriv, dram); |
| |
| rc = mv_create_dma_pools(hpriv, &pdev->dev); |
| if (rc) |
| goto err; |
| |
| /* |
| * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be |
| * updated in the LP_PHY_CTL register. |
| */ |
| if (pdev->dev.of_node && |
| of_device_is_compatible(pdev->dev.of_node, |
| "marvell,armada-370-sata")) |
| hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL; |
| |
| /* initialize adapter */ |
| rc = mv_init_host(host); |
| if (rc) |
| goto err; |
| |
| dev_info(&pdev->dev, "slots %u ports %d\n", |
| (unsigned)MV_MAX_Q_DEPTH, host->n_ports); |
| |
| rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht); |
| if (!rc) |
| return 0; |
| |
| err: |
| if (!IS_ERR(hpriv->clk)) { |
| clk_disable_unprepare(hpriv->clk); |
| clk_put(hpriv->clk); |
| } |
| for (port = 0; port < hpriv->n_ports; port++) { |
| if (!IS_ERR(hpriv->port_clks[port])) { |
| clk_disable_unprepare(hpriv->port_clks[port]); |
| clk_put(hpriv->port_clks[port]); |
| } |
| phy_power_off(hpriv->port_phys[port]); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * |
| * mv_platform_remove - unplug a platform interface |
| * @pdev: platform device |
| * |
| * A platform bus SATA device has been unplugged. Perform the needed |
| * cleanup. Also called on module unload for any active devices. |
| */ |
| static int mv_platform_remove(struct platform_device *pdev) |
| { |
| struct ata_host *host = platform_get_drvdata(pdev); |
| struct mv_host_priv *hpriv = host->private_data; |
| int port; |
| ata_host_detach(host); |
| |
| if (!IS_ERR(hpriv->clk)) { |
| clk_disable_unprepare(hpriv->clk); |
| clk_put(hpriv->clk); |
| } |
| for (port = 0; port < host->n_ports; port++) { |
| if (!IS_ERR(hpriv->port_clks[port])) { |
| clk_disable_unprepare(hpriv->port_clks[port]); |
| clk_put(hpriv->port_clks[port]); |
| } |
| phy_power_off(hpriv->port_phys[port]); |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state) |
| { |
| struct ata_host *host = platform_get_drvdata(pdev); |
| if (host) |
| return ata_host_suspend(host, state); |
| else |
| return 0; |
| } |
| |
| static int mv_platform_resume(struct platform_device *pdev) |
| { |
| struct ata_host *host = platform_get_drvdata(pdev); |
| const struct mbus_dram_target_info *dram; |
| int ret; |
| |
| if (host) { |
| struct mv_host_priv *hpriv = host->private_data; |
| |
| /* |
| * (Re-)program MBUS remapping windows if we are asked to. |
| */ |
| dram = mv_mbus_dram_info(); |
| if (dram) |
| mv_conf_mbus_windows(hpriv, dram); |
| |
| /* initialize adapter */ |
| ret = mv_init_host(host); |
| if (ret) { |
| printk(KERN_ERR DRV_NAME ": Error during HW init\n"); |
| return ret; |
| } |
| ata_host_resume(host); |
| } |
| |
| return 0; |
| } |
| #else |
| #define mv_platform_suspend NULL |
| #define mv_platform_resume NULL |
| #endif |
| |
| #ifdef CONFIG_OF |
| static struct of_device_id mv_sata_dt_ids[] = { |
| { .compatible = "marvell,armada-370-sata", }, |
| { .compatible = "marvell,orion-sata", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, mv_sata_dt_ids); |
| #endif |
| |
| static struct platform_driver mv_platform_driver = { |
| .probe = mv_platform_probe, |
| .remove = mv_platform_remove, |
| .suspend = mv_platform_suspend, |
| .resume = mv_platform_resume, |
| .driver = { |
| .name = DRV_NAME, |
| .of_match_table = of_match_ptr(mv_sata_dt_ids), |
| }, |
| }; |
| |
| |
| #ifdef CONFIG_PCI |
| static int mv_pci_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent); |
| #ifdef CONFIG_PM_SLEEP |
| static int mv_pci_device_resume(struct pci_dev *pdev); |
| #endif |
| |
| |
| static struct pci_driver mv_pci_driver = { |
| .name = DRV_NAME, |
| .id_table = mv_pci_tbl, |
| .probe = mv_pci_init_one, |
| .remove = ata_pci_remove_one, |
| #ifdef CONFIG_PM_SLEEP |
| .suspend = ata_pci_device_suspend, |
| .resume = mv_pci_device_resume, |
| #endif |
| |
| }; |
| |
| /* move to PCI layer or libata core? */ |
| static int pci_go_64(struct pci_dev *pdev) |
| { |
| int rc; |
| |
| if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { |
| rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); |
| if (rc) { |
| rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| if (rc) { |
| dev_err(&pdev->dev, |
| "64-bit DMA enable failed\n"); |
| return rc; |
| } |
| } |
| } else { |
| rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| if (rc) { |
| dev_err(&pdev->dev, "32-bit DMA enable failed\n"); |
| return rc; |
| } |
| rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| if (rc) { |
| dev_err(&pdev->dev, |
| "32-bit consistent DMA enable failed\n"); |
| return rc; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * mv_print_info - Dump key info to kernel log for perusal. |
| * @host: ATA host to print info about |
| * |
| * FIXME: complete this. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_print_info(struct ata_host *host) |
| { |
| struct pci_dev *pdev = to_pci_dev(host->dev); |
| struct mv_host_priv *hpriv = host->private_data; |
| u8 scc; |
| const char *scc_s, *gen; |
| |
| /* Use this to determine the HW stepping of the chip so we know |
| * what errata to workaround |
| */ |
| pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); |
| if (scc == 0) |
| scc_s = "SCSI"; |
| else if (scc == 0x01) |
| scc_s = "RAID"; |
| else |
| scc_s = "?"; |
| |
| if (IS_GEN_I(hpriv)) |
| gen = "I"; |
| else if (IS_GEN_II(hpriv)) |
| gen = "II"; |
| else if (IS_GEN_IIE(hpriv)) |
| gen = "IIE"; |
| else |
| gen = "?"; |
| |
| dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n", |
| gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, |
| scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); |
| } |
| |
| /** |
| * mv_pci_init_one - handle a positive probe of a PCI Marvell host |
| * @pdev: PCI device found |
| * @ent: PCI device ID entry for the matched host |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_pci_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| unsigned int board_idx = (unsigned int)ent->driver_data; |
| const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; |
| struct ata_host *host; |
| struct mv_host_priv *hpriv; |
| int n_ports, port, rc; |
| |
| ata_print_version_once(&pdev->dev, DRV_VERSION); |
| |
| /* allocate host */ |
| n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; |
| |
| host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); |
| hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); |
| if (!host || !hpriv) |
| return -ENOMEM; |
| host->private_data = hpriv; |
| hpriv->n_ports = n_ports; |
| hpriv->board_idx = board_idx; |
| |
| /* acquire resources */ |
| rc = pcim_enable_device(pdev); |
| if (rc) |
| return rc; |
| |
| rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); |
| if (rc == -EBUSY) |
| pcim_pin_device(pdev); |
| if (rc) |
| return rc; |
| host->iomap = pcim_iomap_table(pdev); |
| hpriv->base = host->iomap[MV_PRIMARY_BAR]; |
| |
| rc = pci_go_64(pdev); |
| if (rc) |
| return rc; |
| |
| rc = mv_create_dma_pools(hpriv, &pdev->dev); |
| if (rc) |
| return rc; |
| |
| for (port = 0; port < host->n_ports; port++) { |
| struct ata_port *ap = host->ports[port]; |
| void __iomem *port_mmio = mv_port_base(hpriv->base, port); |
| unsigned int offset = port_mmio - hpriv->base; |
| |
| ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); |
| ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); |
| } |
| |
| /* initialize adapter */ |
| rc = mv_init_host(host); |
| if (rc) |
| return rc; |
| |
| /* Enable message-switched interrupts, if requested */ |
| if (msi && pci_enable_msi(pdev) == 0) |
| hpriv->hp_flags |= MV_HP_FLAG_MSI; |
| |
| mv_dump_pci_cfg(pdev, 0x68); |
| mv_print_info(host); |
| |
| pci_set_master(pdev); |
| pci_try_set_mwi(pdev); |
| return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, |
| IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int mv_pci_device_resume(struct pci_dev *pdev) |
| { |
| struct ata_host *host = pci_get_drvdata(pdev); |
| int rc; |
| |
| rc = ata_pci_device_do_resume(pdev); |
| if (rc) |
| return rc; |
| |
| /* initialize adapter */ |
| rc = mv_init_host(host); |
| if (rc) |
| return rc; |
| |
| ata_host_resume(host); |
| |
| return 0; |
| } |
| #endif |
| #endif |
| |
| static int __init mv_init(void) |
| { |
| int rc = -ENODEV; |
| #ifdef CONFIG_PCI |
| rc = pci_register_driver(&mv_pci_driver); |
| if (rc < 0) |
| return rc; |
| #endif |
| rc = platform_driver_register(&mv_platform_driver); |
| |
| #ifdef CONFIG_PCI |
| if (rc < 0) |
| pci_unregister_driver(&mv_pci_driver); |
| #endif |
| return rc; |
| } |
| |
| static void __exit mv_exit(void) |
| { |
| #ifdef CONFIG_PCI |
| pci_unregister_driver(&mv_pci_driver); |
| #endif |
| platform_driver_unregister(&mv_platform_driver); |
| } |
| |
| MODULE_AUTHOR("Brett Russ"); |
| MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DEVICE_TABLE(pci, mv_pci_tbl); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_ALIAS("platform:" DRV_NAME); |
| |
| module_init(mv_init); |
| module_exit(mv_exit); |