| /* |
| * Read-Copy Update mechanism for mutual exclusion |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright IBM Corporation, 2001 |
| * |
| * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
| * Manfred Spraul <manfred@colorfullife.com> |
| * |
| * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
| * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| * Papers: |
| * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf |
| * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) |
| * |
| * For detailed explanation of Read-Copy Update mechanism see - |
| * Documentation/RCU |
| * |
| */ |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/smp.h> |
| #include <linux/rcupdate.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <asm/atomic.h> |
| #include <linux/bitops.h> |
| #include <linux/module.h> |
| #include <linux/completion.h> |
| #include <linux/moduleparam.h> |
| #include <linux/percpu.h> |
| #include <linux/notifier.h> |
| #include <linux/cpu.h> |
| #include <linux/mutex.h> |
| #include <linux/time.h> |
| |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| static struct lock_class_key rcu_lock_key; |
| struct lockdep_map rcu_lock_map = |
| STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); |
| EXPORT_SYMBOL_GPL(rcu_lock_map); |
| #endif |
| |
| |
| /* Definition for rcupdate control block. */ |
| static struct rcu_ctrlblk rcu_ctrlblk = { |
| .cur = -300, |
| .completed = -300, |
| .pending = -300, |
| .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock), |
| .cpumask = CPU_BITS_NONE, |
| }; |
| static struct rcu_ctrlblk rcu_bh_ctrlblk = { |
| .cur = -300, |
| .completed = -300, |
| .pending = -300, |
| .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock), |
| .cpumask = CPU_BITS_NONE, |
| }; |
| |
| DEFINE_PER_CPU(struct rcu_data, rcu_data) = { 0L }; |
| DEFINE_PER_CPU(struct rcu_data, rcu_bh_data) = { 0L }; |
| |
| static int blimit = 10; |
| static int qhimark = 10000; |
| static int qlowmark = 100; |
| |
| #ifdef CONFIG_SMP |
| static void force_quiescent_state(struct rcu_data *rdp, |
| struct rcu_ctrlblk *rcp) |
| { |
| int cpu; |
| unsigned long flags; |
| |
| set_need_resched(); |
| spin_lock_irqsave(&rcp->lock, flags); |
| if (unlikely(!rcp->signaled)) { |
| rcp->signaled = 1; |
| /* |
| * Don't send IPI to itself. With irqs disabled, |
| * rdp->cpu is the current cpu. |
| * |
| * cpu_online_mask is updated by the _cpu_down() |
| * using __stop_machine(). Since we're in irqs disabled |
| * section, __stop_machine() is not exectuting, hence |
| * the cpu_online_mask is stable. |
| * |
| * However, a cpu might have been offlined _just_ before |
| * we disabled irqs while entering here. |
| * And rcu subsystem might not yet have handled the CPU_DEAD |
| * notification, leading to the offlined cpu's bit |
| * being set in the rcp->cpumask. |
| * |
| * Hence cpumask = (rcp->cpumask & cpu_online_mask) to prevent |
| * sending smp_reschedule() to an offlined CPU. |
| */ |
| for_each_cpu_and(cpu, |
| to_cpumask(rcp->cpumask), cpu_online_mask) { |
| if (cpu != rdp->cpu) |
| smp_send_reschedule(cpu); |
| } |
| } |
| spin_unlock_irqrestore(&rcp->lock, flags); |
| } |
| #else |
| static inline void force_quiescent_state(struct rcu_data *rdp, |
| struct rcu_ctrlblk *rcp) |
| { |
| set_need_resched(); |
| } |
| #endif |
| |
| static void __call_rcu(struct rcu_head *head, struct rcu_ctrlblk *rcp, |
| struct rcu_data *rdp) |
| { |
| long batch; |
| |
| head->next = NULL; |
| smp_mb(); /* Read of rcu->cur must happen after any change by caller. */ |
| |
| /* |
| * Determine the batch number of this callback. |
| * |
| * Using ACCESS_ONCE to avoid the following error when gcc eliminates |
| * local variable "batch" and emits codes like this: |
| * 1) rdp->batch = rcp->cur + 1 # gets old value |
| * ...... |
| * 2)rcu_batch_after(rcp->cur + 1, rdp->batch) # gets new value |
| * then [*nxttail[0], *nxttail[1]) may contain callbacks |
| * that batch# = rdp->batch, see the comment of struct rcu_data. |
| */ |
| batch = ACCESS_ONCE(rcp->cur) + 1; |
| |
| if (rdp->nxtlist && rcu_batch_after(batch, rdp->batch)) { |
| /* process callbacks */ |
| rdp->nxttail[0] = rdp->nxttail[1]; |
| rdp->nxttail[1] = rdp->nxttail[2]; |
| if (rcu_batch_after(batch - 1, rdp->batch)) |
| rdp->nxttail[0] = rdp->nxttail[2]; |
| } |
| |
| rdp->batch = batch; |
| *rdp->nxttail[2] = head; |
| rdp->nxttail[2] = &head->next; |
| |
| if (unlikely(++rdp->qlen > qhimark)) { |
| rdp->blimit = INT_MAX; |
| force_quiescent_state(rdp, &rcu_ctrlblk); |
| } |
| } |
| |
| #ifdef CONFIG_RCU_CPU_STALL_DETECTOR |
| |
| static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp) |
| { |
| rcp->gp_start = jiffies; |
| rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK; |
| } |
| |
| static void print_other_cpu_stall(struct rcu_ctrlblk *rcp) |
| { |
| int cpu; |
| long delta; |
| unsigned long flags; |
| |
| /* Only let one CPU complain about others per time interval. */ |
| |
| spin_lock_irqsave(&rcp->lock, flags); |
| delta = jiffies - rcp->jiffies_stall; |
| if (delta < 2 || rcp->cur != rcp->completed) { |
| spin_unlock_irqrestore(&rcp->lock, flags); |
| return; |
| } |
| rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; |
| spin_unlock_irqrestore(&rcp->lock, flags); |
| |
| /* OK, time to rat on our buddy... */ |
| |
| printk(KERN_ERR "INFO: RCU detected CPU stalls:"); |
| for_each_possible_cpu(cpu) { |
| if (cpumask_test_cpu(cpu, to_cpumask(rcp->cpumask))) |
| printk(" %d", cpu); |
| } |
| printk(" (detected by %d, t=%ld jiffies)\n", |
| smp_processor_id(), (long)(jiffies - rcp->gp_start)); |
| } |
| |
| static void print_cpu_stall(struct rcu_ctrlblk *rcp) |
| { |
| unsigned long flags; |
| |
| printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu/%lu jiffies)\n", |
| smp_processor_id(), jiffies, |
| jiffies - rcp->gp_start); |
| dump_stack(); |
| spin_lock_irqsave(&rcp->lock, flags); |
| if ((long)(jiffies - rcp->jiffies_stall) >= 0) |
| rcp->jiffies_stall = |
| jiffies + RCU_SECONDS_TILL_STALL_RECHECK; |
| spin_unlock_irqrestore(&rcp->lock, flags); |
| set_need_resched(); /* kick ourselves to get things going. */ |
| } |
| |
| static void check_cpu_stall(struct rcu_ctrlblk *rcp) |
| { |
| long delta; |
| |
| delta = jiffies - rcp->jiffies_stall; |
| if (cpumask_test_cpu(smp_processor_id(), to_cpumask(rcp->cpumask)) && |
| delta >= 0) { |
| |
| /* We haven't checked in, so go dump stack. */ |
| print_cpu_stall(rcp); |
| |
| } else if (rcp->cur != rcp->completed && delta >= 2) { |
| |
| /* They had two seconds to dump stack, so complain. */ |
| print_other_cpu_stall(rcp); |
| } |
| } |
| |
| #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| |
| static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp) |
| { |
| } |
| |
| static inline void check_cpu_stall(struct rcu_ctrlblk *rcp) |
| { |
| } |
| |
| #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| |
| /** |
| * call_rcu - Queue an RCU callback for invocation after a grace period. |
| * @head: structure to be used for queueing the RCU updates. |
| * @func: actual update function to be invoked after the grace period |
| * |
| * The update function will be invoked some time after a full grace |
| * period elapses, in other words after all currently executing RCU |
| * read-side critical sections have completed. RCU read-side critical |
| * sections are delimited by rcu_read_lock() and rcu_read_unlock(), |
| * and may be nested. |
| */ |
| void call_rcu(struct rcu_head *head, |
| void (*func)(struct rcu_head *rcu)) |
| { |
| unsigned long flags; |
| |
| head->func = func; |
| local_irq_save(flags); |
| __call_rcu(head, &rcu_ctrlblk, &__get_cpu_var(rcu_data)); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL_GPL(call_rcu); |
| |
| /** |
| * call_rcu_bh - Queue an RCU for invocation after a quicker grace period. |
| * @head: structure to be used for queueing the RCU updates. |
| * @func: actual update function to be invoked after the grace period |
| * |
| * The update function will be invoked some time after a full grace |
| * period elapses, in other words after all currently executing RCU |
| * read-side critical sections have completed. call_rcu_bh() assumes |
| * that the read-side critical sections end on completion of a softirq |
| * handler. This means that read-side critical sections in process |
| * context must not be interrupted by softirqs. This interface is to be |
| * used when most of the read-side critical sections are in softirq context. |
| * RCU read-side critical sections are delimited by rcu_read_lock() and |
| * rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh() |
| * and rcu_read_unlock_bh(), if in process context. These may be nested. |
| */ |
| void call_rcu_bh(struct rcu_head *head, |
| void (*func)(struct rcu_head *rcu)) |
| { |
| unsigned long flags; |
| |
| head->func = func; |
| local_irq_save(flags); |
| __call_rcu(head, &rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data)); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL_GPL(call_rcu_bh); |
| |
| /* |
| * Return the number of RCU batches processed thus far. Useful |
| * for debug and statistics. |
| */ |
| long rcu_batches_completed(void) |
| { |
| return rcu_ctrlblk.completed; |
| } |
| EXPORT_SYMBOL_GPL(rcu_batches_completed); |
| |
| /* |
| * Return the number of RCU batches processed thus far. Useful |
| * for debug and statistics. |
| */ |
| long rcu_batches_completed_bh(void) |
| { |
| return rcu_bh_ctrlblk.completed; |
| } |
| EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); |
| |
| /* Raises the softirq for processing rcu_callbacks. */ |
| static inline void raise_rcu_softirq(void) |
| { |
| raise_softirq(RCU_SOFTIRQ); |
| } |
| |
| /* |
| * Invoke the completed RCU callbacks. They are expected to be in |
| * a per-cpu list. |
| */ |
| static void rcu_do_batch(struct rcu_data *rdp) |
| { |
| unsigned long flags; |
| struct rcu_head *next, *list; |
| int count = 0; |
| |
| list = rdp->donelist; |
| while (list) { |
| next = list->next; |
| prefetch(next); |
| list->func(list); |
| list = next; |
| if (++count >= rdp->blimit) |
| break; |
| } |
| rdp->donelist = list; |
| |
| local_irq_save(flags); |
| rdp->qlen -= count; |
| local_irq_restore(flags); |
| if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark) |
| rdp->blimit = blimit; |
| |
| if (!rdp->donelist) |
| rdp->donetail = &rdp->donelist; |
| else |
| raise_rcu_softirq(); |
| } |
| |
| /* |
| * Grace period handling: |
| * The grace period handling consists out of two steps: |
| * - A new grace period is started. |
| * This is done by rcu_start_batch. The start is not broadcasted to |
| * all cpus, they must pick this up by comparing rcp->cur with |
| * rdp->quiescbatch. All cpus are recorded in the |
| * rcu_ctrlblk.cpumask bitmap. |
| * - All cpus must go through a quiescent state. |
| * Since the start of the grace period is not broadcasted, at least two |
| * calls to rcu_check_quiescent_state are required: |
| * The first call just notices that a new grace period is running. The |
| * following calls check if there was a quiescent state since the beginning |
| * of the grace period. If so, it updates rcu_ctrlblk.cpumask. If |
| * the bitmap is empty, then the grace period is completed. |
| * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace |
| * period (if necessary). |
| */ |
| |
| /* |
| * Register a new batch of callbacks, and start it up if there is currently no |
| * active batch and the batch to be registered has not already occurred. |
| * Caller must hold rcu_ctrlblk.lock. |
| */ |
| static void rcu_start_batch(struct rcu_ctrlblk *rcp) |
| { |
| if (rcp->cur != rcp->pending && |
| rcp->completed == rcp->cur) { |
| rcp->cur++; |
| record_gp_stall_check_time(rcp); |
| |
| /* |
| * Accessing nohz_cpu_mask before incrementing rcp->cur needs a |
| * Barrier Otherwise it can cause tickless idle CPUs to be |
| * included in rcp->cpumask, which will extend graceperiods |
| * unnecessarily. |
| */ |
| smp_mb(); |
| cpumask_andnot(to_cpumask(rcp->cpumask), |
| cpu_online_mask, nohz_cpu_mask); |
| |
| rcp->signaled = 0; |
| } |
| } |
| |
| /* |
| * cpu went through a quiescent state since the beginning of the grace period. |
| * Clear it from the cpu mask and complete the grace period if it was the last |
| * cpu. Start another grace period if someone has further entries pending |
| */ |
| static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp) |
| { |
| cpumask_clear_cpu(cpu, to_cpumask(rcp->cpumask)); |
| if (cpumask_empty(to_cpumask(rcp->cpumask))) { |
| /* batch completed ! */ |
| rcp->completed = rcp->cur; |
| rcu_start_batch(rcp); |
| } |
| } |
| |
| /* |
| * Check if the cpu has gone through a quiescent state (say context |
| * switch). If so and if it already hasn't done so in this RCU |
| * quiescent cycle, then indicate that it has done so. |
| */ |
| static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp, |
| struct rcu_data *rdp) |
| { |
| unsigned long flags; |
| |
| if (rdp->quiescbatch != rcp->cur) { |
| /* start new grace period: */ |
| rdp->qs_pending = 1; |
| rdp->passed_quiesc = 0; |
| rdp->quiescbatch = rcp->cur; |
| return; |
| } |
| |
| /* Grace period already completed for this cpu? |
| * qs_pending is checked instead of the actual bitmap to avoid |
| * cacheline trashing. |
| */ |
| if (!rdp->qs_pending) |
| return; |
| |
| /* |
| * Was there a quiescent state since the beginning of the grace |
| * period? If no, then exit and wait for the next call. |
| */ |
| if (!rdp->passed_quiesc) |
| return; |
| rdp->qs_pending = 0; |
| |
| spin_lock_irqsave(&rcp->lock, flags); |
| /* |
| * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync |
| * during cpu startup. Ignore the quiescent state. |
| */ |
| if (likely(rdp->quiescbatch == rcp->cur)) |
| cpu_quiet(rdp->cpu, rcp); |
| |
| spin_unlock_irqrestore(&rcp->lock, flags); |
| } |
| |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| /* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing |
| * locking requirements, the list it's pulling from has to belong to a cpu |
| * which is dead and hence not processing interrupts. |
| */ |
| static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list, |
| struct rcu_head **tail, long batch) |
| { |
| unsigned long flags; |
| |
| if (list) { |
| local_irq_save(flags); |
| this_rdp->batch = batch; |
| *this_rdp->nxttail[2] = list; |
| this_rdp->nxttail[2] = tail; |
| local_irq_restore(flags); |
| } |
| } |
| |
| static void __rcu_offline_cpu(struct rcu_data *this_rdp, |
| struct rcu_ctrlblk *rcp, struct rcu_data *rdp) |
| { |
| unsigned long flags; |
| |
| /* |
| * if the cpu going offline owns the grace period |
| * we can block indefinitely waiting for it, so flush |
| * it here |
| */ |
| spin_lock_irqsave(&rcp->lock, flags); |
| if (rcp->cur != rcp->completed) |
| cpu_quiet(rdp->cpu, rcp); |
| rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail, rcp->cur + 1); |
| rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail[2], rcp->cur + 1); |
| spin_unlock(&rcp->lock); |
| |
| this_rdp->qlen += rdp->qlen; |
| local_irq_restore(flags); |
| } |
| |
| static void rcu_offline_cpu(int cpu) |
| { |
| struct rcu_data *this_rdp = &get_cpu_var(rcu_data); |
| struct rcu_data *this_bh_rdp = &get_cpu_var(rcu_bh_data); |
| |
| __rcu_offline_cpu(this_rdp, &rcu_ctrlblk, |
| &per_cpu(rcu_data, cpu)); |
| __rcu_offline_cpu(this_bh_rdp, &rcu_bh_ctrlblk, |
| &per_cpu(rcu_bh_data, cpu)); |
| put_cpu_var(rcu_data); |
| put_cpu_var(rcu_bh_data); |
| } |
| |
| #else |
| |
| static void rcu_offline_cpu(int cpu) |
| { |
| } |
| |
| #endif |
| |
| /* |
| * This does the RCU processing work from softirq context. |
| */ |
| static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp, |
| struct rcu_data *rdp) |
| { |
| unsigned long flags; |
| long completed_snap; |
| |
| if (rdp->nxtlist) { |
| local_irq_save(flags); |
| completed_snap = ACCESS_ONCE(rcp->completed); |
| |
| /* |
| * move the other grace-period-completed entries to |
| * [rdp->nxtlist, *rdp->nxttail[0]) temporarily |
| */ |
| if (!rcu_batch_before(completed_snap, rdp->batch)) |
| rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2]; |
| else if (!rcu_batch_before(completed_snap, rdp->batch - 1)) |
| rdp->nxttail[0] = rdp->nxttail[1]; |
| |
| /* |
| * the grace period for entries in |
| * [rdp->nxtlist, *rdp->nxttail[0]) has completed and |
| * move these entries to donelist |
| */ |
| if (rdp->nxttail[0] != &rdp->nxtlist) { |
| *rdp->donetail = rdp->nxtlist; |
| rdp->donetail = rdp->nxttail[0]; |
| rdp->nxtlist = *rdp->nxttail[0]; |
| *rdp->donetail = NULL; |
| |
| if (rdp->nxttail[1] == rdp->nxttail[0]) |
| rdp->nxttail[1] = &rdp->nxtlist; |
| if (rdp->nxttail[2] == rdp->nxttail[0]) |
| rdp->nxttail[2] = &rdp->nxtlist; |
| rdp->nxttail[0] = &rdp->nxtlist; |
| } |
| |
| local_irq_restore(flags); |
| |
| if (rcu_batch_after(rdp->batch, rcp->pending)) { |
| unsigned long flags2; |
| |
| /* and start it/schedule start if it's a new batch */ |
| spin_lock_irqsave(&rcp->lock, flags2); |
| if (rcu_batch_after(rdp->batch, rcp->pending)) { |
| rcp->pending = rdp->batch; |
| rcu_start_batch(rcp); |
| } |
| spin_unlock_irqrestore(&rcp->lock, flags2); |
| } |
| } |
| |
| rcu_check_quiescent_state(rcp, rdp); |
| if (rdp->donelist) |
| rcu_do_batch(rdp); |
| } |
| |
| static void rcu_process_callbacks(struct softirq_action *unused) |
| { |
| /* |
| * Memory references from any prior RCU read-side critical sections |
| * executed by the interrupted code must be see before any RCU |
| * grace-period manupulations below. |
| */ |
| |
| smp_mb(); /* See above block comment. */ |
| |
| __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data)); |
| __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data)); |
| |
| /* |
| * Memory references from any later RCU read-side critical sections |
| * executed by the interrupted code must be see after any RCU |
| * grace-period manupulations above. |
| */ |
| |
| smp_mb(); /* See above block comment. */ |
| } |
| |
| static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp) |
| { |
| /* Check for CPU stalls, if enabled. */ |
| check_cpu_stall(rcp); |
| |
| if (rdp->nxtlist) { |
| long completed_snap = ACCESS_ONCE(rcp->completed); |
| |
| /* |
| * This cpu has pending rcu entries and the grace period |
| * for them has completed. |
| */ |
| if (!rcu_batch_before(completed_snap, rdp->batch)) |
| return 1; |
| if (!rcu_batch_before(completed_snap, rdp->batch - 1) && |
| rdp->nxttail[0] != rdp->nxttail[1]) |
| return 1; |
| if (rdp->nxttail[0] != &rdp->nxtlist) |
| return 1; |
| |
| /* |
| * This cpu has pending rcu entries and the new batch |
| * for then hasn't been started nor scheduled start |
| */ |
| if (rcu_batch_after(rdp->batch, rcp->pending)) |
| return 1; |
| } |
| |
| /* This cpu has finished callbacks to invoke */ |
| if (rdp->donelist) |
| return 1; |
| |
| /* The rcu core waits for a quiescent state from the cpu */ |
| if (rdp->quiescbatch != rcp->cur || rdp->qs_pending) |
| return 1; |
| |
| /* nothing to do */ |
| return 0; |
| } |
| |
| /* |
| * Check to see if there is any immediate RCU-related work to be done |
| * by the current CPU, returning 1 if so. This function is part of the |
| * RCU implementation; it is -not- an exported member of the RCU API. |
| */ |
| int rcu_pending(int cpu) |
| { |
| return __rcu_pending(&rcu_ctrlblk, &per_cpu(rcu_data, cpu)) || |
| __rcu_pending(&rcu_bh_ctrlblk, &per_cpu(rcu_bh_data, cpu)); |
| } |
| |
| /* |
| * Check to see if any future RCU-related work will need to be done |
| * by the current CPU, even if none need be done immediately, returning |
| * 1 if so. This function is part of the RCU implementation; it is -not- |
| * an exported member of the RCU API. |
| */ |
| int rcu_needs_cpu(int cpu) |
| { |
| struct rcu_data *rdp = &per_cpu(rcu_data, cpu); |
| struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu); |
| |
| return !!rdp->nxtlist || !!rdp_bh->nxtlist || rcu_pending(cpu); |
| } |
| |
| /* |
| * Top-level function driving RCU grace-period detection, normally |
| * invoked from the scheduler-clock interrupt. This function simply |
| * increments counters that are read only from softirq by this same |
| * CPU, so there are no memory barriers required. |
| */ |
| void rcu_check_callbacks(int cpu, int user) |
| { |
| if (user || |
| (idle_cpu(cpu) && !in_softirq() && |
| hardirq_count() <= (1 << HARDIRQ_SHIFT))) { |
| |
| /* |
| * Get here if this CPU took its interrupt from user |
| * mode or from the idle loop, and if this is not a |
| * nested interrupt. In this case, the CPU is in |
| * a quiescent state, so count it. |
| * |
| * Also do a memory barrier. This is needed to handle |
| * the case where writes from a preempt-disable section |
| * of code get reordered into schedule() by this CPU's |
| * write buffer. The memory barrier makes sure that |
| * the rcu_qsctr_inc() and rcu_bh_qsctr_inc() are see |
| * by other CPUs to happen after any such write. |
| */ |
| |
| smp_mb(); /* See above block comment. */ |
| rcu_qsctr_inc(cpu); |
| rcu_bh_qsctr_inc(cpu); |
| |
| } else if (!in_softirq()) { |
| |
| /* |
| * Get here if this CPU did not take its interrupt from |
| * softirq, in other words, if it is not interrupting |
| * a rcu_bh read-side critical section. This is an _bh |
| * critical section, so count it. The memory barrier |
| * is needed for the same reason as is the above one. |
| */ |
| |
| smp_mb(); /* See above block comment. */ |
| rcu_bh_qsctr_inc(cpu); |
| } |
| raise_rcu_softirq(); |
| } |
| |
| static void rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp, |
| struct rcu_data *rdp) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rcp->lock, flags); |
| memset(rdp, 0, sizeof(*rdp)); |
| rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2] = &rdp->nxtlist; |
| rdp->donetail = &rdp->donelist; |
| rdp->quiescbatch = rcp->completed; |
| rdp->qs_pending = 0; |
| rdp->cpu = cpu; |
| rdp->blimit = blimit; |
| spin_unlock_irqrestore(&rcp->lock, flags); |
| } |
| |
| static void __cpuinit rcu_online_cpu(int cpu) |
| { |
| struct rcu_data *rdp = &per_cpu(rcu_data, cpu); |
| struct rcu_data *bh_rdp = &per_cpu(rcu_bh_data, cpu); |
| |
| rcu_init_percpu_data(cpu, &rcu_ctrlblk, rdp); |
| rcu_init_percpu_data(cpu, &rcu_bh_ctrlblk, bh_rdp); |
| open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); |
| } |
| |
| static int __cpuinit rcu_cpu_notify(struct notifier_block *self, |
| unsigned long action, void *hcpu) |
| { |
| long cpu = (long)hcpu; |
| |
| switch (action) { |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| rcu_online_cpu(cpu); |
| break; |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| rcu_offline_cpu(cpu); |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __cpuinitdata rcu_nb = { |
| .notifier_call = rcu_cpu_notify, |
| }; |
| |
| /* |
| * Initializes rcu mechanism. Assumed to be called early. |
| * That is before local timer(SMP) or jiffie timer (uniproc) is setup. |
| * Note that rcu_qsctr and friends are implicitly |
| * initialized due to the choice of ``0'' for RCU_CTR_INVALID. |
| */ |
| void __init __rcu_init(void) |
| { |
| #ifdef CONFIG_RCU_CPU_STALL_DETECTOR |
| printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); |
| #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, |
| (void *)(long)smp_processor_id()); |
| /* Register notifier for non-boot CPUs */ |
| register_cpu_notifier(&rcu_nb); |
| } |
| |
| module_param(blimit, int, 0); |
| module_param(qhimark, int, 0); |
| module_param(qlowmark, int, 0); |