| /* |
| * SGI RTC clock/timer routines. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved. |
| * Copyright (c) Dimitri Sivanich |
| */ |
| #include <linux/clockchips.h> |
| |
| #include <asm/uv/uv_mmrs.h> |
| #include <asm/uv/uv_hub.h> |
| #include <asm/uv/bios.h> |
| #include <asm/uv/uv.h> |
| #include <asm/apic.h> |
| #include <asm/cpu.h> |
| |
| #define RTC_NAME "sgi_rtc" |
| |
| static cycle_t uv_read_rtc(struct clocksource *cs); |
| static int uv_rtc_next_event(unsigned long, struct clock_event_device *); |
| static void uv_rtc_timer_setup(enum clock_event_mode, |
| struct clock_event_device *); |
| |
| static struct clocksource clocksource_uv = { |
| .name = RTC_NAME, |
| .rating = 400, |
| .read = uv_read_rtc, |
| .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK, |
| .shift = 10, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static struct clock_event_device clock_event_device_uv = { |
| .name = RTC_NAME, |
| .features = CLOCK_EVT_FEAT_ONESHOT, |
| .shift = 20, |
| .rating = 400, |
| .irq = -1, |
| .set_next_event = uv_rtc_next_event, |
| .set_mode = uv_rtc_timer_setup, |
| .event_handler = NULL, |
| }; |
| |
| static DEFINE_PER_CPU(struct clock_event_device, cpu_ced); |
| |
| /* There is one of these allocated per node */ |
| struct uv_rtc_timer_head { |
| spinlock_t lock; |
| /* next cpu waiting for timer, local node relative: */ |
| int next_cpu; |
| /* number of cpus on this node: */ |
| int ncpus; |
| struct { |
| int lcpu; /* systemwide logical cpu number */ |
| u64 expires; /* next timer expiration for this cpu */ |
| } cpu[1]; |
| }; |
| |
| /* |
| * Access to uv_rtc_timer_head via blade id. |
| */ |
| static struct uv_rtc_timer_head **blade_info __read_mostly; |
| |
| static int uv_rtc_evt_enable; |
| |
| /* |
| * Hardware interface routines |
| */ |
| |
| /* Send IPIs to another node */ |
| static void uv_rtc_send_IPI(int cpu) |
| { |
| unsigned long apicid, val; |
| int pnode; |
| |
| apicid = cpu_physical_id(cpu); |
| pnode = uv_apicid_to_pnode(apicid); |
| val = (1UL << UVH_IPI_INT_SEND_SHFT) | |
| (apicid << UVH_IPI_INT_APIC_ID_SHFT) | |
| (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT); |
| |
| uv_write_global_mmr64(pnode, UVH_IPI_INT, val); |
| } |
| |
| /* Check for an RTC interrupt pending */ |
| static int uv_intr_pending(int pnode) |
| { |
| return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) & |
| UVH_EVENT_OCCURRED0_RTC1_MASK; |
| } |
| |
| /* Setup interrupt and return non-zero if early expiration occurred. */ |
| static int uv_setup_intr(int cpu, u64 expires) |
| { |
| u64 val; |
| int pnode = uv_cpu_to_pnode(cpu); |
| |
| uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, |
| UVH_RTC1_INT_CONFIG_M_MASK); |
| uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L); |
| |
| uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS, |
| UVH_EVENT_OCCURRED0_RTC1_MASK); |
| |
| val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) | |
| ((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT); |
| |
| /* Set configuration */ |
| uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val); |
| /* Initialize comparator value */ |
| uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires); |
| |
| if (uv_read_rtc(NULL) <= expires) |
| return 0; |
| |
| return !uv_intr_pending(pnode); |
| } |
| |
| /* |
| * Per-cpu timer tracking routines |
| */ |
| |
| static __init void uv_rtc_deallocate_timers(void) |
| { |
| int bid; |
| |
| for_each_possible_blade(bid) { |
| kfree(blade_info[bid]); |
| } |
| kfree(blade_info); |
| } |
| |
| /* Allocate per-node list of cpu timer expiration times. */ |
| static __init int uv_rtc_allocate_timers(void) |
| { |
| int cpu; |
| |
| blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL); |
| if (!blade_info) |
| return -ENOMEM; |
| memset(blade_info, 0, uv_possible_blades * sizeof(void *)); |
| |
| for_each_present_cpu(cpu) { |
| int nid = cpu_to_node(cpu); |
| int bid = uv_cpu_to_blade_id(cpu); |
| int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; |
| struct uv_rtc_timer_head *head = blade_info[bid]; |
| |
| if (!head) { |
| head = kmalloc_node(sizeof(struct uv_rtc_timer_head) + |
| (uv_blade_nr_possible_cpus(bid) * |
| 2 * sizeof(u64)), |
| GFP_KERNEL, nid); |
| if (!head) { |
| uv_rtc_deallocate_timers(); |
| return -ENOMEM; |
| } |
| spin_lock_init(&head->lock); |
| head->ncpus = uv_blade_nr_possible_cpus(bid); |
| head->next_cpu = -1; |
| blade_info[bid] = head; |
| } |
| |
| head->cpu[bcpu].lcpu = cpu; |
| head->cpu[bcpu].expires = ULLONG_MAX; |
| } |
| |
| return 0; |
| } |
| |
| /* Find and set the next expiring timer. */ |
| static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode) |
| { |
| u64 lowest = ULLONG_MAX; |
| int c, bcpu = -1; |
| |
| head->next_cpu = -1; |
| for (c = 0; c < head->ncpus; c++) { |
| u64 exp = head->cpu[c].expires; |
| if (exp < lowest) { |
| bcpu = c; |
| lowest = exp; |
| } |
| } |
| if (bcpu >= 0) { |
| head->next_cpu = bcpu; |
| c = head->cpu[bcpu].lcpu; |
| if (uv_setup_intr(c, lowest)) |
| /* If we didn't set it up in time, trigger */ |
| uv_rtc_send_IPI(c); |
| } else { |
| uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, |
| UVH_RTC1_INT_CONFIG_M_MASK); |
| } |
| } |
| |
| /* |
| * Set expiration time for current cpu. |
| * |
| * Returns 1 if we missed the expiration time. |
| */ |
| static int uv_rtc_set_timer(int cpu, u64 expires) |
| { |
| int pnode = uv_cpu_to_pnode(cpu); |
| int bid = uv_cpu_to_blade_id(cpu); |
| struct uv_rtc_timer_head *head = blade_info[bid]; |
| int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; |
| u64 *t = &head->cpu[bcpu].expires; |
| unsigned long flags; |
| int next_cpu; |
| |
| spin_lock_irqsave(&head->lock, flags); |
| |
| next_cpu = head->next_cpu; |
| *t = expires; |
| |
| /* Will this one be next to go off? */ |
| if (next_cpu < 0 || bcpu == next_cpu || |
| expires < head->cpu[next_cpu].expires) { |
| head->next_cpu = bcpu; |
| if (uv_setup_intr(cpu, expires)) { |
| *t = ULLONG_MAX; |
| uv_rtc_find_next_timer(head, pnode); |
| spin_unlock_irqrestore(&head->lock, flags); |
| return -ETIME; |
| } |
| } |
| |
| spin_unlock_irqrestore(&head->lock, flags); |
| return 0; |
| } |
| |
| /* |
| * Unset expiration time for current cpu. |
| * |
| * Returns 1 if this timer was pending. |
| */ |
| static int uv_rtc_unset_timer(int cpu, int force) |
| { |
| int pnode = uv_cpu_to_pnode(cpu); |
| int bid = uv_cpu_to_blade_id(cpu); |
| struct uv_rtc_timer_head *head = blade_info[bid]; |
| int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; |
| u64 *t = &head->cpu[bcpu].expires; |
| unsigned long flags; |
| int rc = 0; |
| |
| spin_lock_irqsave(&head->lock, flags); |
| |
| if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force) |
| rc = 1; |
| |
| if (rc) { |
| *t = ULLONG_MAX; |
| /* Was the hardware setup for this timer? */ |
| if (head->next_cpu == bcpu) |
| uv_rtc_find_next_timer(head, pnode); |
| } |
| |
| spin_unlock_irqrestore(&head->lock, flags); |
| |
| return rc; |
| } |
| |
| |
| /* |
| * Kernel interface routines. |
| */ |
| |
| /* |
| * Read the RTC. |
| * |
| * Starting with HUB rev 2.0, the UV RTC register is replicated across all |
| * cachelines of it's own page. This allows faster simultaneous reads |
| * from a given socket. |
| */ |
| static cycle_t uv_read_rtc(struct clocksource *cs) |
| { |
| unsigned long offset; |
| |
| if (uv_get_min_hub_revision_id() == 1) |
| offset = 0; |
| else |
| offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE; |
| |
| return (cycle_t)uv_read_local_mmr(UVH_RTC | offset); |
| } |
| |
| /* |
| * Program the next event, relative to now |
| */ |
| static int uv_rtc_next_event(unsigned long delta, |
| struct clock_event_device *ced) |
| { |
| int ced_cpu = cpumask_first(ced->cpumask); |
| |
| return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL)); |
| } |
| |
| /* |
| * Setup the RTC timer in oneshot mode |
| */ |
| static void uv_rtc_timer_setup(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| int ced_cpu = cpumask_first(evt->cpumask); |
| |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| case CLOCK_EVT_MODE_ONESHOT: |
| case CLOCK_EVT_MODE_RESUME: |
| /* Nothing to do here yet */ |
| break; |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| uv_rtc_unset_timer(ced_cpu, 1); |
| break; |
| } |
| } |
| |
| static void uv_rtc_interrupt(void) |
| { |
| int cpu = smp_processor_id(); |
| struct clock_event_device *ced = &per_cpu(cpu_ced, cpu); |
| |
| if (!ced || !ced->event_handler) |
| return; |
| |
| if (uv_rtc_unset_timer(cpu, 0) != 1) |
| return; |
| |
| ced->event_handler(ced); |
| } |
| |
| static int __init uv_enable_evt_rtc(char *str) |
| { |
| uv_rtc_evt_enable = 1; |
| |
| return 1; |
| } |
| __setup("uvrtcevt", uv_enable_evt_rtc); |
| |
| static __init void uv_rtc_register_clockevents(struct work_struct *dummy) |
| { |
| struct clock_event_device *ced = &__get_cpu_var(cpu_ced); |
| |
| *ced = clock_event_device_uv; |
| ced->cpumask = cpumask_of(smp_processor_id()); |
| clockevents_register_device(ced); |
| } |
| |
| static __init int uv_rtc_setup_clock(void) |
| { |
| int rc; |
| |
| if (!is_uv_system()) |
| return -ENODEV; |
| |
| clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second, |
| clocksource_uv.shift); |
| |
| /* If single blade, prefer tsc */ |
| if (uv_num_possible_blades() == 1) |
| clocksource_uv.rating = 250; |
| |
| rc = clocksource_register(&clocksource_uv); |
| if (rc) |
| printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc); |
| else |
| printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n", |
| sn_rtc_cycles_per_second/(unsigned long)1E6); |
| |
| if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback) |
| return rc; |
| |
| /* Setup and register clockevents */ |
| rc = uv_rtc_allocate_timers(); |
| if (rc) |
| goto error; |
| |
| x86_platform_ipi_callback = uv_rtc_interrupt; |
| |
| clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second, |
| NSEC_PER_SEC, clock_event_device_uv.shift); |
| |
| clock_event_device_uv.min_delta_ns = NSEC_PER_SEC / |
| sn_rtc_cycles_per_second; |
| |
| clock_event_device_uv.max_delta_ns = clocksource_uv.mask * |
| (NSEC_PER_SEC / sn_rtc_cycles_per_second); |
| |
| rc = schedule_on_each_cpu(uv_rtc_register_clockevents); |
| if (rc) { |
| x86_platform_ipi_callback = NULL; |
| uv_rtc_deallocate_timers(); |
| goto error; |
| } |
| |
| printk(KERN_INFO "UV RTC clockevents registered\n"); |
| |
| return 0; |
| |
| error: |
| clocksource_unregister(&clocksource_uv); |
| printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc); |
| |
| return rc; |
| } |
| arch_initcall(uv_rtc_setup_clock); |