| /* $Id: cris-ide-driver.patch,v 1.1 2005/06/29 21:39:07 akpm Exp $ |
| * |
| * Etrax specific IDE functions, like init and PIO-mode setting etc. |
| * Almost the entire ide.c is used for the rest of the Etrax ATA driver. |
| * Copyright (c) 2000-2005 Axis Communications AB |
| * |
| * Authors: Bjorn Wesen (initial version) |
| * Mikael Starvik (crisv32 port) |
| */ |
| |
| /* Regarding DMA: |
| * |
| * There are two forms of DMA - "DMA handshaking" between the interface and the drive, |
| * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's |
| * something built-in in the Etrax. However only some drives support the DMA-mode handshaking |
| * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the |
| * device can't do DMA handshaking for some stupid reason. We don't need to do that. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/blkdev.h> |
| #include <linux/hdreg.h> |
| #include <linux/ide.h> |
| #include <linux/init.h> |
| |
| #include <asm/io.h> |
| #include <asm/dma.h> |
| |
| /* number of DMA descriptors */ |
| #define MAX_DMA_DESCRS 64 |
| |
| /* number of times to retry busy-flags when reading/writing IDE-registers |
| * this can't be too high because a hung harddisk might cause the watchdog |
| * to trigger (sometimes INB and OUTB are called with irq's disabled) |
| */ |
| |
| #define IDE_REGISTER_TIMEOUT 300 |
| |
| #define LOWDB(x) |
| #define D(x) |
| |
| enum /* Transfer types */ |
| { |
| TYPE_PIO, |
| TYPE_DMA, |
| TYPE_UDMA |
| }; |
| |
| /* CRISv32 specifics */ |
| #ifdef CONFIG_ETRAX_ARCH_V32 |
| #include <asm/arch/hwregs/ata_defs.h> |
| #include <asm/arch/hwregs/dma_defs.h> |
| #include <asm/arch/hwregs/dma.h> |
| #include <asm/arch/pinmux.h> |
| |
| #define ATA_UDMA2_CYC 2 |
| #define ATA_UDMA2_DVS 3 |
| #define ATA_UDMA1_CYC 2 |
| #define ATA_UDMA1_DVS 4 |
| #define ATA_UDMA0_CYC 4 |
| #define ATA_UDMA0_DVS 6 |
| #define ATA_DMA2_STROBE 7 |
| #define ATA_DMA2_HOLD 1 |
| #define ATA_DMA1_STROBE 8 |
| #define ATA_DMA1_HOLD 3 |
| #define ATA_DMA0_STROBE 25 |
| #define ATA_DMA0_HOLD 19 |
| #define ATA_PIO4_SETUP 3 |
| #define ATA_PIO4_STROBE 7 |
| #define ATA_PIO4_HOLD 1 |
| #define ATA_PIO3_SETUP 3 |
| #define ATA_PIO3_STROBE 9 |
| #define ATA_PIO3_HOLD 3 |
| #define ATA_PIO2_SETUP 3 |
| #define ATA_PIO2_STROBE 13 |
| #define ATA_PIO2_HOLD 5 |
| #define ATA_PIO1_SETUP 5 |
| #define ATA_PIO1_STROBE 23 |
| #define ATA_PIO1_HOLD 9 |
| #define ATA_PIO0_SETUP 9 |
| #define ATA_PIO0_STROBE 39 |
| #define ATA_PIO0_HOLD 9 |
| |
| int |
| cris_ide_ack_intr(ide_hwif_t* hwif) |
| { |
| reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, |
| int, hwif->io_ports[0]); |
| REG_WR_INT(ata, regi_ata, rw_ack_intr, 1 << ctrl2.sel); |
| return 1; |
| } |
| |
| static inline int |
| cris_ide_busy(void) |
| { |
| reg_ata_rs_stat_data stat_data; |
| stat_data = REG_RD(ata, regi_ata, rs_stat_data); |
| return stat_data.busy; |
| } |
| |
| static inline int |
| cris_ide_ready(void) |
| { |
| return !cris_ide_busy(); |
| } |
| |
| static inline int |
| cris_ide_data_available(unsigned short* data) |
| { |
| reg_ata_rs_stat_data stat_data; |
| stat_data = REG_RD(ata, regi_ata, rs_stat_data); |
| *data = stat_data.data; |
| return stat_data.dav; |
| } |
| |
| static void |
| cris_ide_write_command(unsigned long command) |
| { |
| REG_WR_INT(ata, regi_ata, rw_ctrl2, command); /* write data to the drive's register */ |
| } |
| |
| static void |
| cris_ide_set_speed(int type, int setup, int strobe, int hold) |
| { |
| reg_ata_rw_ctrl0 ctrl0 = REG_RD(ata, regi_ata, rw_ctrl0); |
| reg_ata_rw_ctrl1 ctrl1 = REG_RD(ata, regi_ata, rw_ctrl1); |
| |
| if (type == TYPE_PIO) { |
| ctrl0.pio_setup = setup; |
| ctrl0.pio_strb = strobe; |
| ctrl0.pio_hold = hold; |
| } else if (type == TYPE_DMA) { |
| ctrl0.dma_strb = strobe; |
| ctrl0.dma_hold = hold; |
| } else if (type == TYPE_UDMA) { |
| ctrl1.udma_tcyc = setup; |
| ctrl1.udma_tdvs = strobe; |
| } |
| REG_WR(ata, regi_ata, rw_ctrl0, ctrl0); |
| REG_WR(ata, regi_ata, rw_ctrl1, ctrl1); |
| } |
| |
| static unsigned long |
| cris_ide_base_address(int bus) |
| { |
| reg_ata_rw_ctrl2 ctrl2 = {0}; |
| ctrl2.sel = bus; |
| return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2); |
| } |
| |
| static unsigned long |
| cris_ide_reg_addr(unsigned long addr, int cs0, int cs1) |
| { |
| reg_ata_rw_ctrl2 ctrl2 = {0}; |
| ctrl2.addr = addr; |
| ctrl2.cs1 = cs1; |
| ctrl2.cs0 = cs0; |
| return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2); |
| } |
| |
| static __init void |
| cris_ide_reset(unsigned val) |
| { |
| reg_ata_rw_ctrl0 ctrl0 = {0}; |
| ctrl0.rst = val ? regk_ata_active : regk_ata_inactive; |
| REG_WR(ata, regi_ata, rw_ctrl0, ctrl0); |
| } |
| |
| static __init void |
| cris_ide_init(void) |
| { |
| reg_ata_rw_ctrl0 ctrl0 = {0}; |
| reg_ata_rw_intr_mask intr_mask = {0}; |
| |
| ctrl0.en = regk_ata_yes; |
| REG_WR(ata, regi_ata, rw_ctrl0, ctrl0); |
| |
| intr_mask.bus0 = regk_ata_yes; |
| intr_mask.bus1 = regk_ata_yes; |
| intr_mask.bus2 = regk_ata_yes; |
| intr_mask.bus3 = regk_ata_yes; |
| |
| REG_WR(ata, regi_ata, rw_intr_mask, intr_mask); |
| |
| crisv32_request_dma(2, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata); |
| crisv32_request_dma(3, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata); |
| |
| crisv32_pinmux_alloc_fixed(pinmux_ata); |
| crisv32_pinmux_alloc_fixed(pinmux_ata0); |
| crisv32_pinmux_alloc_fixed(pinmux_ata1); |
| crisv32_pinmux_alloc_fixed(pinmux_ata2); |
| crisv32_pinmux_alloc_fixed(pinmux_ata3); |
| |
| DMA_RESET(regi_dma2); |
| DMA_ENABLE(regi_dma2); |
| DMA_RESET(regi_dma3); |
| DMA_ENABLE(regi_dma3); |
| |
| DMA_WR_CMD (regi_dma2, regk_dma_set_w_size2); |
| DMA_WR_CMD (regi_dma3, regk_dma_set_w_size2); |
| } |
| |
| static dma_descr_context mycontext __attribute__ ((__aligned__(32))); |
| |
| #define cris_dma_descr_type dma_descr_data |
| #define cris_pio_read regk_ata_rd |
| #define cris_ultra_mask 0x7 |
| #define MAX_DESCR_SIZE 0xffffffffUL |
| |
| static unsigned long |
| cris_ide_get_reg(unsigned long reg) |
| { |
| return (reg & 0x0e000000) >> 25; |
| } |
| |
| static void |
| cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last) |
| { |
| d->buf = (char*)virt_to_phys(buf); |
| d->after = d->buf + len; |
| d->eol = last; |
| } |
| |
| static void |
| cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir,int type,int len) |
| { |
| reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG); |
| reg_ata_rw_trf_cnt trf_cnt = {0}; |
| |
| mycontext.saved_data = (dma_descr_data*)virt_to_phys(d); |
| mycontext.saved_data_buf = d->buf; |
| /* start the dma channel */ |
| DMA_START_CONTEXT(dir ? regi_dma3 : regi_dma2, virt_to_phys(&mycontext)); |
| |
| /* initiate a multi word dma read using PIO handshaking */ |
| trf_cnt.cnt = len >> 1; |
| /* Due to a "feature" the transfer count has to be one extra word for UDMA. */ |
| if (type == TYPE_UDMA) |
| trf_cnt.cnt++; |
| REG_WR(ata, regi_ata, rw_trf_cnt, trf_cnt); |
| |
| ctrl2.rw = dir ? regk_ata_rd : regk_ata_wr; |
| ctrl2.trf_mode = regk_ata_dma; |
| ctrl2.hsh = type == TYPE_PIO ? regk_ata_pio : |
| type == TYPE_DMA ? regk_ata_dma : regk_ata_udma; |
| ctrl2.multi = regk_ata_yes; |
| ctrl2.dma_size = regk_ata_word; |
| REG_WR(ata, regi_ata, rw_ctrl2, ctrl2); |
| } |
| |
| static void |
| cris_ide_wait_dma(int dir) |
| { |
| reg_dma_rw_stat status; |
| do |
| { |
| status = REG_RD(dma, dir ? regi_dma3 : regi_dma2, rw_stat); |
| } while(status.list_state != regk_dma_data_at_eol); |
| } |
| |
| static int cris_dma_test_irq(ide_drive_t *drive) |
| { |
| int intr = REG_RD_INT(ata, regi_ata, r_intr); |
| reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG); |
| return intr & (1 << ctrl2.sel) ? 1 : 0; |
| } |
| |
| static void cris_ide_initialize_dma(int dir) |
| { |
| } |
| |
| #else |
| /* CRISv10 specifics */ |
| #include <asm/arch/svinto.h> |
| #include <asm/arch/io_interface_mux.h> |
| |
| /* PIO timing (in R_ATA_CONFIG) |
| * |
| * _____________________________ |
| * ADDRESS : ________/ |
| * |
| * _______________ |
| * DIOR : ____________/ \__________ |
| * |
| * _______________ |
| * DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX |
| * |
| * |
| * DIOR is unbuffered while address and data is buffered. |
| * This creates two problems: |
| * 1. The DIOR pulse is to early (because it is unbuffered) |
| * 2. The rise time of DIOR is long |
| * |
| * There are at least three different plausible solutions |
| * 1. Use a pad capable of larger currents in Etrax |
| * 2. Use an external buffer |
| * 3. Make the strobe pulse longer |
| * |
| * Some of the strobe timings below are modified to compensate |
| * for this. This implies a slight performance decrease. |
| * |
| * THIS SHOULD NEVER BE CHANGED! |
| * |
| * TODO: Is this true for the latest LX boards still ? |
| */ |
| |
| #define ATA_UDMA2_CYC 0 /* No UDMA supported, just to make it compile. */ |
| #define ATA_UDMA2_DVS 0 |
| #define ATA_UDMA1_CYC 0 |
| #define ATA_UDMA1_DVS 0 |
| #define ATA_UDMA0_CYC 0 |
| #define ATA_UDMA0_DVS 0 |
| #define ATA_DMA2_STROBE 4 |
| #define ATA_DMA2_HOLD 0 |
| #define ATA_DMA1_STROBE 4 |
| #define ATA_DMA1_HOLD 1 |
| #define ATA_DMA0_STROBE 12 |
| #define ATA_DMA0_HOLD 9 |
| #define ATA_PIO4_SETUP 1 |
| #define ATA_PIO4_STROBE 5 |
| #define ATA_PIO4_HOLD 0 |
| #define ATA_PIO3_SETUP 1 |
| #define ATA_PIO3_STROBE 5 |
| #define ATA_PIO3_HOLD 1 |
| #define ATA_PIO2_SETUP 1 |
| #define ATA_PIO2_STROBE 6 |
| #define ATA_PIO2_HOLD 2 |
| #define ATA_PIO1_SETUP 2 |
| #define ATA_PIO1_STROBE 11 |
| #define ATA_PIO1_HOLD 4 |
| #define ATA_PIO0_SETUP 4 |
| #define ATA_PIO0_STROBE 19 |
| #define ATA_PIO0_HOLD 4 |
| |
| int |
| cris_ide_ack_intr(ide_hwif_t* hwif) |
| { |
| return 1; |
| } |
| |
| static inline int |
| cris_ide_busy(void) |
| { |
| return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy) ; |
| } |
| |
| static inline int |
| cris_ide_ready(void) |
| { |
| return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy) ; |
| } |
| |
| static inline int |
| cris_ide_data_available(unsigned short* data) |
| { |
| unsigned long status = *R_ATA_STATUS_DATA; |
| *data = (unsigned short)status; |
| return status & IO_MASK(R_ATA_STATUS_DATA, dav); |
| } |
| |
| static void |
| cris_ide_write_command(unsigned long command) |
| { |
| *R_ATA_CTRL_DATA = command; |
| } |
| |
| static void |
| cris_ide_set_speed(int type, int setup, int strobe, int hold) |
| { |
| static int pio_setup = ATA_PIO4_SETUP; |
| static int pio_strobe = ATA_PIO4_STROBE; |
| static int pio_hold = ATA_PIO4_HOLD; |
| static int dma_strobe = ATA_DMA2_STROBE; |
| static int dma_hold = ATA_DMA2_HOLD; |
| |
| if (type == TYPE_PIO) { |
| pio_setup = setup; |
| pio_strobe = strobe; |
| pio_hold = hold; |
| } else if (type == TYPE_DMA) { |
| dma_strobe = strobe; |
| dma_hold = hold; |
| } |
| *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| IO_FIELD( R_ATA_CONFIG, dma_strobe, dma_strobe ) | |
| IO_FIELD( R_ATA_CONFIG, dma_hold, dma_hold ) | |
| IO_FIELD( R_ATA_CONFIG, pio_setup, pio_setup ) | |
| IO_FIELD( R_ATA_CONFIG, pio_strobe, pio_strobe ) | |
| IO_FIELD( R_ATA_CONFIG, pio_hold, pio_hold ) ); |
| } |
| |
| static unsigned long |
| cris_ide_base_address(int bus) |
| { |
| return IO_FIELD(R_ATA_CTRL_DATA, sel, bus); |
| } |
| |
| static unsigned long |
| cris_ide_reg_addr(unsigned long addr, int cs0, int cs1) |
| { |
| return IO_FIELD(R_ATA_CTRL_DATA, addr, addr) | |
| IO_FIELD(R_ATA_CTRL_DATA, cs0, cs0) | |
| IO_FIELD(R_ATA_CTRL_DATA, cs1, cs1); |
| } |
| |
| static __init void |
| cris_ide_reset(unsigned val) |
| { |
| #ifdef CONFIG_ETRAX_IDE_G27_RESET |
| REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, val); |
| #endif |
| #ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET |
| REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, val); |
| #endif |
| #ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET |
| REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, val); |
| #endif |
| #ifdef CONFIG_ETRAX_IDE_PB7_RESET |
| port_pb_dir_shadow = port_pb_dir_shadow | |
| IO_STATE(R_PORT_PB_DIR, dir7, output); |
| *R_PORT_PB_DIR = port_pb_dir_shadow; |
| REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, val); |
| #endif |
| } |
| |
| static __init void |
| cris_ide_init(void) |
| { |
| volatile unsigned int dummy; |
| |
| *R_ATA_CTRL_DATA = 0; |
| *R_ATA_TRANSFER_CNT = 0; |
| *R_ATA_CONFIG = 0; |
| |
| if (cris_request_io_interface(if_ata, "ETRAX100LX IDE")) { |
| printk(KERN_CRIT "ide: Failed to get IO interface\n"); |
| return; |
| } else if (cris_request_dma(ATA_TX_DMA_NBR, |
| "ETRAX100LX IDE TX", |
| DMA_VERBOSE_ON_ERROR, |
| dma_ata)) { |
| cris_free_io_interface(if_ata); |
| printk(KERN_CRIT "ide: Failed to get Tx DMA channel\n"); |
| return; |
| } else if (cris_request_dma(ATA_RX_DMA_NBR, |
| "ETRAX100LX IDE RX", |
| DMA_VERBOSE_ON_ERROR, |
| dma_ata)) { |
| cris_free_dma(ATA_TX_DMA_NBR, "ETRAX100LX IDE Tx"); |
| cris_free_io_interface(if_ata); |
| printk(KERN_CRIT "ide: Failed to get Rx DMA channel\n"); |
| return; |
| } |
| |
| /* make a dummy read to set the ata controller in a proper state */ |
| dummy = *R_ATA_STATUS_DATA; |
| |
| *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 )); |
| *R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw, read) | |
| IO_FIELD( R_ATA_CTRL_DATA, addr, 1 ) ); |
| |
| while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/ |
| |
| *R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) | |
| IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) | |
| IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) | |
| IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) ); |
| |
| /* reset the dma channels we will use */ |
| |
| RESET_DMA(ATA_TX_DMA_NBR); |
| RESET_DMA(ATA_RX_DMA_NBR); |
| WAIT_DMA(ATA_TX_DMA_NBR); |
| WAIT_DMA(ATA_RX_DMA_NBR); |
| } |
| |
| #define cris_dma_descr_type etrax_dma_descr |
| #define cris_pio_read IO_STATE(R_ATA_CTRL_DATA, rw, read) |
| #define cris_ultra_mask 0x0 |
| #define MAX_DESCR_SIZE 0x10000UL |
| |
| static unsigned long |
| cris_ide_get_reg(unsigned long reg) |
| { |
| return (reg & 0x0e000000) >> 25; |
| } |
| |
| static void |
| cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last) |
| { |
| d->buf = virt_to_phys(buf); |
| d->sw_len = len == MAX_DESCR_SIZE ? 0 : len; |
| if (last) |
| d->ctrl |= d_eol; |
| } |
| |
| static void cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir, int type, int len) |
| { |
| unsigned long cmd; |
| |
| if (dir) { |
| /* need to do this before RX DMA due to a chip bug |
| * it is enough to just flush the part of the cache that |
| * corresponds to the buffers we start, but since HD transfers |
| * usually are more than 8 kB, it is easier to optimize for the |
| * normal case and just flush the entire cache. its the only |
| * way to be sure! (OB movie quote) |
| */ |
| flush_etrax_cache(); |
| *R_DMA_CH3_FIRST = virt_to_phys(d); |
| *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start); |
| |
| } else { |
| *R_DMA_CH2_FIRST = virt_to_phys(d); |
| *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start); |
| } |
| |
| /* initiate a multi word dma read using DMA handshaking */ |
| |
| *R_ATA_TRANSFER_CNT = |
| IO_FIELD(R_ATA_TRANSFER_CNT, count, len >> 1); |
| |
| cmd = dir ? IO_STATE(R_ATA_CTRL_DATA, rw, read) : IO_STATE(R_ATA_CTRL_DATA, rw, write); |
| cmd |= type == TYPE_PIO ? IO_STATE(R_ATA_CTRL_DATA, handsh, pio) : |
| IO_STATE(R_ATA_CTRL_DATA, handsh, dma); |
| *R_ATA_CTRL_DATA = |
| cmd | |
| IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) | |
| IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | |
| IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| } |
| |
| static void |
| cris_ide_wait_dma(int dir) |
| { |
| if (dir) |
| WAIT_DMA(ATA_RX_DMA_NBR); |
| else |
| WAIT_DMA(ATA_TX_DMA_NBR); |
| } |
| |
| static int cris_dma_test_irq(ide_drive_t *drive) |
| { |
| int intr = *R_IRQ_MASK0_RD; |
| int bus = IO_EXTRACT(R_ATA_CTRL_DATA, sel, IDE_DATA_REG); |
| return intr & (1 << (bus + IO_BITNR(R_IRQ_MASK0_RD, ata_irq0))) ? 1 : 0; |
| } |
| |
| |
| static void cris_ide_initialize_dma(int dir) |
| { |
| if (dir) |
| { |
| RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ |
| WAIT_DMA(ATA_RX_DMA_NBR); |
| } |
| else |
| { |
| RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ |
| WAIT_DMA(ATA_TX_DMA_NBR); |
| } |
| } |
| |
| #endif |
| |
| void |
| cris_ide_outw(unsigned short data, unsigned long reg) { |
| int timeleft; |
| |
| LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg)); |
| |
| /* note the lack of handling any timeouts. we stop waiting, but we don't |
| * really notify anybody. |
| */ |
| |
| timeleft = IDE_REGISTER_TIMEOUT; |
| /* wait for busy flag */ |
| do { |
| timeleft--; |
| } while(timeleft && cris_ide_busy()); |
| |
| /* |
| * Fall through at a timeout, so the ongoing command will be |
| * aborted by the write below, which is expected to be a dummy |
| * command to the command register. This happens when a faulty |
| * drive times out on a command. See comment on timeout in |
| * INB. |
| */ |
| if(!timeleft) |
| printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data); |
| |
| cris_ide_write_command(reg|data); /* write data to the drive's register */ |
| |
| timeleft = IDE_REGISTER_TIMEOUT; |
| /* wait for transmitter ready */ |
| do { |
| timeleft--; |
| } while(timeleft && !cris_ide_ready()); |
| } |
| |
| void |
| cris_ide_outb(unsigned char data, unsigned long reg) |
| { |
| cris_ide_outw(data, reg); |
| } |
| |
| void |
| cris_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port) |
| { |
| cris_ide_outw(addr, port); |
| } |
| |
| unsigned short |
| cris_ide_inw(unsigned long reg) { |
| int timeleft; |
| unsigned short val; |
| |
| timeleft = IDE_REGISTER_TIMEOUT; |
| /* wait for busy flag */ |
| do { |
| timeleft--; |
| } while(timeleft && cris_ide_busy()); |
| |
| if(!timeleft) { |
| /* |
| * If we're asked to read the status register, like for |
| * example when a command does not complete for an |
| * extended time, but the ATA interface is stuck in a |
| * busy state at the *ETRAX* ATA interface level (as has |
| * happened repeatedly with at least one bad disk), then |
| * the best thing to do is to pretend that we read |
| * "busy" in the status register, so the IDE driver will |
| * time-out, abort the ongoing command and perform a |
| * reset sequence. Note that the subsequent OUT_BYTE |
| * call will also timeout on busy, but as long as the |
| * write is still performed, everything will be fine. |
| */ |
| if (cris_ide_get_reg(reg) == IDE_STATUS_OFFSET) |
| return BUSY_STAT; |
| else |
| /* For other rare cases we assume 0 is good enough. */ |
| return 0; |
| } |
| |
| cris_ide_write_command(reg | cris_pio_read); |
| |
| timeleft = IDE_REGISTER_TIMEOUT; |
| /* wait for available */ |
| do { |
| timeleft--; |
| } while(timeleft && !cris_ide_data_available(&val)); |
| |
| if(!timeleft) |
| return 0; |
| |
| LOWDB(printk("inb: 0x%x from reg 0x%x\n", val & 0xff, reg)); |
| |
| return val; |
| } |
| |
| unsigned char |
| cris_ide_inb(unsigned long reg) |
| { |
| return (unsigned char)cris_ide_inw(reg); |
| } |
| |
| static int cris_dma_check (ide_drive_t *drive); |
| static int cris_dma_end (ide_drive_t *drive); |
| static int cris_dma_setup (ide_drive_t *drive); |
| static void cris_dma_exec_cmd (ide_drive_t *drive, u8 command); |
| static int cris_dma_test_irq(ide_drive_t *drive); |
| static void cris_dma_start(ide_drive_t *drive); |
| static void cris_ide_input_data (ide_drive_t *drive, void *, unsigned int); |
| static void cris_ide_output_data (ide_drive_t *drive, void *, unsigned int); |
| static void cris_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int); |
| static void cris_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int); |
| static int cris_dma_on (ide_drive_t *drive); |
| |
| static void cris_dma_off(ide_drive_t *drive) |
| { |
| } |
| |
| static void tune_cris_ide(ide_drive_t *drive, u8 pio) |
| { |
| int setup, strobe, hold; |
| |
| switch(pio) |
| { |
| case 0: |
| setup = ATA_PIO0_SETUP; |
| strobe = ATA_PIO0_STROBE; |
| hold = ATA_PIO0_HOLD; |
| break; |
| case 1: |
| setup = ATA_PIO1_SETUP; |
| strobe = ATA_PIO1_STROBE; |
| hold = ATA_PIO1_HOLD; |
| break; |
| case 2: |
| setup = ATA_PIO2_SETUP; |
| strobe = ATA_PIO2_STROBE; |
| hold = ATA_PIO2_HOLD; |
| break; |
| case 3: |
| setup = ATA_PIO3_SETUP; |
| strobe = ATA_PIO3_STROBE; |
| hold = ATA_PIO3_HOLD; |
| break; |
| case 4: |
| setup = ATA_PIO4_SETUP; |
| strobe = ATA_PIO4_STROBE; |
| hold = ATA_PIO4_HOLD; |
| break; |
| default: |
| return; |
| } |
| |
| cris_ide_set_speed(TYPE_PIO, setup, strobe, hold); |
| } |
| |
| static int speed_cris_ide(ide_drive_t *drive, u8 speed) |
| { |
| int cyc = 0, dvs = 0, strobe = 0, hold = 0; |
| |
| if (speed >= XFER_PIO_0 && speed <= XFER_PIO_4) { |
| tune_cris_ide(drive, speed - XFER_PIO_0); |
| return 0; |
| } |
| |
| switch(speed) |
| { |
| case XFER_UDMA_0: |
| cyc = ATA_UDMA0_CYC; |
| dvs = ATA_UDMA0_DVS; |
| break; |
| case XFER_UDMA_1: |
| cyc = ATA_UDMA1_CYC; |
| dvs = ATA_UDMA1_DVS; |
| break; |
| case XFER_UDMA_2: |
| cyc = ATA_UDMA2_CYC; |
| dvs = ATA_UDMA2_DVS; |
| break; |
| case XFER_MW_DMA_0: |
| strobe = ATA_DMA0_STROBE; |
| hold = ATA_DMA0_HOLD; |
| break; |
| case XFER_MW_DMA_1: |
| strobe = ATA_DMA1_STROBE; |
| hold = ATA_DMA1_HOLD; |
| break; |
| case XFER_MW_DMA_2: |
| strobe = ATA_DMA2_STROBE; |
| hold = ATA_DMA2_HOLD; |
| break; |
| default: |
| return 0; |
| } |
| |
| if (speed >= XFER_UDMA_0) |
| cris_ide_set_speed(TYPE_UDMA, cyc, dvs, 0); |
| else |
| cris_ide_set_speed(TYPE_DMA, 0, strobe, hold); |
| |
| return 0; |
| } |
| |
| void __init |
| init_e100_ide (void) |
| { |
| hw_regs_t hw; |
| int ide_offsets[IDE_NR_PORTS]; |
| int h; |
| int i; |
| |
| printk("ide: ETRAX FS built-in ATA DMA controller\n"); |
| |
| for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; i++) |
| ide_offsets[i] = cris_ide_reg_addr(i, 0, 1); |
| |
| /* the IDE control register is at ATA address 6, with CS1 active instead of CS0 */ |
| ide_offsets[IDE_CONTROL_OFFSET] = cris_ide_reg_addr(6, 1, 0); |
| |
| /* first fill in some stuff in the ide_hwifs fields */ |
| |
| for(h = 0; h < MAX_HWIFS; h++) { |
| ide_hwif_t *hwif = &ide_hwifs[h]; |
| ide_setup_ports(&hw, cris_ide_base_address(h), |
| ide_offsets, |
| 0, 0, cris_ide_ack_intr, |
| ide_default_irq(0)); |
| ide_register_hw(&hw, &hwif); |
| hwif->mmio = 1; |
| hwif->chipset = ide_etrax100; |
| hwif->tuneproc = &tune_cris_ide; |
| hwif->speedproc = &speed_cris_ide; |
| hwif->ata_input_data = &cris_ide_input_data; |
| hwif->ata_output_data = &cris_ide_output_data; |
| hwif->atapi_input_bytes = &cris_atapi_input_bytes; |
| hwif->atapi_output_bytes = &cris_atapi_output_bytes; |
| hwif->ide_dma_check = &cris_dma_check; |
| hwif->ide_dma_end = &cris_dma_end; |
| hwif->dma_setup = &cris_dma_setup; |
| hwif->dma_exec_cmd = &cris_dma_exec_cmd; |
| hwif->ide_dma_test_irq = &cris_dma_test_irq; |
| hwif->dma_start = &cris_dma_start; |
| hwif->OUTB = &cris_ide_outb; |
| hwif->OUTW = &cris_ide_outw; |
| hwif->OUTBSYNC = &cris_ide_outbsync; |
| hwif->INB = &cris_ide_inb; |
| hwif->INW = &cris_ide_inw; |
| hwif->dma_host_off = &cris_dma_off; |
| hwif->dma_host_on = &cris_dma_on; |
| hwif->dma_off_quietly = &cris_dma_off; |
| hwif->udma_four = 0; |
| hwif->ultra_mask = cris_ultra_mask; |
| hwif->mwdma_mask = 0x07; /* Multiword DMA 0-2 */ |
| hwif->swdma_mask = 0x07; /* Singleword DMA 0-2 */ |
| hwif->autodma = 1; |
| hwif->drives[0].autodma = 1; |
| hwif->drives[1].autodma = 1; |
| } |
| |
| /* Reset pulse */ |
| cris_ide_reset(0); |
| udelay(25); |
| cris_ide_reset(1); |
| |
| cris_ide_init(); |
| |
| cris_ide_set_speed(TYPE_PIO, ATA_PIO4_SETUP, ATA_PIO4_STROBE, ATA_PIO4_HOLD); |
| cris_ide_set_speed(TYPE_DMA, 0, ATA_DMA2_STROBE, ATA_DMA2_HOLD); |
| cris_ide_set_speed(TYPE_UDMA, ATA_UDMA2_CYC, ATA_UDMA2_DVS, 0); |
| } |
| |
| static int cris_dma_on (ide_drive_t *drive) |
| { |
| return 0; |
| } |
| |
| |
| static cris_dma_descr_type mydescr __attribute__ ((__aligned__(16))); |
| |
| /* |
| * The following routines are mainly used by the ATAPI drivers. |
| * |
| * These routines will round up any request for an odd number of bytes, |
| * so if an odd bytecount is specified, be sure that there's at least one |
| * extra byte allocated for the buffer. |
| */ |
| static void |
| cris_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) |
| { |
| D(printk("atapi_input_bytes, buffer 0x%x, count %d\n", |
| buffer, bytecount)); |
| |
| if(bytecount & 1) { |
| printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount); |
| bytecount++; /* to round off */ |
| } |
| |
| /* setup DMA and start transfer */ |
| |
| cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1); |
| cris_ide_start_dma(drive, &mydescr, 1, TYPE_PIO, bytecount); |
| |
| /* wait for completion */ |
| LED_DISK_READ(1); |
| cris_ide_wait_dma(1); |
| LED_DISK_READ(0); |
| } |
| |
| static void |
| cris_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) |
| { |
| D(printk("atapi_output_bytes, buffer 0x%x, count %d\n", |
| buffer, bytecount)); |
| |
| if(bytecount & 1) { |
| printk("odd bytecount %d in atapi_out_bytes!\n", bytecount); |
| bytecount++; |
| } |
| |
| cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1); |
| cris_ide_start_dma(drive, &mydescr, 0, TYPE_PIO, bytecount); |
| |
| /* wait for completion */ |
| |
| LED_DISK_WRITE(1); |
| LED_DISK_READ(1); |
| cris_ide_wait_dma(0); |
| LED_DISK_WRITE(0); |
| } |
| |
| /* |
| * This is used for most PIO data transfers *from* the IDE interface |
| */ |
| static void |
| cris_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount) |
| { |
| cris_atapi_input_bytes(drive, buffer, wcount << 2); |
| } |
| |
| /* |
| * This is used for most PIO data transfers *to* the IDE interface |
| */ |
| static void |
| cris_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount) |
| { |
| cris_atapi_output_bytes(drive, buffer, wcount << 2); |
| } |
| |
| /* we only have one DMA channel on the chip for ATA, so we can keep these statically */ |
| static cris_dma_descr_type ata_descrs[MAX_DMA_DESCRS] __attribute__ ((__aligned__(16))); |
| static unsigned int ata_tot_size; |
| |
| /* |
| * cris_ide_build_dmatable() prepares a dma request. |
| * Returns 0 if all went okay, returns 1 otherwise. |
| */ |
| static int cris_ide_build_dmatable (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct scatterlist* sg; |
| struct request *rq = drive->hwif->hwgroup->rq; |
| unsigned long size, addr; |
| unsigned int count = 0; |
| int i = 0; |
| |
| sg = hwif->sg_table; |
| |
| ata_tot_size = 0; |
| |
| ide_map_sg(drive, rq); |
| i = hwif->sg_nents; |
| |
| while(i) { |
| /* |
| * Determine addr and size of next buffer area. We assume that |
| * individual virtual buffers are always composed linearly in |
| * physical memory. For example, we assume that any 8kB buffer |
| * is always composed of two adjacent physical 4kB pages rather |
| * than two possibly non-adjacent physical 4kB pages. |
| */ |
| /* group sequential buffers into one large buffer */ |
| addr = page_to_phys(sg->page) + sg->offset; |
| size = sg_dma_len(sg); |
| while (sg++, --i) { |
| if ((addr + size) != page_to_phys(sg->page) + sg->offset) |
| break; |
| size += sg_dma_len(sg); |
| } |
| |
| /* did we run out of descriptors? */ |
| |
| if(count >= MAX_DMA_DESCRS) { |
| printk("%s: too few DMA descriptors\n", drive->name); |
| return 1; |
| } |
| |
| /* however, this case is more difficult - rw_trf_cnt cannot be more |
| than 65536 words per transfer, so in that case we need to either |
| 1) use a DMA interrupt to re-trigger rw_trf_cnt and continue with |
| the descriptors, or |
| 2) simply do the request here, and get dma_intr to only ide_end_request on |
| those blocks that were actually set-up for transfer. |
| */ |
| |
| if(ata_tot_size + size > 131072) { |
| printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size); |
| return 1; |
| } |
| |
| /* If size > MAX_DESCR_SIZE it has to be splitted into new descriptors. Since we |
| don't handle size > 131072 only one split is necessary */ |
| |
| if(size > MAX_DESCR_SIZE) { |
| cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, MAX_DESCR_SIZE, 0); |
| count++; |
| ata_tot_size += MAX_DESCR_SIZE; |
| size -= MAX_DESCR_SIZE; |
| addr += MAX_DESCR_SIZE; |
| } |
| |
| cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, size,i ? 0 : 1); |
| count++; |
| ata_tot_size += size; |
| } |
| |
| if (count) { |
| /* return and say all is ok */ |
| return 0; |
| } |
| |
| printk("%s: empty DMA table?\n", drive->name); |
| return 1; /* let the PIO routines handle this weirdness */ |
| } |
| |
| static int cris_config_drive_for_dma (ide_drive_t *drive) |
| { |
| u8 speed = ide_dma_speed(drive, 1); |
| |
| if (!speed) |
| return 0; |
| |
| speed_cris_ide(drive, speed); |
| ide_config_drive_speed(drive, speed); |
| |
| return ide_dma_enable(drive); |
| } |
| |
| /* |
| * cris_dma_intr() is the handler for disk read/write DMA interrupts |
| */ |
| static ide_startstop_t cris_dma_intr (ide_drive_t *drive) |
| { |
| LED_DISK_READ(0); |
| LED_DISK_WRITE(0); |
| |
| return ide_dma_intr(drive); |
| } |
| |
| /* |
| * Functions below initiates/aborts DMA read/write operations on a drive. |
| * |
| * The caller is assumed to have selected the drive and programmed the drive's |
| * sector address using CHS or LBA. All that remains is to prepare for DMA |
| * and then issue the actual read/write DMA/PIO command to the drive. |
| * |
| * For ATAPI devices, we just prepare for DMA and return. The caller should |
| * then issue the packet command to the drive and call us again with |
| * cris_dma_start afterwards. |
| * |
| * Returns 0 if all went well. |
| * Returns 1 if DMA read/write could not be started, in which case |
| * the caller should revert to PIO for the current request. |
| */ |
| |
| static int cris_dma_check(ide_drive_t *drive) |
| { |
| if (ide_use_dma(drive) && cris_config_drive_for_dma(drive)) |
| return 0; |
| |
| return -1; |
| } |
| |
| static int cris_dma_end(ide_drive_t *drive) |
| { |
| drive->waiting_for_dma = 0; |
| return 0; |
| } |
| |
| static int cris_dma_setup(ide_drive_t *drive) |
| { |
| struct request *rq = drive->hwif->hwgroup->rq; |
| |
| cris_ide_initialize_dma(!rq_data_dir(rq)); |
| if (cris_ide_build_dmatable (drive)) { |
| ide_map_sg(drive, rq); |
| return 1; |
| } |
| |
| drive->waiting_for_dma = 1; |
| return 0; |
| } |
| |
| static void cris_dma_exec_cmd(ide_drive_t *drive, u8 command) |
| { |
| /* set the irq handler which will finish the request when DMA is done */ |
| ide_set_handler(drive, &cris_dma_intr, WAIT_CMD, NULL); |
| |
| /* issue cmd to drive */ |
| cris_ide_outb(command, IDE_COMMAND_REG); |
| } |
| |
| static void cris_dma_start(ide_drive_t *drive) |
| { |
| struct request *rq = drive->hwif->hwgroup->rq; |
| int writing = rq_data_dir(rq); |
| int type = TYPE_DMA; |
| |
| if (drive->current_speed >= XFER_UDMA_0) |
| type = TYPE_UDMA; |
| |
| cris_ide_start_dma(drive, &ata_descrs[0], writing ? 0 : 1, type, ata_tot_size); |
| |
| if (writing) { |
| LED_DISK_WRITE(1); |
| } else { |
| LED_DISK_READ(1); |
| } |
| } |