[PATCH] kexec: add kexec syscalls

This patch introduces the architecture independent implementation the
sys_kexec_load, the compat_sys_kexec_load system calls.

Kexec on panic support has been integrated into the core patch and is
relatively clean.

In addition the hopefully architecture independent option
crashkernel=size@location has been docuemented.  It's purpose is to reserve
space for the panic kernel to live, and where no DMA transfer will ever be
setup to access.

Signed-off-by: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Alexander Nyberg <alexn@telia.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
diff --git a/kernel/kexec.c b/kernel/kexec.c
new file mode 100644
index 0000000..def9c73
--- /dev/null
+++ b/kernel/kexec.c
@@ -0,0 +1,1036 @@
+/*
+ * kexec.c - kexec system call
+ * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
+ *
+ * This source code is licensed under the GNU General Public License,
+ * Version 2.  See the file COPYING for more details.
+ */
+
+#include <linux/mm.h>
+#include <linux/file.h>
+#include <linux/slab.h>
+#include <linux/fs.h>
+#include <linux/kexec.h>
+#include <linux/spinlock.h>
+#include <linux/list.h>
+#include <linux/highmem.h>
+#include <linux/syscalls.h>
+#include <linux/reboot.h>
+#include <linux/syscalls.h>
+#include <linux/ioport.h>
+#include <asm/page.h>
+#include <asm/uaccess.h>
+#include <asm/io.h>
+#include <asm/system.h>
+#include <asm/semaphore.h>
+
+/* Location of the reserved area for the crash kernel */
+struct resource crashk_res = {
+	.name  = "Crash kernel",
+	.start = 0,
+	.end   = 0,
+	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
+};
+
+/*
+ * When kexec transitions to the new kernel there is a one-to-one
+ * mapping between physical and virtual addresses.  On processors
+ * where you can disable the MMU this is trivial, and easy.  For
+ * others it is still a simple predictable page table to setup.
+ *
+ * In that environment kexec copies the new kernel to its final
+ * resting place.  This means I can only support memory whose
+ * physical address can fit in an unsigned long.  In particular
+ * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
+ * If the assembly stub has more restrictive requirements
+ * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
+ * defined more restrictively in <asm/kexec.h>.
+ *
+ * The code for the transition from the current kernel to the
+ * the new kernel is placed in the control_code_buffer, whose size
+ * is given by KEXEC_CONTROL_CODE_SIZE.  In the best case only a single
+ * page of memory is necessary, but some architectures require more.
+ * Because this memory must be identity mapped in the transition from
+ * virtual to physical addresses it must live in the range
+ * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
+ * modifiable.
+ *
+ * The assembly stub in the control code buffer is passed a linked list
+ * of descriptor pages detailing the source pages of the new kernel,
+ * and the destination addresses of those source pages.  As this data
+ * structure is not used in the context of the current OS, it must
+ * be self-contained.
+ *
+ * The code has been made to work with highmem pages and will use a
+ * destination page in its final resting place (if it happens
+ * to allocate it).  The end product of this is that most of the
+ * physical address space, and most of RAM can be used.
+ *
+ * Future directions include:
+ *  - allocating a page table with the control code buffer identity
+ *    mapped, to simplify machine_kexec and make kexec_on_panic more
+ *    reliable.
+ */
+
+/*
+ * KIMAGE_NO_DEST is an impossible destination address..., for
+ * allocating pages whose destination address we do not care about.
+ */
+#define KIMAGE_NO_DEST (-1UL)
+
+static int kimage_is_destination_range(
+	struct kimage *image, unsigned long start, unsigned long end);
+static struct page *kimage_alloc_page(struct kimage *image, unsigned int gfp_mask, unsigned long dest);
+
+static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
+	unsigned long nr_segments, struct kexec_segment __user *segments)
+{
+	size_t segment_bytes;
+	struct kimage *image;
+	unsigned long i;
+	int result;
+
+	/* Allocate a controlling structure */
+	result = -ENOMEM;
+	image = kmalloc(sizeof(*image), GFP_KERNEL);
+	if (!image) {
+		goto out;
+	}
+	memset(image, 0, sizeof(*image));
+	image->head = 0;
+	image->entry = &image->head;
+	image->last_entry = &image->head;
+	image->control_page = ~0; /* By default this does not apply */
+	image->start = entry;
+	image->type = KEXEC_TYPE_DEFAULT;
+
+	/* Initialize the list of control pages */
+	INIT_LIST_HEAD(&image->control_pages);
+
+	/* Initialize the list of destination pages */
+	INIT_LIST_HEAD(&image->dest_pages);
+
+	/* Initialize the list of unuseable pages */
+	INIT_LIST_HEAD(&image->unuseable_pages);
+
+	/* Read in the segments */
+	image->nr_segments = nr_segments;
+	segment_bytes = nr_segments * sizeof(*segments);
+	result = copy_from_user(image->segment, segments, segment_bytes);
+	if (result)
+		goto out;
+
+	/*
+	 * Verify we have good destination addresses.  The caller is
+	 * responsible for making certain we don't attempt to load
+	 * the new image into invalid or reserved areas of RAM.  This
+	 * just verifies it is an address we can use.
+	 *
+	 * Since the kernel does everything in page size chunks ensure
+	 * the destination addreses are page aligned.  Too many
+	 * special cases crop of when we don't do this.  The most
+	 * insidious is getting overlapping destination addresses
+	 * simply because addresses are changed to page size
+	 * granularity.
+	 */
+	result = -EADDRNOTAVAIL;
+	for (i = 0; i < nr_segments; i++) {
+		unsigned long mstart, mend;
+		mstart = image->segment[i].mem;
+		mend   = mstart + image->segment[i].memsz;
+		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
+			goto out;
+		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
+			goto out;
+	}
+
+	/* Verify our destination addresses do not overlap.
+	 * If we alloed overlapping destination addresses
+	 * through very weird things can happen with no
+	 * easy explanation as one segment stops on another.
+	 */
+	result = -EINVAL;
+	for(i = 0; i < nr_segments; i++) {
+		unsigned long mstart, mend;
+		unsigned long j;
+		mstart = image->segment[i].mem;
+		mend   = mstart + image->segment[i].memsz;
+		for(j = 0; j < i; j++) {
+			unsigned long pstart, pend;
+			pstart = image->segment[j].mem;
+			pend   = pstart + image->segment[j].memsz;
+			/* Do the segments overlap ? */
+			if ((mend > pstart) && (mstart < pend))
+				goto out;
+		}
+	}
+
+	/* Ensure our buffer sizes are strictly less than
+	 * our memory sizes.  This should always be the case,
+	 * and it is easier to check up front than to be surprised
+	 * later on.
+	 */
+	result = -EINVAL;
+	for(i = 0; i < nr_segments; i++) {
+		if (image->segment[i].bufsz > image->segment[i].memsz)
+			goto out;
+	}
+
+
+	result = 0;
+ out:
+	if (result == 0) {
+		*rimage = image;
+	} else {
+		kfree(image);
+	}
+	return result;
+
+}
+
+static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
+	unsigned long nr_segments, struct kexec_segment __user *segments)
+{
+	int result;
+	struct kimage *image;
+
+	/* Allocate and initialize a controlling structure */
+	image = NULL;
+	result = do_kimage_alloc(&image, entry, nr_segments, segments);
+	if (result) {
+		goto out;
+	}
+	*rimage = image;
+
+	/*
+	 * Find a location for the control code buffer, and add it
+	 * the vector of segments so that it's pages will also be
+	 * counted as destination pages.
+	 */
+	result = -ENOMEM;
+	image->control_code_page = kimage_alloc_control_pages(image,
+		get_order(KEXEC_CONTROL_CODE_SIZE));
+	if (!image->control_code_page) {
+		printk(KERN_ERR "Could not allocate control_code_buffer\n");
+		goto out;
+	}
+
+	result = 0;
+ out:
+	if (result == 0) {
+		*rimage = image;
+	} else {
+		kfree(image);
+	}
+	return result;
+}
+
+static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
+	unsigned long nr_segments, struct kexec_segment *segments)
+{
+	int result;
+	struct kimage *image;
+	unsigned long i;
+
+	image = NULL;
+	/* Verify we have a valid entry point */
+	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
+		result = -EADDRNOTAVAIL;
+		goto out;
+	}
+
+	/* Allocate and initialize a controlling structure */
+	result = do_kimage_alloc(&image, entry, nr_segments, segments);
+	if (result) {
+		goto out;
+	}
+
+	/* Enable the special crash kernel control page
+	 * allocation policy.
+	 */
+	image->control_page = crashk_res.start;
+	image->type = KEXEC_TYPE_CRASH;
+
+	/*
+	 * Verify we have good destination addresses.  Normally
+	 * the caller is responsible for making certain we don't
+	 * attempt to load the new image into invalid or reserved
+	 * areas of RAM.  But crash kernels are preloaded into a
+	 * reserved area of ram.  We must ensure the addresses
+	 * are in the reserved area otherwise preloading the
+	 * kernel could corrupt things.
+	 */
+	result = -EADDRNOTAVAIL;
+	for (i = 0; i < nr_segments; i++) {
+		unsigned long mstart, mend;
+		mstart = image->segment[i].mem;
+		mend = mstart + image->segment[i].memsz;
+		/* Ensure we are within the crash kernel limits */
+		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
+			goto out;
+	}
+
+
+	/*
+	 * Find a location for the control code buffer, and add
+	 * the vector of segments so that it's pages will also be
+	 * counted as destination pages.
+	 */
+	result = -ENOMEM;
+	image->control_code_page = kimage_alloc_control_pages(image,
+		get_order(KEXEC_CONTROL_CODE_SIZE));
+	if (!image->control_code_page) {
+		printk(KERN_ERR "Could not allocate control_code_buffer\n");
+		goto out;
+	}
+
+	result = 0;
+ out:
+	if (result == 0) {
+		*rimage = image;
+	} else {
+		kfree(image);
+	}
+	return result;
+}
+
+static int kimage_is_destination_range(
+	struct kimage *image, unsigned long start, unsigned long end)
+{
+	unsigned long i;
+
+	for (i = 0; i < image->nr_segments; i++) {
+		unsigned long mstart, mend;
+		mstart = image->segment[i].mem;
+		mend   = mstart + image->segment[i].memsz;
+		if ((end > mstart) && (start < mend)) {
+			return 1;
+		}
+	}
+	return 0;
+}
+
+static struct page *kimage_alloc_pages(unsigned int gfp_mask, unsigned int order)
+{
+	struct page *pages;
+	pages = alloc_pages(gfp_mask, order);
+	if (pages) {
+		unsigned int count, i;
+		pages->mapping = NULL;
+		pages->private = order;
+		count = 1 << order;
+		for(i = 0; i < count; i++) {
+			SetPageReserved(pages + i);
+		}
+	}
+	return pages;
+}
+
+static void kimage_free_pages(struct page *page)
+{
+	unsigned int order, count, i;
+	order = page->private;
+	count = 1 << order;
+	for(i = 0; i < count; i++) {
+		ClearPageReserved(page + i);
+	}
+	__free_pages(page, order);
+}
+
+static void kimage_free_page_list(struct list_head *list)
+{
+	struct list_head *pos, *next;
+	list_for_each_safe(pos, next, list) {
+		struct page *page;
+
+		page = list_entry(pos, struct page, lru);
+		list_del(&page->lru);
+
+		kimage_free_pages(page);
+	}
+}
+
+static struct page *kimage_alloc_normal_control_pages(
+	struct kimage *image, unsigned int order)
+{
+	/* Control pages are special, they are the intermediaries
+	 * that are needed while we copy the rest of the pages
+	 * to their final resting place.  As such they must
+	 * not conflict with either the destination addresses
+	 * or memory the kernel is already using.
+	 *
+	 * The only case where we really need more than one of
+	 * these are for architectures where we cannot disable
+	 * the MMU and must instead generate an identity mapped
+	 * page table for all of the memory.
+	 *
+	 * At worst this runs in O(N) of the image size.
+	 */
+	struct list_head extra_pages;
+	struct page *pages;
+	unsigned int count;
+
+	count = 1 << order;
+	INIT_LIST_HEAD(&extra_pages);
+
+	/* Loop while I can allocate a page and the page allocated
+	 * is a destination page.
+	 */
+	do {
+		unsigned long pfn, epfn, addr, eaddr;
+		pages = kimage_alloc_pages(GFP_KERNEL, order);
+		if (!pages)
+			break;
+		pfn   = page_to_pfn(pages);
+		epfn  = pfn + count;
+		addr  = pfn << PAGE_SHIFT;
+		eaddr = epfn << PAGE_SHIFT;
+		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
+			kimage_is_destination_range(image, addr, eaddr))
+		{
+			list_add(&pages->lru, &extra_pages);
+			pages = NULL;
+		}
+	} while(!pages);
+	if (pages) {
+		/* Remember the allocated page... */
+		list_add(&pages->lru, &image->control_pages);
+
+		/* Because the page is already in it's destination
+		 * location we will never allocate another page at
+		 * that address.  Therefore kimage_alloc_pages
+		 * will not return it (again) and we don't need
+		 * to give it an entry in image->segment[].
+		 */
+	}
+	/* Deal with the destination pages I have inadvertently allocated.
+	 *
+	 * Ideally I would convert multi-page allocations into single
+	 * page allocations, and add everyting to image->dest_pages.
+	 *
+	 * For now it is simpler to just free the pages.
+	 */
+	kimage_free_page_list(&extra_pages);
+	return pages;
+
+}
+
+static struct page *kimage_alloc_crash_control_pages(
+	struct kimage *image, unsigned int order)
+{
+	/* Control pages are special, they are the intermediaries
+	 * that are needed while we copy the rest of the pages
+	 * to their final resting place.  As such they must
+	 * not conflict with either the destination addresses
+	 * or memory the kernel is already using.
+	 *
+	 * Control pages are also the only pags we must allocate
+	 * when loading a crash kernel.  All of the other pages
+	 * are specified by the segments and we just memcpy
+	 * into them directly.
+	 *
+	 * The only case where we really need more than one of
+	 * these are for architectures where we cannot disable
+	 * the MMU and must instead generate an identity mapped
+	 * page table for all of the memory.
+	 *
+	 * Given the low demand this implements a very simple
+	 * allocator that finds the first hole of the appropriate
+	 * size in the reserved memory region, and allocates all
+	 * of the memory up to and including the hole.
+	 */
+	unsigned long hole_start, hole_end, size;
+	struct page *pages;
+	pages = NULL;
+	size = (1 << order) << PAGE_SHIFT;
+	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
+	hole_end   = hole_start + size - 1;
+	while(hole_end <= crashk_res.end) {
+		unsigned long i;
+		if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) {
+			break;
+		}
+		if (hole_end > crashk_res.end) {
+			break;
+		}
+		/* See if I overlap any of the segments */
+		for(i = 0; i < image->nr_segments; i++) {
+			unsigned long mstart, mend;
+			mstart = image->segment[i].mem;
+			mend   = mstart + image->segment[i].memsz - 1;
+			if ((hole_end >= mstart) && (hole_start <= mend)) {
+				/* Advance the hole to the end of the segment */
+				hole_start = (mend + (size - 1)) & ~(size - 1);
+				hole_end   = hole_start + size - 1;
+				break;
+			}
+		}
+		/* If I don't overlap any segments I have found my hole! */
+		if (i == image->nr_segments) {
+			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
+			break;
+		}
+	}
+	if (pages) {
+		image->control_page = hole_end;
+	}
+	return pages;
+}
+
+
+struct page *kimage_alloc_control_pages(
+	struct kimage *image, unsigned int order)
+{
+	struct page *pages = NULL;
+	switch(image->type) {
+	case KEXEC_TYPE_DEFAULT:
+		pages = kimage_alloc_normal_control_pages(image, order);
+		break;
+	case KEXEC_TYPE_CRASH:
+		pages = kimage_alloc_crash_control_pages(image, order);
+		break;
+	}
+	return pages;
+}
+
+static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
+{
+	if (*image->entry != 0) {
+		image->entry++;
+	}
+	if (image->entry == image->last_entry) {
+		kimage_entry_t *ind_page;
+		struct page *page;
+		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
+		if (!page) {
+			return -ENOMEM;
+		}
+		ind_page = page_address(page);
+		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
+		image->entry = ind_page;
+		image->last_entry =
+			ind_page + ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
+	}
+	*image->entry = entry;
+	image->entry++;
+	*image->entry = 0;
+	return 0;
+}
+
+static int kimage_set_destination(
+	struct kimage *image, unsigned long destination)
+{
+	int result;
+
+	destination &= PAGE_MASK;
+	result = kimage_add_entry(image, destination | IND_DESTINATION);
+	if (result == 0) {
+		image->destination = destination;
+	}
+	return result;
+}
+
+
+static int kimage_add_page(struct kimage *image, unsigned long page)
+{
+	int result;
+
+	page &= PAGE_MASK;
+	result = kimage_add_entry(image, page | IND_SOURCE);
+	if (result == 0) {
+		image->destination += PAGE_SIZE;
+	}
+	return result;
+}
+
+
+static void kimage_free_extra_pages(struct kimage *image)
+{
+	/* Walk through and free any extra destination pages I may have */
+	kimage_free_page_list(&image->dest_pages);
+
+	/* Walk through and free any unuseable pages I have cached */
+	kimage_free_page_list(&image->unuseable_pages);
+
+}
+static int kimage_terminate(struct kimage *image)
+{
+	if (*image->entry != 0) {
+		image->entry++;
+	}
+	*image->entry = IND_DONE;
+	return 0;
+}
+
+#define for_each_kimage_entry(image, ptr, entry) \
+	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
+		ptr = (entry & IND_INDIRECTION)? \
+			phys_to_virt((entry & PAGE_MASK)): ptr +1)
+
+static void kimage_free_entry(kimage_entry_t entry)
+{
+	struct page *page;
+
+	page = pfn_to_page(entry >> PAGE_SHIFT);
+	kimage_free_pages(page);
+}
+
+static void kimage_free(struct kimage *image)
+{
+	kimage_entry_t *ptr, entry;
+	kimage_entry_t ind = 0;
+
+	if (!image)
+		return;
+	kimage_free_extra_pages(image);
+	for_each_kimage_entry(image, ptr, entry) {
+		if (entry & IND_INDIRECTION) {
+			/* Free the previous indirection page */
+			if (ind & IND_INDIRECTION) {
+				kimage_free_entry(ind);
+			}
+			/* Save this indirection page until we are
+			 * done with it.
+			 */
+			ind = entry;
+		}
+		else if (entry & IND_SOURCE) {
+			kimage_free_entry(entry);
+		}
+	}
+	/* Free the final indirection page */
+	if (ind & IND_INDIRECTION) {
+		kimage_free_entry(ind);
+	}
+
+	/* Handle any machine specific cleanup */
+	machine_kexec_cleanup(image);
+
+	/* Free the kexec control pages... */
+	kimage_free_page_list(&image->control_pages);
+	kfree(image);
+}
+
+static kimage_entry_t *kimage_dst_used(struct kimage *image, unsigned long page)
+{
+	kimage_entry_t *ptr, entry;
+	unsigned long destination = 0;
+
+	for_each_kimage_entry(image, ptr, entry) {
+		if (entry & IND_DESTINATION) {
+			destination = entry & PAGE_MASK;
+		}
+		else if (entry & IND_SOURCE) {
+			if (page == destination) {
+				return ptr;
+			}
+			destination += PAGE_SIZE;
+		}
+	}
+	return 0;
+}
+
+static struct page *kimage_alloc_page(struct kimage *image, unsigned int gfp_mask, unsigned long destination)
+{
+	/*
+	 * Here we implement safeguards to ensure that a source page
+	 * is not copied to its destination page before the data on
+	 * the destination page is no longer useful.
+	 *
+	 * To do this we maintain the invariant that a source page is
+	 * either its own destination page, or it is not a
+	 * destination page at all.
+	 *
+	 * That is slightly stronger than required, but the proof
+	 * that no problems will not occur is trivial, and the
+	 * implementation is simply to verify.
+	 *
+	 * When allocating all pages normally this algorithm will run
+	 * in O(N) time, but in the worst case it will run in O(N^2)
+	 * time.   If the runtime is a problem the data structures can
+	 * be fixed.
+	 */
+	struct page *page;
+	unsigned long addr;
+
+	/*
+	 * Walk through the list of destination pages, and see if I
+	 * have a match.
+	 */
+	list_for_each_entry(page, &image->dest_pages, lru) {
+		addr = page_to_pfn(page) << PAGE_SHIFT;
+		if (addr == destination) {
+			list_del(&page->lru);
+			return page;
+		}
+	}
+	page = NULL;
+	while (1) {
+		kimage_entry_t *old;
+
+		/* Allocate a page, if we run out of memory give up */
+		page = kimage_alloc_pages(gfp_mask, 0);
+		if (!page) {
+			return 0;
+		}
+		/* If the page cannot be used file it away */
+		if (page_to_pfn(page) > (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
+			list_add(&page->lru, &image->unuseable_pages);
+			continue;
+		}
+		addr = page_to_pfn(page) << PAGE_SHIFT;
+
+		/* If it is the destination page we want use it */
+		if (addr == destination)
+			break;
+
+		/* If the page is not a destination page use it */
+		if (!kimage_is_destination_range(image, addr, addr + PAGE_SIZE))
+			break;
+
+		/*
+		 * I know that the page is someones destination page.
+		 * See if there is already a source page for this
+		 * destination page.  And if so swap the source pages.
+		 */
+		old = kimage_dst_used(image, addr);
+		if (old) {
+			/* If so move it */
+			unsigned long old_addr;
+			struct page *old_page;
+
+			old_addr = *old & PAGE_MASK;
+			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
+			copy_highpage(page, old_page);
+			*old = addr | (*old & ~PAGE_MASK);
+
+			/* The old page I have found cannot be a
+			 * destination page, so return it.
+			 */
+			addr = old_addr;
+			page = old_page;
+			break;
+		}
+		else {
+			/* Place the page on the destination list I
+			 * will use it later.
+			 */
+			list_add(&page->lru, &image->dest_pages);
+		}
+	}
+	return page;
+}
+
+static int kimage_load_normal_segment(struct kimage *image,
+	struct kexec_segment *segment)
+{
+	unsigned long maddr;
+	unsigned long ubytes, mbytes;
+	int result;
+	unsigned char *buf;
+
+	result = 0;
+	buf = segment->buf;
+	ubytes = segment->bufsz;
+	mbytes = segment->memsz;
+	maddr = segment->mem;
+
+	result = kimage_set_destination(image, maddr);
+	if (result < 0) {
+		goto out;
+	}
+	while(mbytes) {
+		struct page *page;
+		char *ptr;
+		size_t uchunk, mchunk;
+		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
+		if (page == 0) {
+			result  = -ENOMEM;
+			goto out;
+		}
+		result = kimage_add_page(image, page_to_pfn(page) << PAGE_SHIFT);
+		if (result < 0) {
+			goto out;
+		}
+		ptr = kmap(page);
+		/* Start with a clear page */
+		memset(ptr, 0, PAGE_SIZE);
+		ptr += maddr & ~PAGE_MASK;
+		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
+		if (mchunk > mbytes) {
+			mchunk = mbytes;
+		}
+		uchunk = mchunk;
+		if (uchunk > ubytes) {
+			uchunk = ubytes;
+		}
+		result = copy_from_user(ptr, buf, uchunk);
+		kunmap(page);
+		if (result) {
+			result = (result < 0) ? result : -EIO;
+			goto out;
+		}
+		ubytes -= uchunk;
+		maddr  += mchunk;
+		buf    += mchunk;
+		mbytes -= mchunk;
+	}
+ out:
+	return result;
+}
+
+static int kimage_load_crash_segment(struct kimage *image,
+	struct kexec_segment *segment)
+{
+	/* For crash dumps kernels we simply copy the data from
+	 * user space to it's destination.
+	 * We do things a page at a time for the sake of kmap.
+	 */
+	unsigned long maddr;
+	unsigned long ubytes, mbytes;
+	int result;
+	unsigned char *buf;
+
+	result = 0;
+	buf = segment->buf;
+	ubytes = segment->bufsz;
+	mbytes = segment->memsz;
+	maddr = segment->mem;
+	while(mbytes) {
+		struct page *page;
+		char *ptr;
+		size_t uchunk, mchunk;
+		page = pfn_to_page(maddr >> PAGE_SHIFT);
+		if (page == 0) {
+			result  = -ENOMEM;
+			goto out;
+		}
+		ptr = kmap(page);
+		ptr += maddr & ~PAGE_MASK;
+		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
+		if (mchunk > mbytes) {
+			mchunk = mbytes;
+		}
+		uchunk = mchunk;
+		if (uchunk > ubytes) {
+			uchunk = ubytes;
+			/* Zero the trailing part of the page */
+			memset(ptr + uchunk, 0, mchunk - uchunk);
+		}
+		result = copy_from_user(ptr, buf, uchunk);
+		kunmap(page);
+		if (result) {
+			result = (result < 0) ? result : -EIO;
+			goto out;
+		}
+		ubytes -= uchunk;
+		maddr  += mchunk;
+		buf    += mchunk;
+		mbytes -= mchunk;
+	}
+ out:
+	return result;
+}
+
+static int kimage_load_segment(struct kimage *image,
+	struct kexec_segment *segment)
+{
+	int result = -ENOMEM;
+	switch(image->type) {
+	case KEXEC_TYPE_DEFAULT:
+		result = kimage_load_normal_segment(image, segment);
+		break;
+	case KEXEC_TYPE_CRASH:
+		result = kimage_load_crash_segment(image, segment);
+		break;
+	}
+	return result;
+}
+
+/*
+ * Exec Kernel system call: for obvious reasons only root may call it.
+ *
+ * This call breaks up into three pieces.
+ * - A generic part which loads the new kernel from the current
+ *   address space, and very carefully places the data in the
+ *   allocated pages.
+ *
+ * - A generic part that interacts with the kernel and tells all of
+ *   the devices to shut down.  Preventing on-going dmas, and placing
+ *   the devices in a consistent state so a later kernel can
+ *   reinitialize them.
+ *
+ * - A machine specific part that includes the syscall number
+ *   and the copies the image to it's final destination.  And
+ *   jumps into the image at entry.
+ *
+ * kexec does not sync, or unmount filesystems so if you need
+ * that to happen you need to do that yourself.
+ */
+struct kimage *kexec_image = NULL;
+static struct kimage *kexec_crash_image = NULL;
+/*
+ * A home grown binary mutex.
+ * Nothing can wait so this mutex is safe to use
+ * in interrupt context :)
+ */
+static int kexec_lock = 0;
+
+asmlinkage long sys_kexec_load(unsigned long entry,
+	unsigned long nr_segments, struct kexec_segment __user *segments,
+	unsigned long flags)
+{
+	struct kimage **dest_image, *image;
+	int locked;
+	int result;
+
+	/* We only trust the superuser with rebooting the system. */
+	if (!capable(CAP_SYS_BOOT))
+		return -EPERM;
+
+	/*
+	 * Verify we have a legal set of flags
+	 * This leaves us room for future extensions.
+	 */
+	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
+		return -EINVAL;
+
+	/* Verify we are on the appropriate architecture */
+	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
+		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
+	{
+		return -EINVAL;
+	}
+
+	/* Put an artificial cap on the number
+	 * of segments passed to kexec_load.
+	 */
+	if (nr_segments > KEXEC_SEGMENT_MAX)
+		return -EINVAL;
+
+	image = NULL;
+	result = 0;
+
+	/* Because we write directly to the reserved memory
+	 * region when loading crash kernels we need a mutex here to
+	 * prevent multiple crash  kernels from attempting to load
+	 * simultaneously, and to prevent a crash kernel from loading
+	 * over the top of a in use crash kernel.
+	 *
+	 * KISS: always take the mutex.
+	 */
+	locked = xchg(&kexec_lock, 1);
+	if (locked) {
+		return -EBUSY;
+	}
+	dest_image = &kexec_image;
+	if (flags & KEXEC_ON_CRASH) {
+		dest_image = &kexec_crash_image;
+	}
+	if (nr_segments > 0) {
+		unsigned long i;
+		/* Loading another kernel to reboot into */
+		if ((flags & KEXEC_ON_CRASH) == 0) {
+			result = kimage_normal_alloc(&image, entry, nr_segments, segments);
+		}
+		/* Loading another kernel to switch to if this one crashes */
+		else if (flags & KEXEC_ON_CRASH) {
+			/* Free any current crash dump kernel before
+			 * we corrupt it.
+			 */
+			kimage_free(xchg(&kexec_crash_image, NULL));
+			result = kimage_crash_alloc(&image, entry, nr_segments, segments);
+		}
+		if (result) {
+			goto out;
+		}
+		result = machine_kexec_prepare(image);
+		if (result) {
+			goto out;
+		}
+		for(i = 0; i < nr_segments; i++) {
+			result = kimage_load_segment(image, &image->segment[i]);
+			if (result) {
+				goto out;
+			}
+		}
+		result = kimage_terminate(image);
+		if (result) {
+			goto out;
+		}
+	}
+	/* Install the new kernel, and  Uninstall the old */
+	image = xchg(dest_image, image);
+
+ out:
+	xchg(&kexec_lock, 0); /* Release the mutex */
+	kimage_free(image);
+	return result;
+}
+
+#ifdef CONFIG_COMPAT
+asmlinkage long compat_sys_kexec_load(unsigned long entry,
+	unsigned long nr_segments, struct compat_kexec_segment __user *segments,
+	unsigned long flags)
+{
+	struct compat_kexec_segment in;
+	struct kexec_segment out, __user *ksegments;
+	unsigned long i, result;
+
+	/* Don't allow clients that don't understand the native
+	 * architecture to do anything.
+	 */
+	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) {
+		return -EINVAL;
+	}
+
+	if (nr_segments > KEXEC_SEGMENT_MAX) {
+		return -EINVAL;
+	}
+
+	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
+	for (i=0; i < nr_segments; i++) {
+		result = copy_from_user(&in, &segments[i], sizeof(in));
+		if (result) {
+			return -EFAULT;
+		}
+
+		out.buf   = compat_ptr(in.buf);
+		out.bufsz = in.bufsz;
+		out.mem   = in.mem;
+		out.memsz = in.memsz;
+
+		result = copy_to_user(&ksegments[i], &out, sizeof(out));
+		if (result) {
+			return -EFAULT;
+		}
+	}
+
+	return sys_kexec_load(entry, nr_segments, ksegments, flags);
+}
+#endif
+
+void crash_kexec(void)
+{
+	struct kimage *image;
+	int locked;
+
+
+	/* Take the kexec_lock here to prevent sys_kexec_load
+	 * running on one cpu from replacing the crash kernel
+	 * we are using after a panic on a different cpu.
+	 *
+	 * If the crash kernel was not located in a fixed area
+	 * of memory the xchg(&kexec_crash_image) would be
+	 * sufficient.  But since I reuse the memory...
+	 */
+	locked = xchg(&kexec_lock, 1);
+	if (!locked) {
+		image = xchg(&kexec_crash_image, NULL);
+		if (image) {
+			machine_crash_shutdown();
+			machine_kexec(image);
+		}
+		xchg(&kexec_lock, 0);
+	}
+}