| #ifndef _SPARC64_TSB_H |
| #define _SPARC64_TSB_H |
| |
| /* The sparc64 TSB is similar to the powerpc hashtables. It's a |
| * power-of-2 sized table of TAG/PTE pairs. The cpu precomputes |
| * pointers into this table for 8K and 64K page sizes, and also a |
| * comparison TAG based upon the virtual address and context which |
| * faults. |
| * |
| * TLB miss trap handler software does the actual lookup via something |
| * of the form: |
| * |
| * ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1 |
| * ldxa [%g0] ASI_{D,I}MMU, %g6 |
| * sllx %g6, 22, %g6 |
| * srlx %g6, 22, %g6 |
| * ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4 |
| * cmp %g4, %g6 |
| * bne,pn %xcc, tsb_miss_{d,i}tlb |
| * mov FAULT_CODE_{D,I}TLB, %g3 |
| * stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN |
| * retry |
| * |
| * |
| * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte |
| * PTE. The TAG is of the same layout as the TLB TAG TARGET mmu |
| * register which is: |
| * |
| * ------------------------------------------------- |
| * | - | CONTEXT | - | VADDR bits 63:22 | |
| * ------------------------------------------------- |
| * 63 61 60 48 47 42 41 0 |
| * |
| * But actually, since we use per-mm TSB's, we zero out the CONTEXT |
| * field. |
| * |
| * Like the powerpc hashtables we need to use locking in order to |
| * synchronize while we update the entries. PTE updates need locking |
| * as well. |
| * |
| * We need to carefully choose a lock bits for the TSB entry. We |
| * choose to use bit 47 in the tag. Also, since we never map anything |
| * at page zero in context zero, we use zero as an invalid tag entry. |
| * When the lock bit is set, this forces a tag comparison failure. |
| */ |
| |
| #define TSB_TAG_LOCK_BIT 47 |
| #define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32)) |
| |
| #define TSB_TAG_INVALID_BIT 46 |
| #define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32)) |
| |
| /* Some cpus support physical address quad loads. We want to use |
| * those if possible so we don't need to hard-lock the TSB mapping |
| * into the TLB. We encode some instruction patching in order to |
| * support this. |
| * |
| * The kernel TSB is locked into the TLB by virtue of being in the |
| * kernel image, so we don't play these games for swapper_tsb access. |
| */ |
| #ifndef __ASSEMBLY__ |
| struct tsb_ldquad_phys_patch_entry { |
| unsigned int addr; |
| unsigned int sun4u_insn; |
| unsigned int sun4v_insn; |
| }; |
| extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch, |
| __tsb_ldquad_phys_patch_end; |
| |
| struct tsb_phys_patch_entry { |
| unsigned int addr; |
| unsigned int insn; |
| }; |
| extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end; |
| #endif |
| #define TSB_LOAD_QUAD(TSB, REG) \ |
| 661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \ |
| .section .tsb_ldquad_phys_patch, "ax"; \ |
| .word 661b; \ |
| ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \ |
| ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \ |
| .previous |
| |
| #define TSB_LOAD_TAG_HIGH(TSB, REG) \ |
| 661: lduwa [TSB] ASI_N, REG; \ |
| .section .tsb_phys_patch, "ax"; \ |
| .word 661b; \ |
| lduwa [TSB] ASI_PHYS_USE_EC, REG; \ |
| .previous |
| |
| #define TSB_LOAD_TAG(TSB, REG) \ |
| 661: ldxa [TSB] ASI_N, REG; \ |
| .section .tsb_phys_patch, "ax"; \ |
| .word 661b; \ |
| ldxa [TSB] ASI_PHYS_USE_EC, REG; \ |
| .previous |
| |
| #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \ |
| 661: casa [TSB] ASI_N, REG1, REG2; \ |
| .section .tsb_phys_patch, "ax"; \ |
| .word 661b; \ |
| casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ |
| .previous |
| |
| #define TSB_CAS_TAG(TSB, REG1, REG2) \ |
| 661: casxa [TSB] ASI_N, REG1, REG2; \ |
| .section .tsb_phys_patch, "ax"; \ |
| .word 661b; \ |
| casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ |
| .previous |
| |
| #define TSB_STORE(ADDR, VAL) \ |
| 661: stxa VAL, [ADDR] ASI_N; \ |
| .section .tsb_phys_patch, "ax"; \ |
| .word 661b; \ |
| stxa VAL, [ADDR] ASI_PHYS_USE_EC; \ |
| .previous |
| |
| #define TSB_LOCK_TAG(TSB, REG1, REG2) \ |
| 99: TSB_LOAD_TAG_HIGH(TSB, REG1); \ |
| sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\ |
| andcc REG1, REG2, %g0; \ |
| bne,pn %icc, 99b; \ |
| nop; \ |
| TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \ |
| cmp REG1, REG2; \ |
| bne,pn %icc, 99b; \ |
| nop; \ |
| |
| #define TSB_WRITE(TSB, TTE, TAG) \ |
| add TSB, 0x8, TSB; \ |
| TSB_STORE(TSB, TTE); \ |
| sub TSB, 0x8, TSB; \ |
| TSB_STORE(TSB, TAG); |
| |
| /* Do a kernel page table walk. Leaves valid PTE value in |
| * REG1. Jumps to FAIL_LABEL on early page table walk |
| * termination. VADDR will not be clobbered, but REG2 will. |
| * |
| * There are two masks we must apply to propagate bits from |
| * the virtual address into the PTE physical address field |
| * when dealing with huge pages. This is because the page |
| * table boundaries do not match the huge page size(s) the |
| * hardware supports. |
| * |
| * In these cases we propagate the bits that are below the |
| * page table level where we saw the huge page mapping, but |
| * are still within the relevant physical bits for the huge |
| * page size in question. So for PMD mappings (which fall on |
| * bit 23, for 8MB per PMD) we must propagate bit 22 for a |
| * 4MB huge page. For huge PUDs (which fall on bit 33, for |
| * 8GB per PUD), we have to accommodate 256MB and 2GB huge |
| * pages. So for those we propagate bits 32 to 28. |
| */ |
| #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \ |
| sethi %hi(swapper_pg_dir), REG1; \ |
| or REG1, %lo(swapper_pg_dir), REG1; \ |
| sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| andn REG2, 0x7, REG2; \ |
| ldx [REG1 + REG2], REG1; \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| andn REG2, 0x7, REG2; \ |
| ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sethi %uhi(_PAGE_PUD_HUGE), REG2; \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sllx REG2, 32, REG2; \ |
| andcc REG1, REG2, %g0; \ |
| sethi %hi(0xf8000000), REG2; \ |
| bne,pt %xcc, 697f; \ |
| sllx REG2, 1, REG2; \ |
| sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| andn REG2, 0x7, REG2; \ |
| ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ |
| sethi %uhi(_PAGE_PMD_HUGE), REG2; \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sllx REG2, 32, REG2; \ |
| andcc REG1, REG2, %g0; \ |
| be,pn %xcc, 698f; \ |
| sethi %hi(0x400000), REG2; \ |
| 697: brgez,pn REG1, FAIL_LABEL; \ |
| andn REG1, REG2, REG1; \ |
| and VADDR, REG2, REG2; \ |
| ba,pt %xcc, 699f; \ |
| or REG1, REG2, REG1; \ |
| 698: sllx VADDR, 64 - PMD_SHIFT, REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| andn REG2, 0x7, REG2; \ |
| ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ |
| brgez,pn REG1, FAIL_LABEL; \ |
| nop; \ |
| 699: |
| |
| /* PMD has been loaded into REG1, interpret the value, seeing |
| * if it is a HUGE PMD or a normal one. If it is not valid |
| * then jump to FAIL_LABEL. If it is a HUGE PMD, and it |
| * translates to a valid PTE, branch to PTE_LABEL. |
| * |
| * We have to propagate the 4MB bit of the virtual address |
| * because we are fabricating 8MB pages using 4MB hw pages. |
| */ |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sethi %uhi(_PAGE_PMD_HUGE), REG2; \ |
| sllx REG2, 32, REG2; \ |
| andcc REG1, REG2, %g0; \ |
| be,pt %xcc, 700f; \ |
| sethi %hi(4 * 1024 * 1024), REG2; \ |
| brgez,pn REG1, FAIL_LABEL; \ |
| andn REG1, REG2, REG1; \ |
| and VADDR, REG2, REG2; \ |
| brlz,pt REG1, PTE_LABEL; \ |
| or REG1, REG2, REG1; \ |
| 700: |
| #else |
| #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ |
| brz,pn REG1, FAIL_LABEL; \ |
| nop; |
| #endif |
| |
| /* Do a user page table walk in MMU globals. Leaves final, |
| * valid, PTE value in REG1. Jumps to FAIL_LABEL on early |
| * page table walk termination or if the PTE is not valid. |
| * |
| * Physical base of page tables is in PHYS_PGD which will not |
| * be modified. |
| * |
| * VADDR will not be clobbered, but REG1 and REG2 will. |
| */ |
| #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \ |
| sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| andn REG2, 0x7, REG2; \ |
| ldxa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| andn REG2, 0x7, REG2; \ |
| ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| andn REG2, 0x7, REG2; \ |
| ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ |
| USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \ |
| sllx VADDR, 64 - PMD_SHIFT, REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| andn REG2, 0x7, REG2; \ |
| add REG1, REG2, REG1; \ |
| ldxa [REG1] ASI_PHYS_USE_EC, REG1; \ |
| brgez,pn REG1, FAIL_LABEL; \ |
| nop; \ |
| 800: |
| |
| /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0. |
| * If no entry is found, FAIL_LABEL will be branched to. On success |
| * the resulting PTE value will be left in REG1. VADDR is preserved |
| * by this routine. |
| */ |
| #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \ |
| sethi %hi(prom_trans), REG1; \ |
| or REG1, %lo(prom_trans), REG1; \ |
| 97: ldx [REG1 + 0x00], REG2; \ |
| brz,pn REG2, FAIL_LABEL; \ |
| nop; \ |
| ldx [REG1 + 0x08], REG3; \ |
| add REG2, REG3, REG3; \ |
| cmp REG2, VADDR; \ |
| bgu,pt %xcc, 98f; \ |
| cmp VADDR, REG3; \ |
| bgeu,pt %xcc, 98f; \ |
| ldx [REG1 + 0x10], REG3; \ |
| sub VADDR, REG2, REG2; \ |
| ba,pt %xcc, 99f; \ |
| add REG3, REG2, REG1; \ |
| 98: ba,pt %xcc, 97b; \ |
| add REG1, (3 * 8), REG1; \ |
| 99: |
| |
| /* We use a 32K TSB for the whole kernel, this allows to |
| * handle about 16MB of modules and vmalloc mappings without |
| * incurring many hash conflicts. |
| */ |
| #define KERNEL_TSB_SIZE_BYTES (32 * 1024) |
| #define KERNEL_TSB_NENTRIES \ |
| (KERNEL_TSB_SIZE_BYTES / 16) |
| #define KERNEL_TSB4M_NENTRIES 4096 |
| |
| /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL |
| * on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries |
| * and the found TTE will be left in REG1. REG3 and REG4 must |
| * be an even/odd pair of registers. |
| * |
| * VADDR and TAG will be preserved and not clobbered by this macro. |
| */ |
| #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ |
| 661: sethi %uhi(swapper_tsb), REG1; \ |
| sethi %hi(swapper_tsb), REG2; \ |
| or REG1, %ulo(swapper_tsb), REG1; \ |
| or REG2, %lo(swapper_tsb), REG2; \ |
| .section .swapper_tsb_phys_patch, "ax"; \ |
| .word 661b; \ |
| .previous; \ |
| sllx REG1, 32, REG1; \ |
| or REG1, REG2, REG1; \ |
| srlx VADDR, PAGE_SHIFT, REG2; \ |
| and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \ |
| sllx REG2, 4, REG2; \ |
| add REG1, REG2, REG2; \ |
| TSB_LOAD_QUAD(REG2, REG3); \ |
| cmp REG3, TAG; \ |
| be,a,pt %xcc, OK_LABEL; \ |
| mov REG4, REG1; |
| |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| /* This version uses a trick, the TAG is already (VADDR >> 22) so |
| * we can make use of that for the index computation. |
| */ |
| #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ |
| 661: sethi %uhi(swapper_4m_tsb), REG1; \ |
| sethi %hi(swapper_4m_tsb), REG2; \ |
| or REG1, %ulo(swapper_4m_tsb), REG1; \ |
| or REG2, %lo(swapper_4m_tsb), REG2; \ |
| .section .swapper_4m_tsb_phys_patch, "ax"; \ |
| .word 661b; \ |
| .previous; \ |
| sllx REG1, 32, REG1; \ |
| or REG1, REG2, REG1; \ |
| and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \ |
| sllx REG2, 4, REG2; \ |
| add REG1, REG2, REG2; \ |
| TSB_LOAD_QUAD(REG2, REG3); \ |
| cmp REG3, TAG; \ |
| be,a,pt %xcc, OK_LABEL; \ |
| mov REG4, REG1; |
| #endif |
| |
| #endif /* !(_SPARC64_TSB_H) */ |