sched: cfs core, kernel/sched_rt.c

add kernel/sched_rt.c: SCHED_FIFO/SCHED_RR support. The behavior
and semantics of SCHED_FIFO/SCHED_RR tasks is unchanged.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
new file mode 100644
index 0000000..1192a27
--- /dev/null
+++ b/kernel/sched_rt.c
@@ -0,0 +1,255 @@
+/*
+ * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
+ * policies)
+ */
+
+/*
+ * Update the current task's runtime statistics. Skip current tasks that
+ * are not in our scheduling class.
+ */
+static inline void update_curr_rt(struct rq *rq, u64 now)
+{
+	struct task_struct *curr = rq->curr;
+	u64 delta_exec;
+
+	if (!task_has_rt_policy(curr))
+		return;
+
+	delta_exec = now - curr->se.exec_start;
+	if (unlikely((s64)delta_exec < 0))
+		delta_exec = 0;
+	if (unlikely(delta_exec > curr->se.exec_max))
+		curr->se.exec_max = delta_exec;
+
+	curr->se.sum_exec_runtime += delta_exec;
+	curr->se.exec_start = now;
+}
+
+static void
+enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
+{
+	struct rt_prio_array *array = &rq->rt.active;
+
+	list_add_tail(&p->run_list, array->queue + p->prio);
+	__set_bit(p->prio, array->bitmap);
+}
+
+/*
+ * Adding/removing a task to/from a priority array:
+ */
+static void
+dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep, u64 now)
+{
+	struct rt_prio_array *array = &rq->rt.active;
+
+	update_curr_rt(rq, now);
+
+	list_del(&p->run_list);
+	if (list_empty(array->queue + p->prio))
+		__clear_bit(p->prio, array->bitmap);
+}
+
+/*
+ * Put task to the end of the run list without the overhead of dequeue
+ * followed by enqueue.
+ */
+static void requeue_task_rt(struct rq *rq, struct task_struct *p)
+{
+	struct rt_prio_array *array = &rq->rt.active;
+
+	list_move_tail(&p->run_list, array->queue + p->prio);
+}
+
+static void
+yield_task_rt(struct rq *rq, struct task_struct *p)
+{
+	requeue_task_rt(rq, p);
+}
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
+{
+	if (p->prio < rq->curr->prio)
+		resched_task(rq->curr);
+}
+
+static struct task_struct *pick_next_task_rt(struct rq *rq, u64 now)
+{
+	struct rt_prio_array *array = &rq->rt.active;
+	struct task_struct *next;
+	struct list_head *queue;
+	int idx;
+
+	idx = sched_find_first_bit(array->bitmap);
+	if (idx >= MAX_RT_PRIO)
+		return NULL;
+
+	queue = array->queue + idx;
+	next = list_entry(queue->next, struct task_struct, run_list);
+
+	next->se.exec_start = now;
+
+	return next;
+}
+
+static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
+{
+	update_curr_rt(rq, now);
+	p->se.exec_start = 0;
+}
+
+/*
+ * Load-balancing iterator. Note: while the runqueue stays locked
+ * during the whole iteration, the current task might be
+ * dequeued so the iterator has to be dequeue-safe. Here we
+ * achieve that by always pre-iterating before returning
+ * the current task:
+ */
+static struct task_struct *load_balance_start_rt(void *arg)
+{
+	struct rq *rq = arg;
+	struct rt_prio_array *array = &rq->rt.active;
+	struct list_head *head, *curr;
+	struct task_struct *p;
+	int idx;
+
+	idx = sched_find_first_bit(array->bitmap);
+	if (idx >= MAX_RT_PRIO)
+		return NULL;
+
+	head = array->queue + idx;
+	curr = head->prev;
+
+	p = list_entry(curr, struct task_struct, run_list);
+
+	curr = curr->prev;
+
+	rq->rt.rt_load_balance_idx = idx;
+	rq->rt.rt_load_balance_head = head;
+	rq->rt.rt_load_balance_curr = curr;
+
+	return p;
+}
+
+static struct task_struct *load_balance_next_rt(void *arg)
+{
+	struct rq *rq = arg;
+	struct rt_prio_array *array = &rq->rt.active;
+	struct list_head *head, *curr;
+	struct task_struct *p;
+	int idx;
+
+	idx = rq->rt.rt_load_balance_idx;
+	head = rq->rt.rt_load_balance_head;
+	curr = rq->rt.rt_load_balance_curr;
+
+	/*
+	 * If we arrived back to the head again then
+	 * iterate to the next queue (if any):
+	 */
+	if (unlikely(head == curr)) {
+		int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
+
+		if (next_idx >= MAX_RT_PRIO)
+			return NULL;
+
+		idx = next_idx;
+		head = array->queue + idx;
+		curr = head->prev;
+
+		rq->rt.rt_load_balance_idx = idx;
+		rq->rt.rt_load_balance_head = head;
+	}
+
+	p = list_entry(curr, struct task_struct, run_list);
+
+	curr = curr->prev;
+
+	rq->rt.rt_load_balance_curr = curr;
+
+	return p;
+}
+
+static int
+load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
+			unsigned long max_nr_move, unsigned long max_load_move,
+			struct sched_domain *sd, enum cpu_idle_type idle,
+			int *all_pinned, unsigned long *load_moved)
+{
+	int this_best_prio, best_prio, best_prio_seen = 0;
+	int nr_moved;
+	struct rq_iterator rt_rq_iterator;
+
+	best_prio = sched_find_first_bit(busiest->rt.active.bitmap);
+	this_best_prio = sched_find_first_bit(this_rq->rt.active.bitmap);
+
+	/*
+	 * Enable handling of the case where there is more than one task
+	 * with the best priority.   If the current running task is one
+	 * of those with prio==best_prio we know it won't be moved
+	 * and therefore it's safe to override the skip (based on load)
+	 * of any task we find with that prio.
+	 */
+	if (busiest->curr->prio == best_prio)
+		best_prio_seen = 1;
+
+	rt_rq_iterator.start = load_balance_start_rt;
+	rt_rq_iterator.next = load_balance_next_rt;
+	/* pass 'busiest' rq argument into
+	 * load_balance_[start|next]_rt iterators
+	 */
+	rt_rq_iterator.arg = busiest;
+
+	nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
+			max_load_move, sd, idle, all_pinned, load_moved,
+			this_best_prio, best_prio, best_prio_seen,
+			&rt_rq_iterator);
+
+	return nr_moved;
+}
+
+static void task_tick_rt(struct rq *rq, struct task_struct *p)
+{
+	/*
+	 * RR tasks need a special form of timeslice management.
+	 * FIFO tasks have no timeslices.
+	 */
+	if (p->policy != SCHED_RR)
+		return;
+
+	if (--p->time_slice)
+		return;
+
+	p->time_slice = static_prio_timeslice(p->static_prio);
+	set_tsk_need_resched(p);
+
+	/* put it at the end of the queue: */
+	requeue_task_rt(rq, p);
+}
+
+/*
+ * No parent/child timeslice management necessary for RT tasks,
+ * just activate them:
+ */
+static void task_new_rt(struct rq *rq, struct task_struct *p)
+{
+	activate_task(rq, p, 1);
+}
+
+static struct sched_class rt_sched_class __read_mostly = {
+	.enqueue_task		= enqueue_task_rt,
+	.dequeue_task		= dequeue_task_rt,
+	.yield_task		= yield_task_rt,
+
+	.check_preempt_curr	= check_preempt_curr_rt,
+
+	.pick_next_task		= pick_next_task_rt,
+	.put_prev_task		= put_prev_task_rt,
+
+	.load_balance		= load_balance_rt,
+
+	.task_tick		= task_tick_rt,
+	.task_new		= task_new_rt,
+};