| /***************************************************************************** |
| * Copyright 2003 - 2009 Broadcom Corporation. All rights reserved. |
| * |
| * Unless you and Broadcom execute a separate written software license |
| * agreement governing use of this software, this software is licensed to you |
| * under the terms of the GNU General Public License version 2, available at |
| * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). |
| * |
| * Notwithstanding the above, under no circumstances may you combine this |
| * software in any way with any other Broadcom software provided under a |
| * license other than the GPL, without Broadcom's express prior written |
| * consent. |
| *****************************************************************************/ |
| #ifndef NAND_BCM_UMI_H |
| #define NAND_BCM_UMI_H |
| |
| /* ---- Include Files ---------------------------------------------------- */ |
| #include <mach/reg_umi.h> |
| #include <mach/reg_nand.h> |
| #include <mach/cfg_global.h> |
| |
| /* ---- Constants and Types ---------------------------------------------- */ |
| #if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING) |
| #define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0) |
| #else |
| #define NAND_ECC_BCH 0 |
| #endif |
| |
| #define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES 13 |
| |
| #if NAND_ECC_BCH |
| #ifdef BOOT0_BUILD |
| #define NAND_ECC_NUM_BYTES 13 |
| #else |
| #define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES |
| #endif |
| #else |
| #define NAND_ECC_NUM_BYTES 3 |
| #endif |
| |
| #define NAND_DATA_ACCESS_SIZE 512 |
| |
| /* ---- Variable Externs ------------------------------------------ */ |
| /* ---- Function Prototypes --------------------------------------- */ |
| int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData, |
| int numEccBytes); |
| |
| /* Check in device is ready */ |
| static inline int nand_bcm_umi_dev_ready(void) |
| { |
| return readl(®_UMI_NAND_RCSR) & REG_UMI_NAND_RCSR_RDY; |
| } |
| |
| /* Wait until device is ready */ |
| static inline void nand_bcm_umi_wait_till_ready(void) |
| { |
| while (nand_bcm_umi_dev_ready() == 0) |
| ; |
| } |
| |
| /* Enable Hamming ECC */ |
| static inline void nand_bcm_umi_hamming_enable_hwecc(void) |
| { |
| /* disable and reset ECC, 512 byte page */ |
| writel(readl(®_UMI_NAND_ECC_CSR) & ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE | |
| REG_UMI_NAND_ECC_CSR_256BYTE), ®_UMI_NAND_ECC_CSR); |
| /* enable ECC */ |
| writel(readl(®_UMI_NAND_ECC_CSR) | REG_UMI_NAND_ECC_CSR_ECC_ENABLE, |
| ®_UMI_NAND_ECC_CSR); |
| } |
| |
| #if NAND_ECC_BCH |
| /* BCH ECC specifics */ |
| #define ECC_BITS_PER_CORRECTABLE_BIT 13 |
| |
| /* Enable BCH Read ECC */ |
| static inline void nand_bcm_umi_bch_enable_read_hwecc(void) |
| { |
| /* disable and reset ECC */ |
| writel(REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID, ®_UMI_BCH_CTRL_STATUS); |
| /* Turn on ECC */ |
| writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN, ®_UMI_BCH_CTRL_STATUS); |
| } |
| |
| /* Enable BCH Write ECC */ |
| static inline void nand_bcm_umi_bch_enable_write_hwecc(void) |
| { |
| /* disable and reset ECC */ |
| writel(REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID, ®_UMI_BCH_CTRL_STATUS); |
| /* Turn on ECC */ |
| writel(REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN, ®_UMI_BCH_CTRL_STATUS); |
| } |
| |
| /* Config number of BCH ECC bytes */ |
| static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes) |
| { |
| uint32_t nValue; |
| uint32_t tValue; |
| uint32_t kValue; |
| uint32_t numBits = numEccBytes * 8; |
| |
| /* disable and reset ECC */ |
| writel(REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID | |
| REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID, |
| ®_UMI_BCH_CTRL_STATUS); |
| |
| /* Every correctible bit requires 13 ECC bits */ |
| tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT); |
| |
| /* Total data in number of bits for generating and computing BCH ECC */ |
| nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8; |
| |
| /* K parameter is used internally. K = N - (T * 13) */ |
| kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT); |
| |
| /* Write the settings */ |
| writel(nValue, ®_UMI_BCH_N); |
| writel(tValue, ®_UMI_BCH_T); |
| writel(kValue, ®_UMI_BCH_K); |
| } |
| |
| /* Pause during ECC read calculation to skip bytes in OOB */ |
| static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void) |
| { |
| writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN | REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC, ®_UMI_BCH_CTRL_STATUS); |
| } |
| |
| /* Resume during ECC read calculation after skipping bytes in OOB */ |
| static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void) |
| { |
| writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN, ®_UMI_BCH_CTRL_STATUS); |
| } |
| |
| /* Poll read ECC calc to check when hardware completes */ |
| static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void) |
| { |
| uint32_t regVal; |
| |
| do { |
| /* wait for ECC to be valid */ |
| regVal = readl(®_UMI_BCH_CTRL_STATUS); |
| } while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0); |
| |
| return regVal; |
| } |
| |
| /* Poll write ECC calc to check when hardware completes */ |
| static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void) |
| { |
| /* wait for ECC to be valid */ |
| while ((readl(®_UMI_BCH_CTRL_STATUS) & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID) |
| == 0) |
| ; |
| } |
| |
| /* Read the OOB and ECC, for kernel write OOB to a buffer */ |
| #if defined(__KERNEL__) && !defined(STANDALONE) |
| static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, |
| uint8_t *eccCalc, int numEccBytes, uint8_t *oobp) |
| #else |
| static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, |
| uint8_t *eccCalc, int numEccBytes) |
| #endif |
| { |
| int eccPos = 0; |
| int numToRead = 16; /* There are 16 bytes per sector in the OOB */ |
| |
| /* ECC is already paused when this function is called */ |
| if (pageSize != NAND_DATA_ACCESS_SIZE) { |
| /* skip BI */ |
| #if defined(__KERNEL__) && !defined(STANDALONE) |
| *oobp++ = readb(®_NAND_DATA8); |
| #else |
| readb(®_NAND_DATA8); |
| #endif |
| numToRead--; |
| } |
| |
| while (numToRead > numEccBytes) { |
| /* skip free oob region */ |
| #if defined(__KERNEL__) && !defined(STANDALONE) |
| *oobp++ = readb(®_NAND_DATA8); |
| #else |
| readb(®_NAND_DATA8); |
| #endif |
| numToRead--; |
| } |
| |
| if (pageSize == NAND_DATA_ACCESS_SIZE) { |
| /* read ECC bytes before BI */ |
| nand_bcm_umi_bch_resume_read_ecc_calc(); |
| |
| while (numToRead > 11) { |
| #if defined(__KERNEL__) && !defined(STANDALONE) |
| *oobp = readb(®_NAND_DATA8); |
| eccCalc[eccPos++] = *oobp; |
| oobp++; |
| #else |
| eccCalc[eccPos++] = readb(®_NAND_DATA8); |
| #endif |
| numToRead--; |
| } |
| |
| nand_bcm_umi_bch_pause_read_ecc_calc(); |
| |
| if (numToRead == 11) { |
| /* read BI */ |
| #if defined(__KERNEL__) && !defined(STANDALONE) |
| *oobp++ = readb(®_NAND_DATA8); |
| #else |
| readb(®_NAND_DATA8); |
| #endif |
| numToRead--; |
| } |
| |
| } |
| /* read ECC bytes */ |
| nand_bcm_umi_bch_resume_read_ecc_calc(); |
| while (numToRead) { |
| #if defined(__KERNEL__) && !defined(STANDALONE) |
| *oobp = readb(®_NAND_DATA8); |
| eccCalc[eccPos++] = *oobp; |
| oobp++; |
| #else |
| eccCalc[eccPos++] = readb(®_NAND_DATA8); |
| #endif |
| numToRead--; |
| } |
| } |
| |
| /* Helper function to write ECC */ |
| static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos, |
| uint8_t *oobp, uint8_t eccVal) |
| { |
| if (eccBytePos <= numEccBytes) |
| *oobp = eccVal; |
| } |
| |
| /* Write OOB with ECC */ |
| static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize, |
| uint8_t *oobp, int numEccBytes) |
| { |
| uint32_t eccVal = 0xffffffff; |
| |
| /* wait for write ECC to be valid */ |
| nand_bcm_umi_bch_poll_write_ecc_calc(); |
| |
| /* |
| ** Get the hardware ecc from the 32-bit result registers. |
| ** Read after 512 byte accesses. Format B3B2B1B0 |
| ** where B3 = ecc3, etc. |
| */ |
| |
| if (pageSize == NAND_DATA_ACCESS_SIZE) { |
| /* Now fill in the ECC bytes */ |
| if (numEccBytes >= 13) |
| eccVal = readl(®_UMI_BCH_WR_ECC_3); |
| |
| /* Usually we skip CM in oob[0,1] */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0], |
| (eccVal >> 16) & 0xff); |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1], |
| (eccVal >> 8) & 0xff); |
| |
| /* Write ECC in oob[2,3,4] */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2], |
| eccVal & 0xff); /* ECC 12 */ |
| |
| if (numEccBytes >= 9) |
| eccVal = readl(®_UMI_BCH_WR_ECC_2); |
| |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3], |
| (eccVal >> 24) & 0xff); /* ECC11 */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4], |
| (eccVal >> 16) & 0xff); /* ECC10 */ |
| |
| /* Always Skip BI in oob[5] */ |
| } else { |
| /* Always Skip BI in oob[0] */ |
| |
| /* Now fill in the ECC bytes */ |
| if (numEccBytes >= 13) |
| eccVal = readl(®_UMI_BCH_WR_ECC_3); |
| |
| /* Usually skip CM in oob[1,2] */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1], |
| (eccVal >> 16) & 0xff); |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2], |
| (eccVal >> 8) & 0xff); |
| |
| /* Write ECC in oob[3-15] */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3], |
| eccVal & 0xff); /* ECC12 */ |
| |
| if (numEccBytes >= 9) |
| eccVal = readl(®_UMI_BCH_WR_ECC_2); |
| |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4], |
| (eccVal >> 24) & 0xff); /* ECC11 */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5], |
| (eccVal >> 16) & 0xff); /* ECC10 */ |
| } |
| |
| /* Fill in the remainder of ECC locations */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6], |
| (eccVal >> 8) & 0xff); /* ECC9 */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7], |
| eccVal & 0xff); /* ECC8 */ |
| |
| if (numEccBytes >= 5) |
| eccVal = readl(®_UMI_BCH_WR_ECC_1); |
| |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8], |
| (eccVal >> 24) & 0xff); /* ECC7 */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9], |
| (eccVal >> 16) & 0xff); /* ECC6 */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10], |
| (eccVal >> 8) & 0xff); /* ECC5 */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11], |
| eccVal & 0xff); /* ECC4 */ |
| |
| if (numEccBytes >= 1) |
| eccVal = readl(®_UMI_BCH_WR_ECC_0); |
| |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12], |
| (eccVal >> 24) & 0xff); /* ECC3 */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13], |
| (eccVal >> 16) & 0xff); /* ECC2 */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14], |
| (eccVal >> 8) & 0xff); /* ECC1 */ |
| NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15], |
| eccVal & 0xff); /* ECC0 */ |
| } |
| #endif |
| |
| #endif /* NAND_BCM_UMI_H */ |