blob: 29e87d3b2843610207ebd875071a4291bec02cfe [file] [log] [blame]
/*
* Machine check handler.
*
* K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
* Rest from unknown author(s).
* 2004 Andi Kleen. Rewrote most of it.
* Copyright 2008 Intel Corporation
* Author: Andi Kleen
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/thread_info.h>
#include <linux/capability.h>
#include <linux/miscdevice.h>
#include <linux/ratelimit.h>
#include <linux/kallsyms.h>
#include <linux/rcupdate.h>
#include <linux/kobject.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/syscore_ops.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/sched.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/poll.h>
#include <linux/nmi.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/debugfs.h>
#include <linux/irq_work.h>
#include <linux/export.h>
#include <asm/processor.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include "mce-internal.h"
static DEFINE_MUTEX(mce_chrdev_read_mutex);
#define rcu_dereference_check_mce(p) \
rcu_dereference_index_check((p), \
rcu_read_lock_sched_held() || \
lockdep_is_held(&mce_chrdev_read_mutex))
#define CREATE_TRACE_POINTS
#include <trace/events/mce.h>
int mce_disabled __read_mostly;
#define SPINUNIT 100 /* 100ns */
atomic_t mce_entry;
DEFINE_PER_CPU(unsigned, mce_exception_count);
/*
* Tolerant levels:
* 0: always panic on uncorrected errors, log corrected errors
* 1: panic or SIGBUS on uncorrected errors, log corrected errors
* 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
* 3: never panic or SIGBUS, log all errors (for testing only)
*/
static int tolerant __read_mostly = 1;
static int banks __read_mostly;
static int rip_msr __read_mostly;
static int mce_bootlog __read_mostly = -1;
static int monarch_timeout __read_mostly = -1;
static int mce_panic_timeout __read_mostly;
static int mce_dont_log_ce __read_mostly;
int mce_cmci_disabled __read_mostly;
int mce_ignore_ce __read_mostly;
int mce_ser __read_mostly;
int mce_bios_cmci_threshold __read_mostly;
struct mce_bank *mce_banks __read_mostly;
/* User mode helper program triggered by machine check event */
static unsigned long mce_need_notify;
static char mce_helper[128];
static char *mce_helper_argv[2] = { mce_helper, NULL };
static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
static DEFINE_PER_CPU(struct mce, mces_seen);
static int cpu_missing;
/* MCA banks polled by the period polling timer for corrected events */
DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
};
static DEFINE_PER_CPU(struct work_struct, mce_work);
static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
/*
* CPU/chipset specific EDAC code can register a notifier call here to print
* MCE errors in a human-readable form.
*/
ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
/* Do initial initialization of a struct mce */
void mce_setup(struct mce *m)
{
memset(m, 0, sizeof(struct mce));
m->cpu = m->extcpu = smp_processor_id();
rdtscll(m->tsc);
/* We hope get_seconds stays lockless */
m->time = get_seconds();
m->cpuvendor = boot_cpu_data.x86_vendor;
m->cpuid = cpuid_eax(1);
m->socketid = cpu_data(m->extcpu).phys_proc_id;
m->apicid = cpu_data(m->extcpu).initial_apicid;
rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
}
DEFINE_PER_CPU(struct mce, injectm);
EXPORT_PER_CPU_SYMBOL_GPL(injectm);
/*
* Lockless MCE logging infrastructure.
* This avoids deadlocks on printk locks without having to break locks. Also
* separate MCEs from kernel messages to avoid bogus bug reports.
*/
static struct mce_log mcelog = {
.signature = MCE_LOG_SIGNATURE,
.len = MCE_LOG_LEN,
.recordlen = sizeof(struct mce),
};
void mce_log(struct mce *mce)
{
unsigned next, entry;
int ret = 0;
/* Emit the trace record: */
trace_mce_record(mce);
ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
if (ret == NOTIFY_STOP)
return;
mce->finished = 0;
wmb();
for (;;) {
entry = rcu_dereference_check_mce(mcelog.next);
for (;;) {
/*
* When the buffer fills up discard new entries.
* Assume that the earlier errors are the more
* interesting ones:
*/
if (entry >= MCE_LOG_LEN) {
set_bit(MCE_OVERFLOW,
(unsigned long *)&mcelog.flags);
return;
}
/* Old left over entry. Skip: */
if (mcelog.entry[entry].finished) {
entry++;
continue;
}
break;
}
smp_rmb();
next = entry + 1;
if (cmpxchg(&mcelog.next, entry, next) == entry)
break;
}
memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
wmb();
mcelog.entry[entry].finished = 1;
wmb();
mce->finished = 1;
set_bit(0, &mce_need_notify);
}
static void drain_mcelog_buffer(void)
{
unsigned int next, i, prev = 0;
next = ACCESS_ONCE(mcelog.next);
do {
struct mce *m;
/* drain what was logged during boot */
for (i = prev; i < next; i++) {
unsigned long start = jiffies;
unsigned retries = 1;
m = &mcelog.entry[i];
while (!m->finished) {
if (time_after_eq(jiffies, start + 2*retries))
retries++;
cpu_relax();
if (!m->finished && retries >= 4) {
pr_err("skipping error being logged currently!\n");
break;
}
}
smp_rmb();
atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
}
memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
prev = next;
next = cmpxchg(&mcelog.next, prev, 0);
} while (next != prev);
}
void mce_register_decode_chain(struct notifier_block *nb)
{
atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
drain_mcelog_buffer();
}
EXPORT_SYMBOL_GPL(mce_register_decode_chain);
void mce_unregister_decode_chain(struct notifier_block *nb)
{
atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
}
EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
static void print_mce(struct mce *m)
{
int ret = 0;
pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
m->extcpu, m->mcgstatus, m->bank, m->status);
if (m->ip) {
pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
m->cs, m->ip);
if (m->cs == __KERNEL_CS)
print_symbol("{%s}", m->ip);
pr_cont("\n");
}
pr_emerg(HW_ERR "TSC %llx ", m->tsc);
if (m->addr)
pr_cont("ADDR %llx ", m->addr);
if (m->misc)
pr_cont("MISC %llx ", m->misc);
pr_cont("\n");
/*
* Note this output is parsed by external tools and old fields
* should not be changed.
*/
pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
cpu_data(m->extcpu).microcode);
/*
* Print out human-readable details about the MCE error,
* (if the CPU has an implementation for that)
*/
ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
if (ret == NOTIFY_STOP)
return;
pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
}
#define PANIC_TIMEOUT 5 /* 5 seconds */
static atomic_t mce_paniced;
static int fake_panic;
static atomic_t mce_fake_paniced;
/* Panic in progress. Enable interrupts and wait for final IPI */
static void wait_for_panic(void)
{
long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
preempt_disable();
local_irq_enable();
while (timeout-- > 0)
udelay(1);
if (panic_timeout == 0)
panic_timeout = mce_panic_timeout;
panic("Panicing machine check CPU died");
}
static void mce_panic(char *msg, struct mce *final, char *exp)
{
int i, apei_err = 0;
if (!fake_panic) {
/*
* Make sure only one CPU runs in machine check panic
*/
if (atomic_inc_return(&mce_paniced) > 1)
wait_for_panic();
barrier();
bust_spinlocks(1);
console_verbose();
} else {
/* Don't log too much for fake panic */
if (atomic_inc_return(&mce_fake_paniced) > 1)
return;
}
/* First print corrected ones that are still unlogged */
for (i = 0; i < MCE_LOG_LEN; i++) {
struct mce *m = &mcelog.entry[i];
if (!(m->status & MCI_STATUS_VAL))
continue;
if (!(m->status & MCI_STATUS_UC)) {
print_mce(m);
if (!apei_err)
apei_err = apei_write_mce(m);
}
}
/* Now print uncorrected but with the final one last */
for (i = 0; i < MCE_LOG_LEN; i++) {
struct mce *m = &mcelog.entry[i];
if (!(m->status & MCI_STATUS_VAL))
continue;
if (!(m->status & MCI_STATUS_UC))
continue;
if (!final || memcmp(m, final, sizeof(struct mce))) {
print_mce(m);
if (!apei_err)
apei_err = apei_write_mce(m);
}
}
if (final) {
print_mce(final);
if (!apei_err)
apei_err = apei_write_mce(final);
}
if (cpu_missing)
pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
if (exp)
pr_emerg(HW_ERR "Machine check: %s\n", exp);
if (!fake_panic) {
if (panic_timeout == 0)
panic_timeout = mce_panic_timeout;
panic(msg);
} else
pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
}
/* Support code for software error injection */
static int msr_to_offset(u32 msr)
{
unsigned bank = __this_cpu_read(injectm.bank);
if (msr == rip_msr)
return offsetof(struct mce, ip);
if (msr == MSR_IA32_MCx_STATUS(bank))
return offsetof(struct mce, status);
if (msr == MSR_IA32_MCx_ADDR(bank))
return offsetof(struct mce, addr);
if (msr == MSR_IA32_MCx_MISC(bank))
return offsetof(struct mce, misc);
if (msr == MSR_IA32_MCG_STATUS)
return offsetof(struct mce, mcgstatus);
return -1;
}
/* MSR access wrappers used for error injection */
static u64 mce_rdmsrl(u32 msr)
{
u64 v;
if (__this_cpu_read(injectm.finished)) {
int offset = msr_to_offset(msr);
if (offset < 0)
return 0;
return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
}
if (rdmsrl_safe(msr, &v)) {
WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
/*
* Return zero in case the access faulted. This should
* not happen normally but can happen if the CPU does
* something weird, or if the code is buggy.
*/
v = 0;
}
return v;
}
static void mce_wrmsrl(u32 msr, u64 v)
{
if (__this_cpu_read(injectm.finished)) {
int offset = msr_to_offset(msr);
if (offset >= 0)
*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
return;
}
wrmsrl(msr, v);
}
/*
* Collect all global (w.r.t. this processor) status about this machine
* check into our "mce" struct so that we can use it later to assess
* the severity of the problem as we read per-bank specific details.
*/
static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
{
mce_setup(m);
m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
if (regs) {
/*
* Get the address of the instruction at the time of
* the machine check error.
*/
if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
m->ip = regs->ip;
m->cs = regs->cs;
/*
* When in VM86 mode make the cs look like ring 3
* always. This is a lie, but it's better than passing
* the additional vm86 bit around everywhere.
*/
if (v8086_mode(regs))
m->cs |= 3;
}
/* Use accurate RIP reporting if available. */
if (rip_msr)
m->ip = mce_rdmsrl(rip_msr);
}
}
/*
* Simple lockless ring to communicate PFNs from the exception handler with the
* process context work function. This is vastly simplified because there's
* only a single reader and a single writer.
*/
#define MCE_RING_SIZE 16 /* we use one entry less */
struct mce_ring {
unsigned short start;
unsigned short end;
unsigned long ring[MCE_RING_SIZE];
};
static DEFINE_PER_CPU(struct mce_ring, mce_ring);
/* Runs with CPU affinity in workqueue */
static int mce_ring_empty(void)
{
struct mce_ring *r = &__get_cpu_var(mce_ring);
return r->start == r->end;
}
static int mce_ring_get(unsigned long *pfn)
{
struct mce_ring *r;
int ret = 0;
*pfn = 0;
get_cpu();
r = &__get_cpu_var(mce_ring);
if (r->start == r->end)
goto out;
*pfn = r->ring[r->start];
r->start = (r->start + 1) % MCE_RING_SIZE;
ret = 1;
out:
put_cpu();
return ret;
}
/* Always runs in MCE context with preempt off */
static int mce_ring_add(unsigned long pfn)
{
struct mce_ring *r = &__get_cpu_var(mce_ring);
unsigned next;
next = (r->end + 1) % MCE_RING_SIZE;
if (next == r->start)
return -1;
r->ring[r->end] = pfn;
wmb();
r->end = next;
return 0;
}
int mce_available(struct cpuinfo_x86 *c)
{
if (mce_disabled)
return 0;
return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
}
static void mce_schedule_work(void)
{
if (!mce_ring_empty()) {
struct work_struct *work = &__get_cpu_var(mce_work);
if (!work_pending(work))
schedule_work(work);
}
}
DEFINE_PER_CPU(struct irq_work, mce_irq_work);
static void mce_irq_work_cb(struct irq_work *entry)
{
mce_notify_irq();
mce_schedule_work();
}
static void mce_report_event(struct pt_regs *regs)
{
if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
mce_notify_irq();
/*
* Triggering the work queue here is just an insurance
* policy in case the syscall exit notify handler
* doesn't run soon enough or ends up running on the
* wrong CPU (can happen when audit sleeps)
*/
mce_schedule_work();
return;
}
irq_work_queue(&__get_cpu_var(mce_irq_work));
}
/*
* Read ADDR and MISC registers.
*/
static void mce_read_aux(struct mce *m, int i)
{
if (m->status & MCI_STATUS_MISCV)
m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
if (m->status & MCI_STATUS_ADDRV) {
m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
/*
* Mask the reported address by the reported granularity.
*/
if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
u8 shift = MCI_MISC_ADDR_LSB(m->misc);
m->addr >>= shift;
m->addr <<= shift;
}
}
}
DEFINE_PER_CPU(unsigned, mce_poll_count);
/*
* Poll for corrected events or events that happened before reset.
* Those are just logged through /dev/mcelog.
*
* This is executed in standard interrupt context.
*
* Note: spec recommends to panic for fatal unsignalled
* errors here. However this would be quite problematic --
* we would need to reimplement the Monarch handling and
* it would mess up the exclusion between exception handler
* and poll hander -- * so we skip this for now.
* These cases should not happen anyways, or only when the CPU
* is already totally * confused. In this case it's likely it will
* not fully execute the machine check handler either.
*/
void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
{
struct mce m;
int i;
this_cpu_inc(mce_poll_count);
mce_gather_info(&m, NULL);
for (i = 0; i < banks; i++) {
if (!mce_banks[i].ctl || !test_bit(i, *b))
continue;
m.misc = 0;
m.addr = 0;
m.bank = i;
m.tsc = 0;
barrier();
m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
if (!(m.status & MCI_STATUS_VAL))
continue;
/*
* Uncorrected or signalled events are handled by the exception
* handler when it is enabled, so don't process those here.
*
* TBD do the same check for MCI_STATUS_EN here?
*/
if (!(flags & MCP_UC) &&
(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
continue;
mce_read_aux(&m, i);
if (!(flags & MCP_TIMESTAMP))
m.tsc = 0;
/*
* Don't get the IP here because it's unlikely to
* have anything to do with the actual error location.
*/
if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
mce_log(&m);
/*
* Clear state for this bank.
*/
mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
}
/*
* Don't clear MCG_STATUS here because it's only defined for
* exceptions.
*/
sync_core();
}
EXPORT_SYMBOL_GPL(machine_check_poll);
/*
* Do a quick check if any of the events requires a panic.
* This decides if we keep the events around or clear them.
*/
static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
struct pt_regs *regs)
{
int i, ret = 0;
for (i = 0; i < banks; i++) {
m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
if (m->status & MCI_STATUS_VAL) {
__set_bit(i, validp);
if (quirk_no_way_out)
quirk_no_way_out(i, m, regs);
}
if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
ret = 1;
}
return ret;
}
/*
* Variable to establish order between CPUs while scanning.
* Each CPU spins initially until executing is equal its number.
*/
static atomic_t mce_executing;
/*
* Defines order of CPUs on entry. First CPU becomes Monarch.
*/
static atomic_t mce_callin;
/*
* Check if a timeout waiting for other CPUs happened.
*/
static int mce_timed_out(u64 *t)
{
/*
* The others already did panic for some reason.
* Bail out like in a timeout.
* rmb() to tell the compiler that system_state
* might have been modified by someone else.
*/
rmb();
if (atomic_read(&mce_paniced))
wait_for_panic();
if (!monarch_timeout)
goto out;
if ((s64)*t < SPINUNIT) {
/* CHECKME: Make panic default for 1 too? */
if (tolerant < 1)
mce_panic("Timeout synchronizing machine check over CPUs",
NULL, NULL);
cpu_missing = 1;
return 1;
}
*t -= SPINUNIT;
out:
touch_nmi_watchdog();
return 0;
}
/*
* The Monarch's reign. The Monarch is the CPU who entered
* the machine check handler first. It waits for the others to
* raise the exception too and then grades them. When any
* error is fatal panic. Only then let the others continue.
*
* The other CPUs entering the MCE handler will be controlled by the
* Monarch. They are called Subjects.
*
* This way we prevent any potential data corruption in a unrecoverable case
* and also makes sure always all CPU's errors are examined.
*
* Also this detects the case of a machine check event coming from outer
* space (not detected by any CPUs) In this case some external agent wants
* us to shut down, so panic too.
*
* The other CPUs might still decide to panic if the handler happens
* in a unrecoverable place, but in this case the system is in a semi-stable
* state and won't corrupt anything by itself. It's ok to let the others
* continue for a bit first.
*
* All the spin loops have timeouts; when a timeout happens a CPU
* typically elects itself to be Monarch.
*/
static void mce_reign(void)
{
int cpu;
struct mce *m = NULL;
int global_worst = 0;
char *msg = NULL;
char *nmsg = NULL;
/*
* This CPU is the Monarch and the other CPUs have run
* through their handlers.
* Grade the severity of the errors of all the CPUs.
*/
for_each_possible_cpu(cpu) {
int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
&nmsg);
if (severity > global_worst) {
msg = nmsg;
global_worst = severity;
m = &per_cpu(mces_seen, cpu);
}
}
/*
* Cannot recover? Panic here then.
* This dumps all the mces in the log buffer and stops the
* other CPUs.
*/
if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
mce_panic("Fatal Machine check", m, msg);
/*
* For UC somewhere we let the CPU who detects it handle it.
* Also must let continue the others, otherwise the handling
* CPU could deadlock on a lock.
*/
/*
* No machine check event found. Must be some external
* source or one CPU is hung. Panic.
*/
if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
mce_panic("Machine check from unknown source", NULL, NULL);
/*
* Now clear all the mces_seen so that they don't reappear on
* the next mce.
*/
for_each_possible_cpu(cpu)
memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
}
static atomic_t global_nwo;
/*
* Start of Monarch synchronization. This waits until all CPUs have
* entered the exception handler and then determines if any of them
* saw a fatal event that requires panic. Then it executes them
* in the entry order.
* TBD double check parallel CPU hotunplug
*/
static int mce_start(int *no_way_out)
{
int order;
int cpus = num_online_cpus();
u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
if (!timeout)
return -1;
atomic_add(*no_way_out, &global_nwo);
/*
* global_nwo should be updated before mce_callin
*/
smp_wmb();
order = atomic_inc_return(&mce_callin);
/*
* Wait for everyone.
*/
while (atomic_read(&mce_callin) != cpus) {
if (mce_timed_out(&timeout)) {
atomic_set(&global_nwo, 0);
return -1;
}
ndelay(SPINUNIT);
}
/*
* mce_callin should be read before global_nwo
*/
smp_rmb();
if (order == 1) {
/*
* Monarch: Starts executing now, the others wait.
*/
atomic_set(&mce_executing, 1);
} else {
/*
* Subject: Now start the scanning loop one by one in
* the original callin order.
* This way when there are any shared banks it will be
* only seen by one CPU before cleared, avoiding duplicates.
*/
while (atomic_read(&mce_executing) < order) {
if (mce_timed_out(&timeout)) {
atomic_set(&global_nwo, 0);
return -1;
}
ndelay(SPINUNIT);
}
}
/*
* Cache the global no_way_out state.
*/
*no_way_out = atomic_read(&global_nwo);
return order;
}
/*
* Synchronize between CPUs after main scanning loop.
* This invokes the bulk of the Monarch processing.
*/
static int mce_end(int order)
{
int ret = -1;
u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
if (!timeout)
goto reset;
if (order < 0)
goto reset;
/*
* Allow others to run.
*/
atomic_inc(&mce_executing);
if (order == 1) {
/* CHECKME: Can this race with a parallel hotplug? */
int cpus = num_online_cpus();
/*
* Monarch: Wait for everyone to go through their scanning
* loops.
*/
while (atomic_read(&mce_executing) <= cpus) {
if (mce_timed_out(&timeout))
goto reset;
ndelay(SPINUNIT);
}
mce_reign();
barrier();
ret = 0;
} else {
/*
* Subject: Wait for Monarch to finish.
*/
while (atomic_read(&mce_executing) != 0) {
if (mce_timed_out(&timeout))
goto reset;
ndelay(SPINUNIT);
}
/*
* Don't reset anything. That's done by the Monarch.
*/
return 0;
}
/*
* Reset all global state.
*/
reset:
atomic_set(&global_nwo, 0);
atomic_set(&mce_callin, 0);
barrier();
/*
* Let others run again.
*/
atomic_set(&mce_executing, 0);
return ret;
}
/*
* Check if the address reported by the CPU is in a format we can parse.
* It would be possible to add code for most other cases, but all would
* be somewhat complicated (e.g. segment offset would require an instruction
* parser). So only support physical addresses up to page granuality for now.
*/
static int mce_usable_address(struct mce *m)
{
if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
return 0;
if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
return 0;
if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
return 0;
return 1;
}
static void mce_clear_state(unsigned long *toclear)
{
int i;
for (i = 0; i < banks; i++) {
if (test_bit(i, toclear))
mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
}
}
/*
* Need to save faulting physical address associated with a process
* in the machine check handler some place where we can grab it back
* later in mce_notify_process()
*/
#define MCE_INFO_MAX 16
struct mce_info {
atomic_t inuse;
struct task_struct *t;
__u64 paddr;
int restartable;
} mce_info[MCE_INFO_MAX];
static void mce_save_info(__u64 addr, int c)
{
struct mce_info *mi;
for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
mi->t = current;
mi->paddr = addr;
mi->restartable = c;
return;
}
}
mce_panic("Too many concurrent recoverable errors", NULL, NULL);
}
static struct mce_info *mce_find_info(void)
{
struct mce_info *mi;
for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
if (atomic_read(&mi->inuse) && mi->t == current)
return mi;
return NULL;
}
static void mce_clear_info(struct mce_info *mi)
{
atomic_set(&mi->inuse, 0);
}
/*
* The actual machine check handler. This only handles real
* exceptions when something got corrupted coming in through int 18.
*
* This is executed in NMI context not subject to normal locking rules. This
* implies that most kernel services cannot be safely used. Don't even
* think about putting a printk in there!
*
* On Intel systems this is entered on all CPUs in parallel through
* MCE broadcast. However some CPUs might be broken beyond repair,
* so be always careful when synchronizing with others.
*/
void do_machine_check(struct pt_regs *regs, long error_code)
{
struct mce m, *final;
int i;
int worst = 0;
int severity;
/*
* Establish sequential order between the CPUs entering the machine
* check handler.
*/
int order;
/*
* If no_way_out gets set, there is no safe way to recover from this
* MCE. If tolerant is cranked up, we'll try anyway.
*/
int no_way_out = 0;
/*
* If kill_it gets set, there might be a way to recover from this
* error.
*/
int kill_it = 0;
DECLARE_BITMAP(toclear, MAX_NR_BANKS);
DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
char *msg = "Unknown";
atomic_inc(&mce_entry);
this_cpu_inc(mce_exception_count);
if (!banks)
goto out;
mce_gather_info(&m, regs);
final = &__get_cpu_var(mces_seen);
*final = m;
memset(valid_banks, 0, sizeof(valid_banks));
no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
barrier();
/*
* When no restart IP might need to kill or panic.
* Assume the worst for now, but if we find the
* severity is MCE_AR_SEVERITY we have other options.
*/
if (!(m.mcgstatus & MCG_STATUS_RIPV))
kill_it = 1;
/*
* Go through all the banks in exclusion of the other CPUs.
* This way we don't report duplicated events on shared banks
* because the first one to see it will clear it.
*/
order = mce_start(&no_way_out);
for (i = 0; i < banks; i++) {
__clear_bit(i, toclear);
if (!test_bit(i, valid_banks))
continue;
if (!mce_banks[i].ctl)
continue;
m.misc = 0;
m.addr = 0;
m.bank = i;
m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
if ((m.status & MCI_STATUS_VAL) == 0)
continue;
/*
* Non uncorrected or non signaled errors are handled by
* machine_check_poll. Leave them alone, unless this panics.
*/
if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
!no_way_out)
continue;
/*
* Set taint even when machine check was not enabled.
*/
add_taint(TAINT_MACHINE_CHECK);
severity = mce_severity(&m, tolerant, NULL);
/*
* When machine check was for corrected handler don't touch,
* unless we're panicing.
*/
if (severity == MCE_KEEP_SEVERITY && !no_way_out)
continue;
__set_bit(i, toclear);
if (severity == MCE_NO_SEVERITY) {
/*
* Machine check event was not enabled. Clear, but
* ignore.
*/
continue;
}
mce_read_aux(&m, i);
/*
* Action optional error. Queue address for later processing.
* When the ring overflows we just ignore the AO error.
* RED-PEN add some logging mechanism when
* usable_address or mce_add_ring fails.
* RED-PEN don't ignore overflow for tolerant == 0
*/
if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
mce_ring_add(m.addr >> PAGE_SHIFT);
mce_log(&m);
if (severity > worst) {
*final = m;
worst = severity;
}
}
/* mce_clear_state will clear *final, save locally for use later */
m = *final;
if (!no_way_out)
mce_clear_state(toclear);
/*
* Do most of the synchronization with other CPUs.
* When there's any problem use only local no_way_out state.
*/
if (mce_end(order) < 0)
no_way_out = worst >= MCE_PANIC_SEVERITY;
/*
* At insane "tolerant" levels we take no action. Otherwise
* we only die if we have no other choice. For less serious
* issues we try to recover, or limit damage to the current
* process.
*/
if (tolerant < 3) {
if (no_way_out)
mce_panic("Fatal machine check on current CPU", &m, msg);
if (worst == MCE_AR_SEVERITY) {
/* schedule action before return to userland */
mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
set_thread_flag(TIF_MCE_NOTIFY);
} else if (kill_it) {
force_sig(SIGBUS, current);
}
}
if (worst > 0)
mce_report_event(regs);
mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
out:
atomic_dec(&mce_entry);
sync_core();
}
EXPORT_SYMBOL_GPL(do_machine_check);
#ifndef CONFIG_MEMORY_FAILURE
int memory_failure(unsigned long pfn, int vector, int flags)
{
/* mce_severity() should not hand us an ACTION_REQUIRED error */
BUG_ON(flags & MF_ACTION_REQUIRED);
pr_err("Uncorrected memory error in page 0x%lx ignored\n"
"Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
pfn);
return 0;
}
#endif
/*
* Called in process context that interrupted by MCE and marked with
* TIF_MCE_NOTIFY, just before returning to erroneous userland.
* This code is allowed to sleep.
* Attempt possible recovery such as calling the high level VM handler to
* process any corrupted pages, and kill/signal current process if required.
* Action required errors are handled here.
*/
void mce_notify_process(void)
{
unsigned long pfn;
struct mce_info *mi = mce_find_info();
int flags = MF_ACTION_REQUIRED;
if (!mi)
mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
pfn = mi->paddr >> PAGE_SHIFT;
clear_thread_flag(TIF_MCE_NOTIFY);
pr_err("Uncorrected hardware memory error in user-access at %llx",
mi->paddr);
/*
* We must call memory_failure() here even if the current process is
* doomed. We still need to mark the page as poisoned and alert any
* other users of the page.
*/
if (!mi->restartable)
flags |= MF_MUST_KILL;
if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
pr_err("Memory error not recovered");
force_sig(SIGBUS, current);
}
mce_clear_info(mi);
}
/*
* Action optional processing happens here (picking up
* from the list of faulting pages that do_machine_check()
* placed into the "ring").
*/
static void mce_process_work(struct work_struct *dummy)
{
unsigned long pfn;
while (mce_ring_get(&pfn))
memory_failure(pfn, MCE_VECTOR, 0);
}
#ifdef CONFIG_X86_MCE_INTEL
/***
* mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
* @cpu: The CPU on which the event occurred.
* @status: Event status information
*
* This function should be called by the thermal interrupt after the
* event has been processed and the decision was made to log the event
* further.
*
* The status parameter will be saved to the 'status' field of 'struct mce'
* and historically has been the register value of the
* MSR_IA32_THERMAL_STATUS (Intel) msr.
*/
void mce_log_therm_throt_event(__u64 status)
{
struct mce m;
mce_setup(&m);
m.bank = MCE_THERMAL_BANK;
m.status = status;
mce_log(&m);
}
#endif /* CONFIG_X86_MCE_INTEL */
/*
* Periodic polling timer for "silent" machine check errors. If the
* poller finds an MCE, poll 2x faster. When the poller finds no more
* errors, poll 2x slower (up to check_interval seconds).
*/
static unsigned long check_interval = 5 * 60; /* 5 minutes */
static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
static DEFINE_PER_CPU(struct timer_list, mce_timer);
static unsigned long mce_adjust_timer_default(unsigned long interval)
{
return interval;
}
static unsigned long (*mce_adjust_timer)(unsigned long interval) =
mce_adjust_timer_default;
static void mce_timer_fn(unsigned long data)
{
struct timer_list *t = &__get_cpu_var(mce_timer);
unsigned long iv;
WARN_ON(smp_processor_id() != data);
if (mce_available(__this_cpu_ptr(&cpu_info))) {
machine_check_poll(MCP_TIMESTAMP,
&__get_cpu_var(mce_poll_banks));
mce_intel_cmci_poll();
}
/*
* Alert userspace if needed. If we logged an MCE, reduce the
* polling interval, otherwise increase the polling interval.
*/
iv = __this_cpu_read(mce_next_interval);
if (mce_notify_irq()) {
iv = max(iv / 2, (unsigned long) HZ/100);
} else {
iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
iv = mce_adjust_timer(iv);
}
__this_cpu_write(mce_next_interval, iv);
/* Might have become 0 after CMCI storm subsided */
if (iv) {
t->expires = jiffies + iv;
add_timer_on(t, smp_processor_id());
}
}
/*
* Ensure that the timer is firing in @interval from now.
*/
void mce_timer_kick(unsigned long interval)
{
struct timer_list *t = &__get_cpu_var(mce_timer);
unsigned long when = jiffies + interval;
unsigned long iv = __this_cpu_read(mce_next_interval);
if (timer_pending(t)) {
if (time_before(when, t->expires))
mod_timer_pinned(t, when);
} else {
t->expires = round_jiffies(when);
add_timer_on(t, smp_processor_id());
}
if (interval < iv)
__this_cpu_write(mce_next_interval, interval);
}
/* Must not be called in IRQ context where del_timer_sync() can deadlock */
static void mce_timer_delete_all(void)
{
int cpu;
for_each_online_cpu(cpu)
del_timer_sync(&per_cpu(mce_timer, cpu));
}
static void mce_do_trigger(struct work_struct *work)
{
call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
}
static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
/*
* Notify the user(s) about new machine check events.
* Can be called from interrupt context, but not from machine check/NMI
* context.
*/
int mce_notify_irq(void)
{
/* Not more than two messages every minute */
static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
if (test_and_clear_bit(0, &mce_need_notify)) {
/* wake processes polling /dev/mcelog */
wake_up_interruptible(&mce_chrdev_wait);
/*
* There is no risk of missing notifications because
* work_pending is always cleared before the function is
* executed.
*/
if (mce_helper[0] && !work_pending(&mce_trigger_work))
schedule_work(&mce_trigger_work);
if (__ratelimit(&ratelimit))
pr_info(HW_ERR "Machine check events logged\n");
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(mce_notify_irq);
static int __cpuinit __mcheck_cpu_mce_banks_init(void)
{
int i;
mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
if (!mce_banks)
return -ENOMEM;
for (i = 0; i < banks; i++) {
struct mce_bank *b = &mce_banks[i];
b->ctl = -1ULL;
b->init = 1;
}
return 0;
}
/*
* Initialize Machine Checks for a CPU.
*/
static int __cpuinit __mcheck_cpu_cap_init(void)
{
unsigned b;
u64 cap;
rdmsrl(MSR_IA32_MCG_CAP, cap);
b = cap & MCG_BANKCNT_MASK;
if (!banks)
pr_info("CPU supports %d MCE banks\n", b);
if (b > MAX_NR_BANKS) {
pr_warn("Using only %u machine check banks out of %u\n",
MAX_NR_BANKS, b);
b = MAX_NR_BANKS;
}
/* Don't support asymmetric configurations today */
WARN_ON(banks != 0 && b != banks);
banks = b;
if (!mce_banks) {
int err = __mcheck_cpu_mce_banks_init();
if (err)
return err;
}
/* Use accurate RIP reporting if available. */
if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
rip_msr = MSR_IA32_MCG_EIP;
if (cap & MCG_SER_P)
mce_ser = 1;
return 0;
}
static void __mcheck_cpu_init_generic(void)
{
mce_banks_t all_banks;
u64 cap;
int i;
/*
* Log the machine checks left over from the previous reset.
*/
bitmap_fill(all_banks, MAX_NR_BANKS);
machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
set_in_cr4(X86_CR4_MCE);
rdmsrl(MSR_IA32_MCG_CAP, cap);
if (cap & MCG_CTL_P)
wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
for (i = 0; i < banks; i++) {
struct mce_bank *b = &mce_banks[i];
if (!b->init)
continue;
wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
}
}
/*
* During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
* EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
* Vol 3B Table 15-20). But this confuses both the code that determines
* whether the machine check occurred in kernel or user mode, and also
* the severity assessment code. Pretend that EIPV was set, and take the
* ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
*/
static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
{
if (bank != 0)
return;
if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
return;
if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
MCACOD)) !=
(MCI_STATUS_UC|MCI_STATUS_EN|
MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
MCI_STATUS_AR|MCACOD_INSTR))
return;
m->mcgstatus |= MCG_STATUS_EIPV;
m->ip = regs->ip;
m->cs = regs->cs;
}
/* Add per CPU specific workarounds here */
static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
{
if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
pr_info("unknown CPU type - not enabling MCE support\n");
return -EOPNOTSUPP;
}
/* This should be disabled by the BIOS, but isn't always */
if (c->x86_vendor == X86_VENDOR_AMD) {
if (c->x86 == 15 && banks > 4) {
/*
* disable GART TBL walk error reporting, which
* trips off incorrectly with the IOMMU & 3ware
* & Cerberus:
*/
clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
}
if (c->x86 <= 17 && mce_bootlog < 0) {
/*
* Lots of broken BIOS around that don't clear them
* by default and leave crap in there. Don't log:
*/
mce_bootlog = 0;
}
/*
* Various K7s with broken bank 0 around. Always disable
* by default.
*/
if (c->x86 == 6 && banks > 0)
mce_banks[0].ctl = 0;
/*
* Turn off MC4_MISC thresholding banks on those models since
* they're not supported there.
*/
if (c->x86 == 0x15 &&
(c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
int i;
u64 val, hwcr;
bool need_toggle;
u32 msrs[] = {
0x00000413, /* MC4_MISC0 */
0xc0000408, /* MC4_MISC1 */
};
rdmsrl(MSR_K7_HWCR, hwcr);
/* McStatusWrEn has to be set */
need_toggle = !(hwcr & BIT(18));
if (need_toggle)
wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
for (i = 0; i < ARRAY_SIZE(msrs); i++) {
rdmsrl(msrs[i], val);
/* CntP bit set? */
if (val & BIT_64(62)) {
val &= ~BIT_64(62);
wrmsrl(msrs[i], val);
}
}
/* restore old settings */
if (need_toggle)
wrmsrl(MSR_K7_HWCR, hwcr);
}
}
if (c->x86_vendor == X86_VENDOR_INTEL) {
/*
* SDM documents that on family 6 bank 0 should not be written
* because it aliases to another special BIOS controlled
* register.
* But it's not aliased anymore on model 0x1a+
* Don't ignore bank 0 completely because there could be a
* valid event later, merely don't write CTL0.
*/
if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
mce_banks[0].init = 0;
/*
* All newer Intel systems support MCE broadcasting. Enable
* synchronization with a one second timeout.
*/
if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
monarch_timeout < 0)
monarch_timeout = USEC_PER_SEC;
/*
* There are also broken BIOSes on some Pentium M and
* earlier systems:
*/
if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
mce_bootlog = 0;
if (c->x86 == 6 && c->x86_model == 45)
quirk_no_way_out = quirk_sandybridge_ifu;
}
if (monarch_timeout < 0)
monarch_timeout = 0;
if (mce_bootlog != 0)
mce_panic_timeout = 30;
return 0;
}
static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
{
if (c->x86 != 5)
return 0;
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
intel_p5_mcheck_init(c);
return 1;
break;
case X86_VENDOR_CENTAUR:
winchip_mcheck_init(c);
return 1;
break;
}
return 0;
}
static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
{
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
mce_intel_feature_init(c);
mce_adjust_timer = mce_intel_adjust_timer;
break;
case X86_VENDOR_AMD:
mce_amd_feature_init(c);
break;
default:
break;
}
}
static void mce_start_timer(unsigned int cpu, struct timer_list *t)
{
unsigned long iv = mce_adjust_timer(check_interval * HZ);
__this_cpu_write(mce_next_interval, iv);
if (mce_ignore_ce || !iv)
return;
t->expires = round_jiffies(jiffies + iv);
add_timer_on(t, smp_processor_id());
}
static void __mcheck_cpu_init_timer(void)
{
struct timer_list *t = &__get_cpu_var(mce_timer);
unsigned int cpu = smp_processor_id();
setup_timer(t, mce_timer_fn, cpu);
mce_start_timer(cpu, t);
}
/* Handle unconfigured int18 (should never happen) */
static void unexpected_machine_check(struct pt_regs *regs, long error_code)
{
pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
smp_processor_id());
}
/* Call the installed machine check handler for this CPU setup. */
void (*machine_check_vector)(struct pt_regs *, long error_code) =
unexpected_machine_check;
/*
* Called for each booted CPU to set up machine checks.
* Must be called with preempt off:
*/
void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
{
if (mce_disabled)
return;
if (__mcheck_cpu_ancient_init(c))
return;
if (!mce_available(c))
return;
if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
mce_disabled = 1;
return;
}
machine_check_vector = do_machine_check;
__mcheck_cpu_init_generic();
__mcheck_cpu_init_vendor(c);
__mcheck_cpu_init_timer();
INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
}
/*
* mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
*/
static DEFINE_SPINLOCK(mce_chrdev_state_lock);
static int mce_chrdev_open_count; /* #times opened */
static int mce_chrdev_open_exclu; /* already open exclusive? */
static int mce_chrdev_open(struct inode *inode, struct file *file)
{
spin_lock(&mce_chrdev_state_lock);
if (mce_chrdev_open_exclu ||
(mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
spin_unlock(&mce_chrdev_state_lock);
return -EBUSY;
}
if (file->f_flags & O_EXCL)
mce_chrdev_open_exclu = 1;
mce_chrdev_open_count++;
spin_unlock(&mce_chrdev_state_lock);
return nonseekable_open(inode, file);
}
static int mce_chrdev_release(struct inode *inode, struct file *file)
{
spin_lock(&mce_chrdev_state_lock);
mce_chrdev_open_count--;
mce_chrdev_open_exclu = 0;
spin_unlock(&mce_chrdev_state_lock);
return 0;
}
static void collect_tscs(void *data)
{
unsigned long *cpu_tsc = (unsigned long *)data;
rdtscll(cpu_tsc[smp_processor_id()]);
}
static int mce_apei_read_done;
/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
static int __mce_read_apei(char __user **ubuf, size_t usize)
{
int rc;
u64 record_id;
struct mce m;
if (usize < sizeof(struct mce))
return -EINVAL;
rc = apei_read_mce(&m, &record_id);
/* Error or no more MCE record */
if (rc <= 0) {
mce_apei_read_done = 1;
/*
* When ERST is disabled, mce_chrdev_read() should return
* "no record" instead of "no device."
*/
if (rc == -ENODEV)
return 0;
return rc;
}
rc = -EFAULT;
if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
return rc;
/*
* In fact, we should have cleared the record after that has
* been flushed to the disk or sent to network in
* /sbin/mcelog, but we have no interface to support that now,
* so just clear it to avoid duplication.
*/
rc = apei_clear_mce(record_id);
if (rc) {
mce_apei_read_done = 1;
return rc;
}
*ubuf += sizeof(struct mce);
return 0;
}
static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
size_t usize, loff_t *off)
{
char __user *buf = ubuf;
unsigned long *cpu_tsc;
unsigned prev, next;
int i, err;
cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
if (!cpu_tsc)
return -ENOMEM;
mutex_lock(&mce_chrdev_read_mutex);
if (!mce_apei_read_done) {
err = __mce_read_apei(&buf, usize);
if (err || buf != ubuf)
goto out;
}
next = rcu_dereference_check_mce(mcelog.next);
/* Only supports full reads right now */
err = -EINVAL;
if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
goto out;
err = 0;
prev = 0;
do {
for (i = prev; i < next; i++) {
unsigned long start = jiffies;
struct mce *m = &mcelog.entry[i];
while (!m->finished) {
if (time_after_eq(jiffies, start + 2)) {
memset(m, 0, sizeof(*m));
goto timeout;
}
cpu_relax();
}
smp_rmb();
err |= copy_to_user(buf, m, sizeof(*m));
buf += sizeof(*m);
timeout:
;
}
memset(mcelog.entry + prev, 0,
(next - prev) * sizeof(struct mce));
prev = next;
next = cmpxchg(&mcelog.next, prev, 0);
} while (next != prev);
synchronize_sched();
/*
* Collect entries that were still getting written before the
* synchronize.
*/
on_each_cpu(collect_tscs, cpu_tsc, 1);
for (i = next; i < MCE_LOG_LEN; i++) {
struct mce *m = &mcelog.entry[i];
if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
err |= copy_to_user(buf, m, sizeof(*m));
smp_rmb();
buf += sizeof(*m);
memset(m, 0, sizeof(*m));
}
}
if (err)
err = -EFAULT;
out:
mutex_unlock(&mce_chrdev_read_mutex);
kfree(cpu_tsc);
return err ? err : buf - ubuf;
}
static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
{
poll_wait(file, &mce_chrdev_wait, wait);
if (rcu_access_index(mcelog.next))
return POLLIN | POLLRDNORM;
if (!mce_apei_read_done && apei_check_mce())
return POLLIN | POLLRDNORM;
return 0;
}
static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
unsigned long arg)
{
int __user *p = (int __user *)arg;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
switch (cmd) {
case MCE_GET_RECORD_LEN:
return put_user(sizeof(struct mce), p);
case MCE_GET_LOG_LEN:
return put_user(MCE_LOG_LEN, p);
case MCE_GETCLEAR_FLAGS: {
unsigned flags;
do {
flags = mcelog.flags;
} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
return put_user(flags, p);
}
default:
return -ENOTTY;
}
}
static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
size_t usize, loff_t *off);
void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
const char __user *ubuf,
size_t usize, loff_t *off))
{
mce_write = fn;
}
EXPORT_SYMBOL_GPL(register_mce_write_callback);
ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
size_t usize, loff_t *off)
{
if (mce_write)
return mce_write(filp, ubuf, usize, off);
else
return -EINVAL;
}
static const struct file_operations mce_chrdev_ops = {
.open = mce_chrdev_open,
.release = mce_chrdev_release,
.read = mce_chrdev_read,
.write = mce_chrdev_write,
.poll = mce_chrdev_poll,
.unlocked_ioctl = mce_chrdev_ioctl,
.llseek = no_llseek,
};
static struct miscdevice mce_chrdev_device = {
MISC_MCELOG_MINOR,
"mcelog",
&mce_chrdev_ops,
};
/*
* mce=off Disables machine check
* mce=no_cmci Disables CMCI
* mce=dont_log_ce Clears corrected events silently, no log created for CEs.
* mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
* mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
* monarchtimeout is how long to wait for other CPUs on machine
* check, or 0 to not wait
* mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
* mce=nobootlog Don't log MCEs from before booting.
* mce=bios_cmci_threshold Don't program the CMCI threshold
*/
static int __init mcheck_enable(char *str)
{
if (*str == 0) {
enable_p5_mce();
return 1;
}
if (*str == '=')
str++;
if (!strcmp(str, "off"))
mce_disabled = 1;
else if (!strcmp(str, "no_cmci"))
mce_cmci_disabled = 1;
else if (!strcmp(str, "dont_log_ce"))
mce_dont_log_ce = 1;
else if (!strcmp(str, "ignore_ce"))
mce_ignore_ce = 1;
else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
mce_bootlog = (str[0] == 'b');
else if (!strcmp(str, "bios_cmci_threshold"))
mce_bios_cmci_threshold = 1;
else if (isdigit(str[0])) {
get_option(&str, &tolerant);
if (*str == ',') {
++str;
get_option(&str, &monarch_timeout);
}
} else {
pr_info("mce argument %s ignored. Please use /sys\n", str);
return 0;
}
return 1;
}
__setup("mce", mcheck_enable);
int __init mcheck_init(void)
{
mcheck_intel_therm_init();
return 0;
}
/*
* mce_syscore: PM support
*/
/*
* Disable machine checks on suspend and shutdown. We can't really handle
* them later.
*/
static int mce_disable_error_reporting(void)
{
int i;
for (i = 0; i < banks; i++) {
struct mce_bank *b = &mce_banks[i];
if (b->init)
wrmsrl(MSR_IA32_MCx_CTL(i), 0);
}
return 0;
}
static int mce_syscore_suspend(void)
{
return mce_disable_error_reporting();
}
static void mce_syscore_shutdown(void)
{
mce_disable_error_reporting();
}
/*
* On resume clear all MCE state. Don't want to see leftovers from the BIOS.
* Only one CPU is active at this time, the others get re-added later using
* CPU hotplug:
*/
static void mce_syscore_resume(void)
{
__mcheck_cpu_init_generic();
__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
}
static struct syscore_ops mce_syscore_ops = {
.suspend = mce_syscore_suspend,
.shutdown = mce_syscore_shutdown,
.resume = mce_syscore_resume,
};
/*
* mce_device: Sysfs support
*/
static void mce_cpu_restart(void *data)
{
if (!mce_available(__this_cpu_ptr(&cpu_info)))
return;
__mcheck_cpu_init_generic();
__mcheck_cpu_init_timer();
}
/* Reinit MCEs after user configuration changes */
static void mce_restart(void)
{
mce_timer_delete_all();
on_each_cpu(mce_cpu_restart, NULL, 1);
}
/* Toggle features for corrected errors */
static void mce_disable_cmci(void *data)
{
if (!mce_available(__this_cpu_ptr(&cpu_info)))
return;
cmci_clear();
}
static void mce_enable_ce(void *all)
{
if (!mce_available(__this_cpu_ptr(&cpu_info)))
return;
cmci_reenable();
cmci_recheck();
if (all)
__mcheck_cpu_init_timer();
}
static struct bus_type mce_subsys = {
.name = "machinecheck",
.dev_name = "machinecheck",
};
DEFINE_PER_CPU(struct device *, mce_device);
__cpuinitdata
void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
{
return container_of(attr, struct mce_bank, attr);
}
static ssize_t show_bank(struct device *s, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
}
static ssize_t set_bank(struct device *s, struct device_attribute *attr,
const char *buf, size_t size)
{
u64 new;
if (strict_strtoull(buf, 0, &new) < 0)
return -EINVAL;
attr_to_bank(attr)->ctl = new;
mce_restart();
return size;
}
static ssize_t
show_trigger(struct device *s, struct device_attribute *attr, char *buf)
{
strcpy(buf, mce_helper);
strcat(buf, "\n");
return strlen(mce_helper) + 1;
}
static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
const char *buf, size_t siz)
{
char *p;
strncpy(mce_helper, buf, sizeof(mce_helper));
mce_helper[sizeof(mce_helper)-1] = 0;
p = strchr(mce_helper, '\n');
if (p)
*p = 0;
return strlen(mce_helper) + !!p;
}
static ssize_t set_ignore_ce(struct device *s,
struct device_attribute *attr,
const char *buf, size_t size)
{
u64 new;
if (strict_strtoull(buf, 0, &new) < 0)
return -EINVAL;
if (mce_ignore_ce ^ !!new) {
if (new) {
/* disable ce features */
mce_timer_delete_all();
on_each_cpu(mce_disable_cmci, NULL, 1);
mce_ignore_ce = 1;
} else {
/* enable ce features */
mce_ignore_ce = 0;
on_each_cpu(mce_enable_ce, (void *)1, 1);
}
}
return size;
}
static ssize_t set_cmci_disabled(struct device *s,
struct device_attribute *attr,
const char *buf, size_t size)
{
u64 new;
if (strict_strtoull(buf, 0, &new) < 0)
return -EINVAL;
if (mce_cmci_disabled ^ !!new) {
if (new) {
/* disable cmci */
on_each_cpu(mce_disable_cmci, NULL, 1);
mce_cmci_disabled = 1;
} else {
/* enable cmci */
mce_cmci_disabled = 0;
on_each_cpu(mce_enable_ce, NULL, 1);
}
}
return size;
}
static ssize_t store_int_with_restart(struct device *s,
struct device_attribute *attr,
const char *buf, size_t size)
{
ssize_t ret = device_store_int(s, attr, buf, size);
mce_restart();
return ret;
}
static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
static struct dev_ext_attribute dev_attr_check_interval = {
__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
&check_interval
};
static struct dev_ext_attribute dev_attr_ignore_ce = {
__ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
&mce_ignore_ce
};
static struct dev_ext_attribute dev_attr_cmci_disabled = {
__ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
&mce_cmci_disabled
};
static struct dev_ext_attribute dev_attr_bios_cmci_threshold = {
__ATTR(bios_cmci_threshold, 0444, device_show_int, NULL),
&mce_bios_cmci_threshold
};
static struct device_attribute *mce_device_attrs[] = {
&dev_attr_tolerant.attr,
&dev_attr_check_interval.attr,
&dev_attr_trigger,
&dev_attr_monarch_timeout.attr,
&dev_attr_dont_log_ce.attr,
&dev_attr_ignore_ce.attr,
&dev_attr_cmci_disabled.attr,
&dev_attr_bios_cmci_threshold.attr,
NULL
};
static cpumask_var_t mce_device_initialized;
static void mce_device_release(struct device *dev)
{
kfree(dev);
}
/* Per cpu device init. All of the cpus still share the same ctrl bank: */
static __cpuinit int mce_device_create(unsigned int cpu)
{
struct device *dev;
int err;
int i, j;
if (!mce_available(&boot_cpu_data))
return -EIO;
dev = kzalloc(sizeof *dev, GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->id = cpu;
dev->bus = &mce_subsys;
dev->release = &mce_device_release;
err = device_register(dev);
if (err)
return err;
for (i = 0; mce_device_attrs[i]; i++) {
err = device_create_file(dev, mce_device_attrs[i]);
if (err)
goto error;
}
for (j = 0; j < banks; j++) {
err = device_create_file(dev, &mce_banks[j].attr);
if (err)
goto error2;
}
cpumask_set_cpu(cpu, mce_device_initialized);
per_cpu(mce_device, cpu) = dev;
return 0;
error2:
while (--j >= 0)
device_remove_file(dev, &mce_banks[j].attr);
error:
while (--i >= 0)
device_remove_file(dev, mce_device_attrs[i]);
device_unregister(dev);
return err;
}
static __cpuinit void mce_device_remove(unsigned int cpu)
{
struct device *dev = per_cpu(mce_device, cpu);
int i;
if (!cpumask_test_cpu(cpu, mce_device_initialized))
return;
for (i = 0; mce_device_attrs[i]; i++)
device_remove_file(dev, mce_device_attrs[i]);
for (i = 0; i < banks; i++)
device_remove_file(dev, &mce_banks[i].attr);
device_unregister(dev);
cpumask_clear_cpu(cpu, mce_device_initialized);
per_cpu(mce_device, cpu) = NULL;
}
/* Make sure there are no machine checks on offlined CPUs. */
static void __cpuinit mce_disable_cpu(void *h)
{
unsigned long action = *(unsigned long *)h;
int i;
if (!mce_available(__this_cpu_ptr(&cpu_info)))
return;
if (!(action & CPU_TASKS_FROZEN))
cmci_clear();
for (i = 0; i < banks; i++) {
struct mce_bank *b = &mce_banks[i];
if (b->init)
wrmsrl(MSR_IA32_MCx_CTL(i), 0);
}
}
static void __cpuinit mce_reenable_cpu(void *h)
{
unsigned long action = *(unsigned long *)h;
int i;
if (!mce_available(__this_cpu_ptr(&cpu_info)))
return;
if (!(action & CPU_TASKS_FROZEN))
cmci_reenable();
for (i = 0; i < banks; i++) {
struct mce_bank *b = &mce_banks[i];
if (b->init)
wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
}
}
/* Get notified when a cpu comes on/off. Be hotplug friendly. */
static int __cpuinit
mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct timer_list *t = &per_cpu(mce_timer, cpu);
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_ONLINE:
mce_device_create(cpu);
if (threshold_cpu_callback)
threshold_cpu_callback(action, cpu);
break;
case CPU_DEAD:
if (threshold_cpu_callback)
threshold_cpu_callback(action, cpu);
mce_device_remove(cpu);
mce_intel_hcpu_update(cpu);
break;
case CPU_DOWN_PREPARE:
smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
del_timer_sync(t);
break;
case CPU_DOWN_FAILED:
smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
mce_start_timer(cpu, t);
break;
}
if (action == CPU_POST_DEAD) {
/* intentionally ignoring frozen here */
cmci_rediscover(cpu);
}
return NOTIFY_OK;
}
static struct notifier_block mce_cpu_notifier __cpuinitdata = {
.notifier_call = mce_cpu_callback,
};
static __init void mce_init_banks(void)
{
int i;
for (i = 0; i < banks; i++) {
struct mce_bank *b = &mce_banks[i];
struct device_attribute *a = &b->attr;
sysfs_attr_init(&a->attr);
a->attr.name = b->attrname;
snprintf(b->attrname, ATTR_LEN, "bank%d", i);
a->attr.mode = 0644;
a->show = show_bank;
a->store = set_bank;
}
}
static __init int mcheck_init_device(void)
{
int err;
int i = 0;
if (!mce_available(&boot_cpu_data))
return -EIO;
zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
mce_init_banks();
err = subsys_system_register(&mce_subsys, NULL);
if (err)
return err;
for_each_online_cpu(i) {
err = mce_device_create(i);
if (err)
return err;
}
register_syscore_ops(&mce_syscore_ops);
register_hotcpu_notifier(&mce_cpu_notifier);
/* register character device /dev/mcelog */
misc_register(&mce_chrdev_device);
return err;
}
device_initcall_sync(mcheck_init_device);
/*
* Old style boot options parsing. Only for compatibility.
*/
static int __init mcheck_disable(char *str)
{
mce_disabled = 1;
return 1;
}
__setup("nomce", mcheck_disable);
#ifdef CONFIG_DEBUG_FS
struct dentry *mce_get_debugfs_dir(void)
{
static struct dentry *dmce;
if (!dmce)
dmce = debugfs_create_dir("mce", NULL);
return dmce;
}
static void mce_reset(void)
{
cpu_missing = 0;
atomic_set(&mce_fake_paniced, 0);
atomic_set(&mce_executing, 0);
atomic_set(&mce_callin, 0);
atomic_set(&global_nwo, 0);
}
static int fake_panic_get(void *data, u64 *val)
{
*val = fake_panic;
return 0;
}
static int fake_panic_set(void *data, u64 val)
{
mce_reset();
fake_panic = val;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
fake_panic_set, "%llu\n");
static int __init mcheck_debugfs_init(void)
{
struct dentry *dmce, *ffake_panic;
dmce = mce_get_debugfs_dir();
if (!dmce)
return -ENOMEM;
ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
&fake_panic_fops);
if (!ffake_panic)
return -ENOMEM;
return 0;
}
late_initcall(mcheck_debugfs_init);
#endif