| /* |
| * Based on arm clockevents implementation and old bfin time tick. |
| * |
| * Copyright 2008-2009 Analog Devics Inc. |
| * 2008 GeoTechnologies |
| * Vitja Makarov |
| * |
| * Licensed under the GPL-2 |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/profile.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/timex.h> |
| #include <linux/irq.h> |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/cpufreq.h> |
| |
| #include <asm/blackfin.h> |
| #include <asm/time.h> |
| #include <asm/gptimers.h> |
| |
| #if defined(CONFIG_CYCLES_CLOCKSOURCE) |
| |
| /* Accelerators for sched_clock() |
| * convert from cycles(64bits) => nanoseconds (64bits) |
| * basic equation: |
| * ns = cycles / (freq / ns_per_sec) |
| * ns = cycles * (ns_per_sec / freq) |
| * ns = cycles * (10^9 / (cpu_khz * 10^3)) |
| * ns = cycles * (10^6 / cpu_khz) |
| * |
| * Then we use scaling math (suggested by george@mvista.com) to get: |
| * ns = cycles * (10^6 * SC / cpu_khz) / SC |
| * ns = cycles * cyc2ns_scale / SC |
| * |
| * And since SC is a constant power of two, we can convert the div |
| * into a shift. |
| * |
| * We can use khz divisor instead of mhz to keep a better precision, since |
| * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. |
| * (mathieu.desnoyers@polymtl.ca) |
| * |
| * -johnstul@us.ibm.com "math is hard, lets go shopping!" |
| */ |
| |
| static unsigned long cyc2ns_scale; |
| #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ |
| |
| static inline void set_cyc2ns_scale(unsigned long cpu_khz) |
| { |
| cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR) / cpu_khz; |
| } |
| |
| static inline unsigned long long cycles_2_ns(cycle_t cyc) |
| { |
| return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; |
| } |
| |
| static cycle_t bfin_read_cycles(struct clocksource *cs) |
| { |
| return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod); |
| } |
| |
| static struct clocksource bfin_cs_cycles = { |
| .name = "bfin_cs_cycles", |
| .rating = 400, |
| .read = bfin_read_cycles, |
| .mask = CLOCKSOURCE_MASK(64), |
| .shift = 22, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| unsigned long long sched_clock(void) |
| { |
| return cycles_2_ns(bfin_read_cycles(&bfin_cs_cycles)); |
| } |
| |
| static int __init bfin_cs_cycles_init(void) |
| { |
| set_cyc2ns_scale(get_cclk() / 1000); |
| |
| bfin_cs_cycles.mult = \ |
| clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift); |
| |
| if (clocksource_register(&bfin_cs_cycles)) |
| panic("failed to register clocksource"); |
| |
| return 0; |
| } |
| #else |
| # define bfin_cs_cycles_init() |
| #endif |
| |
| #ifdef CONFIG_GPTMR0_CLOCKSOURCE |
| |
| void __init setup_gptimer0(void) |
| { |
| disable_gptimers(TIMER0bit); |
| |
| set_gptimer_config(TIMER0_id, \ |
| TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM); |
| set_gptimer_period(TIMER0_id, -1); |
| set_gptimer_pwidth(TIMER0_id, -2); |
| SSYNC(); |
| enable_gptimers(TIMER0bit); |
| } |
| |
| static cycle_t bfin_read_gptimer0(void) |
| { |
| return bfin_read_TIMER0_COUNTER(); |
| } |
| |
| static struct clocksource bfin_cs_gptimer0 = { |
| .name = "bfin_cs_gptimer0", |
| .rating = 350, |
| .read = bfin_read_gptimer0, |
| .mask = CLOCKSOURCE_MASK(32), |
| .shift = 22, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static int __init bfin_cs_gptimer0_init(void) |
| { |
| setup_gptimer0(); |
| |
| bfin_cs_gptimer0.mult = \ |
| clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift); |
| |
| if (clocksource_register(&bfin_cs_gptimer0)) |
| panic("failed to register clocksource"); |
| |
| return 0; |
| } |
| #else |
| # define bfin_cs_gptimer0_init() |
| #endif |
| |
| #ifdef CONFIG_CORE_TIMER_IRQ_L1 |
| __attribute__((l1_text)) |
| #endif |
| irqreturn_t timer_interrupt(int irq, void *dev_id); |
| |
| static int bfin_timer_set_next_event(unsigned long, \ |
| struct clock_event_device *); |
| |
| static void bfin_timer_set_mode(enum clock_event_mode, \ |
| struct clock_event_device *); |
| |
| static struct clock_event_device clockevent_bfin = { |
| #if defined(CONFIG_TICKSOURCE_GPTMR0) |
| .name = "bfin_gptimer0", |
| .rating = 300, |
| .irq = IRQ_TIMER0, |
| #else |
| .name = "bfin_core_timer", |
| .rating = 350, |
| .irq = IRQ_CORETMR, |
| #endif |
| .shift = 32, |
| .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, |
| .set_next_event = bfin_timer_set_next_event, |
| .set_mode = bfin_timer_set_mode, |
| }; |
| |
| static struct irqaction bfin_timer_irq = { |
| #if defined(CONFIG_TICKSOURCE_GPTMR0) |
| .name = "Blackfin GPTimer0", |
| #else |
| .name = "Blackfin CoreTimer", |
| #endif |
| .flags = IRQF_DISABLED | IRQF_TIMER | \ |
| IRQF_IRQPOLL | IRQF_PERCPU, |
| .handler = timer_interrupt, |
| .dev_id = &clockevent_bfin, |
| }; |
| |
| #if defined(CONFIG_TICKSOURCE_GPTMR0) |
| static int bfin_timer_set_next_event(unsigned long cycles, |
| struct clock_event_device *evt) |
| { |
| disable_gptimers(TIMER0bit); |
| |
| /* it starts counting three SCLK cycles after the TIMENx bit is set */ |
| set_gptimer_pwidth(TIMER0_id, cycles - 3); |
| enable_gptimers(TIMER0bit); |
| return 0; |
| } |
| |
| static void bfin_timer_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: { |
| set_gptimer_config(TIMER0_id, \ |
| TIMER_OUT_DIS | TIMER_IRQ_ENA | \ |
| TIMER_PERIOD_CNT | TIMER_MODE_PWM); |
| set_gptimer_period(TIMER0_id, get_sclk() / HZ); |
| set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1); |
| enable_gptimers(TIMER0bit); |
| break; |
| } |
| case CLOCK_EVT_MODE_ONESHOT: |
| disable_gptimers(TIMER0bit); |
| set_gptimer_config(TIMER0_id, \ |
| TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM); |
| set_gptimer_period(TIMER0_id, 0); |
| break; |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| disable_gptimers(TIMER0bit); |
| break; |
| case CLOCK_EVT_MODE_RESUME: |
| break; |
| } |
| } |
| |
| static void bfin_timer_ack(void) |
| { |
| set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0); |
| } |
| |
| static void __init bfin_timer_init(void) |
| { |
| disable_gptimers(TIMER0bit); |
| } |
| |
| static unsigned long __init bfin_clockevent_check(void) |
| { |
| setup_irq(IRQ_TIMER0, &bfin_timer_irq); |
| return get_sclk(); |
| } |
| |
| #else /* CONFIG_TICKSOURCE_CORETMR */ |
| |
| static int bfin_timer_set_next_event(unsigned long cycles, |
| struct clock_event_device *evt) |
| { |
| bfin_write_TCNTL(TMPWR); |
| CSYNC(); |
| bfin_write_TCOUNT(cycles); |
| CSYNC(); |
| bfin_write_TCNTL(TMPWR | TMREN); |
| return 0; |
| } |
| |
| static void bfin_timer_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: { |
| unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1); |
| bfin_write_TCNTL(TMPWR); |
| CSYNC(); |
| bfin_write_TSCALE(TIME_SCALE - 1); |
| bfin_write_TPERIOD(tcount); |
| bfin_write_TCOUNT(tcount); |
| CSYNC(); |
| bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD); |
| break; |
| } |
| case CLOCK_EVT_MODE_ONESHOT: |
| bfin_write_TCNTL(TMPWR); |
| CSYNC(); |
| bfin_write_TSCALE(TIME_SCALE - 1); |
| bfin_write_TPERIOD(0); |
| bfin_write_TCOUNT(0); |
| break; |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| bfin_write_TCNTL(0); |
| CSYNC(); |
| break; |
| case CLOCK_EVT_MODE_RESUME: |
| break; |
| } |
| } |
| |
| static void bfin_timer_ack(void) |
| { |
| } |
| |
| static void __init bfin_timer_init(void) |
| { |
| /* power up the timer, but don't enable it just yet */ |
| bfin_write_TCNTL(TMPWR); |
| CSYNC(); |
| |
| /* |
| * the TSCALE prescaler counter. |
| */ |
| bfin_write_TSCALE(TIME_SCALE - 1); |
| bfin_write_TPERIOD(0); |
| bfin_write_TCOUNT(0); |
| |
| CSYNC(); |
| } |
| |
| static unsigned long __init bfin_clockevent_check(void) |
| { |
| setup_irq(IRQ_CORETMR, &bfin_timer_irq); |
| return get_cclk() / TIME_SCALE; |
| } |
| |
| void __init setup_core_timer(void) |
| { |
| bfin_timer_init(); |
| bfin_timer_set_mode(CLOCK_EVT_MODE_PERIODIC, NULL); |
| } |
| #endif /* CONFIG_TICKSOURCE_GPTMR0 */ |
| |
| /* |
| * timer_interrupt() needs to keep up the real-time clock, |
| * as well as call the "do_timer()" routine every clocktick |
| */ |
| irqreturn_t timer_interrupt(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| smp_mb(); |
| evt->event_handler(evt); |
| bfin_timer_ack(); |
| return IRQ_HANDLED; |
| } |
| |
| static int __init bfin_clockevent_init(void) |
| { |
| unsigned long timer_clk; |
| |
| timer_clk = bfin_clockevent_check(); |
| |
| bfin_timer_init(); |
| |
| clockevent_bfin.mult = div_sc(timer_clk, NSEC_PER_SEC, clockevent_bfin.shift); |
| clockevent_bfin.max_delta_ns = clockevent_delta2ns(-1, &clockevent_bfin); |
| clockevent_bfin.min_delta_ns = clockevent_delta2ns(100, &clockevent_bfin); |
| clockevent_bfin.cpumask = cpumask_of(0); |
| clockevents_register_device(&clockevent_bfin); |
| |
| return 0; |
| } |
| |
| void __init time_init(void) |
| { |
| time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */ |
| |
| #ifdef CONFIG_RTC_DRV_BFIN |
| /* [#2663] hack to filter junk RTC values that would cause |
| * userspace to have to deal with time values greater than |
| * 2^31 seconds (which uClibc cannot cope with yet) |
| */ |
| if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) { |
| printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n"); |
| bfin_write_RTC_STAT(0); |
| } |
| #endif |
| |
| /* Initialize xtime. From now on, xtime is updated with timer interrupts */ |
| xtime.tv_sec = secs_since_1970; |
| xtime.tv_nsec = 0; |
| set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); |
| |
| bfin_cs_cycles_init(); |
| bfin_cs_gptimer0_init(); |
| bfin_clockevent_init(); |
| } |