| /* |
| * Helper functions used by the EFI stub on multiple |
| * architectures. This should be #included by the EFI stub |
| * implementation files. |
| * |
| * Copyright 2011 Intel Corporation; author Matt Fleming |
| * |
| * This file is part of the Linux kernel, and is made available |
| * under the terms of the GNU General Public License version 2. |
| * |
| */ |
| |
| #include <linux/efi.h> |
| #include <asm/efi.h> |
| |
| #include "efistub.h" |
| |
| /* |
| * Some firmware implementations have problems reading files in one go. |
| * A read chunk size of 1MB seems to work for most platforms. |
| * |
| * Unfortunately, reading files in chunks triggers *other* bugs on some |
| * platforms, so we provide a way to disable this workaround, which can |
| * be done by passing "efi=nochunk" on the EFI boot stub command line. |
| * |
| * If you experience issues with initrd images being corrupt it's worth |
| * trying efi=nochunk, but chunking is enabled by default because there |
| * are far more machines that require the workaround than those that |
| * break with it enabled. |
| */ |
| #define EFI_READ_CHUNK_SIZE (1024 * 1024) |
| |
| static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE; |
| |
| #define EFI_MMAP_NR_SLACK_SLOTS 8 |
| |
| struct file_info { |
| efi_file_handle_t *handle; |
| u64 size; |
| }; |
| |
| void efi_printk(efi_system_table_t *sys_table_arg, char *str) |
| { |
| char *s8; |
| |
| for (s8 = str; *s8; s8++) { |
| efi_char16_t ch[2] = { 0 }; |
| |
| ch[0] = *s8; |
| if (*s8 == '\n') { |
| efi_char16_t nl[2] = { '\r', 0 }; |
| efi_char16_printk(sys_table_arg, nl); |
| } |
| |
| efi_char16_printk(sys_table_arg, ch); |
| } |
| } |
| |
| static inline bool mmap_has_headroom(unsigned long buff_size, |
| unsigned long map_size, |
| unsigned long desc_size) |
| { |
| unsigned long slack = buff_size - map_size; |
| |
| return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS; |
| } |
| |
| efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg, |
| struct efi_boot_memmap *map) |
| { |
| efi_memory_desc_t *m = NULL; |
| efi_status_t status; |
| unsigned long key; |
| u32 desc_version; |
| |
| *map->desc_size = sizeof(*m); |
| *map->map_size = *map->desc_size * 32; |
| *map->buff_size = *map->map_size; |
| again: |
| status = efi_call_early(allocate_pool, EFI_LOADER_DATA, |
| *map->map_size, (void **)&m); |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| *map->desc_size = 0; |
| key = 0; |
| status = efi_call_early(get_memory_map, map->map_size, m, |
| &key, map->desc_size, &desc_version); |
| if (status == EFI_BUFFER_TOO_SMALL || |
| !mmap_has_headroom(*map->buff_size, *map->map_size, |
| *map->desc_size)) { |
| efi_call_early(free_pool, m); |
| /* |
| * Make sure there is some entries of headroom so that the |
| * buffer can be reused for a new map after allocations are |
| * no longer permitted. Its unlikely that the map will grow to |
| * exceed this headroom once we are ready to trigger |
| * ExitBootServices() |
| */ |
| *map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS; |
| *map->buff_size = *map->map_size; |
| goto again; |
| } |
| |
| if (status != EFI_SUCCESS) |
| efi_call_early(free_pool, m); |
| |
| if (map->key_ptr && status == EFI_SUCCESS) |
| *map->key_ptr = key; |
| if (map->desc_ver && status == EFI_SUCCESS) |
| *map->desc_ver = desc_version; |
| |
| fail: |
| *map->map = m; |
| return status; |
| } |
| |
| |
| unsigned long get_dram_base(efi_system_table_t *sys_table_arg) |
| { |
| efi_status_t status; |
| unsigned long map_size, buff_size; |
| unsigned long membase = EFI_ERROR; |
| struct efi_memory_map map; |
| efi_memory_desc_t *md; |
| struct efi_boot_memmap boot_map; |
| |
| boot_map.map = (efi_memory_desc_t **)&map.map; |
| boot_map.map_size = &map_size; |
| boot_map.desc_size = &map.desc_size; |
| boot_map.desc_ver = NULL; |
| boot_map.key_ptr = NULL; |
| boot_map.buff_size = &buff_size; |
| |
| status = efi_get_memory_map(sys_table_arg, &boot_map); |
| if (status != EFI_SUCCESS) |
| return membase; |
| |
| map.map_end = map.map + map_size; |
| |
| for_each_efi_memory_desc_in_map(&map, md) { |
| if (md->attribute & EFI_MEMORY_WB) { |
| if (membase > md->phys_addr) |
| membase = md->phys_addr; |
| } |
| } |
| |
| efi_call_early(free_pool, map.map); |
| |
| return membase; |
| } |
| |
| /* |
| * Allocate at the highest possible address that is not above 'max'. |
| */ |
| efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg, |
| unsigned long size, unsigned long align, |
| unsigned long *addr, unsigned long max) |
| { |
| unsigned long map_size, desc_size, buff_size; |
| efi_memory_desc_t *map; |
| efi_status_t status; |
| unsigned long nr_pages; |
| u64 max_addr = 0; |
| int i; |
| struct efi_boot_memmap boot_map; |
| |
| boot_map.map = ↦ |
| boot_map.map_size = &map_size; |
| boot_map.desc_size = &desc_size; |
| boot_map.desc_ver = NULL; |
| boot_map.key_ptr = NULL; |
| boot_map.buff_size = &buff_size; |
| |
| status = efi_get_memory_map(sys_table_arg, &boot_map); |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| /* |
| * Enforce minimum alignment that EFI or Linux requires when |
| * requesting a specific address. We are doing page-based (or |
| * larger) allocations, and both the address and size must meet |
| * alignment constraints. |
| */ |
| if (align < EFI_ALLOC_ALIGN) |
| align = EFI_ALLOC_ALIGN; |
| |
| size = round_up(size, EFI_ALLOC_ALIGN); |
| nr_pages = size / EFI_PAGE_SIZE; |
| again: |
| for (i = 0; i < map_size / desc_size; i++) { |
| efi_memory_desc_t *desc; |
| unsigned long m = (unsigned long)map; |
| u64 start, end; |
| |
| desc = (efi_memory_desc_t *)(m + (i * desc_size)); |
| if (desc->type != EFI_CONVENTIONAL_MEMORY) |
| continue; |
| |
| if (desc->num_pages < nr_pages) |
| continue; |
| |
| start = desc->phys_addr; |
| end = start + desc->num_pages * EFI_PAGE_SIZE; |
| |
| if (end > max) |
| end = max; |
| |
| if ((start + size) > end) |
| continue; |
| |
| if (round_down(end - size, align) < start) |
| continue; |
| |
| start = round_down(end - size, align); |
| |
| /* |
| * Don't allocate at 0x0. It will confuse code that |
| * checks pointers against NULL. |
| */ |
| if (start == 0x0) |
| continue; |
| |
| if (start > max_addr) |
| max_addr = start; |
| } |
| |
| if (!max_addr) |
| status = EFI_NOT_FOUND; |
| else { |
| status = efi_call_early(allocate_pages, |
| EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, |
| nr_pages, &max_addr); |
| if (status != EFI_SUCCESS) { |
| max = max_addr; |
| max_addr = 0; |
| goto again; |
| } |
| |
| *addr = max_addr; |
| } |
| |
| efi_call_early(free_pool, map); |
| fail: |
| return status; |
| } |
| |
| /* |
| * Allocate at the lowest possible address. |
| */ |
| efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg, |
| unsigned long size, unsigned long align, |
| unsigned long *addr) |
| { |
| unsigned long map_size, desc_size, buff_size; |
| efi_memory_desc_t *map; |
| efi_status_t status; |
| unsigned long nr_pages; |
| int i; |
| struct efi_boot_memmap boot_map; |
| |
| boot_map.map = ↦ |
| boot_map.map_size = &map_size; |
| boot_map.desc_size = &desc_size; |
| boot_map.desc_ver = NULL; |
| boot_map.key_ptr = NULL; |
| boot_map.buff_size = &buff_size; |
| |
| status = efi_get_memory_map(sys_table_arg, &boot_map); |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| /* |
| * Enforce minimum alignment that EFI or Linux requires when |
| * requesting a specific address. We are doing page-based (or |
| * larger) allocations, and both the address and size must meet |
| * alignment constraints. |
| */ |
| if (align < EFI_ALLOC_ALIGN) |
| align = EFI_ALLOC_ALIGN; |
| |
| size = round_up(size, EFI_ALLOC_ALIGN); |
| nr_pages = size / EFI_PAGE_SIZE; |
| for (i = 0; i < map_size / desc_size; i++) { |
| efi_memory_desc_t *desc; |
| unsigned long m = (unsigned long)map; |
| u64 start, end; |
| |
| desc = (efi_memory_desc_t *)(m + (i * desc_size)); |
| |
| if (desc->type != EFI_CONVENTIONAL_MEMORY) |
| continue; |
| |
| if (desc->num_pages < nr_pages) |
| continue; |
| |
| start = desc->phys_addr; |
| end = start + desc->num_pages * EFI_PAGE_SIZE; |
| |
| /* |
| * Don't allocate at 0x0. It will confuse code that |
| * checks pointers against NULL. Skip the first 8 |
| * bytes so we start at a nice even number. |
| */ |
| if (start == 0x0) |
| start += 8; |
| |
| start = round_up(start, align); |
| if ((start + size) > end) |
| continue; |
| |
| status = efi_call_early(allocate_pages, |
| EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, |
| nr_pages, &start); |
| if (status == EFI_SUCCESS) { |
| *addr = start; |
| break; |
| } |
| } |
| |
| if (i == map_size / desc_size) |
| status = EFI_NOT_FOUND; |
| |
| efi_call_early(free_pool, map); |
| fail: |
| return status; |
| } |
| |
| void efi_free(efi_system_table_t *sys_table_arg, unsigned long size, |
| unsigned long addr) |
| { |
| unsigned long nr_pages; |
| |
| if (!size) |
| return; |
| |
| nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE; |
| efi_call_early(free_pages, addr, nr_pages); |
| } |
| |
| static efi_status_t efi_file_size(efi_system_table_t *sys_table_arg, void *__fh, |
| efi_char16_t *filename_16, void **handle, |
| u64 *file_sz) |
| { |
| efi_file_handle_t *h, *fh = __fh; |
| efi_file_info_t *info; |
| efi_status_t status; |
| efi_guid_t info_guid = EFI_FILE_INFO_ID; |
| unsigned long info_sz; |
| |
| status = efi_call_proto(efi_file_handle, open, fh, &h, filename_16, |
| EFI_FILE_MODE_READ, (u64)0); |
| if (status != EFI_SUCCESS) { |
| efi_printk(sys_table_arg, "Failed to open file: "); |
| efi_char16_printk(sys_table_arg, filename_16); |
| efi_printk(sys_table_arg, "\n"); |
| return status; |
| } |
| |
| *handle = h; |
| |
| info_sz = 0; |
| status = efi_call_proto(efi_file_handle, get_info, h, &info_guid, |
| &info_sz, NULL); |
| if (status != EFI_BUFFER_TOO_SMALL) { |
| efi_printk(sys_table_arg, "Failed to get file info size\n"); |
| return status; |
| } |
| |
| grow: |
| status = efi_call_early(allocate_pool, EFI_LOADER_DATA, |
| info_sz, (void **)&info); |
| if (status != EFI_SUCCESS) { |
| efi_printk(sys_table_arg, "Failed to alloc mem for file info\n"); |
| return status; |
| } |
| |
| status = efi_call_proto(efi_file_handle, get_info, h, &info_guid, |
| &info_sz, info); |
| if (status == EFI_BUFFER_TOO_SMALL) { |
| efi_call_early(free_pool, info); |
| goto grow; |
| } |
| |
| *file_sz = info->file_size; |
| efi_call_early(free_pool, info); |
| |
| if (status != EFI_SUCCESS) |
| efi_printk(sys_table_arg, "Failed to get initrd info\n"); |
| |
| return status; |
| } |
| |
| static efi_status_t efi_file_read(void *handle, unsigned long *size, void *addr) |
| { |
| return efi_call_proto(efi_file_handle, read, handle, size, addr); |
| } |
| |
| static efi_status_t efi_file_close(void *handle) |
| { |
| return efi_call_proto(efi_file_handle, close, handle); |
| } |
| |
| /* |
| * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi= |
| * option, e.g. efi=nochunk. |
| * |
| * It should be noted that efi= is parsed in two very different |
| * environments, first in the early boot environment of the EFI boot |
| * stub, and subsequently during the kernel boot. |
| */ |
| efi_status_t efi_parse_options(char *cmdline) |
| { |
| char *str; |
| |
| /* |
| * Currently, the only efi= option we look for is 'nochunk', which |
| * is intended to work around known issues on certain x86 UEFI |
| * versions. So ignore for now on other architectures. |
| */ |
| if (!IS_ENABLED(CONFIG_X86)) |
| return EFI_SUCCESS; |
| |
| /* |
| * If no EFI parameters were specified on the cmdline we've got |
| * nothing to do. |
| */ |
| str = strstr(cmdline, "efi="); |
| if (!str) |
| return EFI_SUCCESS; |
| |
| /* Skip ahead to first argument */ |
| str += strlen("efi="); |
| |
| /* |
| * Remember, because efi= is also used by the kernel we need to |
| * skip over arguments we don't understand. |
| */ |
| while (*str) { |
| if (!strncmp(str, "nochunk", 7)) { |
| str += strlen("nochunk"); |
| __chunk_size = -1UL; |
| } |
| |
| /* Group words together, delimited by "," */ |
| while (*str && *str != ',') |
| str++; |
| |
| if (*str == ',') |
| str++; |
| } |
| |
| return EFI_SUCCESS; |
| } |
| |
| /* |
| * Check the cmdline for a LILO-style file= arguments. |
| * |
| * We only support loading a file from the same filesystem as |
| * the kernel image. |
| */ |
| efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg, |
| efi_loaded_image_t *image, |
| char *cmd_line, char *option_string, |
| unsigned long max_addr, |
| unsigned long *load_addr, |
| unsigned long *load_size) |
| { |
| struct file_info *files; |
| unsigned long file_addr; |
| u64 file_size_total; |
| efi_file_handle_t *fh = NULL; |
| efi_status_t status; |
| int nr_files; |
| char *str; |
| int i, j, k; |
| |
| file_addr = 0; |
| file_size_total = 0; |
| |
| str = cmd_line; |
| |
| j = 0; /* See close_handles */ |
| |
| if (!load_addr || !load_size) |
| return EFI_INVALID_PARAMETER; |
| |
| *load_addr = 0; |
| *load_size = 0; |
| |
| if (!str || !*str) |
| return EFI_SUCCESS; |
| |
| for (nr_files = 0; *str; nr_files++) { |
| str = strstr(str, option_string); |
| if (!str) |
| break; |
| |
| str += strlen(option_string); |
| |
| /* Skip any leading slashes */ |
| while (*str == '/' || *str == '\\') |
| str++; |
| |
| while (*str && *str != ' ' && *str != '\n') |
| str++; |
| } |
| |
| if (!nr_files) |
| return EFI_SUCCESS; |
| |
| status = efi_call_early(allocate_pool, EFI_LOADER_DATA, |
| nr_files * sizeof(*files), (void **)&files); |
| if (status != EFI_SUCCESS) { |
| pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n"); |
| goto fail; |
| } |
| |
| str = cmd_line; |
| for (i = 0; i < nr_files; i++) { |
| struct file_info *file; |
| efi_char16_t filename_16[256]; |
| efi_char16_t *p; |
| |
| str = strstr(str, option_string); |
| if (!str) |
| break; |
| |
| str += strlen(option_string); |
| |
| file = &files[i]; |
| p = filename_16; |
| |
| /* Skip any leading slashes */ |
| while (*str == '/' || *str == '\\') |
| str++; |
| |
| while (*str && *str != ' ' && *str != '\n') { |
| if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16)) |
| break; |
| |
| if (*str == '/') { |
| *p++ = '\\'; |
| str++; |
| } else { |
| *p++ = *str++; |
| } |
| } |
| |
| *p = '\0'; |
| |
| /* Only open the volume once. */ |
| if (!i) { |
| status = efi_open_volume(sys_table_arg, image, |
| (void **)&fh); |
| if (status != EFI_SUCCESS) |
| goto free_files; |
| } |
| |
| status = efi_file_size(sys_table_arg, fh, filename_16, |
| (void **)&file->handle, &file->size); |
| if (status != EFI_SUCCESS) |
| goto close_handles; |
| |
| file_size_total += file->size; |
| } |
| |
| if (file_size_total) { |
| unsigned long addr; |
| |
| /* |
| * Multiple files need to be at consecutive addresses in memory, |
| * so allocate enough memory for all the files. This is used |
| * for loading multiple files. |
| */ |
| status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000, |
| &file_addr, max_addr); |
| if (status != EFI_SUCCESS) { |
| pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n"); |
| goto close_handles; |
| } |
| |
| /* We've run out of free low memory. */ |
| if (file_addr > max_addr) { |
| pr_efi_err(sys_table_arg, "We've run out of free low memory\n"); |
| status = EFI_INVALID_PARAMETER; |
| goto free_file_total; |
| } |
| |
| addr = file_addr; |
| for (j = 0; j < nr_files; j++) { |
| unsigned long size; |
| |
| size = files[j].size; |
| while (size) { |
| unsigned long chunksize; |
| |
| if (IS_ENABLED(CONFIG_X86) && size > __chunk_size) |
| chunksize = __chunk_size; |
| else |
| chunksize = size; |
| |
| status = efi_file_read(files[j].handle, |
| &chunksize, |
| (void *)addr); |
| if (status != EFI_SUCCESS) { |
| pr_efi_err(sys_table_arg, "Failed to read file\n"); |
| goto free_file_total; |
| } |
| addr += chunksize; |
| size -= chunksize; |
| } |
| |
| efi_file_close(files[j].handle); |
| } |
| |
| } |
| |
| efi_call_early(free_pool, files); |
| |
| *load_addr = file_addr; |
| *load_size = file_size_total; |
| |
| return status; |
| |
| free_file_total: |
| efi_free(sys_table_arg, file_size_total, file_addr); |
| |
| close_handles: |
| for (k = j; k < i; k++) |
| efi_file_close(files[k].handle); |
| free_files: |
| efi_call_early(free_pool, files); |
| fail: |
| *load_addr = 0; |
| *load_size = 0; |
| |
| return status; |
| } |
| /* |
| * Relocate a kernel image, either compressed or uncompressed. |
| * In the ARM64 case, all kernel images are currently |
| * uncompressed, and as such when we relocate it we need to |
| * allocate additional space for the BSS segment. Any low |
| * memory that this function should avoid needs to be |
| * unavailable in the EFI memory map, as if the preferred |
| * address is not available the lowest available address will |
| * be used. |
| */ |
| efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg, |
| unsigned long *image_addr, |
| unsigned long image_size, |
| unsigned long alloc_size, |
| unsigned long preferred_addr, |
| unsigned long alignment) |
| { |
| unsigned long cur_image_addr; |
| unsigned long new_addr = 0; |
| efi_status_t status; |
| unsigned long nr_pages; |
| efi_physical_addr_t efi_addr = preferred_addr; |
| |
| if (!image_addr || !image_size || !alloc_size) |
| return EFI_INVALID_PARAMETER; |
| if (alloc_size < image_size) |
| return EFI_INVALID_PARAMETER; |
| |
| cur_image_addr = *image_addr; |
| |
| /* |
| * The EFI firmware loader could have placed the kernel image |
| * anywhere in memory, but the kernel has restrictions on the |
| * max physical address it can run at. Some architectures |
| * also have a prefered address, so first try to relocate |
| * to the preferred address. If that fails, allocate as low |
| * as possible while respecting the required alignment. |
| */ |
| nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE; |
| status = efi_call_early(allocate_pages, |
| EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, |
| nr_pages, &efi_addr); |
| new_addr = efi_addr; |
| /* |
| * If preferred address allocation failed allocate as low as |
| * possible. |
| */ |
| if (status != EFI_SUCCESS) { |
| status = efi_low_alloc(sys_table_arg, alloc_size, alignment, |
| &new_addr); |
| } |
| if (status != EFI_SUCCESS) { |
| pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n"); |
| return status; |
| } |
| |
| /* |
| * We know source/dest won't overlap since both memory ranges |
| * have been allocated by UEFI, so we can safely use memcpy. |
| */ |
| memcpy((void *)new_addr, (void *)cur_image_addr, image_size); |
| |
| /* Return the new address of the relocated image. */ |
| *image_addr = new_addr; |
| |
| return status; |
| } |
| |
| /* |
| * Get the number of UTF-8 bytes corresponding to an UTF-16 character. |
| * This overestimates for surrogates, but that is okay. |
| */ |
| static int efi_utf8_bytes(u16 c) |
| { |
| return 1 + (c >= 0x80) + (c >= 0x800); |
| } |
| |
| /* |
| * Convert an UTF-16 string, not necessarily null terminated, to UTF-8. |
| */ |
| static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n) |
| { |
| unsigned int c; |
| |
| while (n--) { |
| c = *src++; |
| if (n && c >= 0xd800 && c <= 0xdbff && |
| *src >= 0xdc00 && *src <= 0xdfff) { |
| c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff); |
| src++; |
| n--; |
| } |
| if (c >= 0xd800 && c <= 0xdfff) |
| c = 0xfffd; /* Unmatched surrogate */ |
| if (c < 0x80) { |
| *dst++ = c; |
| continue; |
| } |
| if (c < 0x800) { |
| *dst++ = 0xc0 + (c >> 6); |
| goto t1; |
| } |
| if (c < 0x10000) { |
| *dst++ = 0xe0 + (c >> 12); |
| goto t2; |
| } |
| *dst++ = 0xf0 + (c >> 18); |
| *dst++ = 0x80 + ((c >> 12) & 0x3f); |
| t2: |
| *dst++ = 0x80 + ((c >> 6) & 0x3f); |
| t1: |
| *dst++ = 0x80 + (c & 0x3f); |
| } |
| |
| return dst; |
| } |
| |
| #ifndef MAX_CMDLINE_ADDRESS |
| #define MAX_CMDLINE_ADDRESS ULONG_MAX |
| #endif |
| |
| /* |
| * Convert the unicode UEFI command line to ASCII to pass to kernel. |
| * Size of memory allocated return in *cmd_line_len. |
| * Returns NULL on error. |
| */ |
| char *efi_convert_cmdline(efi_system_table_t *sys_table_arg, |
| efi_loaded_image_t *image, |
| int *cmd_line_len) |
| { |
| const u16 *s2; |
| u8 *s1 = NULL; |
| unsigned long cmdline_addr = 0; |
| int load_options_chars = image->load_options_size / 2; /* UTF-16 */ |
| const u16 *options = image->load_options; |
| int options_bytes = 0; /* UTF-8 bytes */ |
| int options_chars = 0; /* UTF-16 chars */ |
| efi_status_t status; |
| u16 zero = 0; |
| |
| if (options) { |
| s2 = options; |
| while (*s2 && *s2 != '\n' |
| && options_chars < load_options_chars) { |
| options_bytes += efi_utf8_bytes(*s2++); |
| options_chars++; |
| } |
| } |
| |
| if (!options_chars) { |
| /* No command line options, so return empty string*/ |
| options = &zero; |
| } |
| |
| options_bytes++; /* NUL termination */ |
| |
| status = efi_high_alloc(sys_table_arg, options_bytes, 0, |
| &cmdline_addr, MAX_CMDLINE_ADDRESS); |
| if (status != EFI_SUCCESS) |
| return NULL; |
| |
| s1 = (u8 *)cmdline_addr; |
| s2 = (const u16 *)options; |
| |
| s1 = efi_utf16_to_utf8(s1, s2, options_chars); |
| *s1 = '\0'; |
| |
| *cmd_line_len = options_bytes; |
| return (char *)cmdline_addr; |
| } |
| |
| /* |
| * Handle calling ExitBootServices according to the requirements set out by the |
| * spec. Obtains the current memory map, and returns that info after calling |
| * ExitBootServices. The client must specify a function to perform any |
| * processing of the memory map data prior to ExitBootServices. A client |
| * specific structure may be passed to the function via priv. The client |
| * function may be called multiple times. |
| */ |
| efi_status_t efi_exit_boot_services(efi_system_table_t *sys_table_arg, |
| void *handle, |
| struct efi_boot_memmap *map, |
| void *priv, |
| efi_exit_boot_map_processing priv_func) |
| { |
| efi_status_t status; |
| |
| status = efi_get_memory_map(sys_table_arg, map); |
| |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| status = priv_func(sys_table_arg, map, priv); |
| if (status != EFI_SUCCESS) |
| goto free_map; |
| |
| status = efi_call_early(exit_boot_services, handle, *map->key_ptr); |
| |
| if (status == EFI_INVALID_PARAMETER) { |
| /* |
| * The memory map changed between efi_get_memory_map() and |
| * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: |
| * EFI_BOOT_SERVICES.ExitBootServices we need to get the |
| * updated map, and try again. The spec implies one retry |
| * should be sufficent, which is confirmed against the EDK2 |
| * implementation. Per the spec, we can only invoke |
| * get_memory_map() and exit_boot_services() - we cannot alloc |
| * so efi_get_memory_map() cannot be used, and we must reuse |
| * the buffer. For all practical purposes, the headroom in the |
| * buffer should account for any changes in the map so the call |
| * to get_memory_map() is expected to succeed here. |
| */ |
| *map->map_size = *map->buff_size; |
| status = efi_call_early(get_memory_map, |
| map->map_size, |
| *map->map, |
| map->key_ptr, |
| map->desc_size, |
| map->desc_ver); |
| |
| /* exit_boot_services() was called, thus cannot free */ |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| status = priv_func(sys_table_arg, map, priv); |
| /* exit_boot_services() was called, thus cannot free */ |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| status = efi_call_early(exit_boot_services, handle, *map->key_ptr); |
| } |
| |
| /* exit_boot_services() was called, thus cannot free */ |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| return EFI_SUCCESS; |
| |
| free_map: |
| efi_call_early(free_pool, *map->map); |
| fail: |
| return status; |
| } |