| /* |
| * User-space Probes (UProbes) for x86 |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2008-2011 |
| * Authors: |
| * Srikar Dronamraju |
| * Jim Keniston |
| */ |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/ptrace.h> |
| #include <linux/uprobes.h> |
| #include <linux/uaccess.h> |
| |
| #include <linux/kdebug.h> |
| #include <asm/processor.h> |
| #include <asm/insn.h> |
| |
| /* Post-execution fixups. */ |
| |
| /* No fixup needed */ |
| #define UPROBE_FIX_NONE 0x0 |
| |
| /* Adjust IP back to vicinity of actual insn */ |
| #define UPROBE_FIX_IP 0x1 |
| |
| /* Adjust the return address of a call insn */ |
| #define UPROBE_FIX_CALL 0x2 |
| |
| /* Instruction will modify TF, don't change it */ |
| #define UPROBE_FIX_SETF 0x4 |
| |
| #define UPROBE_FIX_RIP_AX 0x8000 |
| #define UPROBE_FIX_RIP_CX 0x4000 |
| |
| #define UPROBE_TRAP_NR UINT_MAX |
| |
| /* Adaptations for mhiramat x86 decoder v14. */ |
| #define OPCODE1(insn) ((insn)->opcode.bytes[0]) |
| #define OPCODE2(insn) ((insn)->opcode.bytes[1]) |
| #define OPCODE3(insn) ((insn)->opcode.bytes[2]) |
| #define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value) |
| |
| #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ |
| (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ |
| (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ |
| (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ |
| (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ |
| << (row % 32)) |
| |
| /* |
| * Good-instruction tables for 32-bit apps. This is non-const and volatile |
| * to keep gcc from statically optimizing it out, as variable_test_bit makes |
| * some versions of gcc to think only *(unsigned long*) is used. |
| */ |
| static volatile u32 good_insns_32[256 / 32] = { |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| /* ---------------------------------------------- */ |
| W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */ |
| W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ |
| W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */ |
| W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */ |
| W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ |
| W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ |
| W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ |
| W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ |
| W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ |
| W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ |
| W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ |
| W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ |
| W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ |
| W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ |
| W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ |
| W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ |
| /* ---------------------------------------------- */ |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| }; |
| |
| /* Using this for both 64-bit and 32-bit apps */ |
| static volatile u32 good_2byte_insns[256 / 32] = { |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| /* ---------------------------------------------- */ |
| W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */ |
| W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ |
| W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ |
| W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ |
| W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ |
| W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ |
| W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ |
| W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ |
| W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ |
| W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ |
| W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ |
| W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ |
| W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ |
| W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ |
| W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ |
| W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */ |
| /* ---------------------------------------------- */ |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| }; |
| |
| #ifdef CONFIG_X86_64 |
| /* Good-instruction tables for 64-bit apps */ |
| static volatile u32 good_insns_64[256 / 32] = { |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| /* ---------------------------------------------- */ |
| W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */ |
| W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ |
| W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */ |
| W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */ |
| W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */ |
| W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ |
| W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ |
| W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ |
| W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ |
| W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ |
| W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ |
| W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ |
| W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ |
| W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ |
| W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ |
| W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ |
| /* ---------------------------------------------- */ |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| }; |
| #endif |
| #undef W |
| |
| /* |
| * opcodes we'll probably never support: |
| * |
| * 6c-6d, e4-e5, ec-ed - in |
| * 6e-6f, e6-e7, ee-ef - out |
| * cc, cd - int3, int |
| * cf - iret |
| * d6 - illegal instruction |
| * f1 - int1/icebp |
| * f4 - hlt |
| * fa, fb - cli, sti |
| * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2 |
| * |
| * invalid opcodes in 64-bit mode: |
| * |
| * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5 |
| * 63 - we support this opcode in x86_64 but not in i386. |
| * |
| * opcodes we may need to refine support for: |
| * |
| * 0f - 2-byte instructions: For many of these instructions, the validity |
| * depends on the prefix and/or the reg field. On such instructions, we |
| * just consider the opcode combination valid if it corresponds to any |
| * valid instruction. |
| * |
| * 8f - Group 1 - only reg = 0 is OK |
| * c6-c7 - Group 11 - only reg = 0 is OK |
| * d9-df - fpu insns with some illegal encodings |
| * f2, f3 - repnz, repz prefixes. These are also the first byte for |
| * certain floating-point instructions, such as addsd. |
| * |
| * fe - Group 4 - only reg = 0 or 1 is OK |
| * ff - Group 5 - only reg = 0-6 is OK |
| * |
| * others -- Do we need to support these? |
| * |
| * 0f - (floating-point?) prefetch instructions |
| * 07, 17, 1f - pop es, pop ss, pop ds |
| * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- |
| * but 64 and 65 (fs: and gs:) seem to be used, so we support them |
| * 67 - addr16 prefix |
| * ce - into |
| * f0 - lock prefix |
| */ |
| |
| /* |
| * TODO: |
| * - Where necessary, examine the modrm byte and allow only valid instructions |
| * in the different Groups and fpu instructions. |
| */ |
| |
| static bool is_prefix_bad(struct insn *insn) |
| { |
| int i; |
| |
| for (i = 0; i < insn->prefixes.nbytes; i++) { |
| switch (insn->prefixes.bytes[i]) { |
| case 0x26: /* INAT_PFX_ES */ |
| case 0x2E: /* INAT_PFX_CS */ |
| case 0x36: /* INAT_PFX_DS */ |
| case 0x3E: /* INAT_PFX_SS */ |
| case 0xF0: /* INAT_PFX_LOCK */ |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn) |
| { |
| insn_init(insn, auprobe->insn, false); |
| |
| /* Skip good instruction prefixes; reject "bad" ones. */ |
| insn_get_opcode(insn); |
| if (is_prefix_bad(insn)) |
| return -ENOTSUPP; |
| |
| if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32)) |
| return 0; |
| |
| if (insn->opcode.nbytes == 2) { |
| if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) |
| return 0; |
| } |
| |
| return -ENOTSUPP; |
| } |
| |
| /* |
| * Figure out which fixups arch_uprobe_post_xol() will need to perform, and |
| * annotate arch_uprobe->fixups accordingly. To start with, |
| * arch_uprobe->fixups is either zero or it reflects rip-related fixups. |
| */ |
| static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn) |
| { |
| bool fix_ip = true, fix_call = false; /* defaults */ |
| int reg; |
| |
| insn_get_opcode(insn); /* should be a nop */ |
| |
| switch (OPCODE1(insn)) { |
| case 0x9d: |
| /* popf */ |
| auprobe->fixups |= UPROBE_FIX_SETF; |
| break; |
| case 0xc3: /* ret/lret */ |
| case 0xcb: |
| case 0xc2: |
| case 0xca: |
| /* ip is correct */ |
| fix_ip = false; |
| break; |
| case 0xe8: /* call relative - Fix return addr */ |
| fix_call = true; |
| break; |
| case 0x9a: /* call absolute - Fix return addr, not ip */ |
| fix_call = true; |
| fix_ip = false; |
| break; |
| case 0xff: |
| insn_get_modrm(insn); |
| reg = MODRM_REG(insn); |
| if (reg == 2 || reg == 3) { |
| /* call or lcall, indirect */ |
| /* Fix return addr; ip is correct. */ |
| fix_call = true; |
| fix_ip = false; |
| } else if (reg == 4 || reg == 5) { |
| /* jmp or ljmp, indirect */ |
| /* ip is correct. */ |
| fix_ip = false; |
| } |
| break; |
| case 0xea: /* jmp absolute -- ip is correct */ |
| fix_ip = false; |
| break; |
| default: |
| break; |
| } |
| if (fix_ip) |
| auprobe->fixups |= UPROBE_FIX_IP; |
| if (fix_call) |
| auprobe->fixups |= UPROBE_FIX_CALL; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * If arch_uprobe->insn doesn't use rip-relative addressing, return |
| * immediately. Otherwise, rewrite the instruction so that it accesses |
| * its memory operand indirectly through a scratch register. Set |
| * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address |
| * accordingly. (The contents of the scratch register will be saved |
| * before we single-step the modified instruction, and restored |
| * afterward.) |
| * |
| * We do this because a rip-relative instruction can access only a |
| * relatively small area (+/- 2 GB from the instruction), and the XOL |
| * area typically lies beyond that area. At least for instructions |
| * that store to memory, we can't execute the original instruction |
| * and "fix things up" later, because the misdirected store could be |
| * disastrous. |
| * |
| * Some useful facts about rip-relative instructions: |
| * |
| * - There's always a modrm byte. |
| * - There's never a SIB byte. |
| * - The displacement is always 4 bytes. |
| */ |
| static void |
| handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) |
| { |
| u8 *cursor; |
| u8 reg; |
| |
| if (mm->context.ia32_compat) |
| return; |
| |
| auprobe->rip_rela_target_address = 0x0; |
| if (!insn_rip_relative(insn)) |
| return; |
| |
| /* |
| * insn_rip_relative() would have decoded rex_prefix, modrm. |
| * Clear REX.b bit (extension of MODRM.rm field): |
| * we want to encode rax/rcx, not r8/r9. |
| */ |
| if (insn->rex_prefix.nbytes) { |
| cursor = auprobe->insn + insn_offset_rex_prefix(insn); |
| *cursor &= 0xfe; /* Clearing REX.B bit */ |
| } |
| |
| /* |
| * Point cursor at the modrm byte. The next 4 bytes are the |
| * displacement. Beyond the displacement, for some instructions, |
| * is the immediate operand. |
| */ |
| cursor = auprobe->insn + insn_offset_modrm(insn); |
| insn_get_length(insn); |
| |
| /* |
| * Convert from rip-relative addressing to indirect addressing |
| * via a scratch register. Change the r/m field from 0x5 (%rip) |
| * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field. |
| */ |
| reg = MODRM_REG(insn); |
| if (reg == 0) { |
| /* |
| * The register operand (if any) is either the A register |
| * (%rax, %eax, etc.) or (if the 0x4 bit is set in the |
| * REX prefix) %r8. In any case, we know the C register |
| * is NOT the register operand, so we use %rcx (register |
| * #1) for the scratch register. |
| */ |
| auprobe->fixups = UPROBE_FIX_RIP_CX; |
| /* Change modrm from 00 000 101 to 00 000 001. */ |
| *cursor = 0x1; |
| } else { |
| /* Use %rax (register #0) for the scratch register. */ |
| auprobe->fixups = UPROBE_FIX_RIP_AX; |
| /* Change modrm from 00 xxx 101 to 00 xxx 000 */ |
| *cursor = (reg << 3); |
| } |
| |
| /* Target address = address of next instruction + (signed) offset */ |
| auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value; |
| |
| /* Displacement field is gone; slide immediate field (if any) over. */ |
| if (insn->immediate.nbytes) { |
| cursor++; |
| memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes); |
| } |
| return; |
| } |
| |
| static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn) |
| { |
| insn_init(insn, auprobe->insn, true); |
| |
| /* Skip good instruction prefixes; reject "bad" ones. */ |
| insn_get_opcode(insn); |
| if (is_prefix_bad(insn)) |
| return -ENOTSUPP; |
| |
| if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64)) |
| return 0; |
| |
| if (insn->opcode.nbytes == 2) { |
| if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) |
| return 0; |
| } |
| return -ENOTSUPP; |
| } |
| |
| static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) |
| { |
| if (mm->context.ia32_compat) |
| return validate_insn_32bits(auprobe, insn); |
| return validate_insn_64bits(auprobe, insn); |
| } |
| #else /* 32-bit: */ |
| static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) |
| { |
| /* No RIP-relative addressing on 32-bit */ |
| } |
| |
| static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) |
| { |
| return validate_insn_32bits(auprobe, insn); |
| } |
| #endif /* CONFIG_X86_64 */ |
| |
| /** |
| * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. |
| * @mm: the probed address space. |
| * @arch_uprobe: the probepoint information. |
| * @addr: virtual address at which to install the probepoint |
| * Return 0 on success or a -ve number on error. |
| */ |
| int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr) |
| { |
| int ret; |
| struct insn insn; |
| |
| auprobe->fixups = 0; |
| ret = validate_insn_bits(auprobe, mm, &insn); |
| if (ret != 0) |
| return ret; |
| |
| handle_riprel_insn(auprobe, mm, &insn); |
| prepare_fixups(auprobe, &insn); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * If we're emulating a rip-relative instruction, save the contents |
| * of the scratch register and store the target address in that register. |
| */ |
| static void |
| pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs, |
| struct arch_uprobe_task *autask) |
| { |
| if (auprobe->fixups & UPROBE_FIX_RIP_AX) { |
| autask->saved_scratch_register = regs->ax; |
| regs->ax = current->utask->vaddr; |
| regs->ax += auprobe->rip_rela_target_address; |
| } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) { |
| autask->saved_scratch_register = regs->cx; |
| regs->cx = current->utask->vaddr; |
| regs->cx += auprobe->rip_rela_target_address; |
| } |
| } |
| #else |
| static void |
| pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs, |
| struct arch_uprobe_task *autask) |
| { |
| /* No RIP-relative addressing on 32-bit */ |
| } |
| #endif |
| |
| /* |
| * arch_uprobe_pre_xol - prepare to execute out of line. |
| * @auprobe: the probepoint information. |
| * @regs: reflects the saved user state of current task. |
| */ |
| int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| { |
| struct arch_uprobe_task *autask; |
| |
| autask = ¤t->utask->autask; |
| autask->saved_trap_nr = current->thread.trap_nr; |
| current->thread.trap_nr = UPROBE_TRAP_NR; |
| regs->ip = current->utask->xol_vaddr; |
| pre_xol_rip_insn(auprobe, regs, autask); |
| |
| autask->saved_tf = !!(regs->flags & X86_EFLAGS_TF); |
| regs->flags |= X86_EFLAGS_TF; |
| if (test_tsk_thread_flag(current, TIF_BLOCKSTEP)) |
| set_task_blockstep(current, false); |
| |
| return 0; |
| } |
| |
| /* |
| * This function is called by arch_uprobe_post_xol() to adjust the return |
| * address pushed by a call instruction executed out of line. |
| */ |
| static int adjust_ret_addr(unsigned long sp, long correction) |
| { |
| int rasize, ncopied; |
| long ra = 0; |
| |
| if (is_ia32_task()) |
| rasize = 4; |
| else |
| rasize = 8; |
| |
| ncopied = copy_from_user(&ra, (void __user *)sp, rasize); |
| if (unlikely(ncopied)) |
| return -EFAULT; |
| |
| ra += correction; |
| ncopied = copy_to_user((void __user *)sp, &ra, rasize); |
| if (unlikely(ncopied)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static bool is_riprel_insn(struct arch_uprobe *auprobe) |
| { |
| return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0); |
| } |
| |
| static void |
| handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction) |
| { |
| if (is_riprel_insn(auprobe)) { |
| struct arch_uprobe_task *autask; |
| |
| autask = ¤t->utask->autask; |
| if (auprobe->fixups & UPROBE_FIX_RIP_AX) |
| regs->ax = autask->saved_scratch_register; |
| else |
| regs->cx = autask->saved_scratch_register; |
| |
| /* |
| * The original instruction includes a displacement, and so |
| * is 4 bytes longer than what we've just single-stepped. |
| * Fall through to handle stuff like "jmpq *...(%rip)" and |
| * "callq *...(%rip)". |
| */ |
| if (correction) |
| *correction += 4; |
| } |
| } |
| #else |
| static void |
| handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction) |
| { |
| /* No RIP-relative addressing on 32-bit */ |
| } |
| #endif |
| |
| /* |
| * If xol insn itself traps and generates a signal(Say, |
| * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped |
| * instruction jumps back to its own address. It is assumed that anything |
| * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. |
| * |
| * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, |
| * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to |
| * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). |
| */ |
| bool arch_uprobe_xol_was_trapped(struct task_struct *t) |
| { |
| if (t->thread.trap_nr != UPROBE_TRAP_NR) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Called after single-stepping. To avoid the SMP problems that can |
| * occur when we temporarily put back the original opcode to |
| * single-step, we single-stepped a copy of the instruction. |
| * |
| * This function prepares to resume execution after the single-step. |
| * We have to fix things up as follows: |
| * |
| * Typically, the new ip is relative to the copied instruction. We need |
| * to make it relative to the original instruction (FIX_IP). Exceptions |
| * are return instructions and absolute or indirect jump or call instructions. |
| * |
| * If the single-stepped instruction was a call, the return address that |
| * is atop the stack is the address following the copied instruction. We |
| * need to make it the address following the original instruction (FIX_CALL). |
| * |
| * If the original instruction was a rip-relative instruction such as |
| * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent |
| * instruction using a scratch register -- e.g., "movl %edx,(%rax)". |
| * We need to restore the contents of the scratch register and adjust |
| * the ip, keeping in mind that the instruction we executed is 4 bytes |
| * shorter than the original instruction (since we squeezed out the offset |
| * field). (FIX_RIP_AX or FIX_RIP_CX) |
| */ |
| int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| { |
| struct uprobe_task *utask; |
| long correction; |
| int result = 0; |
| |
| WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR); |
| |
| utask = current->utask; |
| current->thread.trap_nr = utask->autask.saved_trap_nr; |
| correction = (long)(utask->vaddr - utask->xol_vaddr); |
| handle_riprel_post_xol(auprobe, regs, &correction); |
| if (auprobe->fixups & UPROBE_FIX_IP) |
| regs->ip += correction; |
| |
| if (auprobe->fixups & UPROBE_FIX_CALL) |
| result = adjust_ret_addr(regs->sp, correction); |
| |
| /* |
| * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP |
| * so we can get an extra SIGTRAP if we do not clear TF. We need |
| * to examine the opcode to make it right. |
| */ |
| if (utask->autask.saved_tf) |
| send_sig(SIGTRAP, current, 0); |
| else if (!(auprobe->fixups & UPROBE_FIX_SETF)) |
| regs->flags &= ~X86_EFLAGS_TF; |
| |
| return result; |
| } |
| |
| /* callback routine for handling exceptions. */ |
| int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data) |
| { |
| struct die_args *args = data; |
| struct pt_regs *regs = args->regs; |
| int ret = NOTIFY_DONE; |
| |
| /* We are only interested in userspace traps */ |
| if (regs && !user_mode_vm(regs)) |
| return NOTIFY_DONE; |
| |
| switch (val) { |
| case DIE_INT3: |
| if (uprobe_pre_sstep_notifier(regs)) |
| ret = NOTIFY_STOP; |
| |
| break; |
| |
| case DIE_DEBUG: |
| if (uprobe_post_sstep_notifier(regs)) |
| ret = NOTIFY_STOP; |
| |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * This function gets called when XOL instruction either gets trapped or |
| * the thread has a fatal signal, so reset the instruction pointer to its |
| * probed address. |
| */ |
| void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| { |
| struct uprobe_task *utask = current->utask; |
| |
| current->thread.trap_nr = utask->autask.saved_trap_nr; |
| handle_riprel_post_xol(auprobe, regs, NULL); |
| instruction_pointer_set(regs, utask->vaddr); |
| |
| /* clear TF if it was set by us in arch_uprobe_pre_xol() */ |
| if (!utask->autask.saved_tf) |
| regs->flags &= ~X86_EFLAGS_TF; |
| } |
| |
| /* |
| * Skip these instructions as per the currently known x86 ISA. |
| * rep=0x66*; nop=0x90 |
| */ |
| static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_UINSN_BYTES; i++) { |
| if (auprobe->insn[i] == 0x66) |
| continue; |
| |
| if (auprobe->insn[i] == 0x90) |
| return true; |
| |
| break; |
| } |
| return false; |
| } |
| |
| bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| { |
| bool ret = __skip_sstep(auprobe, regs); |
| if (ret && (regs->flags & X86_EFLAGS_TF)) |
| send_sig(SIGTRAP, current, 0); |
| return ret; |
| } |