| /******************************************************************************* |
| |
| Intel PRO/100 Linux driver |
| Copyright(c) 1999 - 2006 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| /* |
| * e100.c: Intel(R) PRO/100 ethernet driver |
| * |
| * (Re)written 2003 by scott.feldman@intel.com. Based loosely on |
| * original e100 driver, but better described as a munging of |
| * e100, e1000, eepro100, tg3, 8139cp, and other drivers. |
| * |
| * References: |
| * Intel 8255x 10/100 Mbps Ethernet Controller Family, |
| * Open Source Software Developers Manual, |
| * http://sourceforge.net/projects/e1000 |
| * |
| * |
| * Theory of Operation |
| * |
| * I. General |
| * |
| * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet |
| * controller family, which includes the 82557, 82558, 82559, 82550, |
| * 82551, and 82562 devices. 82558 and greater controllers |
| * integrate the Intel 82555 PHY. The controllers are used in |
| * server and client network interface cards, as well as in |
| * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx |
| * configurations. 8255x supports a 32-bit linear addressing |
| * mode and operates at 33Mhz PCI clock rate. |
| * |
| * II. Driver Operation |
| * |
| * Memory-mapped mode is used exclusively to access the device's |
| * shared-memory structure, the Control/Status Registers (CSR). All |
| * setup, configuration, and control of the device, including queuing |
| * of Tx, Rx, and configuration commands is through the CSR. |
| * cmd_lock serializes accesses to the CSR command register. cb_lock |
| * protects the shared Command Block List (CBL). |
| * |
| * 8255x is highly MII-compliant and all access to the PHY go |
| * through the Management Data Interface (MDI). Consequently, the |
| * driver leverages the mii.c library shared with other MII-compliant |
| * devices. |
| * |
| * Big- and Little-Endian byte order as well as 32- and 64-bit |
| * archs are supported. Weak-ordered memory and non-cache-coherent |
| * archs are supported. |
| * |
| * III. Transmit |
| * |
| * A Tx skb is mapped and hangs off of a TCB. TCBs are linked |
| * together in a fixed-size ring (CBL) thus forming the flexible mode |
| * memory structure. A TCB marked with the suspend-bit indicates |
| * the end of the ring. The last TCB processed suspends the |
| * controller, and the controller can be restarted by issue a CU |
| * resume command to continue from the suspend point, or a CU start |
| * command to start at a given position in the ring. |
| * |
| * Non-Tx commands (config, multicast setup, etc) are linked |
| * into the CBL ring along with Tx commands. The common structure |
| * used for both Tx and non-Tx commands is the Command Block (CB). |
| * |
| * cb_to_use is the next CB to use for queuing a command; cb_to_clean |
| * is the next CB to check for completion; cb_to_send is the first |
| * CB to start on in case of a previous failure to resume. CB clean |
| * up happens in interrupt context in response to a CU interrupt. |
| * cbs_avail keeps track of number of free CB resources available. |
| * |
| * Hardware padding of short packets to minimum packet size is |
| * enabled. 82557 pads with 7Eh, while the later controllers pad |
| * with 00h. |
| * |
| * IV. Receive |
| * |
| * The Receive Frame Area (RFA) comprises a ring of Receive Frame |
| * Descriptors (RFD) + data buffer, thus forming the simplified mode |
| * memory structure. Rx skbs are allocated to contain both the RFD |
| * and the data buffer, but the RFD is pulled off before the skb is |
| * indicated. The data buffer is aligned such that encapsulated |
| * protocol headers are u32-aligned. Since the RFD is part of the |
| * mapped shared memory, and completion status is contained within |
| * the RFD, the RFD must be dma_sync'ed to maintain a consistent |
| * view from software and hardware. |
| * |
| * In order to keep updates to the RFD link field from colliding with |
| * hardware writes to mark packets complete, we use the feature that |
| * hardware will not write to a size 0 descriptor and mark the previous |
| * packet as end-of-list (EL). After updating the link, we remove EL |
| * and only then restore the size such that hardware may use the |
| * previous-to-end RFD. |
| * |
| * Under typical operation, the receive unit (RU) is start once, |
| * and the controller happily fills RFDs as frames arrive. If |
| * replacement RFDs cannot be allocated, or the RU goes non-active, |
| * the RU must be restarted. Frame arrival generates an interrupt, |
| * and Rx indication and re-allocation happen in the same context, |
| * therefore no locking is required. A software-generated interrupt |
| * is generated from the watchdog to recover from a failed allocation |
| * scenario where all Rx resources have been indicated and none re- |
| * placed. |
| * |
| * V. Miscellaneous |
| * |
| * VLAN offloading of tagging, stripping and filtering is not |
| * supported, but driver will accommodate the extra 4-byte VLAN tag |
| * for processing by upper layers. Tx/Rx Checksum offloading is not |
| * supported. Tx Scatter/Gather is not supported. Jumbo Frames is |
| * not supported (hardware limitation). |
| * |
| * MagicPacket(tm) WoL support is enabled/disabled via ethtool. |
| * |
| * Thanks to JC (jchapman@katalix.com) for helping with |
| * testing/troubleshooting the development driver. |
| * |
| * TODO: |
| * o several entry points race with dev->close |
| * o check for tx-no-resources/stop Q races with tx clean/wake Q |
| * |
| * FIXES: |
| * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> |
| * - Stratus87247: protect MDI control register manipulations |
| * 2009/06/01 - Andreas Mohr <andi at lisas dot de> |
| * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/hardirq.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/mii.h> |
| #include <linux/if_vlan.h> |
| #include <linux/skbuff.h> |
| #include <linux/ethtool.h> |
| #include <linux/string.h> |
| #include <linux/firmware.h> |
| #include <linux/rtnetlink.h> |
| #include <asm/unaligned.h> |
| |
| |
| #define DRV_NAME "e100" |
| #define DRV_EXT "-NAPI" |
| #define DRV_VERSION "3.5.24-k2"DRV_EXT |
| #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" |
| #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" |
| |
| #define E100_WATCHDOG_PERIOD (2 * HZ) |
| #define E100_NAPI_WEIGHT 16 |
| |
| #define FIRMWARE_D101M "e100/d101m_ucode.bin" |
| #define FIRMWARE_D101S "e100/d101s_ucode.bin" |
| #define FIRMWARE_D102E "e100/d102e_ucode.bin" |
| |
| MODULE_DESCRIPTION(DRV_DESCRIPTION); |
| MODULE_AUTHOR(DRV_COPYRIGHT); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_FIRMWARE(FIRMWARE_D101M); |
| MODULE_FIRMWARE(FIRMWARE_D101S); |
| MODULE_FIRMWARE(FIRMWARE_D102E); |
| |
| static int debug = 3; |
| static int eeprom_bad_csum_allow = 0; |
| static int use_io = 0; |
| module_param(debug, int, 0); |
| module_param(eeprom_bad_csum_allow, int, 0); |
| module_param(use_io, int, 0); |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
| MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); |
| MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); |
| |
| #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ |
| PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ |
| PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } |
| static const struct pci_device_id e100_id_table[] = { |
| INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), |
| INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), |
| INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), |
| INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), |
| INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), |
| INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), |
| INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), |
| INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), |
| INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), |
| INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), |
| INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), |
| INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), |
| INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), |
| INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), |
| INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), |
| INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), |
| INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), |
| INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), |
| INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), |
| INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), |
| INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), |
| INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), |
| INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), |
| INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), |
| INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), |
| INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), |
| INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), |
| INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), |
| INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), |
| INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), |
| INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), |
| INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), |
| INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), |
| INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), |
| INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), |
| INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), |
| INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), |
| INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), |
| INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), |
| INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), |
| INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), |
| INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), |
| { 0, } |
| }; |
| MODULE_DEVICE_TABLE(pci, e100_id_table); |
| |
| enum mac { |
| mac_82557_D100_A = 0, |
| mac_82557_D100_B = 1, |
| mac_82557_D100_C = 2, |
| mac_82558_D101_A4 = 4, |
| mac_82558_D101_B0 = 5, |
| mac_82559_D101M = 8, |
| mac_82559_D101S = 9, |
| mac_82550_D102 = 12, |
| mac_82550_D102_C = 13, |
| mac_82551_E = 14, |
| mac_82551_F = 15, |
| mac_82551_10 = 16, |
| mac_unknown = 0xFF, |
| }; |
| |
| enum phy { |
| phy_100a = 0x000003E0, |
| phy_100c = 0x035002A8, |
| phy_82555_tx = 0x015002A8, |
| phy_nsc_tx = 0x5C002000, |
| phy_82562_et = 0x033002A8, |
| phy_82562_em = 0x032002A8, |
| phy_82562_ek = 0x031002A8, |
| phy_82562_eh = 0x017002A8, |
| phy_82552_v = 0xd061004d, |
| phy_unknown = 0xFFFFFFFF, |
| }; |
| |
| /* CSR (Control/Status Registers) */ |
| struct csr { |
| struct { |
| u8 status; |
| u8 stat_ack; |
| u8 cmd_lo; |
| u8 cmd_hi; |
| u32 gen_ptr; |
| } scb; |
| u32 port; |
| u16 flash_ctrl; |
| u8 eeprom_ctrl_lo; |
| u8 eeprom_ctrl_hi; |
| u32 mdi_ctrl; |
| u32 rx_dma_count; |
| }; |
| |
| enum scb_status { |
| rus_no_res = 0x08, |
| rus_ready = 0x10, |
| rus_mask = 0x3C, |
| }; |
| |
| enum ru_state { |
| RU_SUSPENDED = 0, |
| RU_RUNNING = 1, |
| RU_UNINITIALIZED = -1, |
| }; |
| |
| enum scb_stat_ack { |
| stat_ack_not_ours = 0x00, |
| stat_ack_sw_gen = 0x04, |
| stat_ack_rnr = 0x10, |
| stat_ack_cu_idle = 0x20, |
| stat_ack_frame_rx = 0x40, |
| stat_ack_cu_cmd_done = 0x80, |
| stat_ack_not_present = 0xFF, |
| stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), |
| stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), |
| }; |
| |
| enum scb_cmd_hi { |
| irq_mask_none = 0x00, |
| irq_mask_all = 0x01, |
| irq_sw_gen = 0x02, |
| }; |
| |
| enum scb_cmd_lo { |
| cuc_nop = 0x00, |
| ruc_start = 0x01, |
| ruc_load_base = 0x06, |
| cuc_start = 0x10, |
| cuc_resume = 0x20, |
| cuc_dump_addr = 0x40, |
| cuc_dump_stats = 0x50, |
| cuc_load_base = 0x60, |
| cuc_dump_reset = 0x70, |
| }; |
| |
| enum cuc_dump { |
| cuc_dump_complete = 0x0000A005, |
| cuc_dump_reset_complete = 0x0000A007, |
| }; |
| |
| enum port { |
| software_reset = 0x0000, |
| selftest = 0x0001, |
| selective_reset = 0x0002, |
| }; |
| |
| enum eeprom_ctrl_lo { |
| eesk = 0x01, |
| eecs = 0x02, |
| eedi = 0x04, |
| eedo = 0x08, |
| }; |
| |
| enum mdi_ctrl { |
| mdi_write = 0x04000000, |
| mdi_read = 0x08000000, |
| mdi_ready = 0x10000000, |
| }; |
| |
| enum eeprom_op { |
| op_write = 0x05, |
| op_read = 0x06, |
| op_ewds = 0x10, |
| op_ewen = 0x13, |
| }; |
| |
| enum eeprom_offsets { |
| eeprom_cnfg_mdix = 0x03, |
| eeprom_phy_iface = 0x06, |
| eeprom_id = 0x0A, |
| eeprom_config_asf = 0x0D, |
| eeprom_smbus_addr = 0x90, |
| }; |
| |
| enum eeprom_cnfg_mdix { |
| eeprom_mdix_enabled = 0x0080, |
| }; |
| |
| enum eeprom_phy_iface { |
| NoSuchPhy = 0, |
| I82553AB, |
| I82553C, |
| I82503, |
| DP83840, |
| S80C240, |
| S80C24, |
| I82555, |
| DP83840A = 10, |
| }; |
| |
| enum eeprom_id { |
| eeprom_id_wol = 0x0020, |
| }; |
| |
| enum eeprom_config_asf { |
| eeprom_asf = 0x8000, |
| eeprom_gcl = 0x4000, |
| }; |
| |
| enum cb_status { |
| cb_complete = 0x8000, |
| cb_ok = 0x2000, |
| }; |
| |
| /** |
| * cb_command - Command Block flags |
| * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory |
| */ |
| enum cb_command { |
| cb_nop = 0x0000, |
| cb_iaaddr = 0x0001, |
| cb_config = 0x0002, |
| cb_multi = 0x0003, |
| cb_tx = 0x0004, |
| cb_ucode = 0x0005, |
| cb_dump = 0x0006, |
| cb_tx_sf = 0x0008, |
| cb_tx_nc = 0x0010, |
| cb_cid = 0x1f00, |
| cb_i = 0x2000, |
| cb_s = 0x4000, |
| cb_el = 0x8000, |
| }; |
| |
| struct rfd { |
| __le16 status; |
| __le16 command; |
| __le32 link; |
| __le32 rbd; |
| __le16 actual_size; |
| __le16 size; |
| }; |
| |
| struct rx { |
| struct rx *next, *prev; |
| struct sk_buff *skb; |
| dma_addr_t dma_addr; |
| }; |
| |
| #if defined(__BIG_ENDIAN_BITFIELD) |
| #define X(a,b) b,a |
| #else |
| #define X(a,b) a,b |
| #endif |
| struct config { |
| /*0*/ u8 X(byte_count:6, pad0:2); |
| /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); |
| /*2*/ u8 adaptive_ifs; |
| /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), |
| term_write_cache_line:1), pad3:4); |
| /*4*/ u8 X(rx_dma_max_count:7, pad4:1); |
| /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); |
| /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), |
| tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), |
| rx_save_overruns : 1), rx_save_bad_frames : 1); |
| /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), |
| pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), |
| tx_dynamic_tbd:1); |
| /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); |
| /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), |
| link_status_wake:1), arp_wake:1), mcmatch_wake:1); |
| /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), |
| loopback:2); |
| /*11*/ u8 X(linear_priority:3, pad11:5); |
| /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); |
| /*13*/ u8 ip_addr_lo; |
| /*14*/ u8 ip_addr_hi; |
| /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), |
| wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), |
| pad15_2:1), crs_or_cdt:1); |
| /*16*/ u8 fc_delay_lo; |
| /*17*/ u8 fc_delay_hi; |
| /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), |
| rx_long_ok:1), fc_priority_threshold:3), pad18:1); |
| /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), |
| fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), |
| full_duplex_force:1), full_duplex_pin:1); |
| /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); |
| /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); |
| /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); |
| u8 pad_d102[9]; |
| }; |
| |
| #define E100_MAX_MULTICAST_ADDRS 64 |
| struct multi { |
| __le16 count; |
| u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; |
| }; |
| |
| /* Important: keep total struct u32-aligned */ |
| #define UCODE_SIZE 134 |
| struct cb { |
| __le16 status; |
| __le16 command; |
| __le32 link; |
| union { |
| u8 iaaddr[ETH_ALEN]; |
| __le32 ucode[UCODE_SIZE]; |
| struct config config; |
| struct multi multi; |
| struct { |
| u32 tbd_array; |
| u16 tcb_byte_count; |
| u8 threshold; |
| u8 tbd_count; |
| struct { |
| __le32 buf_addr; |
| __le16 size; |
| u16 eol; |
| } tbd; |
| } tcb; |
| __le32 dump_buffer_addr; |
| } u; |
| struct cb *next, *prev; |
| dma_addr_t dma_addr; |
| struct sk_buff *skb; |
| }; |
| |
| enum loopback { |
| lb_none = 0, lb_mac = 1, lb_phy = 3, |
| }; |
| |
| struct stats { |
| __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, |
| tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, |
| tx_multiple_collisions, tx_total_collisions; |
| __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, |
| rx_resource_errors, rx_overrun_errors, rx_cdt_errors, |
| rx_short_frame_errors; |
| __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; |
| __le16 xmt_tco_frames, rcv_tco_frames; |
| __le32 complete; |
| }; |
| |
| struct mem { |
| struct { |
| u32 signature; |
| u32 result; |
| } selftest; |
| struct stats stats; |
| u8 dump_buf[596]; |
| }; |
| |
| struct param_range { |
| u32 min; |
| u32 max; |
| u32 count; |
| }; |
| |
| struct params { |
| struct param_range rfds; |
| struct param_range cbs; |
| }; |
| |
| struct nic { |
| /* Begin: frequently used values: keep adjacent for cache effect */ |
| u32 msg_enable ____cacheline_aligned; |
| struct net_device *netdev; |
| struct pci_dev *pdev; |
| u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); |
| |
| struct rx *rxs ____cacheline_aligned; |
| struct rx *rx_to_use; |
| struct rx *rx_to_clean; |
| struct rfd blank_rfd; |
| enum ru_state ru_running; |
| |
| spinlock_t cb_lock ____cacheline_aligned; |
| spinlock_t cmd_lock; |
| struct csr __iomem *csr; |
| enum scb_cmd_lo cuc_cmd; |
| unsigned int cbs_avail; |
| struct napi_struct napi; |
| struct cb *cbs; |
| struct cb *cb_to_use; |
| struct cb *cb_to_send; |
| struct cb *cb_to_clean; |
| __le16 tx_command; |
| /* End: frequently used values: keep adjacent for cache effect */ |
| |
| enum { |
| ich = (1 << 0), |
| promiscuous = (1 << 1), |
| multicast_all = (1 << 2), |
| wol_magic = (1 << 3), |
| ich_10h_workaround = (1 << 4), |
| } flags ____cacheline_aligned; |
| |
| enum mac mac; |
| enum phy phy; |
| struct params params; |
| struct timer_list watchdog; |
| struct mii_if_info mii; |
| struct work_struct tx_timeout_task; |
| enum loopback loopback; |
| |
| struct mem *mem; |
| dma_addr_t dma_addr; |
| |
| struct pci_pool *cbs_pool; |
| dma_addr_t cbs_dma_addr; |
| u8 adaptive_ifs; |
| u8 tx_threshold; |
| u32 tx_frames; |
| u32 tx_collisions; |
| u32 tx_deferred; |
| u32 tx_single_collisions; |
| u32 tx_multiple_collisions; |
| u32 tx_fc_pause; |
| u32 tx_tco_frames; |
| |
| u32 rx_fc_pause; |
| u32 rx_fc_unsupported; |
| u32 rx_tco_frames; |
| u32 rx_short_frame_errors; |
| u32 rx_over_length_errors; |
| |
| u16 eeprom_wc; |
| __le16 eeprom[256]; |
| spinlock_t mdio_lock; |
| const struct firmware *fw; |
| }; |
| |
| static inline void e100_write_flush(struct nic *nic) |
| { |
| /* Flush previous PCI writes through intermediate bridges |
| * by doing a benign read */ |
| (void)ioread8(&nic->csr->scb.status); |
| } |
| |
| static void e100_enable_irq(struct nic *nic) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&nic->cmd_lock, flags); |
| iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); |
| e100_write_flush(nic); |
| spin_unlock_irqrestore(&nic->cmd_lock, flags); |
| } |
| |
| static void e100_disable_irq(struct nic *nic) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&nic->cmd_lock, flags); |
| iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); |
| e100_write_flush(nic); |
| spin_unlock_irqrestore(&nic->cmd_lock, flags); |
| } |
| |
| static void e100_hw_reset(struct nic *nic) |
| { |
| /* Put CU and RU into idle with a selective reset to get |
| * device off of PCI bus */ |
| iowrite32(selective_reset, &nic->csr->port); |
| e100_write_flush(nic); udelay(20); |
| |
| /* Now fully reset device */ |
| iowrite32(software_reset, &nic->csr->port); |
| e100_write_flush(nic); udelay(20); |
| |
| /* Mask off our interrupt line - it's unmasked after reset */ |
| e100_disable_irq(nic); |
| } |
| |
| static int e100_self_test(struct nic *nic) |
| { |
| u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); |
| |
| /* Passing the self-test is a pretty good indication |
| * that the device can DMA to/from host memory */ |
| |
| nic->mem->selftest.signature = 0; |
| nic->mem->selftest.result = 0xFFFFFFFF; |
| |
| iowrite32(selftest | dma_addr, &nic->csr->port); |
| e100_write_flush(nic); |
| /* Wait 10 msec for self-test to complete */ |
| msleep(10); |
| |
| /* Interrupts are enabled after self-test */ |
| e100_disable_irq(nic); |
| |
| /* Check results of self-test */ |
| if (nic->mem->selftest.result != 0) { |
| netif_err(nic, hw, nic->netdev, |
| "Self-test failed: result=0x%08X\n", |
| nic->mem->selftest.result); |
| return -ETIMEDOUT; |
| } |
| if (nic->mem->selftest.signature == 0) { |
| netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) |
| { |
| u32 cmd_addr_data[3]; |
| u8 ctrl; |
| int i, j; |
| |
| /* Three cmds: write/erase enable, write data, write/erase disable */ |
| cmd_addr_data[0] = op_ewen << (addr_len - 2); |
| cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | |
| le16_to_cpu(data); |
| cmd_addr_data[2] = op_ewds << (addr_len - 2); |
| |
| /* Bit-bang cmds to write word to eeprom */ |
| for (j = 0; j < 3; j++) { |
| |
| /* Chip select */ |
| iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); |
| e100_write_flush(nic); udelay(4); |
| |
| for (i = 31; i >= 0; i--) { |
| ctrl = (cmd_addr_data[j] & (1 << i)) ? |
| eecs | eedi : eecs; |
| iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); |
| e100_write_flush(nic); udelay(4); |
| |
| iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); |
| e100_write_flush(nic); udelay(4); |
| } |
| /* Wait 10 msec for cmd to complete */ |
| msleep(10); |
| |
| /* Chip deselect */ |
| iowrite8(0, &nic->csr->eeprom_ctrl_lo); |
| e100_write_flush(nic); udelay(4); |
| } |
| }; |
| |
| /* General technique stolen from the eepro100 driver - very clever */ |
| static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) |
| { |
| u32 cmd_addr_data; |
| u16 data = 0; |
| u8 ctrl; |
| int i; |
| |
| cmd_addr_data = ((op_read << *addr_len) | addr) << 16; |
| |
| /* Chip select */ |
| iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); |
| e100_write_flush(nic); udelay(4); |
| |
| /* Bit-bang to read word from eeprom */ |
| for (i = 31; i >= 0; i--) { |
| ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; |
| iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); |
| e100_write_flush(nic); udelay(4); |
| |
| iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); |
| e100_write_flush(nic); udelay(4); |
| |
| /* Eeprom drives a dummy zero to EEDO after receiving |
| * complete address. Use this to adjust addr_len. */ |
| ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); |
| if (!(ctrl & eedo) && i > 16) { |
| *addr_len -= (i - 16); |
| i = 17; |
| } |
| |
| data = (data << 1) | (ctrl & eedo ? 1 : 0); |
| } |
| |
| /* Chip deselect */ |
| iowrite8(0, &nic->csr->eeprom_ctrl_lo); |
| e100_write_flush(nic); udelay(4); |
| |
| return cpu_to_le16(data); |
| }; |
| |
| /* Load entire EEPROM image into driver cache and validate checksum */ |
| static int e100_eeprom_load(struct nic *nic) |
| { |
| u16 addr, addr_len = 8, checksum = 0; |
| |
| /* Try reading with an 8-bit addr len to discover actual addr len */ |
| e100_eeprom_read(nic, &addr_len, 0); |
| nic->eeprom_wc = 1 << addr_len; |
| |
| for (addr = 0; addr < nic->eeprom_wc; addr++) { |
| nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); |
| if (addr < nic->eeprom_wc - 1) |
| checksum += le16_to_cpu(nic->eeprom[addr]); |
| } |
| |
| /* The checksum, stored in the last word, is calculated such that |
| * the sum of words should be 0xBABA */ |
| if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { |
| netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); |
| if (!eeprom_bad_csum_allow) |
| return -EAGAIN; |
| } |
| |
| return 0; |
| } |
| |
| /* Save (portion of) driver EEPROM cache to device and update checksum */ |
| static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) |
| { |
| u16 addr, addr_len = 8, checksum = 0; |
| |
| /* Try reading with an 8-bit addr len to discover actual addr len */ |
| e100_eeprom_read(nic, &addr_len, 0); |
| nic->eeprom_wc = 1 << addr_len; |
| |
| if (start + count >= nic->eeprom_wc) |
| return -EINVAL; |
| |
| for (addr = start; addr < start + count; addr++) |
| e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); |
| |
| /* The checksum, stored in the last word, is calculated such that |
| * the sum of words should be 0xBABA */ |
| for (addr = 0; addr < nic->eeprom_wc - 1; addr++) |
| checksum += le16_to_cpu(nic->eeprom[addr]); |
| nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); |
| e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, |
| nic->eeprom[nic->eeprom_wc - 1]); |
| |
| return 0; |
| } |
| |
| #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ |
| #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ |
| static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) |
| { |
| unsigned long flags; |
| unsigned int i; |
| int err = 0; |
| |
| spin_lock_irqsave(&nic->cmd_lock, flags); |
| |
| /* Previous command is accepted when SCB clears */ |
| for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { |
| if (likely(!ioread8(&nic->csr->scb.cmd_lo))) |
| break; |
| cpu_relax(); |
| if (unlikely(i > E100_WAIT_SCB_FAST)) |
| udelay(5); |
| } |
| if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { |
| err = -EAGAIN; |
| goto err_unlock; |
| } |
| |
| if (unlikely(cmd != cuc_resume)) |
| iowrite32(dma_addr, &nic->csr->scb.gen_ptr); |
| iowrite8(cmd, &nic->csr->scb.cmd_lo); |
| |
| err_unlock: |
| spin_unlock_irqrestore(&nic->cmd_lock, flags); |
| |
| return err; |
| } |
| |
| static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, |
| int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) |
| { |
| struct cb *cb; |
| unsigned long flags; |
| int err; |
| |
| spin_lock_irqsave(&nic->cb_lock, flags); |
| |
| if (unlikely(!nic->cbs_avail)) { |
| err = -ENOMEM; |
| goto err_unlock; |
| } |
| |
| cb = nic->cb_to_use; |
| nic->cb_to_use = cb->next; |
| nic->cbs_avail--; |
| cb->skb = skb; |
| |
| err = cb_prepare(nic, cb, skb); |
| if (err) |
| goto err_unlock; |
| |
| if (unlikely(!nic->cbs_avail)) |
| err = -ENOSPC; |
| |
| |
| /* Order is important otherwise we'll be in a race with h/w: |
| * set S-bit in current first, then clear S-bit in previous. */ |
| cb->command |= cpu_to_le16(cb_s); |
| dma_wmb(); |
| cb->prev->command &= cpu_to_le16(~cb_s); |
| |
| while (nic->cb_to_send != nic->cb_to_use) { |
| if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, |
| nic->cb_to_send->dma_addr))) { |
| /* Ok, here's where things get sticky. It's |
| * possible that we can't schedule the command |
| * because the controller is too busy, so |
| * let's just queue the command and try again |
| * when another command is scheduled. */ |
| if (err == -ENOSPC) { |
| //request a reset |
| schedule_work(&nic->tx_timeout_task); |
| } |
| break; |
| } else { |
| nic->cuc_cmd = cuc_resume; |
| nic->cb_to_send = nic->cb_to_send->next; |
| } |
| } |
| |
| err_unlock: |
| spin_unlock_irqrestore(&nic->cb_lock, flags); |
| |
| return err; |
| } |
| |
| static int mdio_read(struct net_device *netdev, int addr, int reg) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); |
| } |
| |
| static void mdio_write(struct net_device *netdev, int addr, int reg, int data) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| |
| nic->mdio_ctrl(nic, addr, mdi_write, reg, data); |
| } |
| |
| /* the standard mdio_ctrl() function for usual MII-compliant hardware */ |
| static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) |
| { |
| u32 data_out = 0; |
| unsigned int i; |
| unsigned long flags; |
| |
| |
| /* |
| * Stratus87247: we shouldn't be writing the MDI control |
| * register until the Ready bit shows True. Also, since |
| * manipulation of the MDI control registers is a multi-step |
| * procedure it should be done under lock. |
| */ |
| spin_lock_irqsave(&nic->mdio_lock, flags); |
| for (i = 100; i; --i) { |
| if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) |
| break; |
| udelay(20); |
| } |
| if (unlikely(!i)) { |
| netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); |
| spin_unlock_irqrestore(&nic->mdio_lock, flags); |
| return 0; /* No way to indicate timeout error */ |
| } |
| iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); |
| |
| for (i = 0; i < 100; i++) { |
| udelay(20); |
| if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) |
| break; |
| } |
| spin_unlock_irqrestore(&nic->mdio_lock, flags); |
| netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
| "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", |
| dir == mdi_read ? "READ" : "WRITE", |
| addr, reg, data, data_out); |
| return (u16)data_out; |
| } |
| |
| /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ |
| static u16 mdio_ctrl_phy_82552_v(struct nic *nic, |
| u32 addr, |
| u32 dir, |
| u32 reg, |
| u16 data) |
| { |
| if ((reg == MII_BMCR) && (dir == mdi_write)) { |
| if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { |
| u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, |
| MII_ADVERTISE); |
| |
| /* |
| * Workaround Si issue where sometimes the part will not |
| * autoneg to 100Mbps even when advertised. |
| */ |
| if (advert & ADVERTISE_100FULL) |
| data |= BMCR_SPEED100 | BMCR_FULLDPLX; |
| else if (advert & ADVERTISE_100HALF) |
| data |= BMCR_SPEED100; |
| } |
| } |
| return mdio_ctrl_hw(nic, addr, dir, reg, data); |
| } |
| |
| /* Fully software-emulated mdio_ctrl() function for cards without |
| * MII-compliant PHYs. |
| * For now, this is mainly geared towards 80c24 support; in case of further |
| * requirements for other types (i82503, ...?) either extend this mechanism |
| * or split it, whichever is cleaner. |
| */ |
| static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, |
| u32 addr, |
| u32 dir, |
| u32 reg, |
| u16 data) |
| { |
| /* might need to allocate a netdev_priv'ed register array eventually |
| * to be able to record state changes, but for now |
| * some fully hardcoded register handling ought to be ok I guess. */ |
| |
| if (dir == mdi_read) { |
| switch (reg) { |
| case MII_BMCR: |
| /* Auto-negotiation, right? */ |
| return BMCR_ANENABLE | |
| BMCR_FULLDPLX; |
| case MII_BMSR: |
| return BMSR_LSTATUS /* for mii_link_ok() */ | |
| BMSR_ANEGCAPABLE | |
| BMSR_10FULL; |
| case MII_ADVERTISE: |
| /* 80c24 is a "combo card" PHY, right? */ |
| return ADVERTISE_10HALF | |
| ADVERTISE_10FULL; |
| default: |
| netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
| "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", |
| dir == mdi_read ? "READ" : "WRITE", |
| addr, reg, data); |
| return 0xFFFF; |
| } |
| } else { |
| switch (reg) { |
| default: |
| netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
| "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", |
| dir == mdi_read ? "READ" : "WRITE", |
| addr, reg, data); |
| return 0xFFFF; |
| } |
| } |
| } |
| static inline int e100_phy_supports_mii(struct nic *nic) |
| { |
| /* for now, just check it by comparing whether we |
| are using MII software emulation. |
| */ |
| return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); |
| } |
| |
| static void e100_get_defaults(struct nic *nic) |
| { |
| struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; |
| struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; |
| |
| /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ |
| nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; |
| if (nic->mac == mac_unknown) |
| nic->mac = mac_82557_D100_A; |
| |
| nic->params.rfds = rfds; |
| nic->params.cbs = cbs; |
| |
| /* Quadwords to DMA into FIFO before starting frame transmit */ |
| nic->tx_threshold = 0xE0; |
| |
| /* no interrupt for every tx completion, delay = 256us if not 557 */ |
| nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | |
| ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); |
| |
| /* Template for a freshly allocated RFD */ |
| nic->blank_rfd.command = 0; |
| nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); |
| nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); |
| |
| /* MII setup */ |
| nic->mii.phy_id_mask = 0x1F; |
| nic->mii.reg_num_mask = 0x1F; |
| nic->mii.dev = nic->netdev; |
| nic->mii.mdio_read = mdio_read; |
| nic->mii.mdio_write = mdio_write; |
| } |
| |
| static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
| { |
| struct config *config = &cb->u.config; |
| u8 *c = (u8 *)config; |
| struct net_device *netdev = nic->netdev; |
| |
| cb->command = cpu_to_le16(cb_config); |
| |
| memset(config, 0, sizeof(struct config)); |
| |
| config->byte_count = 0x16; /* bytes in this struct */ |
| config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ |
| config->direct_rx_dma = 0x1; /* reserved */ |
| config->standard_tcb = 0x1; /* 1=standard, 0=extended */ |
| config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ |
| config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ |
| config->tx_underrun_retry = 0x3; /* # of underrun retries */ |
| if (e100_phy_supports_mii(nic)) |
| config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ |
| config->pad10 = 0x6; |
| config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ |
| config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ |
| config->ifs = 0x6; /* x16 = inter frame spacing */ |
| config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ |
| config->pad15_1 = 0x1; |
| config->pad15_2 = 0x1; |
| config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ |
| config->fc_delay_hi = 0x40; /* time delay for fc frame */ |
| config->tx_padding = 0x1; /* 1=pad short frames */ |
| config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ |
| config->pad18 = 0x1; |
| config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ |
| config->pad20_1 = 0x1F; |
| config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ |
| config->pad21_1 = 0x5; |
| |
| config->adaptive_ifs = nic->adaptive_ifs; |
| config->loopback = nic->loopback; |
| |
| if (nic->mii.force_media && nic->mii.full_duplex) |
| config->full_duplex_force = 0x1; /* 1=force, 0=auto */ |
| |
| if (nic->flags & promiscuous || nic->loopback) { |
| config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ |
| config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ |
| config->promiscuous_mode = 0x1; /* 1=on, 0=off */ |
| } |
| |
| if (unlikely(netdev->features & NETIF_F_RXFCS)) |
| config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */ |
| |
| if (nic->flags & multicast_all) |
| config->multicast_all = 0x1; /* 1=accept, 0=no */ |
| |
| /* disable WoL when up */ |
| if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) |
| config->magic_packet_disable = 0x1; /* 1=off, 0=on */ |
| |
| if (nic->mac >= mac_82558_D101_A4) { |
| config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ |
| config->mwi_enable = 0x1; /* 1=enable, 0=disable */ |
| config->standard_tcb = 0x0; /* 1=standard, 0=extended */ |
| config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ |
| if (nic->mac >= mac_82559_D101M) { |
| config->tno_intr = 0x1; /* TCO stats enable */ |
| /* Enable TCO in extended config */ |
| if (nic->mac >= mac_82551_10) { |
| config->byte_count = 0x20; /* extended bytes */ |
| config->rx_d102_mode = 0x1; /* GMRC for TCO */ |
| } |
| } else { |
| config->standard_stat_counter = 0x0; |
| } |
| } |
| |
| if (netdev->features & NETIF_F_RXALL) { |
| config->rx_save_overruns = 0x1; /* 1=save, 0=discard */ |
| config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ |
| config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ |
| } |
| |
| netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n", |
| c + 0); |
| netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n", |
| c + 8); |
| netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n", |
| c + 16); |
| return 0; |
| } |
| |
| /************************************************************************* |
| * CPUSaver parameters |
| * |
| * All CPUSaver parameters are 16-bit literals that are part of a |
| * "move immediate value" instruction. By changing the value of |
| * the literal in the instruction before the code is loaded, the |
| * driver can change the algorithm. |
| * |
| * INTDELAY - This loads the dead-man timer with its initial value. |
| * When this timer expires the interrupt is asserted, and the |
| * timer is reset each time a new packet is received. (see |
| * BUNDLEMAX below to set the limit on number of chained packets) |
| * The current default is 0x600 or 1536. Experiments show that |
| * the value should probably stay within the 0x200 - 0x1000. |
| * |
| * BUNDLEMAX - |
| * This sets the maximum number of frames that will be bundled. In |
| * some situations, such as the TCP windowing algorithm, it may be |
| * better to limit the growth of the bundle size than let it go as |
| * high as it can, because that could cause too much added latency. |
| * The default is six, because this is the number of packets in the |
| * default TCP window size. A value of 1 would make CPUSaver indicate |
| * an interrupt for every frame received. If you do not want to put |
| * a limit on the bundle size, set this value to xFFFF. |
| * |
| * BUNDLESMALL - |
| * This contains a bit-mask describing the minimum size frame that |
| * will be bundled. The default masks the lower 7 bits, which means |
| * that any frame less than 128 bytes in length will not be bundled, |
| * but will instead immediately generate an interrupt. This does |
| * not affect the current bundle in any way. Any frame that is 128 |
| * bytes or large will be bundled normally. This feature is meant |
| * to provide immediate indication of ACK frames in a TCP environment. |
| * Customers were seeing poor performance when a machine with CPUSaver |
| * enabled was sending but not receiving. The delay introduced when |
| * the ACKs were received was enough to reduce total throughput, because |
| * the sender would sit idle until the ACK was finally seen. |
| * |
| * The current default is 0xFF80, which masks out the lower 7 bits. |
| * This means that any frame which is x7F (127) bytes or smaller |
| * will cause an immediate interrupt. Because this value must be a |
| * bit mask, there are only a few valid values that can be used. To |
| * turn this feature off, the driver can write the value xFFFF to the |
| * lower word of this instruction (in the same way that the other |
| * parameters are used). Likewise, a value of 0xF800 (2047) would |
| * cause an interrupt to be generated for every frame, because all |
| * standard Ethernet frames are <= 2047 bytes in length. |
| *************************************************************************/ |
| |
| /* if you wish to disable the ucode functionality, while maintaining the |
| * workarounds it provides, set the following defines to: |
| * BUNDLESMALL 0 |
| * BUNDLEMAX 1 |
| * INTDELAY 1 |
| */ |
| #define BUNDLESMALL 1 |
| #define BUNDLEMAX (u16)6 |
| #define INTDELAY (u16)1536 /* 0x600 */ |
| |
| /* Initialize firmware */ |
| static const struct firmware *e100_request_firmware(struct nic *nic) |
| { |
| const char *fw_name; |
| const struct firmware *fw = nic->fw; |
| u8 timer, bundle, min_size; |
| int err = 0; |
| bool required = false; |
| |
| /* do not load u-code for ICH devices */ |
| if (nic->flags & ich) |
| return NULL; |
| |
| /* Search for ucode match against h/w revision |
| * |
| * Based on comments in the source code for the FreeBSD fxp |
| * driver, the FIRMWARE_D102E ucode includes both CPUSaver and |
| * |
| * "fixes for bugs in the B-step hardware (specifically, bugs |
| * with Inline Receive)." |
| * |
| * So we must fail if it cannot be loaded. |
| * |
| * The other microcode files are only required for the optional |
| * CPUSaver feature. Nice to have, but no reason to fail. |
| */ |
| if (nic->mac == mac_82559_D101M) { |
| fw_name = FIRMWARE_D101M; |
| } else if (nic->mac == mac_82559_D101S) { |
| fw_name = FIRMWARE_D101S; |
| } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) { |
| fw_name = FIRMWARE_D102E; |
| required = true; |
| } else { /* No ucode on other devices */ |
| return NULL; |
| } |
| |
| /* If the firmware has not previously been loaded, request a pointer |
| * to it. If it was previously loaded, we are reinitializing the |
| * adapter, possibly in a resume from hibernate, in which case |
| * request_firmware() cannot be used. |
| */ |
| if (!fw) |
| err = request_firmware(&fw, fw_name, &nic->pdev->dev); |
| |
| if (err) { |
| if (required) { |
| netif_err(nic, probe, nic->netdev, |
| "Failed to load firmware \"%s\": %d\n", |
| fw_name, err); |
| return ERR_PTR(err); |
| } else { |
| netif_info(nic, probe, nic->netdev, |
| "CPUSaver disabled. Needs \"%s\": %d\n", |
| fw_name, err); |
| return NULL; |
| } |
| } |
| |
| /* Firmware should be precisely UCODE_SIZE (words) plus three bytes |
| indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ |
| if (fw->size != UCODE_SIZE * 4 + 3) { |
| netif_err(nic, probe, nic->netdev, |
| "Firmware \"%s\" has wrong size %zu\n", |
| fw_name, fw->size); |
| release_firmware(fw); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* Read timer, bundle and min_size from end of firmware blob */ |
| timer = fw->data[UCODE_SIZE * 4]; |
| bundle = fw->data[UCODE_SIZE * 4 + 1]; |
| min_size = fw->data[UCODE_SIZE * 4 + 2]; |
| |
| if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || |
| min_size >= UCODE_SIZE) { |
| netif_err(nic, probe, nic->netdev, |
| "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", |
| fw_name, timer, bundle, min_size); |
| release_firmware(fw); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* OK, firmware is validated and ready to use. Save a pointer |
| * to it in the nic */ |
| nic->fw = fw; |
| return fw; |
| } |
| |
| static int e100_setup_ucode(struct nic *nic, struct cb *cb, |
| struct sk_buff *skb) |
| { |
| const struct firmware *fw = (void *)skb; |
| u8 timer, bundle, min_size; |
| |
| /* It's not a real skb; we just abused the fact that e100_exec_cb |
| will pass it through to here... */ |
| cb->skb = NULL; |
| |
| /* firmware is stored as little endian already */ |
| memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); |
| |
| /* Read timer, bundle and min_size from end of firmware blob */ |
| timer = fw->data[UCODE_SIZE * 4]; |
| bundle = fw->data[UCODE_SIZE * 4 + 1]; |
| min_size = fw->data[UCODE_SIZE * 4 + 2]; |
| |
| /* Insert user-tunable settings in cb->u.ucode */ |
| cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); |
| cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); |
| cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); |
| cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); |
| cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); |
| cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); |
| |
| cb->command = cpu_to_le16(cb_ucode | cb_el); |
| return 0; |
| } |
| |
| static inline int e100_load_ucode_wait(struct nic *nic) |
| { |
| const struct firmware *fw; |
| int err = 0, counter = 50; |
| struct cb *cb = nic->cb_to_clean; |
| |
| fw = e100_request_firmware(nic); |
| /* If it's NULL, then no ucode is required */ |
| if (IS_ERR_OR_NULL(fw)) |
| return PTR_ERR_OR_ZERO(fw); |
| |
| if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) |
| netif_err(nic, probe, nic->netdev, |
| "ucode cmd failed with error %d\n", err); |
| |
| /* must restart cuc */ |
| nic->cuc_cmd = cuc_start; |
| |
| /* wait for completion */ |
| e100_write_flush(nic); |
| udelay(10); |
| |
| /* wait for possibly (ouch) 500ms */ |
| while (!(cb->status & cpu_to_le16(cb_complete))) { |
| msleep(10); |
| if (!--counter) break; |
| } |
| |
| /* ack any interrupts, something could have been set */ |
| iowrite8(~0, &nic->csr->scb.stat_ack); |
| |
| /* if the command failed, or is not OK, notify and return */ |
| if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { |
| netif_err(nic, probe, nic->netdev, "ucode load failed\n"); |
| err = -EPERM; |
| } |
| |
| return err; |
| } |
| |
| static int e100_setup_iaaddr(struct nic *nic, struct cb *cb, |
| struct sk_buff *skb) |
| { |
| cb->command = cpu_to_le16(cb_iaaddr); |
| memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); |
| return 0; |
| } |
| |
| static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
| { |
| cb->command = cpu_to_le16(cb_dump); |
| cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + |
| offsetof(struct mem, dump_buf)); |
| return 0; |
| } |
| |
| static int e100_phy_check_without_mii(struct nic *nic) |
| { |
| u8 phy_type; |
| int without_mii; |
| |
| phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f; |
| |
| switch (phy_type) { |
| case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ |
| case I82503: /* Non-MII PHY; UNTESTED! */ |
| case S80C24: /* Non-MII PHY; tested and working */ |
| /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": |
| * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter |
| * doesn't have a programming interface of any sort. The |
| * media is sensed automatically based on how the link partner |
| * is configured. This is, in essence, manual configuration. |
| */ |
| netif_info(nic, probe, nic->netdev, |
| "found MII-less i82503 or 80c24 or other PHY\n"); |
| |
| nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; |
| nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ |
| |
| /* these might be needed for certain MII-less cards... |
| * nic->flags |= ich; |
| * nic->flags |= ich_10h_workaround; */ |
| |
| without_mii = 1; |
| break; |
| default: |
| without_mii = 0; |
| break; |
| } |
| return without_mii; |
| } |
| |
| #define NCONFIG_AUTO_SWITCH 0x0080 |
| #define MII_NSC_CONG MII_RESV1 |
| #define NSC_CONG_ENABLE 0x0100 |
| #define NSC_CONG_TXREADY 0x0400 |
| #define ADVERTISE_FC_SUPPORTED 0x0400 |
| static int e100_phy_init(struct nic *nic) |
| { |
| struct net_device *netdev = nic->netdev; |
| u32 addr; |
| u16 bmcr, stat, id_lo, id_hi, cong; |
| |
| /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ |
| for (addr = 0; addr < 32; addr++) { |
| nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; |
| bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); |
| stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); |
| stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); |
| if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) |
| break; |
| } |
| if (addr == 32) { |
| /* uhoh, no PHY detected: check whether we seem to be some |
| * weird, rare variant which is *known* to not have any MII. |
| * But do this AFTER MII checking only, since this does |
| * lookup of EEPROM values which may easily be unreliable. */ |
| if (e100_phy_check_without_mii(nic)) |
| return 0; /* simply return and hope for the best */ |
| else { |
| /* for unknown cases log a fatal error */ |
| netif_err(nic, hw, nic->netdev, |
| "Failed to locate any known PHY, aborting\n"); |
| return -EAGAIN; |
| } |
| } else |
| netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
| "phy_addr = %d\n", nic->mii.phy_id); |
| |
| /* Get phy ID */ |
| id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); |
| id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); |
| nic->phy = (u32)id_hi << 16 | (u32)id_lo; |
| netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
| "phy ID = 0x%08X\n", nic->phy); |
| |
| /* Select the phy and isolate the rest */ |
| for (addr = 0; addr < 32; addr++) { |
| if (addr != nic->mii.phy_id) { |
| mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); |
| } else if (nic->phy != phy_82552_v) { |
| bmcr = mdio_read(netdev, addr, MII_BMCR); |
| mdio_write(netdev, addr, MII_BMCR, |
| bmcr & ~BMCR_ISOLATE); |
| } |
| } |
| /* |
| * Workaround for 82552: |
| * Clear the ISOLATE bit on selected phy_id last (mirrored on all |
| * other phy_id's) using bmcr value from addr discovery loop above. |
| */ |
| if (nic->phy == phy_82552_v) |
| mdio_write(netdev, nic->mii.phy_id, MII_BMCR, |
| bmcr & ~BMCR_ISOLATE); |
| |
| /* Handle National tx phys */ |
| #define NCS_PHY_MODEL_MASK 0xFFF0FFFF |
| if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { |
| /* Disable congestion control */ |
| cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); |
| cong |= NSC_CONG_TXREADY; |
| cong &= ~NSC_CONG_ENABLE; |
| mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); |
| } |
| |
| if (nic->phy == phy_82552_v) { |
| u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); |
| |
| /* assign special tweaked mdio_ctrl() function */ |
| nic->mdio_ctrl = mdio_ctrl_phy_82552_v; |
| |
| /* Workaround Si not advertising flow-control during autoneg */ |
| advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; |
| mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); |
| |
| /* Reset for the above changes to take effect */ |
| bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); |
| bmcr |= BMCR_RESET; |
| mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); |
| } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && |
| (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && |
| (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) { |
| /* enable/disable MDI/MDI-X auto-switching. */ |
| mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, |
| nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); |
| } |
| |
| return 0; |
| } |
| |
| static int e100_hw_init(struct nic *nic) |
| { |
| int err = 0; |
| |
| e100_hw_reset(nic); |
| |
| netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); |
| if (!in_interrupt() && (err = e100_self_test(nic))) |
| return err; |
| |
| if ((err = e100_phy_init(nic))) |
| return err; |
| if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) |
| return err; |
| if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) |
| return err; |
| if ((err = e100_load_ucode_wait(nic))) |
| return err; |
| if ((err = e100_exec_cb(nic, NULL, e100_configure))) |
| return err; |
| if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) |
| return err; |
| if ((err = e100_exec_cmd(nic, cuc_dump_addr, |
| nic->dma_addr + offsetof(struct mem, stats)))) |
| return err; |
| if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) |
| return err; |
| |
| e100_disable_irq(nic); |
| |
| return 0; |
| } |
| |
| static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
| { |
| struct net_device *netdev = nic->netdev; |
| struct netdev_hw_addr *ha; |
| u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); |
| |
| cb->command = cpu_to_le16(cb_multi); |
| cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); |
| i = 0; |
| netdev_for_each_mc_addr(ha, netdev) { |
| if (i == count) |
| break; |
| memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, |
| ETH_ALEN); |
| } |
| return 0; |
| } |
| |
| static void e100_set_multicast_list(struct net_device *netdev) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| |
| netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
| "mc_count=%d, flags=0x%04X\n", |
| netdev_mc_count(netdev), netdev->flags); |
| |
| if (netdev->flags & IFF_PROMISC) |
| nic->flags |= promiscuous; |
| else |
| nic->flags &= ~promiscuous; |
| |
| if (netdev->flags & IFF_ALLMULTI || |
| netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) |
| nic->flags |= multicast_all; |
| else |
| nic->flags &= ~multicast_all; |
| |
| e100_exec_cb(nic, NULL, e100_configure); |
| e100_exec_cb(nic, NULL, e100_multi); |
| } |
| |
| static void e100_update_stats(struct nic *nic) |
| { |
| struct net_device *dev = nic->netdev; |
| struct net_device_stats *ns = &dev->stats; |
| struct stats *s = &nic->mem->stats; |
| __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : |
| (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : |
| &s->complete; |
| |
| /* Device's stats reporting may take several microseconds to |
| * complete, so we're always waiting for results of the |
| * previous command. */ |
| |
| if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { |
| *complete = 0; |
| nic->tx_frames = le32_to_cpu(s->tx_good_frames); |
| nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); |
| ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); |
| ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); |
| ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); |
| ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); |
| ns->collisions += nic->tx_collisions; |
| ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + |
| le32_to_cpu(s->tx_lost_crs); |
| nic->rx_short_frame_errors += |
| le32_to_cpu(s->rx_short_frame_errors); |
| ns->rx_length_errors = nic->rx_short_frame_errors + |
| nic->rx_over_length_errors; |
| ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); |
| ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); |
| ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); |
| ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); |
| ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); |
| ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + |
| le32_to_cpu(s->rx_alignment_errors) + |
| le32_to_cpu(s->rx_short_frame_errors) + |
| le32_to_cpu(s->rx_cdt_errors); |
| nic->tx_deferred += le32_to_cpu(s->tx_deferred); |
| nic->tx_single_collisions += |
| le32_to_cpu(s->tx_single_collisions); |
| nic->tx_multiple_collisions += |
| le32_to_cpu(s->tx_multiple_collisions); |
| if (nic->mac >= mac_82558_D101_A4) { |
| nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); |
| nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); |
| nic->rx_fc_unsupported += |
| le32_to_cpu(s->fc_rcv_unsupported); |
| if (nic->mac >= mac_82559_D101M) { |
| nic->tx_tco_frames += |
| le16_to_cpu(s->xmt_tco_frames); |
| nic->rx_tco_frames += |
| le16_to_cpu(s->rcv_tco_frames); |
| } |
| } |
| } |
| |
| |
| if (e100_exec_cmd(nic, cuc_dump_reset, 0)) |
| netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
| "exec cuc_dump_reset failed\n"); |
| } |
| |
| static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) |
| { |
| /* Adjust inter-frame-spacing (IFS) between two transmits if |
| * we're getting collisions on a half-duplex connection. */ |
| |
| if (duplex == DUPLEX_HALF) { |
| u32 prev = nic->adaptive_ifs; |
| u32 min_frames = (speed == SPEED_100) ? 1000 : 100; |
| |
| if ((nic->tx_frames / 32 < nic->tx_collisions) && |
| (nic->tx_frames > min_frames)) { |
| if (nic->adaptive_ifs < 60) |
| nic->adaptive_ifs += 5; |
| } else if (nic->tx_frames < min_frames) { |
| if (nic->adaptive_ifs >= 5) |
| nic->adaptive_ifs -= 5; |
| } |
| if (nic->adaptive_ifs != prev) |
| e100_exec_cb(nic, NULL, e100_configure); |
| } |
| } |
| |
| static void e100_watchdog(unsigned long data) |
| { |
| struct nic *nic = (struct nic *)data; |
| struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET }; |
| u32 speed; |
| |
| netif_printk(nic, timer, KERN_DEBUG, nic->netdev, |
| "right now = %ld\n", jiffies); |
| |
| /* mii library handles link maintenance tasks */ |
| |
| mii_ethtool_gset(&nic->mii, &cmd); |
| speed = ethtool_cmd_speed(&cmd); |
| |
| if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { |
| netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", |
| speed == SPEED_100 ? 100 : 10, |
| cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); |
| } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { |
| netdev_info(nic->netdev, "NIC Link is Down\n"); |
| } |
| |
| mii_check_link(&nic->mii); |
| |
| /* Software generated interrupt to recover from (rare) Rx |
| * allocation failure. |
| * Unfortunately have to use a spinlock to not re-enable interrupts |
| * accidentally, due to hardware that shares a register between the |
| * interrupt mask bit and the SW Interrupt generation bit */ |
| spin_lock_irq(&nic->cmd_lock); |
| iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); |
| e100_write_flush(nic); |
| spin_unlock_irq(&nic->cmd_lock); |
| |
| e100_update_stats(nic); |
| e100_adjust_adaptive_ifs(nic, speed, cmd.duplex); |
| |
| if (nic->mac <= mac_82557_D100_C) |
| /* Issue a multicast command to workaround a 557 lock up */ |
| e100_set_multicast_list(nic->netdev); |
| |
| if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF) |
| /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ |
| nic->flags |= ich_10h_workaround; |
| else |
| nic->flags &= ~ich_10h_workaround; |
| |
| mod_timer(&nic->watchdog, |
| round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); |
| } |
| |
| static int e100_xmit_prepare(struct nic *nic, struct cb *cb, |
| struct sk_buff *skb) |
| { |
| dma_addr_t dma_addr; |
| cb->command = nic->tx_command; |
| |
| dma_addr = pci_map_single(nic->pdev, |
| skb->data, skb->len, PCI_DMA_TODEVICE); |
| /* If we can't map the skb, have the upper layer try later */ |
| if (pci_dma_mapping_error(nic->pdev, dma_addr)) { |
| dev_kfree_skb_any(skb); |
| skb = NULL; |
| return -ENOMEM; |
| } |
| |
| /* |
| * Use the last 4 bytes of the SKB payload packet as the CRC, used for |
| * testing, ie sending frames with bad CRC. |
| */ |
| if (unlikely(skb->no_fcs)) |
| cb->command |= cpu_to_le16(cb_tx_nc); |
| else |
| cb->command &= ~cpu_to_le16(cb_tx_nc); |
| |
| /* interrupt every 16 packets regardless of delay */ |
| if ((nic->cbs_avail & ~15) == nic->cbs_avail) |
| cb->command |= cpu_to_le16(cb_i); |
| cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); |
| cb->u.tcb.tcb_byte_count = 0; |
| cb->u.tcb.threshold = nic->tx_threshold; |
| cb->u.tcb.tbd_count = 1; |
| cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr); |
| cb->u.tcb.tbd.size = cpu_to_le16(skb->len); |
| skb_tx_timestamp(skb); |
| return 0; |
| } |
| |
| static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, |
| struct net_device *netdev) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| int err; |
| |
| if (nic->flags & ich_10h_workaround) { |
| /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. |
| Issue a NOP command followed by a 1us delay before |
| issuing the Tx command. */ |
| if (e100_exec_cmd(nic, cuc_nop, 0)) |
| netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
| "exec cuc_nop failed\n"); |
| udelay(1); |
| } |
| |
| err = e100_exec_cb(nic, skb, e100_xmit_prepare); |
| |
| switch (err) { |
| case -ENOSPC: |
| /* We queued the skb, but now we're out of space. */ |
| netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
| "No space for CB\n"); |
| netif_stop_queue(netdev); |
| break; |
| case -ENOMEM: |
| /* This is a hard error - log it. */ |
| netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
| "Out of Tx resources, returning skb\n"); |
| netif_stop_queue(netdev); |
| return NETDEV_TX_BUSY; |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static int e100_tx_clean(struct nic *nic) |
| { |
| struct net_device *dev = nic->netdev; |
| struct cb *cb; |
| int tx_cleaned = 0; |
| |
| spin_lock(&nic->cb_lock); |
| |
| /* Clean CBs marked complete */ |
| for (cb = nic->cb_to_clean; |
| cb->status & cpu_to_le16(cb_complete); |
| cb = nic->cb_to_clean = cb->next) { |
| dma_rmb(); /* read skb after status */ |
| netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, |
| "cb[%d]->status = 0x%04X\n", |
| (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), |
| cb->status); |
| |
| if (likely(cb->skb != NULL)) { |
| dev->stats.tx_packets++; |
| dev->stats.tx_bytes += cb->skb->len; |
| |
| pci_unmap_single(nic->pdev, |
| le32_to_cpu(cb->u.tcb.tbd.buf_addr), |
| le16_to_cpu(cb->u.tcb.tbd.size), |
| PCI_DMA_TODEVICE); |
| dev_kfree_skb_any(cb->skb); |
| cb->skb = NULL; |
| tx_cleaned = 1; |
| } |
| cb->status = 0; |
| nic->cbs_avail++; |
| } |
| |
| spin_unlock(&nic->cb_lock); |
| |
| /* Recover from running out of Tx resources in xmit_frame */ |
| if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) |
| netif_wake_queue(nic->netdev); |
| |
| return tx_cleaned; |
| } |
| |
| static void e100_clean_cbs(struct nic *nic) |
| { |
| if (nic->cbs) { |
| while (nic->cbs_avail != nic->params.cbs.count) { |
| struct cb *cb = nic->cb_to_clean; |
| if (cb->skb) { |
| pci_unmap_single(nic->pdev, |
| le32_to_cpu(cb->u.tcb.tbd.buf_addr), |
| le16_to_cpu(cb->u.tcb.tbd.size), |
| PCI_DMA_TODEVICE); |
| dev_kfree_skb(cb->skb); |
| } |
| nic->cb_to_clean = nic->cb_to_clean->next; |
| nic->cbs_avail++; |
| } |
| pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); |
| nic->cbs = NULL; |
| nic->cbs_avail = 0; |
| } |
| nic->cuc_cmd = cuc_start; |
| nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = |
| nic->cbs; |
| } |
| |
| static int e100_alloc_cbs(struct nic *nic) |
| { |
| struct cb *cb; |
| unsigned int i, count = nic->params.cbs.count; |
| |
| nic->cuc_cmd = cuc_start; |
| nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; |
| nic->cbs_avail = 0; |
| |
| nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, |
| &nic->cbs_dma_addr); |
| if (!nic->cbs) |
| return -ENOMEM; |
| memset(nic->cbs, 0, count * sizeof(struct cb)); |
| |
| for (cb = nic->cbs, i = 0; i < count; cb++, i++) { |
| cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; |
| cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; |
| |
| cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); |
| cb->link = cpu_to_le32(nic->cbs_dma_addr + |
| ((i+1) % count) * sizeof(struct cb)); |
| } |
| |
| nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; |
| nic->cbs_avail = count; |
| |
| return 0; |
| } |
| |
| static inline void e100_start_receiver(struct nic *nic, struct rx *rx) |
| { |
| if (!nic->rxs) return; |
| if (RU_SUSPENDED != nic->ru_running) return; |
| |
| /* handle init time starts */ |
| if (!rx) rx = nic->rxs; |
| |
| /* (Re)start RU if suspended or idle and RFA is non-NULL */ |
| if (rx->skb) { |
| e100_exec_cmd(nic, ruc_start, rx->dma_addr); |
| nic->ru_running = RU_RUNNING; |
| } |
| } |
| |
| #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) |
| static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) |
| { |
| if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) |
| return -ENOMEM; |
| |
| /* Init, and map the RFD. */ |
| skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); |
| rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, |
| RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
| |
| if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { |
| dev_kfree_skb_any(rx->skb); |
| rx->skb = NULL; |
| rx->dma_addr = 0; |
| return -ENOMEM; |
| } |
| |
| /* Link the RFD to end of RFA by linking previous RFD to |
| * this one. We are safe to touch the previous RFD because |
| * it is protected by the before last buffer's el bit being set */ |
| if (rx->prev->skb) { |
| struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; |
| put_unaligned_le32(rx->dma_addr, &prev_rfd->link); |
| pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, |
| sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
| } |
| |
| return 0; |
| } |
| |
| static int e100_rx_indicate(struct nic *nic, struct rx *rx, |
| unsigned int *work_done, unsigned int work_to_do) |
| { |
| struct net_device *dev = nic->netdev; |
| struct sk_buff *skb = rx->skb; |
| struct rfd *rfd = (struct rfd *)skb->data; |
| u16 rfd_status, actual_size; |
| u16 fcs_pad = 0; |
| |
| if (unlikely(work_done && *work_done >= work_to_do)) |
| return -EAGAIN; |
| |
| /* Need to sync before taking a peek at cb_complete bit */ |
| pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, |
| sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
| rfd_status = le16_to_cpu(rfd->status); |
| |
| netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, |
| "status=0x%04X\n", rfd_status); |
| dma_rmb(); /* read size after status bit */ |
| |
| /* If data isn't ready, nothing to indicate */ |
| if (unlikely(!(rfd_status & cb_complete))) { |
| /* If the next buffer has the el bit, but we think the receiver |
| * is still running, check to see if it really stopped while |
| * we had interrupts off. |
| * This allows for a fast restart without re-enabling |
| * interrupts */ |
| if ((le16_to_cpu(rfd->command) & cb_el) && |
| (RU_RUNNING == nic->ru_running)) |
| |
| if (ioread8(&nic->csr->scb.status) & rus_no_res) |
| nic->ru_running = RU_SUSPENDED; |
| pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, |
| sizeof(struct rfd), |
| PCI_DMA_FROMDEVICE); |
| return -ENODATA; |
| } |
| |
| /* Get actual data size */ |
| if (unlikely(dev->features & NETIF_F_RXFCS)) |
| fcs_pad = 4; |
| actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; |
| if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) |
| actual_size = RFD_BUF_LEN - sizeof(struct rfd); |
| |
| /* Get data */ |
| pci_unmap_single(nic->pdev, rx->dma_addr, |
| RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
| |
| /* If this buffer has the el bit, but we think the receiver |
| * is still running, check to see if it really stopped while |
| * we had interrupts off. |
| * This allows for a fast restart without re-enabling interrupts. |
| * This can happen when the RU sees the size change but also sees |
| * the el bit set. */ |
| if ((le16_to_cpu(rfd->command) & cb_el) && |
| (RU_RUNNING == nic->ru_running)) { |
| |
| if (ioread8(&nic->csr->scb.status) & rus_no_res) |
| nic->ru_running = RU_SUSPENDED; |
| } |
| |
| /* Pull off the RFD and put the actual data (minus eth hdr) */ |
| skb_reserve(skb, sizeof(struct rfd)); |
| skb_put(skb, actual_size); |
| skb->protocol = eth_type_trans(skb, nic->netdev); |
| |
| /* If we are receiving all frames, then don't bother |
| * checking for errors. |
| */ |
| if (unlikely(dev->features & NETIF_F_RXALL)) { |
| if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) |
| /* Received oversized frame, but keep it. */ |
| nic->rx_over_length_errors++; |
| goto process_skb; |
| } |
| |
| if (unlikely(!(rfd_status & cb_ok))) { |
| /* Don't indicate if hardware indicates errors */ |
| dev_kfree_skb_any(skb); |
| } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) { |
| /* Don't indicate oversized frames */ |
| nic->rx_over_length_errors++; |
| dev_kfree_skb_any(skb); |
| } else { |
| process_skb: |
| dev->stats.rx_packets++; |
| dev->stats.rx_bytes += (actual_size - fcs_pad); |
| netif_receive_skb(skb); |
| if (work_done) |
| (*work_done)++; |
| } |
| |
| rx->skb = NULL; |
| |
| return 0; |
| } |
| |
| static void e100_rx_clean(struct nic *nic, unsigned int *work_done, |
| unsigned int work_to_do) |
| { |
| struct rx *rx; |
| int restart_required = 0, err = 0; |
| struct rx *old_before_last_rx, *new_before_last_rx; |
| struct rfd *old_before_last_rfd, *new_before_last_rfd; |
| |
| /* Indicate newly arrived packets */ |
| for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { |
| err = e100_rx_indicate(nic, rx, work_done, work_to_do); |
| /* Hit quota or no more to clean */ |
| if (-EAGAIN == err || -ENODATA == err) |
| break; |
| } |
| |
| |
| /* On EAGAIN, hit quota so have more work to do, restart once |
| * cleanup is complete. |
| * Else, are we already rnr? then pay attention!!! this ensures that |
| * the state machine progression never allows a start with a |
| * partially cleaned list, avoiding a race between hardware |
| * and rx_to_clean when in NAPI mode */ |
| if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) |
| restart_required = 1; |
| |
| old_before_last_rx = nic->rx_to_use->prev->prev; |
| old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; |
| |
| /* Alloc new skbs to refill list */ |
| for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { |
| if (unlikely(e100_rx_alloc_skb(nic, rx))) |
| break; /* Better luck next time (see watchdog) */ |
| } |
| |
| new_before_last_rx = nic->rx_to_use->prev->prev; |
| if (new_before_last_rx != old_before_last_rx) { |
| /* Set the el-bit on the buffer that is before the last buffer. |
| * This lets us update the next pointer on the last buffer |
| * without worrying about hardware touching it. |
| * We set the size to 0 to prevent hardware from touching this |
| * buffer. |
| * When the hardware hits the before last buffer with el-bit |
| * and size of 0, it will RNR interrupt, the RUS will go into |
| * the No Resources state. It will not complete nor write to |
| * this buffer. */ |
| new_before_last_rfd = |
| (struct rfd *)new_before_last_rx->skb->data; |
| new_before_last_rfd->size = 0; |
| new_before_last_rfd->command |= cpu_to_le16(cb_el); |
| pci_dma_sync_single_for_device(nic->pdev, |
| new_before_last_rx->dma_addr, sizeof(struct rfd), |
| PCI_DMA_BIDIRECTIONAL); |
| |
| /* Now that we have a new stopping point, we can clear the old |
| * stopping point. We must sync twice to get the proper |
| * ordering on the hardware side of things. */ |
| old_before_last_rfd->command &= ~cpu_to_le16(cb_el); |
| pci_dma_sync_single_for_device(nic->pdev, |
| old_before_last_rx->dma_addr, sizeof(struct rfd), |
| PCI_DMA_BIDIRECTIONAL); |
| old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN |
| + ETH_FCS_LEN); |
| pci_dma_sync_single_for_device(nic->pdev, |
| old_before_last_rx->dma_addr, sizeof(struct rfd), |
| PCI_DMA_BIDIRECTIONAL); |
| } |
| |
| if (restart_required) { |
| // ack the rnr? |
| iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); |
| e100_start_receiver(nic, nic->rx_to_clean); |
| if (work_done) |
| (*work_done)++; |
| } |
| } |
| |
| static void e100_rx_clean_list(struct nic *nic) |
| { |
| struct rx *rx; |
| unsigned int i, count = nic->params.rfds.count; |
| |
| nic->ru_running = RU_UNINITIALIZED; |
| |
| if (nic->rxs) { |
| for (rx = nic->rxs, i = 0; i < count; rx++, i++) { |
| if (rx->skb) { |
| pci_unmap_single(nic->pdev, rx->dma_addr, |
| RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
| dev_kfree_skb(rx->skb); |
| } |
| } |
| kfree(nic->rxs); |
| nic->rxs = NULL; |
| } |
| |
| nic->rx_to_use = nic->rx_to_clean = NULL; |
| } |
| |
| static int e100_rx_alloc_list(struct nic *nic) |
| { |
| struct rx *rx; |
| unsigned int i, count = nic->params.rfds.count; |
| struct rfd *before_last; |
| |
| nic->rx_to_use = nic->rx_to_clean = NULL; |
| nic->ru_running = RU_UNINITIALIZED; |
| |
| if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) |
| return -ENOMEM; |
| |
| for (rx = nic->rxs, i = 0; i < count; rx++, i++) { |
| rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; |
| rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; |
| if (e100_rx_alloc_skb(nic, rx)) { |
| e100_rx_clean_list(nic); |
| return -ENOMEM; |
| } |
| } |
| /* Set the el-bit on the buffer that is before the last buffer. |
| * This lets us update the next pointer on the last buffer without |
| * worrying about hardware touching it. |
| * We set the size to 0 to prevent hardware from touching this buffer. |
| * When the hardware hits the before last buffer with el-bit and size |
| * of 0, it will RNR interrupt, the RU will go into the No Resources |
| * state. It will not complete nor write to this buffer. */ |
| rx = nic->rxs->prev->prev; |
| before_last = (struct rfd *)rx->skb->data; |
| before_last->command |= cpu_to_le16(cb_el); |
| before_last->size = 0; |
| pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, |
| sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
| |
| nic->rx_to_use = nic->rx_to_clean = nic->rxs; |
| nic->ru_running = RU_SUSPENDED; |
| |
| return 0; |
| } |
| |
| static irqreturn_t e100_intr(int irq, void *dev_id) |
| { |
| struct net_device *netdev = dev_id; |
| struct nic *nic = netdev_priv(netdev); |
| u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); |
| |
| netif_printk(nic, intr, KERN_DEBUG, nic->netdev, |
| "stat_ack = 0x%02X\n", stat_ack); |
| |
| if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ |
| stat_ack == stat_ack_not_present) /* Hardware is ejected */ |
| return IRQ_NONE; |
| |
| /* Ack interrupt(s) */ |
| iowrite8(stat_ack, &nic->csr->scb.stat_ack); |
| |
| /* We hit Receive No Resource (RNR); restart RU after cleaning */ |
| if (stat_ack & stat_ack_rnr) |
| nic->ru_running = RU_SUSPENDED; |
| |
| if (likely(napi_schedule_prep(&nic->napi))) { |
| e100_disable_irq(nic); |
| __napi_schedule(&nic->napi); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int e100_poll(struct napi_struct *napi, int budget) |
| { |
| struct nic *nic = container_of(napi, struct nic, napi); |
| unsigned int work_done = 0; |
| |
| e100_rx_clean(nic, &work_done, budget); |
| e100_tx_clean(nic); |
| |
| /* If budget not fully consumed, exit the polling mode */ |
| if (work_done < budget) { |
| napi_complete_done(napi, work_done); |
| e100_enable_irq(nic); |
| } |
| |
| return work_done; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void e100_netpoll(struct net_device *netdev) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| |
| e100_disable_irq(nic); |
| e100_intr(nic->pdev->irq, netdev); |
| e100_tx_clean(nic); |
| e100_enable_irq(nic); |
| } |
| #endif |
| |
| static int e100_set_mac_address(struct net_device *netdev, void *p) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| e100_exec_cb(nic, NULL, e100_setup_iaaddr); |
| |
| return 0; |
| } |
| |
| static int e100_asf(struct nic *nic) |
| { |
| /* ASF can be enabled from eeprom */ |
| return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && |
| (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) && |
| !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) && |
| ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE); |
| } |
| |
| static int e100_up(struct nic *nic) |
| { |
| int err; |
| |
| if ((err = e100_rx_alloc_list(nic))) |
| return err; |
| if ((err = e100_alloc_cbs(nic))) |
| goto err_rx_clean_list; |
| if ((err = e100_hw_init(nic))) |
| goto err_clean_cbs; |
| e100_set_multicast_list(nic->netdev); |
| e100_start_receiver(nic, NULL); |
| mod_timer(&nic->watchdog, jiffies); |
| if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, |
| nic->netdev->name, nic->netdev))) |
| goto err_no_irq; |
| netif_wake_queue(nic->netdev); |
| napi_enable(&nic->napi); |
| /* enable ints _after_ enabling poll, preventing a race between |
| * disable ints+schedule */ |
| e100_enable_irq(nic); |
| return 0; |
| |
| err_no_irq: |
| del_timer_sync(&nic->watchdog); |
| err_clean_cbs: |
| e100_clean_cbs(nic); |
| err_rx_clean_list: |
| e100_rx_clean_list(nic); |
| return err; |
| } |
| |
| static void e100_down(struct nic *nic) |
| { |
| /* wait here for poll to complete */ |
| napi_disable(&nic->napi); |
| netif_stop_queue(nic->netdev); |
| e100_hw_reset(nic); |
| free_irq(nic->pdev->irq, nic->netdev); |
| del_timer_sync(&nic->watchdog); |
| netif_carrier_off(nic->netdev); |
| e100_clean_cbs(nic); |
| e100_rx_clean_list(nic); |
| } |
| |
| static void e100_tx_timeout(struct net_device *netdev) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| |
| /* Reset outside of interrupt context, to avoid request_irq |
| * in interrupt context */ |
| schedule_work(&nic->tx_timeout_task); |
| } |
| |
| static void e100_tx_timeout_task(struct work_struct *work) |
| { |
| struct nic *nic = container_of(work, struct nic, tx_timeout_task); |
| struct net_device *netdev = nic->netdev; |
| |
| netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
| "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); |
| |
| rtnl_lock(); |
| if (netif_running(netdev)) { |
| e100_down(netdev_priv(netdev)); |
| e100_up(netdev_priv(netdev)); |
| } |
| rtnl_unlock(); |
| } |
| |
| static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) |
| { |
| int err; |
| struct sk_buff *skb; |
| |
| /* Use driver resources to perform internal MAC or PHY |
| * loopback test. A single packet is prepared and transmitted |
| * in loopback mode, and the test passes if the received |
| * packet compares byte-for-byte to the transmitted packet. */ |
| |
| if ((err = e100_rx_alloc_list(nic))) |
| return err; |
| if ((err = e100_alloc_cbs(nic))) |
| goto err_clean_rx; |
| |
| /* ICH PHY loopback is broken so do MAC loopback instead */ |
| if (nic->flags & ich && loopback_mode == lb_phy) |
| loopback_mode = lb_mac; |
| |
| nic->loopback = loopback_mode; |
| if ((err = e100_hw_init(nic))) |
| goto err_loopback_none; |
| |
| if (loopback_mode == lb_phy) |
| mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, |
| BMCR_LOOPBACK); |
| |
| e100_start_receiver(nic, NULL); |
| |
| if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { |
| err = -ENOMEM; |
| goto err_loopback_none; |
| } |
| skb_put(skb, ETH_DATA_LEN); |
| memset(skb->data, 0xFF, ETH_DATA_LEN); |
| e100_xmit_frame(skb, nic->netdev); |
| |
| msleep(10); |
| |
| pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, |
| RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
| |
| if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), |
| skb->data, ETH_DATA_LEN)) |
| err = -EAGAIN; |
| |
| err_loopback_none: |
| mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); |
| nic->loopback = lb_none; |
| e100_clean_cbs(nic); |
| e100_hw_reset(nic); |
| err_clean_rx: |
| e100_rx_clean_list(nic); |
| return err; |
| } |
| |
| #define MII_LED_CONTROL 0x1B |
| #define E100_82552_LED_OVERRIDE 0x19 |
| #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ |
| #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ |
| |
| static int e100_get_link_ksettings(struct net_device *netdev, |
| struct ethtool_link_ksettings *cmd) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| |
| mii_ethtool_get_link_ksettings(&nic->mii, cmd); |
| |
| return 0; |
| } |
| |
| static int e100_set_link_ksettings(struct net_device *netdev, |
| const struct ethtool_link_ksettings *cmd) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| int err; |
| |
| mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); |
| err = mii_ethtool_set_link_ksettings(&nic->mii, cmd); |
| e100_exec_cb(nic, NULL, e100_configure); |
| |
| return err; |
| } |
| |
| static void e100_get_drvinfo(struct net_device *netdev, |
| struct ethtool_drvinfo *info) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); |
| strlcpy(info->version, DRV_VERSION, sizeof(info->version)); |
| strlcpy(info->bus_info, pci_name(nic->pdev), |
| sizeof(info->bus_info)); |
| } |
| |
| #define E100_PHY_REGS 0x1D |
| static int e100_get_regs_len(struct net_device *netdev) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| |
| /* We know the number of registers, and the size of the dump buffer. |
| * Calculate the total size in bytes. |
| */ |
| return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf); |
| } |
| |
| static void e100_get_regs(struct net_device *netdev, |
| struct ethtool_regs *regs, void *p) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| u32 *buff = p; |
| int i; |
| |
| regs->version = (1 << 24) | nic->pdev->revision; |
| buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | |
| ioread8(&nic->csr->scb.cmd_lo) << 16 | |
| ioread16(&nic->csr->scb.status); |
| for (i = 0; i < E100_PHY_REGS; i++) |
| /* Note that we read the registers in reverse order. This |
| * ordering is the ABI apparently used by ethtool and other |
| * applications. |
| */ |
| buff[1 + i] = mdio_read(netdev, nic->mii.phy_id, |
| E100_PHY_REGS - 1 - i); |
| memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); |
| e100_exec_cb(nic, NULL, e100_dump); |
| msleep(10); |
| memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf, |
| sizeof(nic->mem->dump_buf)); |
| } |
| |
| static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; |
| wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; |
| } |
| |
| static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| |
| if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || |
| !device_can_wakeup(&nic->pdev->dev)) |
| return -EOPNOTSUPP; |
| |
| if (wol->wolopts) |
| nic->flags |= wol_magic; |
| else |
| nic->flags &= ~wol_magic; |
| |
| device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); |
| |
| e100_exec_cb(nic, NULL, e100_configure); |
| |
| return 0; |
| } |
| |
| static u32 e100_get_msglevel(struct net_device *netdev) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| return nic->msg_enable; |
| } |
| |
| static void e100_set_msglevel(struct net_device *netdev, u32 value) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| nic->msg_enable = value; |
| } |
| |
| static int e100_nway_reset(struct net_device *netdev) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| return mii_nway_restart(&nic->mii); |
| } |
| |
| static u32 e100_get_link(struct net_device *netdev) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| return mii_link_ok(&nic->mii); |
| } |
| |
| static int e100_get_eeprom_len(struct net_device *netdev) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| return nic->eeprom_wc << 1; |
| } |
| |
| #define E100_EEPROM_MAGIC 0x1234 |
| static int e100_get_eeprom(struct net_device *netdev, |
| struct ethtool_eeprom *eeprom, u8 *bytes) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| |
| eeprom->magic = E100_EEPROM_MAGIC; |
| memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); |
| |
| return 0; |
| } |
| |
| static int e100_set_eeprom(struct net_device *netdev, |
| struct ethtool_eeprom *eeprom, u8 *bytes) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| |
| if (eeprom->magic != E100_EEPROM_MAGIC) |
| return -EINVAL; |
| |
| memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); |
| |
| return e100_eeprom_save(nic, eeprom->offset >> 1, |
| (eeprom->len >> 1) + 1); |
| } |
| |
| static void e100_get_ringparam(struct net_device *netdev, |
| struct ethtool_ringparam *ring) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| struct param_range *rfds = &nic->params.rfds; |
| struct param_range *cbs = &nic->params.cbs; |
| |
| ring->rx_max_pending = rfds->max; |
| ring->tx_max_pending = cbs->max; |
| ring->rx_pending = rfds->count; |
| ring->tx_pending = cbs->count; |
| } |
| |
| static int e100_set_ringparam(struct net_device *netdev, |
| struct ethtool_ringparam *ring) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| struct param_range *rfds = &nic->params.rfds; |
| struct param_range *cbs = &nic->params.cbs; |
| |
| if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
| return -EINVAL; |
| |
| if (netif_running(netdev)) |
| e100_down(nic); |
| rfds->count = max(ring->rx_pending, rfds->min); |
| rfds->count = min(rfds->count, rfds->max); |
| cbs->count = max(ring->tx_pending, cbs->min); |
| cbs->count = min(cbs->count, cbs->max); |
| netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", |
| rfds->count, cbs->count); |
| if (netif_running(netdev)) |
| e100_up(nic); |
| |
| return 0; |
| } |
| |
| static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { |
| "Link test (on/offline)", |
| "Eeprom test (on/offline)", |
| "Self test (offline)", |
| "Mac loopback (offline)", |
| "Phy loopback (offline)", |
| }; |
| #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) |
| |
| static void e100_diag_test(struct net_device *netdev, |
| struct ethtool_test *test, u64 *data) |
| { |
| struct ethtool_cmd cmd; |
| struct nic *nic = netdev_priv(netdev); |
| int i, err; |
| |
| memset(data, 0, E100_TEST_LEN * sizeof(u64)); |
| data[0] = !mii_link_ok(&nic->mii); |
| data[1] = e100_eeprom_load(nic); |
| if (test->flags & ETH_TEST_FL_OFFLINE) { |
| |
| /* save speed, duplex & autoneg settings */ |
| err = mii_ethtool_gset(&nic->mii, &cmd); |
| |
| if (netif_running(netdev)) |
| e100_down(nic); |
| data[2] = e100_self_test(nic); |
| data[3] = e100_loopback_test(nic, lb_mac); |
| data[4] = e100_loopback_test(nic, lb_phy); |
| |
| /* restore speed, duplex & autoneg settings */ |
| err = mii_ethtool_sset(&nic->mii, &cmd); |
| |
| if (netif_running(netdev)) |
| e100_up(nic); |
| } |
| for (i = 0; i < E100_TEST_LEN; i++) |
| test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; |
| |
| msleep_interruptible(4 * 1000); |
| } |
| |
| static int e100_set_phys_id(struct net_device *netdev, |
| enum ethtool_phys_id_state state) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| enum led_state { |
| led_on = 0x01, |
| led_off = 0x04, |
| led_on_559 = 0x05, |
| led_on_557 = 0x07, |
| }; |
| u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : |
| MII_LED_CONTROL; |
| u16 leds = 0; |
| |
| switch (state) { |
| case ETHTOOL_ID_ACTIVE: |
| return 2; |
| |
| case ETHTOOL_ID_ON: |
| leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON : |
| (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; |
| break; |
| |
| case ETHTOOL_ID_OFF: |
| leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off; |
| break; |
| |
| case ETHTOOL_ID_INACTIVE: |
| break; |
| } |
| |
| mdio_write(netdev, nic->mii.phy_id, led_reg, leds); |
| return 0; |
| } |
| |
| static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { |
| "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", |
| "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", |
| "rx_length_errors", "rx_over_errors", "rx_crc_errors", |
| "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", |
| "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", |
| "tx_heartbeat_errors", "tx_window_errors", |
| /* device-specific stats */ |
| "tx_deferred", "tx_single_collisions", "tx_multi_collisions", |
| "tx_flow_control_pause", "rx_flow_control_pause", |
| "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", |
| "rx_short_frame_errors", "rx_over_length_errors", |
| }; |
| #define E100_NET_STATS_LEN 21 |
| #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) |
| |
| static int e100_get_sset_count(struct net_device *netdev, int sset) |
| { |
| switch (sset) { |
| case ETH_SS_TEST: |
| return E100_TEST_LEN; |
| case ETH_SS_STATS: |
| return E100_STATS_LEN; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static void e100_get_ethtool_stats(struct net_device *netdev, |
| struct ethtool_stats *stats, u64 *data) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| int i; |
| |
| for (i = 0; i < E100_NET_STATS_LEN; i++) |
| data[i] = ((unsigned long *)&netdev->stats)[i]; |
| |
| data[i++] = nic->tx_deferred; |
| data[i++] = nic->tx_single_collisions; |
| data[i++] = nic->tx_multiple_collisions; |
| data[i++] = nic->tx_fc_pause; |
| data[i++] = nic->rx_fc_pause; |
| data[i++] = nic->rx_fc_unsupported; |
| data[i++] = nic->tx_tco_frames; |
| data[i++] = nic->rx_tco_frames; |
| data[i++] = nic->rx_short_frame_errors; |
| data[i++] = nic->rx_over_length_errors; |
| } |
| |
| static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) |
| { |
| switch (stringset) { |
| case ETH_SS_TEST: |
| memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); |
| break; |
| case ETH_SS_STATS: |
| memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); |
| break; |
| } |
| } |
| |
| static const struct ethtool_ops e100_ethtool_ops = { |
| .get_drvinfo = e100_get_drvinfo, |
| .get_regs_len = e100_get_regs_len, |
| .get_regs = e100_get_regs, |
| .get_wol = e100_get_wol, |
| .set_wol = e100_set_wol, |
| .get_msglevel = e100_get_msglevel, |
| .set_msglevel = e100_set_msglevel, |
| .nway_reset = e100_nway_reset, |
| .get_link = e100_get_link, |
| .get_eeprom_len = e100_get_eeprom_len, |
| .get_eeprom = e100_get_eeprom, |
| .set_eeprom = e100_set_eeprom, |
| .get_ringparam = e100_get_ringparam, |
| .set_ringparam = e100_set_ringparam, |
| .self_test = e100_diag_test, |
| .get_strings = e100_get_strings, |
| .set_phys_id = e100_set_phys_id, |
| .get_ethtool_stats = e100_get_ethtool_stats, |
| .get_sset_count = e100_get_sset_count, |
| .get_ts_info = ethtool_op_get_ts_info, |
| .get_link_ksettings = e100_get_link_ksettings, |
| .set_link_ksettings = e100_set_link_ksettings, |
| }; |
| |
| static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| |
| return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); |
| } |
| |
| static int e100_alloc(struct nic *nic) |
| { |
| nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), |
| &nic->dma_addr); |
| return nic->mem ? 0 : -ENOMEM; |
| } |
| |
| static void e100_free(struct nic *nic) |
| { |
| if (nic->mem) { |
| pci_free_consistent(nic->pdev, sizeof(struct mem), |
| nic->mem, nic->dma_addr); |
| nic->mem = NULL; |
| } |
| } |
| |
| static int e100_open(struct net_device *netdev) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| int err = 0; |
| |
| netif_carrier_off(netdev); |
| if ((err = e100_up(nic))) |
| netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); |
| return err; |
| } |
| |
| static int e100_close(struct net_device *netdev) |
| { |
| e100_down(netdev_priv(netdev)); |
| return 0; |
| } |
| |
| static int e100_set_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| struct nic *nic = netdev_priv(netdev); |
| netdev_features_t changed = features ^ netdev->features; |
| |
| if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL))) |
| return 0; |
| |
| netdev->features = features; |
| e100_exec_cb(nic, NULL, e100_configure); |
| return 0; |
| } |
| |
| static const struct net_device_ops e100_netdev_ops = { |
| .ndo_open = e100_open, |
| .ndo_stop = e100_close, |
| .ndo_start_xmit = e100_xmit_frame, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_rx_mode = e100_set_multicast_list, |
| .ndo_set_mac_address = e100_set_mac_address, |
| .ndo_do_ioctl = e100_do_ioctl, |
| .ndo_tx_timeout = e100_tx_timeout, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = e100_netpoll, |
| #endif |
| .ndo_set_features = e100_set_features, |
| }; |
| |
| static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct net_device *netdev; |
| struct nic *nic; |
| int err; |
| |
| if (!(netdev = alloc_etherdev(sizeof(struct nic)))) |
| return -ENOMEM; |
| |
| netdev->hw_features |= NETIF_F_RXFCS; |
| netdev->priv_flags |= IFF_SUPP_NOFCS; |
| netdev->hw_features |= NETIF_F_RXALL; |
| |
| netdev->netdev_ops = &e100_netdev_ops; |
| netdev->ethtool_ops = &e100_ethtool_ops; |
| netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; |
| strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
| |
| nic = netdev_priv(netdev); |
| netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); |
| nic->netdev = netdev; |
| nic->pdev = pdev; |
| nic->msg_enable = (1 << debug) - 1; |
| nic->mdio_ctrl = mdio_ctrl_hw; |
| pci_set_drvdata(pdev, netdev); |
| |
| if ((err = pci_enable_device(pdev))) { |
| netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); |
| goto err_out_free_dev; |
| } |
| |
| if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
| netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); |
| err = -ENODEV; |
| goto err_out_disable_pdev; |
| } |
| |
| if ((err = pci_request_regions(pdev, DRV_NAME))) { |
| netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); |
| goto err_out_disable_pdev; |
| } |
| |
| if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { |
| netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); |
| goto err_out_free_res; |
| } |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| |
| if (use_io) |
| netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); |
| |
| nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); |
| if (!nic->csr) { |
| netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); |
| err = -ENOMEM; |
| goto err_out_free_res; |
| } |
| |
| if (ent->driver_data) |
| nic->flags |= ich; |
| else |
| nic->flags &= ~ich; |
| |
| e100_get_defaults(nic); |
| |
| /* D100 MAC doesn't allow rx of vlan packets with normal MTU */ |
| if (nic->mac < mac_82558_D101_A4) |
| netdev->features |= NETIF_F_VLAN_CHALLENGED; |
| |
| /* locks must be initialized before calling hw_reset */ |
| spin_lock_init(&nic->cb_lock); |
| spin_lock_init(&nic->cmd_lock); |
| spin_lock_init(&nic->mdio_lock); |
| |
| /* Reset the device before pci_set_master() in case device is in some |
| * funky state and has an interrupt pending - hint: we don't have the |
| * interrupt handler registered yet. */ |
| e100_hw_reset(nic); |
| |
| pci_set_master(pdev); |
| |
| setup_timer(&nic->watchdog, e100_watchdog, (unsigned long)nic); |
| |
| INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); |
| |
| if ((err = e100_alloc(nic))) { |
| netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); |
| goto err_out_iounmap; |
| } |
| |
| if ((err = e100_eeprom_load(nic))) |
| goto err_out_free; |
| |
| e100_phy_init(nic); |
| |
| memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); |
| if (!is_valid_ether_addr(netdev->dev_addr)) { |
| if (!eeprom_bad_csum_allow) { |
| netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); |
| err = -EAGAIN; |
| goto err_out_free; |
| } else { |
| netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); |
| } |
| } |
| |
| /* Wol magic packet can be enabled from eeprom */ |
| if ((nic->mac >= mac_82558_D101_A4) && |
| (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) { |
| nic->flags |= wol_magic; |
| device_set_wakeup_enable(&pdev->dev, true); |
| } |
| |
| /* ack any pending wake events, disable PME */ |
| pci_pme_active(pdev, false); |
| |
| strcpy(netdev->name, "eth%d"); |
| if ((err = register_netdev(netdev))) { |
| netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); |
| goto err_out_free; |
| } |
| nic->cbs_pool = pci_pool_create(netdev->name, |
| nic->pdev, |
| nic->params.cbs.max * sizeof(struct cb), |
| sizeof(u32), |
| 0); |
| if (!nic->cbs_pool) { |
| netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n"); |
| err = -ENOMEM; |
| goto err_out_pool; |
| } |
| netif_info(nic, probe, nic->netdev, |
| "addr 0x%llx, irq %d, MAC addr %pM\n", |
| (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), |
| pdev->irq, netdev->dev_addr); |
| |
| return 0; |
| |
| err_out_pool: |
| unregister_netdev(netdev); |
| err_out_free: |
| e100_free(nic); |
| err_out_iounmap: |
| pci_iounmap(pdev, nic->csr); |
| err_out_free_res: |
| pci_release_regions(pdev); |
| err_out_disable_pdev: |
| pci_disable_device(pdev); |
| err_out_free_dev: |
| free_netdev(netdev); |
| return err; |
| } |
| |
| static void e100_remove(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| |
| if (netdev) { |
| struct nic *nic = netdev_priv(netdev); |
| unregister_netdev(netdev); |
| e100_free(nic); |
| pci_iounmap(pdev, nic->csr); |
| pci_pool_destroy(nic->cbs_pool); |
| free_netdev(netdev); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| } |
| } |
| |
| #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ |
| #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ |
| #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ |
| static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct nic *nic = netdev_priv(netdev); |
| |
| if (netif_running(netdev)) |
| e100_down(nic); |
| netif_device_detach(netdev); |
| |
| pci_save_state(pdev); |
| |
| if ((nic->flags & wol_magic) | e100_asf(nic)) { |
| /* enable reverse auto-negotiation */ |
| if (nic->phy == phy_82552_v) { |
| u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, |
| E100_82552_SMARTSPEED); |
| |
| mdio_write(netdev, nic->mii.phy_id, |
| E100_82552_SMARTSPEED, smartspeed | |
| E100_82552_REV_ANEG | E100_82552_ANEG_NOW); |
| } |
| *enable_wake = true; |
| } else { |
| *enable_wake = false; |
| } |
| |
| pci_clear_master(pdev); |
| } |
| |
| static int __e100_power_off(struct pci_dev *pdev, bool wake) |
| { |
| if (wake) |
| return pci_prepare_to_sleep(pdev); |
| |
| pci_wake_from_d3(pdev, false); |
| pci_set_power_state(pdev, PCI_D3hot); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int e100_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| bool wake; |
| __e100_shutdown(pdev, &wake); |
| return __e100_power_off(pdev, wake); |
| } |
| |
| static int e100_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct nic *nic = netdev_priv(netdev); |
| |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| /* ack any pending wake events, disable PME */ |
| pci_enable_wake(pdev, PCI_D0, 0); |
| |
| /* disable reverse auto-negotiation */ |
| if (nic->phy == phy_82552_v) { |
| u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, |
| E100_82552_SMARTSPEED); |
| |
| mdio_write(netdev, nic->mii.phy_id, |
| E100_82552_SMARTSPEED, |
| smartspeed & ~(E100_82552_REV_ANEG)); |
| } |
| |
| netif_device_attach(netdev); |
| if (netif_running(netdev)) |
| e100_up(nic); |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM */ |
| |
| static void e100_shutdown(struct pci_dev *pdev) |
| { |
| bool wake; |
| __e100_shutdown(pdev, &wake); |
| if (system_state == SYSTEM_POWER_OFF) |
| __e100_power_off(pdev, wake); |
| } |
| |
| /* ------------------ PCI Error Recovery infrastructure -------------- */ |
| /** |
| * e100_io_error_detected - called when PCI error is detected. |
| * @pdev: Pointer to PCI device |
| * @state: The current pci connection state |
| */ |
| static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct nic *nic = netdev_priv(netdev); |
| |
| netif_device_detach(netdev); |
| |
| if (state == pci_channel_io_perm_failure) |
| return PCI_ERS_RESULT_DISCONNECT; |
| |
| if (netif_running(netdev)) |
| e100_down(nic); |
| pci_disable_device(pdev); |
| |
| /* Request a slot reset. */ |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * e100_io_slot_reset - called after the pci bus has been reset. |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch. |
| */ |
| static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct nic *nic = netdev_priv(netdev); |
| |
| if (pci_enable_device(pdev)) { |
| pr_err("Cannot re-enable PCI device after reset\n"); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| pci_set_master(pdev); |
| |
| /* Only one device per card can do a reset */ |
| if (0 != PCI_FUNC(pdev->devfn)) |
| return PCI_ERS_RESULT_RECOVERED; |
| e100_hw_reset(nic); |
| e100_phy_init(nic); |
| |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| /** |
| * e100_io_resume - resume normal operations |
| * @pdev: Pointer to PCI device |
| * |
| * Resume normal operations after an error recovery |
| * sequence has been completed. |
| */ |
| static void e100_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct nic *nic = netdev_priv(netdev); |
| |
| /* ack any pending wake events, disable PME */ |
| pci_enable_wake(pdev, PCI_D0, 0); |
| |
| netif_device_attach(netdev); |
| if (netif_running(netdev)) { |
| e100_open(netdev); |
| mod_timer(&nic->watchdog, jiffies); |
| } |
| } |
| |
| static const struct pci_error_handlers e100_err_handler = { |
| .error_detected = e100_io_error_detected, |
| .slot_reset = e100_io_slot_reset, |
| .resume = e100_io_resume, |
| }; |
| |
| static struct pci_driver e100_driver = { |
| .name = DRV_NAME, |
| .id_table = e100_id_table, |
| .probe = e100_probe, |
| .remove = e100_remove, |
| #ifdef CONFIG_PM |
| /* Power Management hooks */ |
| .suspend = e100_suspend, |
| .resume = e100_resume, |
| #endif |
| .shutdown = e100_shutdown, |
| .err_handler = &e100_err_handler, |
| }; |
| |
| static int __init e100_init_module(void) |
| { |
| if (((1 << debug) - 1) & NETIF_MSG_DRV) { |
| pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); |
| pr_info("%s\n", DRV_COPYRIGHT); |
| } |
| return pci_register_driver(&e100_driver); |
| } |
| |
| static void __exit e100_cleanup_module(void) |
| { |
| pci_unregister_driver(&e100_driver); |
| } |
| |
| module_init(e100_init_module); |
| module_exit(e100_cleanup_module); |