list_lru: introduce list_lru_shrink_{count,walk}

Kmem accounting of memcg is unusable now, because it lacks slab shrinker
support.  That means when we hit the limit we will get ENOMEM w/o any
chance to recover.  What we should do then is to call shrink_slab, which
would reclaim old inode/dentry caches from this cgroup.  This is what
this patch set is intended to do.

Basically, it does two things.  First, it introduces the notion of
per-memcg slab shrinker.  A shrinker that wants to reclaim objects per
cgroup should mark itself as SHRINKER_MEMCG_AWARE.  Then it will be
passed the memory cgroup to scan from in shrink_control->memcg.  For
such shrinkers shrink_slab iterates over the whole cgroup subtree under
the target cgroup and calls the shrinker for each kmem-active memory
cgroup.

Secondly, this patch set makes the list_lru structure per-memcg.  It's
done transparently to list_lru users - everything they have to do is to
tell list_lru_init that they want memcg-aware list_lru.  Then the
list_lru will automatically distribute objects among per-memcg lists
basing on which cgroup the object is accounted to.  This way to make FS
shrinkers (icache, dcache) memcg-aware we only need to make them use
memcg-aware list_lru, and this is what this patch set does.

As before, this patch set only enables per-memcg kmem reclaim when the
pressure goes from memory.limit, not from memory.kmem.limit.  Handling
memory.kmem.limit is going to be tricky due to GFP_NOFS allocations, and
it is still unclear whether we will have this knob in the unified
hierarchy.

This patch (of 9):

NUMA aware slab shrinkers use the list_lru structure to distribute
objects coming from different NUMA nodes to different lists.  Whenever
such a shrinker needs to count or scan objects from a particular node,
it issues commands like this:

        count = list_lru_count_node(lru, sc->nid);
        freed = list_lru_walk_node(lru, sc->nid, isolate_func,
                                   isolate_arg, &sc->nr_to_scan);

where sc is an instance of the shrink_control structure passed to it
from vmscan.

To simplify this, let's add special list_lru functions to be used by
shrinkers, list_lru_shrink_count() and list_lru_shrink_walk(), which
consolidate the nid and nr_to_scan arguments in the shrink_control
structure.

This will also allow us to avoid patching shrinkers that use list_lru
when we make shrink_slab() per-memcg - all we will have to do is extend
the shrink_control structure to include the target memcg and make
list_lru_shrink_{count,walk} handle this appropriately.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff --git a/fs/super.c b/fs/super.c
index eae088f..4554ac2 100644
--- a/fs/super.c
+++ b/fs/super.c
@@ -77,8 +77,8 @@
 	if (sb->s_op->nr_cached_objects)
 		fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
 
-	inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
-	dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
+	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
+	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
 	total_objects = dentries + inodes + fs_objects + 1;
 	if (!total_objects)
 		total_objects = 1;
@@ -86,20 +86,20 @@
 	/* proportion the scan between the caches */
 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
+	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
 
 	/*
 	 * prune the dcache first as the icache is pinned by it, then
 	 * prune the icache, followed by the filesystem specific caches
 	 */
-	freed = prune_dcache_sb(sb, dentries, sc->nid);
-	freed += prune_icache_sb(sb, inodes, sc->nid);
+	sc->nr_to_scan = dentries;
+	freed = prune_dcache_sb(sb, sc);
+	sc->nr_to_scan = inodes;
+	freed += prune_icache_sb(sb, sc);
 
-	if (fs_objects) {
-		fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
-								total_objects);
+	if (fs_objects)
 		freed += sb->s_op->free_cached_objects(sb, fs_objects,
 						       sc->nid);
-	}
 
 	drop_super(sb);
 	return freed;
@@ -118,17 +118,15 @@
 	 * scalability bottleneck. The counts could get updated
 	 * between super_cache_count and super_cache_scan anyway.
 	 * Call to super_cache_count with shrinker_rwsem held
-	 * ensures the safety of call to list_lru_count_node() and
+	 * ensures the safety of call to list_lru_shrink_count() and
 	 * s_op->nr_cached_objects().
 	 */
 	if (sb->s_op && sb->s_op->nr_cached_objects)
 		total_objects = sb->s_op->nr_cached_objects(sb,
 						 sc->nid);
 
-	total_objects += list_lru_count_node(&sb->s_dentry_lru,
-						 sc->nid);
-	total_objects += list_lru_count_node(&sb->s_inode_lru,
-						 sc->nid);
+	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
+	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 
 	total_objects = vfs_pressure_ratio(total_objects);
 	return total_objects;