tile: support kprobes on tilegx

This change includes support for Kprobes, Jprobes and Return Probes.

Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Tony Lu <zlu@tilera.com>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
diff --git a/arch/tile/kernel/kprobes.c b/arch/tile/kernel/kprobes.c
new file mode 100644
index 0000000..27cdcac
--- /dev/null
+++ b/arch/tile/kernel/kprobes.c
@@ -0,0 +1,528 @@
+/*
+ * arch/tile/kernel/kprobes.c
+ * Kprobes on TILE-Gx
+ *
+ * Some portions copied from the MIPS version.
+ *
+ * Copyright (C) IBM Corporation, 2002, 2004
+ * Copyright 2006 Sony Corp.
+ * Copyright 2010 Cavium Networks
+ *
+ * Copyright 2012 Tilera Corporation. All Rights Reserved.
+ *
+ *   This program is free software; you can redistribute it and/or
+ *   modify it under the terms of the GNU General Public License
+ *   as published by the Free Software Foundation, version 2.
+ *
+ *   This program is distributed in the hope that it will be useful, but
+ *   WITHOUT ANY WARRANTY; without even the implied warranty of
+ *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
+ *   NON INFRINGEMENT.  See the GNU General Public License for
+ *   more details.
+ */
+
+#include <linux/kprobes.h>
+#include <linux/kdebug.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/uaccess.h>
+#include <asm/cacheflush.h>
+
+#include <arch/opcode.h>
+
+DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
+DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
+
+tile_bundle_bits breakpoint_insn = TILEGX_BPT_BUNDLE;
+tile_bundle_bits breakpoint2_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP;
+
+/*
+ * Check whether instruction is branch or jump, or if executing it
+ * has different results depending on where it is executed (e.g. lnk).
+ */
+static int __kprobes insn_has_control(kprobe_opcode_t insn)
+{
+	if (get_Mode(insn) != 0) {   /* Y-format bundle */
+		if (get_Opcode_Y1(insn) != RRR_1_OPCODE_Y1 ||
+		    get_RRROpcodeExtension_Y1(insn) != UNARY_RRR_1_OPCODE_Y1)
+			return 0;
+
+		switch (get_UnaryOpcodeExtension_Y1(insn)) {
+		case JALRP_UNARY_OPCODE_Y1:
+		case JALR_UNARY_OPCODE_Y1:
+		case JRP_UNARY_OPCODE_Y1:
+		case JR_UNARY_OPCODE_Y1:
+		case LNK_UNARY_OPCODE_Y1:
+			return 1;
+		default:
+			return 0;
+		}
+	}
+
+	switch (get_Opcode_X1(insn)) {
+	case BRANCH_OPCODE_X1:	/* branch instructions */
+	case JUMP_OPCODE_X1:	/* jump instructions: j and jal */
+		return 1;
+
+	case RRR_0_OPCODE_X1:   /* other jump instructions */
+		if (get_RRROpcodeExtension_X1(insn) != UNARY_RRR_0_OPCODE_X1)
+			return 0;
+		switch (get_UnaryOpcodeExtension_X1(insn)) {
+		case JALRP_UNARY_OPCODE_X1:
+		case JALR_UNARY_OPCODE_X1:
+		case JRP_UNARY_OPCODE_X1:
+		case JR_UNARY_OPCODE_X1:
+		case LNK_UNARY_OPCODE_X1:
+			return 1;
+		default:
+			return 0;
+		}
+	default:
+		return 0;
+	}
+}
+
+int __kprobes arch_prepare_kprobe(struct kprobe *p)
+{
+	unsigned long addr = (unsigned long)p->addr;
+
+	if (addr & (sizeof(kprobe_opcode_t) - 1))
+		return -EINVAL;
+
+	if (insn_has_control(*p->addr)) {
+		pr_notice("Kprobes for control instructions are not "
+			  "supported\n");
+		return -EINVAL;
+	}
+
+	/* insn: must be on special executable page on tile. */
+	p->ainsn.insn = get_insn_slot();
+	if (!p->ainsn.insn)
+		return -ENOMEM;
+
+	/*
+	 * In the kprobe->ainsn.insn[] array we store the original
+	 * instruction at index zero and a break trap instruction at
+	 * index one.
+	 */
+	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
+	p->ainsn.insn[1] = breakpoint2_insn;
+	p->opcode = *p->addr;
+
+	return 0;
+}
+
+void __kprobes arch_arm_kprobe(struct kprobe *p)
+{
+	unsigned long addr_wr;
+
+	/* Operate on writable kernel text mapping. */
+	addr_wr = (unsigned long)p->addr - MEM_SV_START + PAGE_OFFSET;
+
+	if (probe_kernel_write((void *)addr_wr, &breakpoint_insn,
+		sizeof(breakpoint_insn)))
+		pr_err("%s: failed to enable kprobe\n", __func__);
+
+	smp_wmb();
+	flush_insn_slot(p);
+}
+
+void __kprobes arch_disarm_kprobe(struct kprobe *kp)
+{
+	unsigned long addr_wr;
+
+	/* Operate on writable kernel text mapping. */
+	addr_wr = (unsigned long)kp->addr - MEM_SV_START + PAGE_OFFSET;
+
+	if (probe_kernel_write((void *)addr_wr, &kp->opcode,
+		sizeof(kp->opcode)))
+		pr_err("%s: failed to enable kprobe\n", __func__);
+
+	smp_wmb();
+	flush_insn_slot(kp);
+}
+
+void __kprobes arch_remove_kprobe(struct kprobe *p)
+{
+	if (p->ainsn.insn) {
+		free_insn_slot(p->ainsn.insn, 0);
+		p->ainsn.insn = NULL;
+	}
+}
+
+static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+	kcb->prev_kprobe.kp = kprobe_running();
+	kcb->prev_kprobe.status = kcb->kprobe_status;
+	kcb->prev_kprobe.saved_pc = kcb->kprobe_saved_pc;
+}
+
+static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
+	kcb->kprobe_status = kcb->prev_kprobe.status;
+	kcb->kprobe_saved_pc = kcb->prev_kprobe.saved_pc;
+}
+
+static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
+			struct kprobe_ctlblk *kcb)
+{
+	__this_cpu_write(current_kprobe, p);
+	kcb->kprobe_saved_pc = regs->pc;
+}
+
+static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
+{
+	/* Single step inline if the instruction is a break. */
+	if (p->opcode == breakpoint_insn ||
+	    p->opcode == breakpoint2_insn)
+		regs->pc = (unsigned long)p->addr;
+	else
+		regs->pc = (unsigned long)&p->ainsn.insn[0];
+}
+
+static int __kprobes kprobe_handler(struct pt_regs *regs)
+{
+	struct kprobe *p;
+	int ret = 0;
+	kprobe_opcode_t *addr;
+	struct kprobe_ctlblk *kcb;
+
+	addr = (kprobe_opcode_t *)regs->pc;
+
+	/*
+	 * We don't want to be preempted for the entire
+	 * duration of kprobe processing.
+	 */
+	preempt_disable();
+	kcb = get_kprobe_ctlblk();
+
+	/* Check we're not actually recursing. */
+	if (kprobe_running()) {
+		p = get_kprobe(addr);
+		if (p) {
+			if (kcb->kprobe_status == KPROBE_HIT_SS &&
+			    p->ainsn.insn[0] == breakpoint_insn) {
+				goto no_kprobe;
+			}
+			/*
+			 * We have reentered the kprobe_handler(), since
+			 * another probe was hit while within the handler.
+			 * We here save the original kprobes variables and
+			 * just single step on the instruction of the new probe
+			 * without calling any user handlers.
+			 */
+			save_previous_kprobe(kcb);
+			set_current_kprobe(p, regs, kcb);
+			kprobes_inc_nmissed_count(p);
+			prepare_singlestep(p, regs);
+			kcb->kprobe_status = KPROBE_REENTER;
+			return 1;
+		} else {
+			if (*addr != breakpoint_insn) {
+				/*
+				 * The breakpoint instruction was removed by
+				 * another cpu right after we hit, no further
+				 * handling of this interrupt is appropriate.
+				 */
+				ret = 1;
+				goto no_kprobe;
+			}
+			p = __this_cpu_read(current_kprobe);
+			if (p->break_handler && p->break_handler(p, regs))
+				goto ss_probe;
+		}
+		goto no_kprobe;
+	}
+
+	p = get_kprobe(addr);
+	if (!p) {
+		if (*addr != breakpoint_insn) {
+			/*
+			 * The breakpoint instruction was removed right
+			 * after we hit it.  Another cpu has removed
+			 * either a probepoint or a debugger breakpoint
+			 * at this address.  In either case, no further
+			 * handling of this interrupt is appropriate.
+			 */
+			ret = 1;
+		}
+		/* Not one of ours: let kernel handle it. */
+		goto no_kprobe;
+	}
+
+	set_current_kprobe(p, regs, kcb);
+	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
+
+	if (p->pre_handler && p->pre_handler(p, regs)) {
+		/* Handler has already set things up, so skip ss setup. */
+		return 1;
+	}
+
+ss_probe:
+	prepare_singlestep(p, regs);
+	kcb->kprobe_status = KPROBE_HIT_SS;
+	return 1;
+
+no_kprobe:
+	preempt_enable_no_resched();
+	return ret;
+}
+
+/*
+ * Called after single-stepping.  p->addr is the address of the
+ * instruction that has been replaced by the breakpoint. To avoid the
+ * SMP problems that can occur when we temporarily put back the
+ * original opcode to single-step, we single-stepped a copy of the
+ * instruction.  The address of this copy is p->ainsn.insn.
+ *
+ * This function prepares to return from the post-single-step
+ * breakpoint trap.
+ */
+static void __kprobes resume_execution(struct kprobe *p,
+				       struct pt_regs *regs,
+				       struct kprobe_ctlblk *kcb)
+{
+	unsigned long orig_pc = kcb->kprobe_saved_pc;
+	regs->pc = orig_pc + 8;
+}
+
+static inline int post_kprobe_handler(struct pt_regs *regs)
+{
+	struct kprobe *cur = kprobe_running();
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	if (!cur)
+		return 0;
+
+	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
+		kcb->kprobe_status = KPROBE_HIT_SSDONE;
+		cur->post_handler(cur, regs, 0);
+	}
+
+	resume_execution(cur, regs, kcb);
+
+	/* Restore back the original saved kprobes variables and continue. */
+	if (kcb->kprobe_status == KPROBE_REENTER) {
+		restore_previous_kprobe(kcb);
+		goto out;
+	}
+	reset_current_kprobe();
+out:
+	preempt_enable_no_resched();
+
+	return 1;
+}
+
+static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
+{
+	struct kprobe *cur = kprobe_running();
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
+		return 1;
+
+	if (kcb->kprobe_status & KPROBE_HIT_SS) {
+		/*
+		 * We are here because the instruction being single
+		 * stepped caused a page fault. We reset the current
+		 * kprobe and the ip points back to the probe address
+		 * and allow the page fault handler to continue as a
+		 * normal page fault.
+		 */
+		resume_execution(cur, regs, kcb);
+		reset_current_kprobe();
+		preempt_enable_no_resched();
+	}
+	return 0;
+}
+
+/*
+ * Wrapper routine for handling exceptions.
+ */
+int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
+				       unsigned long val, void *data)
+{
+	struct die_args *args = (struct die_args *)data;
+	int ret = NOTIFY_DONE;
+
+	switch (val) {
+	case DIE_BREAK:
+		if (kprobe_handler(args->regs))
+			ret = NOTIFY_STOP;
+		break;
+	case DIE_SSTEPBP:
+		if (post_kprobe_handler(args->regs))
+			ret = NOTIFY_STOP;
+		break;
+	case DIE_PAGE_FAULT:
+		/* kprobe_running() needs smp_processor_id(). */
+		preempt_disable();
+
+		if (kprobe_running()
+		    && kprobe_fault_handler(args->regs, args->trapnr))
+			ret = NOTIFY_STOP;
+		preempt_enable();
+		break;
+	default:
+		break;
+	}
+	return ret;
+}
+
+int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
+{
+	struct jprobe *jp = container_of(p, struct jprobe, kp);
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	kcb->jprobe_saved_regs = *regs;
+	kcb->jprobe_saved_sp = regs->sp;
+
+	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
+	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
+
+	regs->pc = (unsigned long)(jp->entry);
+
+	return 1;
+}
+
+/* Defined in the inline asm below. */
+void jprobe_return_end(void);
+
+void __kprobes jprobe_return(void)
+{
+	asm volatile(
+		"bpt\n\t"
+		".globl jprobe_return_end\n"
+		"jprobe_return_end:\n");
+}
+
+int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
+{
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	if (regs->pc >= (unsigned long)jprobe_return &&
+	    regs->pc <= (unsigned long)jprobe_return_end) {
+		*regs = kcb->jprobe_saved_regs;
+		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
+		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
+		preempt_enable_no_resched();
+
+		return 1;
+	}
+	return 0;
+}
+
+/*
+ * Function return probe trampoline:
+ * - init_kprobes() establishes a probepoint here
+ * - When the probed function returns, this probe causes the
+ *   handlers to fire
+ */
+static void __used kretprobe_trampoline_holder(void)
+{
+	asm volatile(
+		"nop\n\t"
+		".global kretprobe_trampoline\n"
+		"kretprobe_trampoline:\n\t"
+		"nop\n\t"
+		: : : "memory");
+}
+
+void kretprobe_trampoline(void);
+
+void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
+				      struct pt_regs *regs)
+{
+	ri->ret_addr = (kprobe_opcode_t *) regs->lr;
+
+	/* Replace the return addr with trampoline addr */
+	regs->lr = (unsigned long)kretprobe_trampoline;
+}
+
+/*
+ * Called when the probe at kretprobe trampoline is hit.
+ */
+static int __kprobes trampoline_probe_handler(struct kprobe *p,
+						struct pt_regs *regs)
+{
+	struct kretprobe_instance *ri = NULL;
+	struct hlist_head *head, empty_rp;
+	struct hlist_node *tmp;
+	unsigned long flags, orig_ret_address = 0;
+	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
+
+	INIT_HLIST_HEAD(&empty_rp);
+	kretprobe_hash_lock(current, &head, &flags);
+
+	/*
+	 * It is possible to have multiple instances associated with a given
+	 * task either because multiple functions in the call path have
+	 * a return probe installed on them, and/or more than one return
+	 * return probe was registered for a target function.
+	 *
+	 * We can handle this because:
+	 *     - instances are always inserted at the head of the list
+	 *     - when multiple return probes are registered for the same
+	 *       function, the first instance's ret_addr will point to the
+	 *       real return address, and all the rest will point to
+	 *       kretprobe_trampoline
+	 */
+	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
+		if (ri->task != current)
+			/* another task is sharing our hash bucket */
+			continue;
+
+		if (ri->rp && ri->rp->handler)
+			ri->rp->handler(ri, regs);
+
+		orig_ret_address = (unsigned long)ri->ret_addr;
+		recycle_rp_inst(ri, &empty_rp);
+
+		if (orig_ret_address != trampoline_address) {
+			/*
+			 * This is the real return address. Any other
+			 * instances associated with this task are for
+			 * other calls deeper on the call stack
+			 */
+			break;
+		}
+	}
+
+	kretprobe_assert(ri, orig_ret_address, trampoline_address);
+	instruction_pointer(regs) = orig_ret_address;
+
+	reset_current_kprobe();
+	kretprobe_hash_unlock(current, &flags);
+	preempt_enable_no_resched();
+
+	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
+		hlist_del(&ri->hlist);
+		kfree(ri);
+	}
+	/*
+	 * By returning a non-zero value, we are telling
+	 * kprobe_handler() that we don't want the post_handler
+	 * to run (and have re-enabled preemption)
+	 */
+	return 1;
+}
+
+int __kprobes arch_trampoline_kprobe(struct kprobe *p)
+{
+	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
+		return 1;
+
+	return 0;
+}
+
+static struct kprobe trampoline_p = {
+	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
+	.pre_handler = trampoline_probe_handler
+};
+
+int __init arch_init_kprobes(void)
+{
+	register_kprobe(&trampoline_p);
+	return 0;
+}