| /* |
| * Copyright (c) 2006, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
| * Place - Suite 330, Boston, MA 02111-1307 USA. |
| * |
| * Copyright (C) 2006-2008 Intel Corporation |
| * Author: Ashok Raj <ashok.raj@intel.com> |
| * Author: Shaohua Li <shaohua.li@intel.com> |
| * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
| * Author: Fenghua Yu <fenghua.yu@intel.com> |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/bitmap.h> |
| #include <linux/debugfs.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/pci.h> |
| #include <linux/dmar.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/mempool.h> |
| #include <linux/timer.h> |
| #include <linux/iova.h> |
| #include <linux/iommu.h> |
| #include <linux/intel-iommu.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/tboot.h> |
| #include <linux/dmi.h> |
| #include <linux/pci-ats.h> |
| #include <linux/memblock.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/cacheflush.h> |
| #include <asm/iommu.h> |
| |
| #define ROOT_SIZE VTD_PAGE_SIZE |
| #define CONTEXT_SIZE VTD_PAGE_SIZE |
| |
| #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) |
| #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) |
| #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) |
| |
| #define IOAPIC_RANGE_START (0xfee00000) |
| #define IOAPIC_RANGE_END (0xfeefffff) |
| #define IOVA_START_ADDR (0x1000) |
| |
| #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 |
| |
| #define MAX_AGAW_WIDTH 64 |
| |
| #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1) |
| #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1) |
| |
| /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR |
| to match. That way, we can use 'unsigned long' for PFNs with impunity. */ |
| #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ |
| __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) |
| #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) |
| |
| #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) |
| #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32)) |
| #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64)) |
| |
| /* page table handling */ |
| #define LEVEL_STRIDE (9) |
| #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) |
| |
| /* |
| * This bitmap is used to advertise the page sizes our hardware support |
| * to the IOMMU core, which will then use this information to split |
| * physically contiguous memory regions it is mapping into page sizes |
| * that we support. |
| * |
| * Traditionally the IOMMU core just handed us the mappings directly, |
| * after making sure the size is an order of a 4KiB page and that the |
| * mapping has natural alignment. |
| * |
| * To retain this behavior, we currently advertise that we support |
| * all page sizes that are an order of 4KiB. |
| * |
| * If at some point we'd like to utilize the IOMMU core's new behavior, |
| * we could change this to advertise the real page sizes we support. |
| */ |
| #define INTEL_IOMMU_PGSIZES (~0xFFFUL) |
| |
| static inline int agaw_to_level(int agaw) |
| { |
| return agaw + 2; |
| } |
| |
| static inline int agaw_to_width(int agaw) |
| { |
| return 30 + agaw * LEVEL_STRIDE; |
| } |
| |
| static inline int width_to_agaw(int width) |
| { |
| return (width - 30) / LEVEL_STRIDE; |
| } |
| |
| static inline unsigned int level_to_offset_bits(int level) |
| { |
| return (level - 1) * LEVEL_STRIDE; |
| } |
| |
| static inline int pfn_level_offset(unsigned long pfn, int level) |
| { |
| return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; |
| } |
| |
| static inline unsigned long level_mask(int level) |
| { |
| return -1UL << level_to_offset_bits(level); |
| } |
| |
| static inline unsigned long level_size(int level) |
| { |
| return 1UL << level_to_offset_bits(level); |
| } |
| |
| static inline unsigned long align_to_level(unsigned long pfn, int level) |
| { |
| return (pfn + level_size(level) - 1) & level_mask(level); |
| } |
| |
| static inline unsigned long lvl_to_nr_pages(unsigned int lvl) |
| { |
| return 1 << ((lvl - 1) * LEVEL_STRIDE); |
| } |
| |
| /* VT-d pages must always be _smaller_ than MM pages. Otherwise things |
| are never going to work. */ |
| static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) |
| { |
| return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); |
| } |
| |
| static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) |
| { |
| return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); |
| } |
| static inline unsigned long page_to_dma_pfn(struct page *pg) |
| { |
| return mm_to_dma_pfn(page_to_pfn(pg)); |
| } |
| static inline unsigned long virt_to_dma_pfn(void *p) |
| { |
| return page_to_dma_pfn(virt_to_page(p)); |
| } |
| |
| /* global iommu list, set NULL for ignored DMAR units */ |
| static struct intel_iommu **g_iommus; |
| |
| static void __init check_tylersburg_isoch(void); |
| static int rwbf_quirk; |
| |
| /* |
| * set to 1 to panic kernel if can't successfully enable VT-d |
| * (used when kernel is launched w/ TXT) |
| */ |
| static int force_on = 0; |
| |
| /* |
| * 0: Present |
| * 1-11: Reserved |
| * 12-63: Context Ptr (12 - (haw-1)) |
| * 64-127: Reserved |
| */ |
| struct root_entry { |
| u64 val; |
| u64 rsvd1; |
| }; |
| #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) |
| static inline bool root_present(struct root_entry *root) |
| { |
| return (root->val & 1); |
| } |
| static inline void set_root_present(struct root_entry *root) |
| { |
| root->val |= 1; |
| } |
| static inline void set_root_value(struct root_entry *root, unsigned long value) |
| { |
| root->val |= value & VTD_PAGE_MASK; |
| } |
| |
| static inline struct context_entry * |
| get_context_addr_from_root(struct root_entry *root) |
| { |
| return (struct context_entry *) |
| (root_present(root)?phys_to_virt( |
| root->val & VTD_PAGE_MASK) : |
| NULL); |
| } |
| |
| /* |
| * low 64 bits: |
| * 0: present |
| * 1: fault processing disable |
| * 2-3: translation type |
| * 12-63: address space root |
| * high 64 bits: |
| * 0-2: address width |
| * 3-6: aval |
| * 8-23: domain id |
| */ |
| struct context_entry { |
| u64 lo; |
| u64 hi; |
| }; |
| |
| static inline bool context_present(struct context_entry *context) |
| { |
| return (context->lo & 1); |
| } |
| static inline void context_set_present(struct context_entry *context) |
| { |
| context->lo |= 1; |
| } |
| |
| static inline void context_set_fault_enable(struct context_entry *context) |
| { |
| context->lo &= (((u64)-1) << 2) | 1; |
| } |
| |
| static inline void context_set_translation_type(struct context_entry *context, |
| unsigned long value) |
| { |
| context->lo &= (((u64)-1) << 4) | 3; |
| context->lo |= (value & 3) << 2; |
| } |
| |
| static inline void context_set_address_root(struct context_entry *context, |
| unsigned long value) |
| { |
| context->lo |= value & VTD_PAGE_MASK; |
| } |
| |
| static inline void context_set_address_width(struct context_entry *context, |
| unsigned long value) |
| { |
| context->hi |= value & 7; |
| } |
| |
| static inline void context_set_domain_id(struct context_entry *context, |
| unsigned long value) |
| { |
| context->hi |= (value & ((1 << 16) - 1)) << 8; |
| } |
| |
| static inline void context_clear_entry(struct context_entry *context) |
| { |
| context->lo = 0; |
| context->hi = 0; |
| } |
| |
| /* |
| * 0: readable |
| * 1: writable |
| * 2-6: reserved |
| * 7: super page |
| * 8-10: available |
| * 11: snoop behavior |
| * 12-63: Host physcial address |
| */ |
| struct dma_pte { |
| u64 val; |
| }; |
| |
| static inline void dma_clear_pte(struct dma_pte *pte) |
| { |
| pte->val = 0; |
| } |
| |
| static inline void dma_set_pte_readable(struct dma_pte *pte) |
| { |
| pte->val |= DMA_PTE_READ; |
| } |
| |
| static inline void dma_set_pte_writable(struct dma_pte *pte) |
| { |
| pte->val |= DMA_PTE_WRITE; |
| } |
| |
| static inline void dma_set_pte_snp(struct dma_pte *pte) |
| { |
| pte->val |= DMA_PTE_SNP; |
| } |
| |
| static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot) |
| { |
| pte->val = (pte->val & ~3) | (prot & 3); |
| } |
| |
| static inline u64 dma_pte_addr(struct dma_pte *pte) |
| { |
| #ifdef CONFIG_64BIT |
| return pte->val & VTD_PAGE_MASK; |
| #else |
| /* Must have a full atomic 64-bit read */ |
| return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK; |
| #endif |
| } |
| |
| static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn) |
| { |
| pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT; |
| } |
| |
| static inline bool dma_pte_present(struct dma_pte *pte) |
| { |
| return (pte->val & 3) != 0; |
| } |
| |
| static inline bool dma_pte_superpage(struct dma_pte *pte) |
| { |
| return (pte->val & (1 << 7)); |
| } |
| |
| static inline int first_pte_in_page(struct dma_pte *pte) |
| { |
| return !((unsigned long)pte & ~VTD_PAGE_MASK); |
| } |
| |
| /* |
| * This domain is a statically identity mapping domain. |
| * 1. This domain creats a static 1:1 mapping to all usable memory. |
| * 2. It maps to each iommu if successful. |
| * 3. Each iommu mapps to this domain if successful. |
| */ |
| static struct dmar_domain *si_domain; |
| static int hw_pass_through = 1; |
| |
| /* devices under the same p2p bridge are owned in one domain */ |
| #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0) |
| |
| /* domain represents a virtual machine, more than one devices |
| * across iommus may be owned in one domain, e.g. kvm guest. |
| */ |
| #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1) |
| |
| /* si_domain contains mulitple devices */ |
| #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2) |
| |
| /* define the limit of IOMMUs supported in each domain */ |
| #ifdef CONFIG_X86 |
| # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS |
| #else |
| # define IOMMU_UNITS_SUPPORTED 64 |
| #endif |
| |
| struct dmar_domain { |
| int id; /* domain id */ |
| int nid; /* node id */ |
| DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED); |
| /* bitmap of iommus this domain uses*/ |
| |
| struct list_head devices; /* all devices' list */ |
| struct iova_domain iovad; /* iova's that belong to this domain */ |
| |
| struct dma_pte *pgd; /* virtual address */ |
| int gaw; /* max guest address width */ |
| |
| /* adjusted guest address width, 0 is level 2 30-bit */ |
| int agaw; |
| |
| int flags; /* flags to find out type of domain */ |
| |
| int iommu_coherency;/* indicate coherency of iommu access */ |
| int iommu_snooping; /* indicate snooping control feature*/ |
| int iommu_count; /* reference count of iommu */ |
| int iommu_superpage;/* Level of superpages supported: |
| 0 == 4KiB (no superpages), 1 == 2MiB, |
| 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */ |
| spinlock_t iommu_lock; /* protect iommu set in domain */ |
| u64 max_addr; /* maximum mapped address */ |
| }; |
| |
| /* PCI domain-device relationship */ |
| struct device_domain_info { |
| struct list_head link; /* link to domain siblings */ |
| struct list_head global; /* link to global list */ |
| int segment; /* PCI domain */ |
| u8 bus; /* PCI bus number */ |
| u8 devfn; /* PCI devfn number */ |
| struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */ |
| struct intel_iommu *iommu; /* IOMMU used by this device */ |
| struct dmar_domain *domain; /* pointer to domain */ |
| }; |
| |
| static void flush_unmaps_timeout(unsigned long data); |
| |
| DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0); |
| |
| #define HIGH_WATER_MARK 250 |
| struct deferred_flush_tables { |
| int next; |
| struct iova *iova[HIGH_WATER_MARK]; |
| struct dmar_domain *domain[HIGH_WATER_MARK]; |
| }; |
| |
| static struct deferred_flush_tables *deferred_flush; |
| |
| /* bitmap for indexing intel_iommus */ |
| static int g_num_of_iommus; |
| |
| static DEFINE_SPINLOCK(async_umap_flush_lock); |
| static LIST_HEAD(unmaps_to_do); |
| |
| static int timer_on; |
| static long list_size; |
| |
| static void domain_remove_dev_info(struct dmar_domain *domain); |
| |
| #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON |
| int dmar_disabled = 0; |
| #else |
| int dmar_disabled = 1; |
| #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/ |
| |
| int intel_iommu_enabled = 0; |
| EXPORT_SYMBOL_GPL(intel_iommu_enabled); |
| |
| static int dmar_map_gfx = 1; |
| static int dmar_forcedac; |
| static int intel_iommu_strict; |
| static int intel_iommu_superpage = 1; |
| |
| int intel_iommu_gfx_mapped; |
| EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); |
| |
| #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) |
| static DEFINE_SPINLOCK(device_domain_lock); |
| static LIST_HEAD(device_domain_list); |
| |
| static struct iommu_ops intel_iommu_ops; |
| |
| static int __init intel_iommu_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| while (*str) { |
| if (!strncmp(str, "on", 2)) { |
| dmar_disabled = 0; |
| printk(KERN_INFO "Intel-IOMMU: enabled\n"); |
| } else if (!strncmp(str, "off", 3)) { |
| dmar_disabled = 1; |
| printk(KERN_INFO "Intel-IOMMU: disabled\n"); |
| } else if (!strncmp(str, "igfx_off", 8)) { |
| dmar_map_gfx = 0; |
| printk(KERN_INFO |
| "Intel-IOMMU: disable GFX device mapping\n"); |
| } else if (!strncmp(str, "forcedac", 8)) { |
| printk(KERN_INFO |
| "Intel-IOMMU: Forcing DAC for PCI devices\n"); |
| dmar_forcedac = 1; |
| } else if (!strncmp(str, "strict", 6)) { |
| printk(KERN_INFO |
| "Intel-IOMMU: disable batched IOTLB flush\n"); |
| intel_iommu_strict = 1; |
| } else if (!strncmp(str, "sp_off", 6)) { |
| printk(KERN_INFO |
| "Intel-IOMMU: disable supported super page\n"); |
| intel_iommu_superpage = 0; |
| } |
| |
| str += strcspn(str, ","); |
| while (*str == ',') |
| str++; |
| } |
| return 0; |
| } |
| __setup("intel_iommu=", intel_iommu_setup); |
| |
| static struct kmem_cache *iommu_domain_cache; |
| static struct kmem_cache *iommu_devinfo_cache; |
| static struct kmem_cache *iommu_iova_cache; |
| |
| static inline void *alloc_pgtable_page(int node) |
| { |
| struct page *page; |
| void *vaddr = NULL; |
| |
| page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); |
| if (page) |
| vaddr = page_address(page); |
| return vaddr; |
| } |
| |
| static inline void free_pgtable_page(void *vaddr) |
| { |
| free_page((unsigned long)vaddr); |
| } |
| |
| static inline void *alloc_domain_mem(void) |
| { |
| return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); |
| } |
| |
| static void free_domain_mem(void *vaddr) |
| { |
| kmem_cache_free(iommu_domain_cache, vaddr); |
| } |
| |
| static inline void * alloc_devinfo_mem(void) |
| { |
| return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); |
| } |
| |
| static inline void free_devinfo_mem(void *vaddr) |
| { |
| kmem_cache_free(iommu_devinfo_cache, vaddr); |
| } |
| |
| struct iova *alloc_iova_mem(void) |
| { |
| return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC); |
| } |
| |
| void free_iova_mem(struct iova *iova) |
| { |
| kmem_cache_free(iommu_iova_cache, iova); |
| } |
| |
| |
| static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) |
| { |
| unsigned long sagaw; |
| int agaw = -1; |
| |
| sagaw = cap_sagaw(iommu->cap); |
| for (agaw = width_to_agaw(max_gaw); |
| agaw >= 0; agaw--) { |
| if (test_bit(agaw, &sagaw)) |
| break; |
| } |
| |
| return agaw; |
| } |
| |
| /* |
| * Calculate max SAGAW for each iommu. |
| */ |
| int iommu_calculate_max_sagaw(struct intel_iommu *iommu) |
| { |
| return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); |
| } |
| |
| /* |
| * calculate agaw for each iommu. |
| * "SAGAW" may be different across iommus, use a default agaw, and |
| * get a supported less agaw for iommus that don't support the default agaw. |
| */ |
| int iommu_calculate_agaw(struct intel_iommu *iommu) |
| { |
| return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| } |
| |
| /* This functionin only returns single iommu in a domain */ |
| static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) |
| { |
| int iommu_id; |
| |
| /* si_domain and vm domain should not get here. */ |
| BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE); |
| BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY); |
| |
| iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus); |
| if (iommu_id < 0 || iommu_id >= g_num_of_iommus) |
| return NULL; |
| |
| return g_iommus[iommu_id]; |
| } |
| |
| static void domain_update_iommu_coherency(struct dmar_domain *domain) |
| { |
| int i; |
| |
| i = find_first_bit(domain->iommu_bmp, g_num_of_iommus); |
| |
| domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0; |
| |
| for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) { |
| if (!ecap_coherent(g_iommus[i]->ecap)) { |
| domain->iommu_coherency = 0; |
| break; |
| } |
| } |
| } |
| |
| static void domain_update_iommu_snooping(struct dmar_domain *domain) |
| { |
| int i; |
| |
| domain->iommu_snooping = 1; |
| |
| for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) { |
| if (!ecap_sc_support(g_iommus[i]->ecap)) { |
| domain->iommu_snooping = 0; |
| break; |
| } |
| } |
| } |
| |
| static void domain_update_iommu_superpage(struct dmar_domain *domain) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| int mask = 0xf; |
| |
| if (!intel_iommu_superpage) { |
| domain->iommu_superpage = 0; |
| return; |
| } |
| |
| /* set iommu_superpage to the smallest common denominator */ |
| for_each_active_iommu(iommu, drhd) { |
| mask &= cap_super_page_val(iommu->cap); |
| if (!mask) { |
| break; |
| } |
| } |
| domain->iommu_superpage = fls(mask); |
| } |
| |
| /* Some capabilities may be different across iommus */ |
| static void domain_update_iommu_cap(struct dmar_domain *domain) |
| { |
| domain_update_iommu_coherency(domain); |
| domain_update_iommu_snooping(domain); |
| domain_update_iommu_superpage(domain); |
| } |
| |
| static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn) |
| { |
| struct dmar_drhd_unit *drhd = NULL; |
| int i; |
| |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) |
| continue; |
| if (segment != drhd->segment) |
| continue; |
| |
| for (i = 0; i < drhd->devices_cnt; i++) { |
| if (drhd->devices[i] && |
| drhd->devices[i]->bus->number == bus && |
| drhd->devices[i]->devfn == devfn) |
| return drhd->iommu; |
| if (drhd->devices[i] && |
| drhd->devices[i]->subordinate && |
| drhd->devices[i]->subordinate->number <= bus && |
| drhd->devices[i]->subordinate->busn_res.end >= bus) |
| return drhd->iommu; |
| } |
| |
| if (drhd->include_all) |
| return drhd->iommu; |
| } |
| |
| return NULL; |
| } |
| |
| static void domain_flush_cache(struct dmar_domain *domain, |
| void *addr, int size) |
| { |
| if (!domain->iommu_coherency) |
| clflush_cache_range(addr, size); |
| } |
| |
| /* Gets context entry for a given bus and devfn */ |
| static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, |
| u8 bus, u8 devfn) |
| { |
| struct root_entry *root; |
| struct context_entry *context; |
| unsigned long phy_addr; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| root = &iommu->root_entry[bus]; |
| context = get_context_addr_from_root(root); |
| if (!context) { |
| context = (struct context_entry *) |
| alloc_pgtable_page(iommu->node); |
| if (!context) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return NULL; |
| } |
| __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); |
| phy_addr = virt_to_phys((void *)context); |
| set_root_value(root, phy_addr); |
| set_root_present(root); |
| __iommu_flush_cache(iommu, root, sizeof(*root)); |
| } |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return &context[devfn]; |
| } |
| |
| static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| { |
| struct root_entry *root; |
| struct context_entry *context; |
| int ret; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| root = &iommu->root_entry[bus]; |
| context = get_context_addr_from_root(root); |
| if (!context) { |
| ret = 0; |
| goto out; |
| } |
| ret = context_present(&context[devfn]); |
| out: |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return ret; |
| } |
| |
| static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| { |
| struct root_entry *root; |
| struct context_entry *context; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| root = &iommu->root_entry[bus]; |
| context = get_context_addr_from_root(root); |
| if (context) { |
| context_clear_entry(&context[devfn]); |
| __iommu_flush_cache(iommu, &context[devfn], \ |
| sizeof(*context)); |
| } |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static void free_context_table(struct intel_iommu *iommu) |
| { |
| struct root_entry *root; |
| int i; |
| unsigned long flags; |
| struct context_entry *context; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| if (!iommu->root_entry) { |
| goto out; |
| } |
| for (i = 0; i < ROOT_ENTRY_NR; i++) { |
| root = &iommu->root_entry[i]; |
| context = get_context_addr_from_root(root); |
| if (context) |
| free_pgtable_page(context); |
| } |
| free_pgtable_page(iommu->root_entry); |
| iommu->root_entry = NULL; |
| out: |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, |
| unsigned long pfn, int target_level) |
| { |
| int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
| struct dma_pte *parent, *pte = NULL; |
| int level = agaw_to_level(domain->agaw); |
| int offset; |
| |
| BUG_ON(!domain->pgd); |
| BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width); |
| parent = domain->pgd; |
| |
| while (level > 0) { |
| void *tmp_page; |
| |
| offset = pfn_level_offset(pfn, level); |
| pte = &parent[offset]; |
| if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) |
| break; |
| if (level == target_level) |
| break; |
| |
| if (!dma_pte_present(pte)) { |
| uint64_t pteval; |
| |
| tmp_page = alloc_pgtable_page(domain->nid); |
| |
| if (!tmp_page) |
| return NULL; |
| |
| domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); |
| pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; |
| if (cmpxchg64(&pte->val, 0ULL, pteval)) { |
| /* Someone else set it while we were thinking; use theirs. */ |
| free_pgtable_page(tmp_page); |
| } else { |
| dma_pte_addr(pte); |
| domain_flush_cache(domain, pte, sizeof(*pte)); |
| } |
| } |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| level--; |
| } |
| |
| return pte; |
| } |
| |
| |
| /* return address's pte at specific level */ |
| static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, |
| unsigned long pfn, |
| int level, int *large_page) |
| { |
| struct dma_pte *parent, *pte = NULL; |
| int total = agaw_to_level(domain->agaw); |
| int offset; |
| |
| parent = domain->pgd; |
| while (level <= total) { |
| offset = pfn_level_offset(pfn, total); |
| pte = &parent[offset]; |
| if (level == total) |
| return pte; |
| |
| if (!dma_pte_present(pte)) { |
| *large_page = total; |
| break; |
| } |
| |
| if (pte->val & DMA_PTE_LARGE_PAGE) { |
| *large_page = total; |
| return pte; |
| } |
| |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| total--; |
| } |
| return NULL; |
| } |
| |
| /* clear last level pte, a tlb flush should be followed */ |
| static int dma_pte_clear_range(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long last_pfn) |
| { |
| int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
| unsigned int large_page = 1; |
| struct dma_pte *first_pte, *pte; |
| int order; |
| |
| BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); |
| BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); |
| BUG_ON(start_pfn > last_pfn); |
| |
| /* we don't need lock here; nobody else touches the iova range */ |
| do { |
| large_page = 1; |
| first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); |
| if (!pte) { |
| start_pfn = align_to_level(start_pfn + 1, large_page + 1); |
| continue; |
| } |
| do { |
| dma_clear_pte(pte); |
| start_pfn += lvl_to_nr_pages(large_page); |
| pte++; |
| } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); |
| |
| domain_flush_cache(domain, first_pte, |
| (void *)pte - (void *)first_pte); |
| |
| } while (start_pfn && start_pfn <= last_pfn); |
| |
| order = (large_page - 1) * 9; |
| return order; |
| } |
| |
| /* free page table pages. last level pte should already be cleared */ |
| static void dma_pte_free_pagetable(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long last_pfn) |
| { |
| int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
| struct dma_pte *first_pte, *pte; |
| int total = agaw_to_level(domain->agaw); |
| int level; |
| unsigned long tmp; |
| int large_page = 2; |
| |
| BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); |
| BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); |
| BUG_ON(start_pfn > last_pfn); |
| |
| /* We don't need lock here; nobody else touches the iova range */ |
| level = 2; |
| while (level <= total) { |
| tmp = align_to_level(start_pfn, level); |
| |
| /* If we can't even clear one PTE at this level, we're done */ |
| if (tmp + level_size(level) - 1 > last_pfn) |
| return; |
| |
| do { |
| large_page = level; |
| first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page); |
| if (large_page > level) |
| level = large_page + 1; |
| if (!pte) { |
| tmp = align_to_level(tmp + 1, level + 1); |
| continue; |
| } |
| do { |
| if (dma_pte_present(pte)) { |
| free_pgtable_page(phys_to_virt(dma_pte_addr(pte))); |
| dma_clear_pte(pte); |
| } |
| pte++; |
| tmp += level_size(level); |
| } while (!first_pte_in_page(pte) && |
| tmp + level_size(level) - 1 <= last_pfn); |
| |
| domain_flush_cache(domain, first_pte, |
| (void *)pte - (void *)first_pte); |
| |
| } while (tmp && tmp + level_size(level) - 1 <= last_pfn); |
| level++; |
| } |
| /* free pgd */ |
| if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { |
| free_pgtable_page(domain->pgd); |
| domain->pgd = NULL; |
| } |
| } |
| |
| /* iommu handling */ |
| static int iommu_alloc_root_entry(struct intel_iommu *iommu) |
| { |
| struct root_entry *root; |
| unsigned long flags; |
| |
| root = (struct root_entry *)alloc_pgtable_page(iommu->node); |
| if (!root) |
| return -ENOMEM; |
| |
| __iommu_flush_cache(iommu, root, ROOT_SIZE); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| iommu->root_entry = root; |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return 0; |
| } |
| |
| static void iommu_set_root_entry(struct intel_iommu *iommu) |
| { |
| void *addr; |
| u32 sts; |
| unsigned long flag; |
| |
| addr = iommu->root_entry; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); |
| |
| writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (sts & DMA_GSTS_RTPS), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| static void iommu_flush_write_buffer(struct intel_iommu *iommu) |
| { |
| u32 val; |
| unsigned long flag; |
| |
| if (!rwbf_quirk && !cap_rwbf(iommu->cap)) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (!(val & DMA_GSTS_WBFS)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| /* return value determine if we need a write buffer flush */ |
| static void __iommu_flush_context(struct intel_iommu *iommu, |
| u16 did, u16 source_id, u8 function_mask, |
| u64 type) |
| { |
| u64 val = 0; |
| unsigned long flag; |
| |
| switch (type) { |
| case DMA_CCMD_GLOBAL_INVL: |
| val = DMA_CCMD_GLOBAL_INVL; |
| break; |
| case DMA_CCMD_DOMAIN_INVL: |
| val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); |
| break; |
| case DMA_CCMD_DEVICE_INVL: |
| val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) |
| | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); |
| break; |
| default: |
| BUG(); |
| } |
| val |= DMA_CCMD_ICC; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, |
| dmar_readq, (!(val & DMA_CCMD_ICC)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| /* return value determine if we need a write buffer flush */ |
| static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, |
| u64 addr, unsigned int size_order, u64 type) |
| { |
| int tlb_offset = ecap_iotlb_offset(iommu->ecap); |
| u64 val = 0, val_iva = 0; |
| unsigned long flag; |
| |
| switch (type) { |
| case DMA_TLB_GLOBAL_FLUSH: |
| /* global flush doesn't need set IVA_REG */ |
| val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; |
| break; |
| case DMA_TLB_DSI_FLUSH: |
| val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| break; |
| case DMA_TLB_PSI_FLUSH: |
| val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| /* Note: always flush non-leaf currently */ |
| val_iva = size_order | addr; |
| break; |
| default: |
| BUG(); |
| } |
| /* Note: set drain read/write */ |
| #if 0 |
| /* |
| * This is probably to be super secure.. Looks like we can |
| * ignore it without any impact. |
| */ |
| if (cap_read_drain(iommu->cap)) |
| val |= DMA_TLB_READ_DRAIN; |
| #endif |
| if (cap_write_drain(iommu->cap)) |
| val |= DMA_TLB_WRITE_DRAIN; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| /* Note: Only uses first TLB reg currently */ |
| if (val_iva) |
| dmar_writeq(iommu->reg + tlb_offset, val_iva); |
| dmar_writeq(iommu->reg + tlb_offset + 8, val); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, tlb_offset + 8, |
| dmar_readq, (!(val & DMA_TLB_IVT)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| /* check IOTLB invalidation granularity */ |
| if (DMA_TLB_IAIG(val) == 0) |
| printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); |
| if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) |
| pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", |
| (unsigned long long)DMA_TLB_IIRG(type), |
| (unsigned long long)DMA_TLB_IAIG(val)); |
| } |
| |
| static struct device_domain_info *iommu_support_dev_iotlb( |
| struct dmar_domain *domain, int segment, u8 bus, u8 devfn) |
| { |
| int found = 0; |
| unsigned long flags; |
| struct device_domain_info *info; |
| struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn); |
| |
| if (!ecap_dev_iotlb_support(iommu->ecap)) |
| return NULL; |
| |
| if (!iommu->qi) |
| return NULL; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry(info, &domain->devices, link) |
| if (info->bus == bus && info->devfn == devfn) { |
| found = 1; |
| break; |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| if (!found || !info->dev) |
| return NULL; |
| |
| if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS)) |
| return NULL; |
| |
| if (!dmar_find_matched_atsr_unit(info->dev)) |
| return NULL; |
| |
| info->iommu = iommu; |
| |
| return info; |
| } |
| |
| static void iommu_enable_dev_iotlb(struct device_domain_info *info) |
| { |
| if (!info) |
| return; |
| |
| pci_enable_ats(info->dev, VTD_PAGE_SHIFT); |
| } |
| |
| static void iommu_disable_dev_iotlb(struct device_domain_info *info) |
| { |
| if (!info->dev || !pci_ats_enabled(info->dev)) |
| return; |
| |
| pci_disable_ats(info->dev); |
| } |
| |
| static void iommu_flush_dev_iotlb(struct dmar_domain *domain, |
| u64 addr, unsigned mask) |
| { |
| u16 sid, qdep; |
| unsigned long flags; |
| struct device_domain_info *info; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry(info, &domain->devices, link) { |
| if (!info->dev || !pci_ats_enabled(info->dev)) |
| continue; |
| |
| sid = info->bus << 8 | info->devfn; |
| qdep = pci_ats_queue_depth(info->dev); |
| qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask); |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| |
| static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, |
| unsigned long pfn, unsigned int pages, int map) |
| { |
| unsigned int mask = ilog2(__roundup_pow_of_two(pages)); |
| uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; |
| |
| BUG_ON(pages == 0); |
| |
| /* |
| * Fallback to domain selective flush if no PSI support or the size is |
| * too big. |
| * PSI requires page size to be 2 ^ x, and the base address is naturally |
| * aligned to the size |
| */ |
| if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap)) |
| iommu->flush.flush_iotlb(iommu, did, 0, 0, |
| DMA_TLB_DSI_FLUSH); |
| else |
| iommu->flush.flush_iotlb(iommu, did, addr, mask, |
| DMA_TLB_PSI_FLUSH); |
| |
| /* |
| * In caching mode, changes of pages from non-present to present require |
| * flush. However, device IOTLB doesn't need to be flushed in this case. |
| */ |
| if (!cap_caching_mode(iommu->cap) || !map) |
| iommu_flush_dev_iotlb(iommu->domains[did], addr, mask); |
| } |
| |
| static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) |
| { |
| u32 pmen; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| pmen = readl(iommu->reg + DMAR_PMEN_REG); |
| pmen &= ~DMA_PMEN_EPM; |
| writel(pmen, iommu->reg + DMAR_PMEN_REG); |
| |
| /* wait for the protected region status bit to clear */ |
| IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, |
| readl, !(pmen & DMA_PMEN_PRS), pmen); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| static int iommu_enable_translation(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| iommu->gcmd |= DMA_GCMD_TE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (sts & DMA_GSTS_TES), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| return 0; |
| } |
| |
| static int iommu_disable_translation(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flag; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| iommu->gcmd &= ~DMA_GCMD_TE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (!(sts & DMA_GSTS_TES)), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| return 0; |
| } |
| |
| |
| static int iommu_init_domains(struct intel_iommu *iommu) |
| { |
| unsigned long ndomains; |
| unsigned long nlongs; |
| |
| ndomains = cap_ndoms(iommu->cap); |
| pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id, |
| ndomains); |
| nlongs = BITS_TO_LONGS(ndomains); |
| |
| spin_lock_init(&iommu->lock); |
| |
| /* TBD: there might be 64K domains, |
| * consider other allocation for future chip |
| */ |
| iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); |
| if (!iommu->domain_ids) { |
| printk(KERN_ERR "Allocating domain id array failed\n"); |
| return -ENOMEM; |
| } |
| iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), |
| GFP_KERNEL); |
| if (!iommu->domains) { |
| printk(KERN_ERR "Allocating domain array failed\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * if Caching mode is set, then invalid translations are tagged |
| * with domainid 0. Hence we need to pre-allocate it. |
| */ |
| if (cap_caching_mode(iommu->cap)) |
| set_bit(0, iommu->domain_ids); |
| return 0; |
| } |
| |
| |
| static void domain_exit(struct dmar_domain *domain); |
| static void vm_domain_exit(struct dmar_domain *domain); |
| |
| void free_dmar_iommu(struct intel_iommu *iommu) |
| { |
| struct dmar_domain *domain; |
| int i; |
| unsigned long flags; |
| |
| if ((iommu->domains) && (iommu->domain_ids)) { |
| for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) { |
| domain = iommu->domains[i]; |
| clear_bit(i, iommu->domain_ids); |
| |
| spin_lock_irqsave(&domain->iommu_lock, flags); |
| if (--domain->iommu_count == 0) { |
| if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) |
| vm_domain_exit(domain); |
| else |
| domain_exit(domain); |
| } |
| spin_unlock_irqrestore(&domain->iommu_lock, flags); |
| } |
| } |
| |
| if (iommu->gcmd & DMA_GCMD_TE) |
| iommu_disable_translation(iommu); |
| |
| if (iommu->irq) { |
| irq_set_handler_data(iommu->irq, NULL); |
| /* This will mask the irq */ |
| free_irq(iommu->irq, iommu); |
| destroy_irq(iommu->irq); |
| } |
| |
| kfree(iommu->domains); |
| kfree(iommu->domain_ids); |
| |
| g_iommus[iommu->seq_id] = NULL; |
| |
| /* if all iommus are freed, free g_iommus */ |
| for (i = 0; i < g_num_of_iommus; i++) { |
| if (g_iommus[i]) |
| break; |
| } |
| |
| if (i == g_num_of_iommus) |
| kfree(g_iommus); |
| |
| /* free context mapping */ |
| free_context_table(iommu); |
| } |
| |
| static struct dmar_domain *alloc_domain(void) |
| { |
| struct dmar_domain *domain; |
| |
| domain = alloc_domain_mem(); |
| if (!domain) |
| return NULL; |
| |
| domain->nid = -1; |
| memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp)); |
| domain->flags = 0; |
| |
| return domain; |
| } |
| |
| static int iommu_attach_domain(struct dmar_domain *domain, |
| struct intel_iommu *iommu) |
| { |
| int num; |
| unsigned long ndomains; |
| unsigned long flags; |
| |
| ndomains = cap_ndoms(iommu->cap); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| num = find_first_zero_bit(iommu->domain_ids, ndomains); |
| if (num >= ndomains) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| printk(KERN_ERR "IOMMU: no free domain ids\n"); |
| return -ENOMEM; |
| } |
| |
| domain->id = num; |
| set_bit(num, iommu->domain_ids); |
| set_bit(iommu->seq_id, domain->iommu_bmp); |
| iommu->domains[num] = domain; |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return 0; |
| } |
| |
| static void iommu_detach_domain(struct dmar_domain *domain, |
| struct intel_iommu *iommu) |
| { |
| unsigned long flags; |
| int num, ndomains; |
| int found = 0; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| ndomains = cap_ndoms(iommu->cap); |
| for_each_set_bit(num, iommu->domain_ids, ndomains) { |
| if (iommu->domains[num] == domain) { |
| found = 1; |
| break; |
| } |
| } |
| |
| if (found) { |
| clear_bit(num, iommu->domain_ids); |
| clear_bit(iommu->seq_id, domain->iommu_bmp); |
| iommu->domains[num] = NULL; |
| } |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static struct iova_domain reserved_iova_list; |
| static struct lock_class_key reserved_rbtree_key; |
| |
| static int dmar_init_reserved_ranges(void) |
| { |
| struct pci_dev *pdev = NULL; |
| struct iova *iova; |
| int i; |
| |
| init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN); |
| |
| lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, |
| &reserved_rbtree_key); |
| |
| /* IOAPIC ranges shouldn't be accessed by DMA */ |
| iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), |
| IOVA_PFN(IOAPIC_RANGE_END)); |
| if (!iova) { |
| printk(KERN_ERR "Reserve IOAPIC range failed\n"); |
| return -ENODEV; |
| } |
| |
| /* Reserve all PCI MMIO to avoid peer-to-peer access */ |
| for_each_pci_dev(pdev) { |
| struct resource *r; |
| |
| for (i = 0; i < PCI_NUM_RESOURCES; i++) { |
| r = &pdev->resource[i]; |
| if (!r->flags || !(r->flags & IORESOURCE_MEM)) |
| continue; |
| iova = reserve_iova(&reserved_iova_list, |
| IOVA_PFN(r->start), |
| IOVA_PFN(r->end)); |
| if (!iova) { |
| printk(KERN_ERR "Reserve iova failed\n"); |
| return -ENODEV; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static void domain_reserve_special_ranges(struct dmar_domain *domain) |
| { |
| copy_reserved_iova(&reserved_iova_list, &domain->iovad); |
| } |
| |
| static inline int guestwidth_to_adjustwidth(int gaw) |
| { |
| int agaw; |
| int r = (gaw - 12) % 9; |
| |
| if (r == 0) |
| agaw = gaw; |
| else |
| agaw = gaw + 9 - r; |
| if (agaw > 64) |
| agaw = 64; |
| return agaw; |
| } |
| |
| static int domain_init(struct dmar_domain *domain, int guest_width) |
| { |
| struct intel_iommu *iommu; |
| int adjust_width, agaw; |
| unsigned long sagaw; |
| |
| init_iova_domain(&domain->iovad, DMA_32BIT_PFN); |
| spin_lock_init(&domain->iommu_lock); |
| |
| domain_reserve_special_ranges(domain); |
| |
| /* calculate AGAW */ |
| iommu = domain_get_iommu(domain); |
| if (guest_width > cap_mgaw(iommu->cap)) |
| guest_width = cap_mgaw(iommu->cap); |
| domain->gaw = guest_width; |
| adjust_width = guestwidth_to_adjustwidth(guest_width); |
| agaw = width_to_agaw(adjust_width); |
| sagaw = cap_sagaw(iommu->cap); |
| if (!test_bit(agaw, &sagaw)) { |
| /* hardware doesn't support it, choose a bigger one */ |
| pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); |
| agaw = find_next_bit(&sagaw, 5, agaw); |
| if (agaw >= 5) |
| return -ENODEV; |
| } |
| domain->agaw = agaw; |
| INIT_LIST_HEAD(&domain->devices); |
| |
| if (ecap_coherent(iommu->ecap)) |
| domain->iommu_coherency = 1; |
| else |
| domain->iommu_coherency = 0; |
| |
| if (ecap_sc_support(iommu->ecap)) |
| domain->iommu_snooping = 1; |
| else |
| domain->iommu_snooping = 0; |
| |
| domain->iommu_superpage = fls(cap_super_page_val(iommu->cap)); |
| domain->iommu_count = 1; |
| domain->nid = iommu->node; |
| |
| /* always allocate the top pgd */ |
| domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); |
| if (!domain->pgd) |
| return -ENOMEM; |
| __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE); |
| return 0; |
| } |
| |
| static void domain_exit(struct dmar_domain *domain) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| |
| /* Domain 0 is reserved, so dont process it */ |
| if (!domain) |
| return; |
| |
| /* Flush any lazy unmaps that may reference this domain */ |
| if (!intel_iommu_strict) |
| flush_unmaps_timeout(0); |
| |
| domain_remove_dev_info(domain); |
| /* destroy iovas */ |
| put_iova_domain(&domain->iovad); |
| |
| /* clear ptes */ |
| dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); |
| |
| /* free page tables */ |
| dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); |
| |
| for_each_active_iommu(iommu, drhd) |
| if (test_bit(iommu->seq_id, domain->iommu_bmp)) |
| iommu_detach_domain(domain, iommu); |
| |
| free_domain_mem(domain); |
| } |
| |
| static int domain_context_mapping_one(struct dmar_domain *domain, int segment, |
| u8 bus, u8 devfn, int translation) |
| { |
| struct context_entry *context; |
| unsigned long flags; |
| struct intel_iommu *iommu; |
| struct dma_pte *pgd; |
| unsigned long num; |
| unsigned long ndomains; |
| int id; |
| int agaw; |
| struct device_domain_info *info = NULL; |
| |
| pr_debug("Set context mapping for %02x:%02x.%d\n", |
| bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); |
| |
| BUG_ON(!domain->pgd); |
| BUG_ON(translation != CONTEXT_TT_PASS_THROUGH && |
| translation != CONTEXT_TT_MULTI_LEVEL); |
| |
| iommu = device_to_iommu(segment, bus, devfn); |
| if (!iommu) |
| return -ENODEV; |
| |
| context = device_to_context_entry(iommu, bus, devfn); |
| if (!context) |
| return -ENOMEM; |
| spin_lock_irqsave(&iommu->lock, flags); |
| if (context_present(context)) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return 0; |
| } |
| |
| id = domain->id; |
| pgd = domain->pgd; |
| |
| if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || |
| domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) { |
| int found = 0; |
| |
| /* find an available domain id for this device in iommu */ |
| ndomains = cap_ndoms(iommu->cap); |
| for_each_set_bit(num, iommu->domain_ids, ndomains) { |
| if (iommu->domains[num] == domain) { |
| id = num; |
| found = 1; |
| break; |
| } |
| } |
| |
| if (found == 0) { |
| num = find_first_zero_bit(iommu->domain_ids, ndomains); |
| if (num >= ndomains) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| printk(KERN_ERR "IOMMU: no free domain ids\n"); |
| return -EFAULT; |
| } |
| |
| set_bit(num, iommu->domain_ids); |
| iommu->domains[num] = domain; |
| id = num; |
| } |
| |
| /* Skip top levels of page tables for |
| * iommu which has less agaw than default. |
| * Unnecessary for PT mode. |
| */ |
| if (translation != CONTEXT_TT_PASS_THROUGH) { |
| for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) { |
| pgd = phys_to_virt(dma_pte_addr(pgd)); |
| if (!dma_pte_present(pgd)) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return -ENOMEM; |
| } |
| } |
| } |
| } |
| |
| context_set_domain_id(context, id); |
| |
| if (translation != CONTEXT_TT_PASS_THROUGH) { |
| info = iommu_support_dev_iotlb(domain, segment, bus, devfn); |
| translation = info ? CONTEXT_TT_DEV_IOTLB : |
| CONTEXT_TT_MULTI_LEVEL; |
| } |
| /* |
| * In pass through mode, AW must be programmed to indicate the largest |
| * AGAW value supported by hardware. And ASR is ignored by hardware. |
| */ |
| if (unlikely(translation == CONTEXT_TT_PASS_THROUGH)) |
| context_set_address_width(context, iommu->msagaw); |
| else { |
| context_set_address_root(context, virt_to_phys(pgd)); |
| context_set_address_width(context, iommu->agaw); |
| } |
| |
| context_set_translation_type(context, translation); |
| context_set_fault_enable(context); |
| context_set_present(context); |
| domain_flush_cache(domain, context, sizeof(*context)); |
| |
| /* |
| * It's a non-present to present mapping. If hardware doesn't cache |
| * non-present entry we only need to flush the write-buffer. If the |
| * _does_ cache non-present entries, then it does so in the special |
| * domain #0, which we have to flush: |
| */ |
| if (cap_caching_mode(iommu->cap)) { |
| iommu->flush.flush_context(iommu, 0, |
| (((u16)bus) << 8) | devfn, |
| DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL); |
| iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH); |
| } else { |
| iommu_flush_write_buffer(iommu); |
| } |
| iommu_enable_dev_iotlb(info); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| spin_lock_irqsave(&domain->iommu_lock, flags); |
| if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) { |
| domain->iommu_count++; |
| if (domain->iommu_count == 1) |
| domain->nid = iommu->node; |
| domain_update_iommu_cap(domain); |
| } |
| spin_unlock_irqrestore(&domain->iommu_lock, flags); |
| return 0; |
| } |
| |
| static int |
| domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev, |
| int translation) |
| { |
| int ret; |
| struct pci_dev *tmp, *parent; |
| |
| ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus), |
| pdev->bus->number, pdev->devfn, |
| translation); |
| if (ret) |
| return ret; |
| |
| /* dependent device mapping */ |
| tmp = pci_find_upstream_pcie_bridge(pdev); |
| if (!tmp) |
| return 0; |
| /* Secondary interface's bus number and devfn 0 */ |
| parent = pdev->bus->self; |
| while (parent != tmp) { |
| ret = domain_context_mapping_one(domain, |
| pci_domain_nr(parent->bus), |
| parent->bus->number, |
| parent->devfn, translation); |
| if (ret) |
| return ret; |
| parent = parent->bus->self; |
| } |
| if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */ |
| return domain_context_mapping_one(domain, |
| pci_domain_nr(tmp->subordinate), |
| tmp->subordinate->number, 0, |
| translation); |
| else /* this is a legacy PCI bridge */ |
| return domain_context_mapping_one(domain, |
| pci_domain_nr(tmp->bus), |
| tmp->bus->number, |
| tmp->devfn, |
| translation); |
| } |
| |
| static int domain_context_mapped(struct pci_dev *pdev) |
| { |
| int ret; |
| struct pci_dev *tmp, *parent; |
| struct intel_iommu *iommu; |
| |
| iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, |
| pdev->devfn); |
| if (!iommu) |
| return -ENODEV; |
| |
| ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn); |
| if (!ret) |
| return ret; |
| /* dependent device mapping */ |
| tmp = pci_find_upstream_pcie_bridge(pdev); |
| if (!tmp) |
| return ret; |
| /* Secondary interface's bus number and devfn 0 */ |
| parent = pdev->bus->self; |
| while (parent != tmp) { |
| ret = device_context_mapped(iommu, parent->bus->number, |
| parent->devfn); |
| if (!ret) |
| return ret; |
| parent = parent->bus->self; |
| } |
| if (pci_is_pcie(tmp)) |
| return device_context_mapped(iommu, tmp->subordinate->number, |
| 0); |
| else |
| return device_context_mapped(iommu, tmp->bus->number, |
| tmp->devfn); |
| } |
| |
| /* Returns a number of VTD pages, but aligned to MM page size */ |
| static inline unsigned long aligned_nrpages(unsigned long host_addr, |
| size_t size) |
| { |
| host_addr &= ~PAGE_MASK; |
| return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; |
| } |
| |
| /* Return largest possible superpage level for a given mapping */ |
| static inline int hardware_largepage_caps(struct dmar_domain *domain, |
| unsigned long iov_pfn, |
| unsigned long phy_pfn, |
| unsigned long pages) |
| { |
| int support, level = 1; |
| unsigned long pfnmerge; |
| |
| support = domain->iommu_superpage; |
| |
| /* To use a large page, the virtual *and* physical addresses |
| must be aligned to 2MiB/1GiB/etc. Lower bits set in either |
| of them will mean we have to use smaller pages. So just |
| merge them and check both at once. */ |
| pfnmerge = iov_pfn | phy_pfn; |
| |
| while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { |
| pages >>= VTD_STRIDE_SHIFT; |
| if (!pages) |
| break; |
| pfnmerge >>= VTD_STRIDE_SHIFT; |
| level++; |
| support--; |
| } |
| return level; |
| } |
| |
| static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| struct scatterlist *sg, unsigned long phys_pfn, |
| unsigned long nr_pages, int prot) |
| { |
| struct dma_pte *first_pte = NULL, *pte = NULL; |
| phys_addr_t uninitialized_var(pteval); |
| int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
| unsigned long sg_res; |
| unsigned int largepage_lvl = 0; |
| unsigned long lvl_pages = 0; |
| |
| BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width); |
| |
| if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) |
| return -EINVAL; |
| |
| prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP; |
| |
| if (sg) |
| sg_res = 0; |
| else { |
| sg_res = nr_pages + 1; |
| pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot; |
| } |
| |
| while (nr_pages > 0) { |
| uint64_t tmp; |
| |
| if (!sg_res) { |
| sg_res = aligned_nrpages(sg->offset, sg->length); |
| sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset; |
| sg->dma_length = sg->length; |
| pteval = page_to_phys(sg_page(sg)) | prot; |
| phys_pfn = pteval >> VTD_PAGE_SHIFT; |
| } |
| |
| if (!pte) { |
| largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res); |
| |
| first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl); |
| if (!pte) |
| return -ENOMEM; |
| /* It is large page*/ |
| if (largepage_lvl > 1) { |
| pteval |= DMA_PTE_LARGE_PAGE; |
| /* Ensure that old small page tables are removed to make room |
| for superpage, if they exist. */ |
| dma_pte_clear_range(domain, iov_pfn, |
| iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1); |
| dma_pte_free_pagetable(domain, iov_pfn, |
| iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1); |
| } else { |
| pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; |
| } |
| |
| } |
| /* We don't need lock here, nobody else |
| * touches the iova range |
| */ |
| tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); |
| if (tmp) { |
| static int dumps = 5; |
| printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", |
| iov_pfn, tmp, (unsigned long long)pteval); |
| if (dumps) { |
| dumps--; |
| debug_dma_dump_mappings(NULL); |
| } |
| WARN_ON(1); |
| } |
| |
| lvl_pages = lvl_to_nr_pages(largepage_lvl); |
| |
| BUG_ON(nr_pages < lvl_pages); |
| BUG_ON(sg_res < lvl_pages); |
| |
| nr_pages -= lvl_pages; |
| iov_pfn += lvl_pages; |
| phys_pfn += lvl_pages; |
| pteval += lvl_pages * VTD_PAGE_SIZE; |
| sg_res -= lvl_pages; |
| |
| /* If the next PTE would be the first in a new page, then we |
| need to flush the cache on the entries we've just written. |
| And then we'll need to recalculate 'pte', so clear it and |
| let it get set again in the if (!pte) block above. |
| |
| If we're done (!nr_pages) we need to flush the cache too. |
| |
| Also if we've been setting superpages, we may need to |
| recalculate 'pte' and switch back to smaller pages for the |
| end of the mapping, if the trailing size is not enough to |
| use another superpage (i.e. sg_res < lvl_pages). */ |
| pte++; |
| if (!nr_pages || first_pte_in_page(pte) || |
| (largepage_lvl > 1 && sg_res < lvl_pages)) { |
| domain_flush_cache(domain, first_pte, |
| (void *)pte - (void *)first_pte); |
| pte = NULL; |
| } |
| |
| if (!sg_res && nr_pages) |
| sg = sg_next(sg); |
| } |
| return 0; |
| } |
| |
| static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| struct scatterlist *sg, unsigned long nr_pages, |
| int prot) |
| { |
| return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot); |
| } |
| |
| static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| unsigned long phys_pfn, unsigned long nr_pages, |
| int prot) |
| { |
| return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot); |
| } |
| |
| static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| { |
| if (!iommu) |
| return; |
| |
| clear_context_table(iommu, bus, devfn); |
| iommu->flush.flush_context(iommu, 0, 0, 0, |
| DMA_CCMD_GLOBAL_INVL); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); |
| } |
| |
| static inline void unlink_domain_info(struct device_domain_info *info) |
| { |
| assert_spin_locked(&device_domain_lock); |
| list_del(&info->link); |
| list_del(&info->global); |
| if (info->dev) |
| info->dev->dev.archdata.iommu = NULL; |
| } |
| |
| static void domain_remove_dev_info(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info; |
| unsigned long flags; |
| struct intel_iommu *iommu; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| while (!list_empty(&domain->devices)) { |
| info = list_entry(domain->devices.next, |
| struct device_domain_info, link); |
| unlink_domain_info(info); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| iommu_disable_dev_iotlb(info); |
| iommu = device_to_iommu(info->segment, info->bus, info->devfn); |
| iommu_detach_dev(iommu, info->bus, info->devfn); |
| free_devinfo_mem(info); |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| |
| /* |
| * find_domain |
| * Note: we use struct pci_dev->dev.archdata.iommu stores the info |
| */ |
| static struct dmar_domain * |
| find_domain(struct pci_dev *pdev) |
| { |
| struct device_domain_info *info; |
| |
| /* No lock here, assumes no domain exit in normal case */ |
| info = pdev->dev.archdata.iommu; |
| if (info) |
| return info->domain; |
| return NULL; |
| } |
| |
| /* domain is initialized */ |
| static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) |
| { |
| struct dmar_domain *domain, *found = NULL; |
| struct intel_iommu *iommu; |
| struct dmar_drhd_unit *drhd; |
| struct device_domain_info *info, *tmp; |
| struct pci_dev *dev_tmp; |
| unsigned long flags; |
| int bus = 0, devfn = 0; |
| int segment; |
| int ret; |
| |
| domain = find_domain(pdev); |
| if (domain) |
| return domain; |
| |
| segment = pci_domain_nr(pdev->bus); |
| |
| dev_tmp = pci_find_upstream_pcie_bridge(pdev); |
| if (dev_tmp) { |
| if (pci_is_pcie(dev_tmp)) { |
| bus = dev_tmp->subordinate->number; |
| devfn = 0; |
| } else { |
| bus = dev_tmp->bus->number; |
| devfn = dev_tmp->devfn; |
| } |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry(info, &device_domain_list, global) { |
| if (info->segment == segment && |
| info->bus == bus && info->devfn == devfn) { |
| found = info->domain; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| /* pcie-pci bridge already has a domain, uses it */ |
| if (found) { |
| domain = found; |
| goto found_domain; |
| } |
| } |
| |
| domain = alloc_domain(); |
| if (!domain) |
| goto error; |
| |
| /* Allocate new domain for the device */ |
| drhd = dmar_find_matched_drhd_unit(pdev); |
| if (!drhd) { |
| printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", |
| pci_name(pdev)); |
| free_domain_mem(domain); |
| return NULL; |
| } |
| iommu = drhd->iommu; |
| |
| ret = iommu_attach_domain(domain, iommu); |
| if (ret) { |
| free_domain_mem(domain); |
| goto error; |
| } |
| |
| if (domain_init(domain, gaw)) { |
| domain_exit(domain); |
| goto error; |
| } |
| |
| /* register pcie-to-pci device */ |
| if (dev_tmp) { |
| info = alloc_devinfo_mem(); |
| if (!info) { |
| domain_exit(domain); |
| goto error; |
| } |
| info->segment = segment; |
| info->bus = bus; |
| info->devfn = devfn; |
| info->dev = NULL; |
| info->domain = domain; |
| /* This domain is shared by devices under p2p bridge */ |
| domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES; |
| |
| /* pcie-to-pci bridge already has a domain, uses it */ |
| found = NULL; |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry(tmp, &device_domain_list, global) { |
| if (tmp->segment == segment && |
| tmp->bus == bus && tmp->devfn == devfn) { |
| found = tmp->domain; |
| break; |
| } |
| } |
| if (found) { |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| free_devinfo_mem(info); |
| domain_exit(domain); |
| domain = found; |
| } else { |
| list_add(&info->link, &domain->devices); |
| list_add(&info->global, &device_domain_list); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| } |
| |
| found_domain: |
| info = alloc_devinfo_mem(); |
| if (!info) |
| goto error; |
| info->segment = segment; |
| info->bus = pdev->bus->number; |
| info->devfn = pdev->devfn; |
| info->dev = pdev; |
| info->domain = domain; |
| spin_lock_irqsave(&device_domain_lock, flags); |
| /* somebody is fast */ |
| found = find_domain(pdev); |
| if (found != NULL) { |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| if (found != domain) { |
| domain_exit(domain); |
| domain = found; |
| } |
| free_devinfo_mem(info); |
| return domain; |
| } |
| list_add(&info->link, &domain->devices); |
| list_add(&info->global, &device_domain_list); |
| pdev->dev.archdata.iommu = info; |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| return domain; |
| error: |
| /* recheck it here, maybe others set it */ |
| return find_domain(pdev); |
| } |
| |
| static int iommu_identity_mapping; |
| #define IDENTMAP_ALL 1 |
| #define IDENTMAP_GFX 2 |
| #define IDENTMAP_AZALIA 4 |
| |
| static int iommu_domain_identity_map(struct dmar_domain *domain, |
| unsigned long long start, |
| unsigned long long end) |
| { |
| unsigned long first_vpfn = start >> VTD_PAGE_SHIFT; |
| unsigned long last_vpfn = end >> VTD_PAGE_SHIFT; |
| |
| if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn), |
| dma_to_mm_pfn(last_vpfn))) { |
| printk(KERN_ERR "IOMMU: reserve iova failed\n"); |
| return -ENOMEM; |
| } |
| |
| pr_debug("Mapping reserved region %llx-%llx for domain %d\n", |
| start, end, domain->id); |
| /* |
| * RMRR range might have overlap with physical memory range, |
| * clear it first |
| */ |
| dma_pte_clear_range(domain, first_vpfn, last_vpfn); |
| |
| return domain_pfn_mapping(domain, first_vpfn, first_vpfn, |
| last_vpfn - first_vpfn + 1, |
| DMA_PTE_READ|DMA_PTE_WRITE); |
| } |
| |
| static int iommu_prepare_identity_map(struct pci_dev *pdev, |
| unsigned long long start, |
| unsigned long long end) |
| { |
| struct dmar_domain *domain; |
| int ret; |
| |
| domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| if (!domain) |
| return -ENOMEM; |
| |
| /* For _hardware_ passthrough, don't bother. But for software |
| passthrough, we do it anyway -- it may indicate a memory |
| range which is reserved in E820, so which didn't get set |
| up to start with in si_domain */ |
| if (domain == si_domain && hw_pass_through) { |
| printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n", |
| pci_name(pdev), start, end); |
| return 0; |
| } |
| |
| printk(KERN_INFO |
| "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", |
| pci_name(pdev), start, end); |
| |
| if (end < start) { |
| WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n" |
| "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| dmi_get_system_info(DMI_BIOS_VENDOR), |
| dmi_get_system_info(DMI_BIOS_VERSION), |
| dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| ret = -EIO; |
| goto error; |
| } |
| |
| if (end >> agaw_to_width(domain->agaw)) { |
| WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n" |
| "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| agaw_to_width(domain->agaw), |
| dmi_get_system_info(DMI_BIOS_VENDOR), |
| dmi_get_system_info(DMI_BIOS_VERSION), |
| dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| ret = -EIO; |
| goto error; |
| } |
| |
| ret = iommu_domain_identity_map(domain, start, end); |
| if (ret) |
| goto error; |
| |
| /* context entry init */ |
| ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL); |
| if (ret) |
| goto error; |
| |
| return 0; |
| |
| error: |
| domain_exit(domain); |
| return ret; |
| } |
| |
| static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, |
| struct pci_dev *pdev) |
| { |
| if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
| return 0; |
| return iommu_prepare_identity_map(pdev, rmrr->base_address, |
| rmrr->end_address); |
| } |
| |
| #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA |
| static inline void iommu_prepare_isa(void) |
| { |
| struct pci_dev *pdev; |
| int ret; |
| |
| pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); |
| if (!pdev) |
| return; |
| |
| printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n"); |
| ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1); |
| |
| if (ret) |
| printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; " |
| "floppy might not work\n"); |
| |
| } |
| #else |
| static inline void iommu_prepare_isa(void) |
| { |
| return; |
| } |
| #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */ |
| |
| static int md_domain_init(struct dmar_domain *domain, int guest_width); |
| |
| static int __init si_domain_init(int hw) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| int nid, ret = 0; |
| |
| si_domain = alloc_domain(); |
| if (!si_domain) |
| return -EFAULT; |
| |
| pr_debug("Identity mapping domain is domain %d\n", si_domain->id); |
| |
| for_each_active_iommu(iommu, drhd) { |
| ret = iommu_attach_domain(si_domain, iommu); |
| if (ret) { |
| domain_exit(si_domain); |
| return -EFAULT; |
| } |
| } |
| |
| if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
| domain_exit(si_domain); |
| return -EFAULT; |
| } |
| |
| si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY; |
| |
| if (hw) |
| return 0; |
| |
| for_each_online_node(nid) { |
| unsigned long start_pfn, end_pfn; |
| int i; |
| |
| for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
| ret = iommu_domain_identity_map(si_domain, |
| PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void domain_remove_one_dev_info(struct dmar_domain *domain, |
| struct pci_dev *pdev); |
| static int identity_mapping(struct pci_dev *pdev) |
| { |
| struct device_domain_info *info; |
| |
| if (likely(!iommu_identity_mapping)) |
| return 0; |
| |
| info = pdev->dev.archdata.iommu; |
| if (info && info != DUMMY_DEVICE_DOMAIN_INFO) |
| return (info->domain == si_domain); |
| |
| return 0; |
| } |
| |
| static int domain_add_dev_info(struct dmar_domain *domain, |
| struct pci_dev *pdev, |
| int translation) |
| { |
| struct device_domain_info *info; |
| unsigned long flags; |
| int ret; |
| |
| info = alloc_devinfo_mem(); |
| if (!info) |
| return -ENOMEM; |
| |
| info->segment = pci_domain_nr(pdev->bus); |
| info->bus = pdev->bus->number; |
| info->devfn = pdev->devfn; |
| info->dev = pdev; |
| info->domain = domain; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_add(&info->link, &domain->devices); |
| list_add(&info->global, &device_domain_list); |
| pdev->dev.archdata.iommu = info; |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| ret = domain_context_mapping(domain, pdev, translation); |
| if (ret) { |
| spin_lock_irqsave(&device_domain_lock, flags); |
| unlink_domain_info(info); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| free_devinfo_mem(info); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static bool device_has_rmrr(struct pci_dev *dev) |
| { |
| struct dmar_rmrr_unit *rmrr; |
| int i; |
| |
| for_each_rmrr_units(rmrr) { |
| for (i = 0; i < rmrr->devices_cnt; i++) { |
| /* |
| * Return TRUE if this RMRR contains the device that |
| * is passed in. |
| */ |
| if (rmrr->devices[i] == dev) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static int iommu_should_identity_map(struct pci_dev *pdev, int startup) |
| { |
| |
| /* |
| * We want to prevent any device associated with an RMRR from |
| * getting placed into the SI Domain. This is done because |
| * problems exist when devices are moved in and out of domains |
| * and their respective RMRR info is lost. We exempt USB devices |
| * from this process due to their usage of RMRRs that are known |
| * to not be needed after BIOS hand-off to OS. |
| */ |
| if (device_has_rmrr(pdev) && |
| (pdev->class >> 8) != PCI_CLASS_SERIAL_USB) |
| return 0; |
| |
| if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) |
| return 1; |
| |
| if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) |
| return 1; |
| |
| if (!(iommu_identity_mapping & IDENTMAP_ALL)) |
| return 0; |
| |
| /* |
| * We want to start off with all devices in the 1:1 domain, and |
| * take them out later if we find they can't access all of memory. |
| * |
| * However, we can't do this for PCI devices behind bridges, |
| * because all PCI devices behind the same bridge will end up |
| * with the same source-id on their transactions. |
| * |
| * Practically speaking, we can't change things around for these |
| * devices at run-time, because we can't be sure there'll be no |
| * DMA transactions in flight for any of their siblings. |
| * |
| * So PCI devices (unless they're on the root bus) as well as |
| * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of |
| * the 1:1 domain, just in _case_ one of their siblings turns out |
| * not to be able to map all of memory. |
| */ |
| if (!pci_is_pcie(pdev)) { |
| if (!pci_is_root_bus(pdev->bus)) |
| return 0; |
| if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI) |
| return 0; |
| } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE) |
| return 0; |
| |
| /* |
| * At boot time, we don't yet know if devices will be 64-bit capable. |
| * Assume that they will -- if they turn out not to be, then we can |
| * take them out of the 1:1 domain later. |
| */ |
| if (!startup) { |
| /* |
| * If the device's dma_mask is less than the system's memory |
| * size then this is not a candidate for identity mapping. |
| */ |
| u64 dma_mask = pdev->dma_mask; |
| |
| if (pdev->dev.coherent_dma_mask && |
| pdev->dev.coherent_dma_mask < dma_mask) |
| dma_mask = pdev->dev.coherent_dma_mask; |
| |
| return dma_mask >= dma_get_required_mask(&pdev->dev); |
| } |
| |
| return 1; |
| } |
| |
| static int __init iommu_prepare_static_identity_mapping(int hw) |
| { |
| struct pci_dev *pdev = NULL; |
| int ret; |
| |
| ret = si_domain_init(hw); |
| if (ret) |
| return -EFAULT; |
| |
| for_each_pci_dev(pdev) { |
| if (iommu_should_identity_map(pdev, 1)) { |
| ret = domain_add_dev_info(si_domain, pdev, |
| hw ? CONTEXT_TT_PASS_THROUGH : |
| CONTEXT_TT_MULTI_LEVEL); |
| if (ret) { |
| /* device not associated with an iommu */ |
| if (ret == -ENODEV) |
| continue; |
| return ret; |
| } |
| pr_info("IOMMU: %s identity mapping for device %s\n", |
| hw ? "hardware" : "software", pci_name(pdev)); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int __init init_dmars(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct dmar_rmrr_unit *rmrr; |
| struct pci_dev *pdev; |
| struct intel_iommu *iommu; |
| int i, ret; |
| |
| /* |
| * for each drhd |
| * allocate root |
| * initialize and program root entry to not present |
| * endfor |
| */ |
| for_each_drhd_unit(drhd) { |
| /* |
| * lock not needed as this is only incremented in the single |
| * threaded kernel __init code path all other access are read |
| * only |
| */ |
| if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) { |
| g_num_of_iommus++; |
| continue; |
| } |
| printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n", |
| IOMMU_UNITS_SUPPORTED); |
| } |
| |
| g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), |
| GFP_KERNEL); |
| if (!g_iommus) { |
| printk(KERN_ERR "Allocating global iommu array failed\n"); |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| deferred_flush = kzalloc(g_num_of_iommus * |
| sizeof(struct deferred_flush_tables), GFP_KERNEL); |
| if (!deferred_flush) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) |
| continue; |
| |
| iommu = drhd->iommu; |
| g_iommus[iommu->seq_id] = iommu; |
| |
| ret = iommu_init_domains(iommu); |
| if (ret) |
| goto error; |
| |
| /* |
| * TBD: |
| * we could share the same root & context tables |
| * among all IOMMU's. Need to Split it later. |
| */ |
| ret = iommu_alloc_root_entry(iommu); |
| if (ret) { |
| printk(KERN_ERR "IOMMU: allocate root entry failed\n"); |
| goto error; |
| } |
| if (!ecap_pass_through(iommu->ecap)) |
| hw_pass_through = 0; |
| } |
| |
| /* |
| * Start from the sane iommu hardware state. |
| */ |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) |
| continue; |
| |
| iommu = drhd->iommu; |
| |
| /* |
| * If the queued invalidation is already initialized by us |
| * (for example, while enabling interrupt-remapping) then |
| * we got the things already rolling from a sane state. |
| */ |
| if (iommu->qi) |
| continue; |
| |
| /* |
| * Clear any previous faults. |
| */ |
| dmar_fault(-1, iommu); |
| /* |
| * Disable queued invalidation if supported and already enabled |
| * before OS handover. |
| */ |
| dmar_disable_qi(iommu); |
| } |
| |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) |
| continue; |
| |
| iommu = drhd->iommu; |
| |
| if (dmar_enable_qi(iommu)) { |
| /* |
| * Queued Invalidate not enabled, use Register Based |
| * Invalidate |
| */ |
| iommu->flush.flush_context = __iommu_flush_context; |
| iommu->flush.flush_iotlb = __iommu_flush_iotlb; |
| printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based " |
| "invalidation\n", |
| iommu->seq_id, |
| (unsigned long long)drhd->reg_base_addr); |
| } else { |
| iommu->flush.flush_context = qi_flush_context; |
| iommu->flush.flush_iotlb = qi_flush_iotlb; |
| printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued " |
| "invalidation\n", |
| iommu->seq_id, |
| (unsigned long long)drhd->reg_base_addr); |
| } |
| } |
| |
| if (iommu_pass_through) |
| iommu_identity_mapping |= IDENTMAP_ALL; |
| |
| #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA |
| iommu_identity_mapping |= IDENTMAP_GFX; |
| #endif |
| |
| check_tylersburg_isoch(); |
| |
| /* |
| * If pass through is not set or not enabled, setup context entries for |
| * identity mappings for rmrr, gfx, and isa and may fall back to static |
| * identity mapping if iommu_identity_mapping is set. |
| */ |
| if (iommu_identity_mapping) { |
| ret = iommu_prepare_static_identity_mapping(hw_pass_through); |
| if (ret) { |
| printk(KERN_CRIT "Failed to setup IOMMU pass-through\n"); |
| goto error; |
| } |
| } |
| /* |
| * For each rmrr |
| * for each dev attached to rmrr |
| * do |
| * locate drhd for dev, alloc domain for dev |
| * allocate free domain |
| * allocate page table entries for rmrr |
| * if context not allocated for bus |
| * allocate and init context |
| * set present in root table for this bus |
| * init context with domain, translation etc |
| * endfor |
| * endfor |
| */ |
| printk(KERN_INFO "IOMMU: Setting RMRR:\n"); |
| for_each_rmrr_units(rmrr) { |
| for (i = 0; i < rmrr->devices_cnt; i++) { |
| pdev = rmrr->devices[i]; |
| /* |
| * some BIOS lists non-exist devices in DMAR |
| * table. |
| */ |
| if (!pdev) |
| continue; |
| ret = iommu_prepare_rmrr_dev(rmrr, pdev); |
| if (ret) |
| printk(KERN_ERR |
| "IOMMU: mapping reserved region failed\n"); |
| } |
| } |
| |
| iommu_prepare_isa(); |
| |
| /* |
| * for each drhd |
| * enable fault log |
| * global invalidate context cache |
| * global invalidate iotlb |
| * enable translation |
| */ |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) { |
| /* |
| * we always have to disable PMRs or DMA may fail on |
| * this device |
| */ |
| if (force_on) |
| iommu_disable_protect_mem_regions(drhd->iommu); |
| continue; |
| } |
| iommu = drhd->iommu; |
| |
| iommu_flush_write_buffer(iommu); |
| |
| ret = dmar_set_interrupt(iommu); |
| if (ret) |
| goto error; |
| |
| iommu_set_root_entry(iommu); |
| |
| iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); |
| |
| ret = iommu_enable_translation(iommu); |
| if (ret) |
| goto error; |
| |
| iommu_disable_protect_mem_regions(iommu); |
| } |
| |
| return 0; |
| error: |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) |
| continue; |
| iommu = drhd->iommu; |
| free_iommu(iommu); |
| } |
| kfree(g_iommus); |
| return ret; |
| } |
| |
| /* This takes a number of _MM_ pages, not VTD pages */ |
| static struct iova *intel_alloc_iova(struct device *dev, |
| struct dmar_domain *domain, |
| unsigned long nrpages, uint64_t dma_mask) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct iova *iova = NULL; |
| |
| /* Restrict dma_mask to the width that the iommu can handle */ |
| dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask); |
| |
| if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) { |
| /* |
| * First try to allocate an io virtual address in |
| * DMA_BIT_MASK(32) and if that fails then try allocating |
| * from higher range |
| */ |
| iova = alloc_iova(&domain->iovad, nrpages, |
| IOVA_PFN(DMA_BIT_MASK(32)), 1); |
| if (iova) |
| return iova; |
| } |
| iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1); |
| if (unlikely(!iova)) { |
| printk(KERN_ERR "Allocating %ld-page iova for %s failed", |
| nrpages, pci_name(pdev)); |
| return NULL; |
| } |
| |
| return iova; |
| } |
| |
| static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev) |
| { |
| struct dmar_domain *domain; |
| int ret; |
| |
| domain = get_domain_for_dev(pdev, |
| DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| if (!domain) { |
| printk(KERN_ERR |
| "Allocating domain for %s failed", pci_name(pdev)); |
| return NULL; |
| } |
| |
| /* make sure context mapping is ok */ |
| if (unlikely(!domain_context_mapped(pdev))) { |
| ret = domain_context_mapping(domain, pdev, |
| CONTEXT_TT_MULTI_LEVEL); |
| if (ret) { |
| printk(KERN_ERR |
| "Domain context map for %s failed", |
| pci_name(pdev)); |
| return NULL; |
| } |
| } |
| |
| return domain; |
| } |
| |
| static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev) |
| { |
| struct device_domain_info *info; |
| |
| /* No lock here, assumes no domain exit in normal case */ |
| info = dev->dev.archdata.iommu; |
| if (likely(info)) |
| return info->domain; |
| |
| return __get_valid_domain_for_dev(dev); |
| } |
| |
| static int iommu_dummy(struct pci_dev *pdev) |
| { |
| return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO; |
| } |
| |
| /* Check if the pdev needs to go through non-identity map and unmap process.*/ |
| static int iommu_no_mapping(struct device *dev) |
| { |
| struct pci_dev *pdev; |
| int found; |
| |
| if (unlikely(dev->bus != &pci_bus_type)) |
| return 1; |
| |
| pdev = to_pci_dev(dev); |
| if (iommu_dummy(pdev)) |
| return 1; |
| |
| if (!iommu_identity_mapping) |
| return 0; |
| |
| found = identity_mapping(pdev); |
| if (found) { |
| if (iommu_should_identity_map(pdev, 0)) |
| return 1; |
| else { |
| /* |
| * 32 bit DMA is removed from si_domain and fall back |
| * to non-identity mapping. |
| */ |
| domain_remove_one_dev_info(si_domain, pdev); |
| printk(KERN_INFO "32bit %s uses non-identity mapping\n", |
| pci_name(pdev)); |
| return 0; |
| } |
| } else { |
| /* |
| * In case of a detached 64 bit DMA device from vm, the device |
| * is put into si_domain for identity mapping. |
| */ |
| if (iommu_should_identity_map(pdev, 0)) { |
| int ret; |
| ret = domain_add_dev_info(si_domain, pdev, |
| hw_pass_through ? |
| CONTEXT_TT_PASS_THROUGH : |
| CONTEXT_TT_MULTI_LEVEL); |
| if (!ret) { |
| printk(KERN_INFO "64bit %s uses identity mapping\n", |
| pci_name(pdev)); |
| return 1; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr, |
| size_t size, int dir, u64 dma_mask) |
| { |
| struct pci_dev *pdev = to_pci_dev(hwdev); |
| struct dmar_domain *domain; |
| phys_addr_t start_paddr; |
| struct iova *iova; |
| int prot = 0; |
| int ret; |
| struct intel_iommu *iommu; |
| unsigned long paddr_pfn = paddr >> PAGE_SHIFT; |
| |
| BUG_ON(dir == DMA_NONE); |
| |
| if (iommu_no_mapping(hwdev)) |
| return paddr; |
| |
| domain = get_valid_domain_for_dev(pdev); |
| if (!domain) |
| return 0; |
| |
| iommu = domain_get_iommu(domain); |
| size = aligned_nrpages(paddr, size); |
| |
| iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask); |
| if (!iova) |
| goto error; |
| |
| /* |
| * Check if DMAR supports zero-length reads on write only |
| * mappings.. |
| */ |
| if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
| !cap_zlr(iommu->cap)) |
| prot |= DMA_PTE_READ; |
| if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| prot |= DMA_PTE_WRITE; |
| /* |
| * paddr - (paddr + size) might be partial page, we should map the whole |
| * page. Note: if two part of one page are separately mapped, we |
| * might have two guest_addr mapping to the same host paddr, but this |
| * is not a big problem |
| */ |
| ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo), |
| mm_to_dma_pfn(paddr_pfn), size, prot); |
| if (ret) |
| goto error; |
| |
| /* it's a non-present to present mapping. Only flush if caching mode */ |
| if (cap_caching_mode(iommu->cap)) |
| iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1); |
| else |
| iommu_flush_write_buffer(iommu); |
| |
| start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT; |
| start_paddr += paddr & ~PAGE_MASK; |
| return start_paddr; |
| |
| error: |
| if (iova) |
| __free_iova(&domain->iovad, iova); |
| printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n", |
| pci_name(pdev), size, (unsigned long long)paddr, dir); |
| return 0; |
| } |
| |
| static dma_addr_t intel_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| return __intel_map_single(dev, page_to_phys(page) + offset, size, |
| dir, to_pci_dev(dev)->dma_mask); |
| } |
| |
| static void flush_unmaps(void) |
| { |
| int i, j; |
| |
| timer_on = 0; |
| |
| /* just flush them all */ |
| for (i = 0; i < g_num_of_iommus; i++) { |
| struct intel_iommu *iommu = g_iommus[i]; |
| if (!iommu) |
| continue; |
| |
| if (!deferred_flush[i].next) |
| continue; |
| |
| /* In caching mode, global flushes turn emulation expensive */ |
| if (!cap_caching_mode(iommu->cap)) |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, |
| DMA_TLB_GLOBAL_FLUSH); |
| for (j = 0; j < deferred_flush[i].next; j++) { |
| unsigned long mask; |
| struct iova *iova = deferred_flush[i].iova[j]; |
| struct dmar_domain *domain = deferred_flush[i].domain[j]; |
| |
| /* On real hardware multiple invalidations are expensive */ |
| if (cap_caching_mode(iommu->cap)) |
| iommu_flush_iotlb_psi(iommu, domain->id, |
| iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0); |
| else { |
| mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1)); |
| iommu_flush_dev_iotlb(deferred_flush[i].domain[j], |
| (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask); |
| } |
| __free_iova(&deferred_flush[i].domain[j]->iovad, iova); |
| } |
| deferred_flush[i].next = 0; |
| } |
| |
| list_size = 0; |
| } |
| |
| static void flush_unmaps_timeout(unsigned long data) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&async_umap_flush_lock, flags); |
| flush_unmaps(); |
| spin_unlock_irqrestore(&async_umap_flush_lock, flags); |
| } |
| |
| static void add_unmap(struct dmar_domain *dom, struct iova *iova) |
| { |
| unsigned long flags; |
| int next, iommu_id; |
| struct intel_iommu *iommu; |
| |
| spin_lock_irqsave(&async_umap_flush_lock, flags); |
| if (list_size == HIGH_WATER_MARK) |
| flush_unmaps(); |
| |
| iommu = domain_get_iommu(dom); |
| iommu_id = iommu->seq_id; |
| |
| next = deferred_flush[iommu_id].next; |
| deferred_flush[iommu_id].domain[next] = dom; |
| deferred_flush[iommu_id].iova[next] = iova; |
| deferred_flush[iommu_id].next++; |
| |
| if (!timer_on) { |
| mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10)); |
| timer_on = 1; |
| } |
| list_size++; |
| spin_unlock_irqrestore(&async_umap_flush_lock, flags); |
| } |
| |
| static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr, |
| size_t size, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct dmar_domain *domain; |
| unsigned long start_pfn, last_pfn; |
| struct iova *iova; |
| struct intel_iommu *iommu; |
| |
| if (iommu_no_mapping(dev)) |
| return; |
| |
| domain = find_domain(pdev); |
| BUG_ON(!domain); |
| |
| iommu = domain_get_iommu(domain); |
| |
| iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); |
| if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n", |
| (unsigned long long)dev_addr)) |
| return; |
| |
| start_pfn = mm_to_dma_pfn(iova->pfn_lo); |
| last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; |
| |
| pr_debug("Device %s unmapping: pfn %lx-%lx\n", |
| pci_name(pdev), start_pfn, last_pfn); |
| |
| /* clear the whole page */ |
| dma_pte_clear_range(domain, start_pfn, last_pfn); |
| |
| /* free page tables */ |
| dma_pte_free_pagetable(domain, start_pfn, last_pfn); |
| |
| if (intel_iommu_strict) { |
| iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, |
| last_pfn - start_pfn + 1, 0); |
| /* free iova */ |
| __free_iova(&domain->iovad, iova); |
| } else { |
| add_unmap(domain, iova); |
| /* |
| * queue up the release of the unmap to save the 1/6th of the |
| * cpu used up by the iotlb flush operation... |
| */ |
| } |
| } |
| |
| static void *intel_alloc_coherent(struct device *hwdev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flags, |
| struct dma_attrs *attrs) |
| { |
| void *vaddr; |
| int order; |
| |
| size = PAGE_ALIGN(size); |
| order = get_order(size); |
| |
| if (!iommu_no_mapping(hwdev)) |
| flags &= ~(GFP_DMA | GFP_DMA32); |
| else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) { |
| if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32)) |
| flags |= GFP_DMA; |
| else |
| flags |= GFP_DMA32; |
| } |
| |
| vaddr = (void *)__get_free_pages(flags, order); |
| if (!vaddr) |
| return NULL; |
| memset(vaddr, 0, size); |
| |
| *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size, |
| DMA_BIDIRECTIONAL, |
| hwdev->coherent_dma_mask); |
| if (*dma_handle) |
| return vaddr; |
| free_pages((unsigned long)vaddr, order); |
| return NULL; |
| } |
| |
| static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr, |
| dma_addr_t dma_handle, struct dma_attrs *attrs) |
| { |
| int order; |
| |
| size = PAGE_ALIGN(size); |
| order = get_order(size); |
| |
| intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL); |
| free_pages((unsigned long)vaddr, order); |
| } |
| |
| static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| struct pci_dev *pdev = to_pci_dev(hwdev); |
| struct dmar_domain *domain; |
| unsigned long start_pfn, last_pfn; |
| struct iova *iova; |
| struct intel_iommu *iommu; |
| |
| if (iommu_no_mapping(hwdev)) |
| return; |
| |
| domain = find_domain(pdev); |
| BUG_ON(!domain); |
| |
| iommu = domain_get_iommu(domain); |
| |
| iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address)); |
| if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n", |
| (unsigned long long)sglist[0].dma_address)) |
| return; |
| |
| start_pfn = mm_to_dma_pfn(iova->pfn_lo); |
| last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; |
| |
| /* clear the whole page */ |
| dma_pte_clear_range(domain, start_pfn, last_pfn); |
| |
| /* free page tables */ |
| dma_pte_free_pagetable(domain, start_pfn, last_pfn); |
| |
| if (intel_iommu_strict) { |
| iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, |
| last_pfn - start_pfn + 1, 0); |
| /* free iova */ |
| __free_iova(&domain->iovad, iova); |
| } else { |
| add_unmap(domain, iova); |
| /* |
| * queue up the release of the unmap to save the 1/6th of the |
| * cpu used up by the iotlb flush operation... |
| */ |
| } |
| } |
| |
| static int intel_nontranslate_map_sg(struct device *hddev, |
| struct scatterlist *sglist, int nelems, int dir) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sglist, sg, nelems, i) { |
| BUG_ON(!sg_page(sg)); |
| sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset; |
| sg->dma_length = sg->length; |
| } |
| return nelems; |
| } |
| |
| static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| int i; |
| struct pci_dev *pdev = to_pci_dev(hwdev); |
| struct dmar_domain *domain; |
| size_t size = 0; |
| int prot = 0; |
| struct iova *iova = NULL; |
| int ret; |
| struct scatterlist *sg; |
| unsigned long start_vpfn; |
| struct intel_iommu *iommu; |
| |
| BUG_ON(dir == DMA_NONE); |
| if (iommu_no_mapping(hwdev)) |
| return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir); |
| |
| domain = get_valid_domain_for_dev(pdev); |
| if (!domain) |
| return 0; |
| |
| iommu = domain_get_iommu(domain); |
| |
| for_each_sg(sglist, sg, nelems, i) |
| size += aligned_nrpages(sg->offset, sg->length); |
| |
| iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), |
| pdev->dma_mask); |
| if (!iova) { |
| sglist->dma_length = 0; |
| return 0; |
| } |
| |
| /* |
| * Check if DMAR supports zero-length reads on write only |
| * mappings.. |
| */ |
| if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
| !cap_zlr(iommu->cap)) |
| prot |= DMA_PTE_READ; |
| if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| prot |= DMA_PTE_WRITE; |
| |
| start_vpfn = mm_to_dma_pfn(iova->pfn_lo); |
| |
| ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot); |
| if (unlikely(ret)) { |
| /* clear the page */ |
| dma_pte_clear_range(domain, start_vpfn, |
| start_vpfn + size - 1); |
| /* free page tables */ |
| dma_pte_free_pagetable(domain, start_vpfn, |
| start_vpfn + size - 1); |
| /* free iova */ |
| __free_iova(&domain->iovad, iova); |
| return 0; |
| } |
| |
| /* it's a non-present to present mapping. Only flush if caching mode */ |
| if (cap_caching_mode(iommu->cap)) |
| iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1); |
| else |
| iommu_flush_write_buffer(iommu); |
| |
| return nelems; |
| } |
| |
| static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| { |
| return !dma_addr; |
| } |
| |
| struct dma_map_ops intel_dma_ops = { |
| .alloc = intel_alloc_coherent, |
| .free = intel_free_coherent, |
| .map_sg = intel_map_sg, |
| .unmap_sg = intel_unmap_sg, |
| .map_page = intel_map_page, |
| .unmap_page = intel_unmap_page, |
| .mapping_error = intel_mapping_error, |
| }; |
| |
| static inline int iommu_domain_cache_init(void) |
| { |
| int ret = 0; |
| |
| iommu_domain_cache = kmem_cache_create("iommu_domain", |
| sizeof(struct dmar_domain), |
| 0, |
| SLAB_HWCACHE_ALIGN, |
| |
| NULL); |
| if (!iommu_domain_cache) { |
| printk(KERN_ERR "Couldn't create iommu_domain cache\n"); |
| ret = -ENOMEM; |
| } |
| |
| return ret; |
| } |
| |
| static inline int iommu_devinfo_cache_init(void) |
| { |
| int ret = 0; |
| |
| iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", |
| sizeof(struct device_domain_info), |
| 0, |
| SLAB_HWCACHE_ALIGN, |
| NULL); |
| if (!iommu_devinfo_cache) { |
| printk(KERN_ERR "Couldn't create devinfo cache\n"); |
| ret = -ENOMEM; |
| } |
| |
| return ret; |
| } |
| |
| static inline int iommu_iova_cache_init(void) |
| { |
| int ret = 0; |
| |
| iommu_iova_cache = kmem_cache_create("iommu_iova", |
| sizeof(struct iova), |
| 0, |
| SLAB_HWCACHE_ALIGN, |
| NULL); |
| if (!iommu_iova_cache) { |
| printk(KERN_ERR "Couldn't create iova cache\n"); |
| ret = -ENOMEM; |
| } |
| |
| return ret; |
| } |
| |
| static int __init iommu_init_mempool(void) |
| { |
| int ret; |
| ret = iommu_iova_cache_init(); |
| if (ret) |
| return ret; |
| |
| ret = iommu_domain_cache_init(); |
| if (ret) |
| goto domain_error; |
| |
| ret = iommu_devinfo_cache_init(); |
| if (!ret) |
| return ret; |
| |
| kmem_cache_destroy(iommu_domain_cache); |
| domain_error: |
| kmem_cache_destroy(iommu_iova_cache); |
| |
| return -ENOMEM; |
| } |
| |
| static void __init iommu_exit_mempool(void) |
| { |
| kmem_cache_destroy(iommu_devinfo_cache); |
| kmem_cache_destroy(iommu_domain_cache); |
| kmem_cache_destroy(iommu_iova_cache); |
| |
| } |
| |
| static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev) |
| { |
| struct dmar_drhd_unit *drhd; |
| u32 vtbar; |
| int rc; |
| |
| /* We know that this device on this chipset has its own IOMMU. |
| * If we find it under a different IOMMU, then the BIOS is lying |
| * to us. Hope that the IOMMU for this device is actually |
| * disabled, and it needs no translation... |
| */ |
| rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); |
| if (rc) { |
| /* "can't" happen */ |
| dev_info(&pdev->dev, "failed to run vt-d quirk\n"); |
| return; |
| } |
| vtbar &= 0xffff0000; |
| |
| /* we know that the this iommu should be at offset 0xa000 from vtbar */ |
| drhd = dmar_find_matched_drhd_unit(pdev); |
| if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000, |
| TAINT_FIRMWARE_WORKAROUND, |
| "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n")) |
| pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; |
| } |
| DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu); |
| |
| static void __init init_no_remapping_devices(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| |
| for_each_drhd_unit(drhd) { |
| if (!drhd->include_all) { |
| int i; |
| for (i = 0; i < drhd->devices_cnt; i++) |
| if (drhd->devices[i] != NULL) |
| break; |
| /* ignore DMAR unit if no pci devices exist */ |
| if (i == drhd->devices_cnt) |
| drhd->ignored = 1; |
| } |
| } |
| |
| for_each_drhd_unit(drhd) { |
| int i; |
| if (drhd->ignored || drhd->include_all) |
| continue; |
| |
| for (i = 0; i < drhd->devices_cnt; i++) |
| if (drhd->devices[i] && |
| !IS_GFX_DEVICE(drhd->devices[i])) |
| break; |
| |
| if (i < drhd->devices_cnt) |
| continue; |
| |
| /* This IOMMU has *only* gfx devices. Either bypass it or |
| set the gfx_mapped flag, as appropriate */ |
| if (dmar_map_gfx) { |
| intel_iommu_gfx_mapped = 1; |
| } else { |
| drhd->ignored = 1; |
| for (i = 0; i < drhd->devices_cnt; i++) { |
| if (!drhd->devices[i]) |
| continue; |
| drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; |
| } |
| } |
| } |
| } |
| |
| #ifdef CONFIG_SUSPEND |
| static int init_iommu_hw(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| |
| for_each_active_iommu(iommu, drhd) |
| if (iommu->qi) |
| dmar_reenable_qi(iommu); |
| |
| for_each_iommu(iommu, drhd) { |
| if (drhd->ignored) { |
| /* |
| * we always have to disable PMRs or DMA may fail on |
| * this device |
| */ |
| if (force_on) |
| iommu_disable_protect_mem_regions(iommu); |
| continue; |
| } |
| |
| iommu_flush_write_buffer(iommu); |
| |
| iommu_set_root_entry(iommu); |
| |
| iommu->flush.flush_context(iommu, 0, 0, 0, |
| DMA_CCMD_GLOBAL_INVL); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, |
| DMA_TLB_GLOBAL_FLUSH); |
| if (iommu_enable_translation(iommu)) |
| return 1; |
| iommu_disable_protect_mem_regions(iommu); |
| } |
| |
| return 0; |
| } |
| |
| static void iommu_flush_all(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| |
| for_each_active_iommu(iommu, drhd) { |
| iommu->flush.flush_context(iommu, 0, 0, 0, |
| DMA_CCMD_GLOBAL_INVL); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, |
| DMA_TLB_GLOBAL_FLUSH); |
| } |
| } |
| |
| static int iommu_suspend(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| unsigned long flag; |
| |
| for_each_active_iommu(iommu, drhd) { |
| iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS, |
| GFP_ATOMIC); |
| if (!iommu->iommu_state) |
| goto nomem; |
| } |
| |
| iommu_flush_all(); |
| |
| for_each_active_iommu(iommu, drhd) { |
| iommu_disable_translation(iommu); |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| |
| iommu->iommu_state[SR_DMAR_FECTL_REG] = |
| readl(iommu->reg + DMAR_FECTL_REG); |
| iommu->iommu_state[SR_DMAR_FEDATA_REG] = |
| readl(iommu->reg + DMAR_FEDATA_REG); |
| iommu->iommu_state[SR_DMAR_FEADDR_REG] = |
| readl(iommu->reg + DMAR_FEADDR_REG); |
| iommu->iommu_state[SR_DMAR_FEUADDR_REG] = |
| readl(iommu->reg + DMAR_FEUADDR_REG); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| return 0; |
| |
| nomem: |
| for_each_active_iommu(iommu, drhd) |
| kfree(iommu->iommu_state); |
| |
| return -ENOMEM; |
| } |
| |
| static void iommu_resume(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| unsigned long flag; |
| |
| if (init_iommu_hw()) { |
| if (force_on) |
| panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); |
| else |
| WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); |
| return; |
| } |
| |
| for_each_active_iommu(iommu, drhd) { |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| |
| writel(iommu->iommu_state[SR_DMAR_FECTL_REG], |
| iommu->reg + DMAR_FECTL_REG); |
| writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], |
| iommu->reg + DMAR_FEDATA_REG); |
| writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], |
| iommu->reg + DMAR_FEADDR_REG); |
| writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], |
| iommu->reg + DMAR_FEUADDR_REG); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| for_each_active_iommu(iommu, drhd) |
| kfree(iommu->iommu_state); |
| } |
| |
| static struct syscore_ops iommu_syscore_ops = { |
| .resume = iommu_resume, |
| .suspend = iommu_suspend, |
| }; |
| |
| static void __init init_iommu_pm_ops(void) |
| { |
| register_syscore_ops(&iommu_syscore_ops); |
| } |
| |
| #else |
| static inline void init_iommu_pm_ops(void) {} |
| #endif /* CONFIG_PM */ |
| |
| LIST_HEAD(dmar_rmrr_units); |
| |
| static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr) |
| { |
| list_add(&rmrr->list, &dmar_rmrr_units); |
| } |
| |
| |
| int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header) |
| { |
| struct acpi_dmar_reserved_memory *rmrr; |
| struct dmar_rmrr_unit *rmrru; |
| |
| rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); |
| if (!rmrru) |
| return -ENOMEM; |
| |
| rmrru->hdr = header; |
| rmrr = (struct acpi_dmar_reserved_memory *)header; |
| rmrru->base_address = rmrr->base_address; |
| rmrru->end_address = rmrr->end_address; |
| |
| dmar_register_rmrr_unit(rmrru); |
| return 0; |
| } |
| |
| static int __init |
| rmrr_parse_dev(struct dmar_rmrr_unit *rmrru) |
| { |
| struct acpi_dmar_reserved_memory *rmrr; |
| int ret; |
| |
| rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr; |
| ret = dmar_parse_dev_scope((void *)(rmrr + 1), |
| ((void *)rmrr) + rmrr->header.length, |
| &rmrru->devices_cnt, &rmrru->devices, rmrr->segment); |
| |
| if (ret || (rmrru->devices_cnt == 0)) { |
| list_del(&rmrru->list); |
| kfree(rmrru); |
| } |
| return ret; |
| } |
| |
| static LIST_HEAD(dmar_atsr_units); |
| |
| int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr) |
| { |
| struct acpi_dmar_atsr *atsr; |
| struct dmar_atsr_unit *atsru; |
| |
| atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
| atsru = kzalloc(sizeof(*atsru), GFP_KERNEL); |
| if (!atsru) |
| return -ENOMEM; |
| |
| atsru->hdr = hdr; |
| atsru->include_all = atsr->flags & 0x1; |
| |
| list_add(&atsru->list, &dmar_atsr_units); |
| |
| return 0; |
| } |
| |
| static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru) |
| { |
| int rc; |
| struct acpi_dmar_atsr *atsr; |
| |
| if (atsru->include_all) |
| return 0; |
| |
| atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); |
| rc = dmar_parse_dev_scope((void *)(atsr + 1), |
| (void *)atsr + atsr->header.length, |
| &atsru->devices_cnt, &atsru->devices, |
| atsr->segment); |
| if (rc || !atsru->devices_cnt) { |
| list_del(&atsru->list); |
| kfree(atsru); |
| } |
| |
| return rc; |
| } |
| |
| int dmar_find_matched_atsr_unit(struct pci_dev *dev) |
| { |
| int i; |
| struct pci_bus *bus; |
| struct acpi_dmar_atsr *atsr; |
| struct dmar_atsr_unit *atsru; |
| |
| dev = pci_physfn(dev); |
| |
| list_for_each_entry(atsru, &dmar_atsr_units, list) { |
| atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); |
| if (atsr->segment == pci_domain_nr(dev->bus)) |
| goto found; |
| } |
| |
| return 0; |
| |
| found: |
| for (bus = dev->bus; bus; bus = bus->parent) { |
| struct pci_dev *bridge = bus->self; |
| |
| if (!bridge || !pci_is_pcie(bridge) || |
| pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) |
| return 0; |
| |
| if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) { |
| for (i = 0; i < atsru->devices_cnt; i++) |
| if (atsru->devices[i] == bridge) |
| return 1; |
| break; |
| } |
| } |
| |
| if (atsru->include_all) |
| return 1; |
| |
| return 0; |
| } |
| |
| int __init dmar_parse_rmrr_atsr_dev(void) |
| { |
| struct dmar_rmrr_unit *rmrr, *rmrr_n; |
| struct dmar_atsr_unit *atsr, *atsr_n; |
| int ret = 0; |
| |
| list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) { |
| ret = rmrr_parse_dev(rmrr); |
| if (ret) |
| return ret; |
| } |
| |
| list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) { |
| ret = atsr_parse_dev(atsr); |
| if (ret) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Here we only respond to action of unbound device from driver. |
| * |
| * Added device is not attached to its DMAR domain here yet. That will happen |
| * when mapping the device to iova. |
| */ |
| static int device_notifier(struct notifier_block *nb, |
| unsigned long action, void *data) |
| { |
| struct device *dev = data; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct dmar_domain *domain; |
| |
| if (iommu_no_mapping(dev)) |
| return 0; |
| |
| domain = find_domain(pdev); |
| if (!domain) |
| return 0; |
| |
| if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) { |
| domain_remove_one_dev_info(domain, pdev); |
| |
| if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) && |
| !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) && |
| list_empty(&domain->devices)) |
| domain_exit(domain); |
| } |
| |
| return 0; |
| } |
| |
| static struct notifier_block device_nb = { |
| .notifier_call = device_notifier, |
| }; |
| |
| int __init intel_iommu_init(void) |
| { |
| int ret = 0; |
| |
| /* VT-d is required for a TXT/tboot launch, so enforce that */ |
| force_on = tboot_force_iommu(); |
| |
| if (dmar_table_init()) { |
| if (force_on) |
| panic("tboot: Failed to initialize DMAR table\n"); |
| return -ENODEV; |
| } |
| |
| if (dmar_dev_scope_init() < 0) { |
| if (force_on) |
| panic("tboot: Failed to initialize DMAR device scope\n"); |
| return -ENODEV; |
| } |
| |
| if (no_iommu || dmar_disabled) |
| return -ENODEV; |
| |
| if (iommu_init_mempool()) { |
| if (force_on) |
| panic("tboot: Failed to initialize iommu memory\n"); |
| return -ENODEV; |
| } |
| |
| if (list_empty(&dmar_rmrr_units)) |
| printk(KERN_INFO "DMAR: No RMRR found\n"); |
| |
| if (list_empty(&dmar_atsr_units)) |
| printk(KERN_INFO "DMAR: No ATSR found\n"); |
| |
| if (dmar_init_reserved_ranges()) { |
| if (force_on) |
| panic("tboot: Failed to reserve iommu ranges\n"); |
| return -ENODEV; |
| } |
| |
| init_no_remapping_devices(); |
| |
| ret = init_dmars(); |
| if (ret) { |
| if (force_on) |
| panic("tboot: Failed to initialize DMARs\n"); |
| printk(KERN_ERR "IOMMU: dmar init failed\n"); |
| put_iova_domain(&reserved_iova_list); |
| iommu_exit_mempool(); |
| return ret; |
| } |
| printk(KERN_INFO |
| "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); |
| |
| init_timer(&unmap_timer); |
| #ifdef CONFIG_SWIOTLB |
| swiotlb = 0; |
| #endif |
| dma_ops = &intel_dma_ops; |
| |
| init_iommu_pm_ops(); |
| |
| bus_set_iommu(&pci_bus_type, &intel_iommu_ops); |
| |
| bus_register_notifier(&pci_bus_type, &device_nb); |
| |
| intel_iommu_enabled = 1; |
| |
| return 0; |
| } |
| |
| static void iommu_detach_dependent_devices(struct intel_iommu *iommu, |
| struct pci_dev *pdev) |
| { |
| struct pci_dev *tmp, *parent; |
| |
| if (!iommu || !pdev) |
| return; |
| |
| /* dependent device detach */ |
| tmp = pci_find_upstream_pcie_bridge(pdev); |
| /* Secondary interface's bus number and devfn 0 */ |
| if (tmp) { |
| parent = pdev->bus->self; |
| while (parent != tmp) { |
| iommu_detach_dev(iommu, parent->bus->number, |
| parent->devfn); |
| parent = parent->bus->self; |
| } |
| if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */ |
| iommu_detach_dev(iommu, |
| tmp->subordinate->number, 0); |
| else /* this is a legacy PCI bridge */ |
| iommu_detach_dev(iommu, tmp->bus->number, |
| tmp->devfn); |
| } |
| } |
| |
| static void domain_remove_one_dev_info(struct dmar_domain *domain, |
| struct pci_dev *pdev) |
| { |
| struct device_domain_info *info; |
| struct intel_iommu *iommu; |
| unsigned long flags; |
| int found = 0; |
| struct list_head *entry, *tmp; |
| |
| iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, |
| pdev->devfn); |
| if (!iommu) |
| return; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_safe(entry, tmp, &domain->devices) { |
| info = list_entry(entry, struct device_domain_info, link); |
| if (info->segment == pci_domain_nr(pdev->bus) && |
| info->bus == pdev->bus->number && |
| info->devfn == pdev->devfn) { |
| unlink_domain_info(info); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| iommu_disable_dev_iotlb(info); |
| iommu_detach_dev(iommu, info->bus, info->devfn); |
| iommu_detach_dependent_devices(iommu, pdev); |
| free_devinfo_mem(info); |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| |
| if (found) |
| break; |
| else |
| continue; |
| } |
| |
| /* if there is no other devices under the same iommu |
| * owned by this domain, clear this iommu in iommu_bmp |
| * update iommu count and coherency |
| */ |
| if (iommu == device_to_iommu(info->segment, info->bus, |
| info->devfn)) |
| found = 1; |
| } |
| |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| if (found == 0) { |
| unsigned long tmp_flags; |
| spin_lock_irqsave(&domain->iommu_lock, tmp_flags); |
| clear_bit(iommu->seq_id, domain->iommu_bmp); |
| domain->iommu_count--; |
| domain_update_iommu_cap(domain); |
| spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags); |
| |
| if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) && |
| !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) { |
| spin_lock_irqsave(&iommu->lock, tmp_flags); |
| clear_bit(domain->id, iommu->domain_ids); |
| iommu->domains[domain->id] = NULL; |
| spin_unlock_irqrestore(&iommu->lock, tmp_flags); |
| } |
| } |
| } |
| |
| static void vm_domain_remove_all_dev_info(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info; |
| struct intel_iommu *iommu; |
| unsigned long flags1, flags2; |
| |
| spin_lock_irqsave(&device_domain_lock, flags1); |
| while (!list_empty(&domain->devices)) { |
| info = list_entry(domain->devices.next, |
| struct device_domain_info, link); |
| unlink_domain_info(info); |
| spin_unlock_irqrestore(&device_domain_lock, flags1); |
| |
| iommu_disable_dev_iotlb(info); |
| iommu = device_to_iommu(info->segment, info->bus, info->devfn); |
| iommu_detach_dev(iommu, info->bus, info->devfn); |
| iommu_detach_dependent_devices(iommu, info->dev); |
| |
| /* clear this iommu in iommu_bmp, update iommu count |
| * and capabilities |
| */ |
| spin_lock_irqsave(&domain->iommu_lock, flags2); |
| if (test_and_clear_bit(iommu->seq_id, |
| domain->iommu_bmp)) { |
| domain->iommu_count--; |
| domain_update_iommu_cap(domain); |
| } |
| spin_unlock_irqrestore(&domain->iommu_lock, flags2); |
| |
| free_devinfo_mem(info); |
| spin_lock_irqsave(&device_domain_lock, flags1); |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags1); |
| } |
| |
| /* domain id for virtual machine, it won't be set in context */ |
| static unsigned long vm_domid; |
| |
| static struct dmar_domain *iommu_alloc_vm_domain(void) |
| { |
| struct dmar_domain *domain; |
| |
| domain = alloc_domain_mem(); |
| if (!domain) |
| return NULL; |
| |
| domain->id = vm_domid++; |
| domain->nid = -1; |
| memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp)); |
| domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE; |
| |
| return domain; |
| } |
| |
| static int md_domain_init(struct dmar_domain *domain, int guest_width) |
| { |
| int adjust_width; |
| |
| init_iova_domain(&domain->iovad, DMA_32BIT_PFN); |
| spin_lock_init(&domain->iommu_lock); |
| |
| domain_reserve_special_ranges(domain); |
| |
| /* calculate AGAW */ |
| domain->gaw = guest_width; |
| adjust_width = guestwidth_to_adjustwidth(guest_width); |
| domain->agaw = width_to_agaw(adjust_width); |
| |
| INIT_LIST_HEAD(&domain->devices); |
| |
| domain->iommu_count = 0; |
| domain->iommu_coherency = 0; |
| domain->iommu_snooping = 0; |
| domain->iommu_superpage = 0; |
| domain->max_addr = 0; |
| domain->nid = -1; |
| |
| /* always allocate the top pgd */ |
| domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); |
| if (!domain->pgd) |
| return -ENOMEM; |
| domain_flush_cache(domain, domain->pgd, PAGE_SIZE); |
| return 0; |
| } |
| |
| static void iommu_free_vm_domain(struct dmar_domain *domain) |
| { |
| unsigned long flags; |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| unsigned long i; |
| unsigned long ndomains; |
| |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) |
| continue; |
| iommu = drhd->iommu; |
| |
| ndomains = cap_ndoms(iommu->cap); |
| for_each_set_bit(i, iommu->domain_ids, ndomains) { |
| if (iommu->domains[i] == domain) { |
| spin_lock_irqsave(&iommu->lock, flags); |
| clear_bit(i, iommu->domain_ids); |
| iommu->domains[i] = NULL; |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| break; |
| } |
| } |
| } |
| } |
| |
| static void vm_domain_exit(struct dmar_domain *domain) |
| { |
| /* Domain 0 is reserved, so dont process it */ |
| if (!domain) |
| return; |
| |
| vm_domain_remove_all_dev_info(domain); |
| /* destroy iovas */ |
| put_iova_domain(&domain->iovad); |
| |
| /* clear ptes */ |
| dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); |
| |
| /* free page tables */ |
| dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); |
| |
| iommu_free_vm_domain(domain); |
| free_domain_mem(domain); |
| } |
| |
| static int intel_iommu_domain_init(struct iommu_domain *domain) |
| { |
| struct dmar_domain *dmar_domain; |
| |
| dmar_domain = iommu_alloc_vm_domain(); |
| if (!dmar_domain) { |
| printk(KERN_ERR |
| "intel_iommu_domain_init: dmar_domain == NULL\n"); |
| return -ENOMEM; |
| } |
| if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
| printk(KERN_ERR |
| "intel_iommu_domain_init() failed\n"); |
| vm_domain_exit(dmar_domain); |
| return -ENOMEM; |
| } |
| domain_update_iommu_cap(dmar_domain); |
| domain->priv = dmar_domain; |
| |
| domain->geometry.aperture_start = 0; |
| domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw); |
| domain->geometry.force_aperture = true; |
| |
| return 0; |
| } |
| |
| static void intel_iommu_domain_destroy(struct iommu_domain *domain) |
| { |
| struct dmar_domain *dmar_domain = domain->priv; |
| |
| domain->priv = NULL; |
| vm_domain_exit(dmar_domain); |
| } |
| |
| static int intel_iommu_attach_device(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| struct dmar_domain *dmar_domain = domain->priv; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct intel_iommu *iommu; |
| int addr_width; |
| |
| /* normally pdev is not mapped */ |
| if (unlikely(domain_context_mapped(pdev))) { |
| struct dmar_domain *old_domain; |
| |
| old_domain = find_domain(pdev); |
| if (old_domain) { |
| if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || |
| dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) |
| domain_remove_one_dev_info(old_domain, pdev); |
| else |
| domain_remove_dev_info(old_domain); |
| } |
| } |
| |
| iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, |
| pdev->devfn); |
| if (!iommu) |
| return -ENODEV; |
| |
| /* check if this iommu agaw is sufficient for max mapped address */ |
| addr_width = agaw_to_width(iommu->agaw); |
| if (addr_width > cap_mgaw(iommu->cap)) |
| addr_width = cap_mgaw(iommu->cap); |
| |
| if (dmar_domain->max_addr > (1LL << addr_width)) { |
| printk(KERN_ERR "%s: iommu width (%d) is not " |
| "sufficient for the mapped address (%llx)\n", |
| __func__, addr_width, dmar_domain->max_addr); |
| return -EFAULT; |
| } |
| dmar_domain->gaw = addr_width; |
| |
| /* |
| * Knock out extra levels of page tables if necessary |
| */ |
| while (iommu->agaw < dmar_domain->agaw) { |
| struct dma_pte *pte; |
| |
| pte = dmar_domain->pgd; |
| if (dma_pte_present(pte)) { |
| dmar_domain->pgd = (struct dma_pte *) |
| phys_to_virt(dma_pte_addr(pte)); |
| free_pgtable_page(pte); |
| } |
| dmar_domain->agaw--; |
| } |
| |
| return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL); |
| } |
| |
| static void intel_iommu_detach_device(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| struct dmar_domain *dmar_domain = domain->priv; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| domain_remove_one_dev_info(dmar_domain, pdev); |
| } |
| |
| static int intel_iommu_map(struct iommu_domain *domain, |
| unsigned long iova, phys_addr_t hpa, |
| size_t size, int iommu_prot) |
| { |
| struct dmar_domain *dmar_domain = domain->priv; |
| u64 max_addr; |
| int prot = 0; |
| int ret; |
| |
| if (iommu_prot & IOMMU_READ) |
| prot |= DMA_PTE_READ; |
| if (iommu_prot & IOMMU_WRITE) |
| prot |= DMA_PTE_WRITE; |
| if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) |
| prot |= DMA_PTE_SNP; |
| |
| max_addr = iova + size; |
| if (dmar_domain->max_addr < max_addr) { |
| u64 end; |
| |
| /* check if minimum agaw is sufficient for mapped address */ |
| end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; |
| if (end < max_addr) { |
| printk(KERN_ERR "%s: iommu width (%d) is not " |
| "sufficient for the mapped address (%llx)\n", |
| __func__, dmar_domain->gaw, max_addr); |
| return -EFAULT; |
| } |
| dmar_domain->max_addr = max_addr; |
| } |
| /* Round up size to next multiple of PAGE_SIZE, if it and |
| the low bits of hpa would take us onto the next page */ |
| size = aligned_nrpages(hpa, size); |
| ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, |
| hpa >> VTD_PAGE_SHIFT, size, prot); |
| return ret; |
| } |
| |
| static size_t intel_iommu_unmap(struct iommu_domain *domain, |
| unsigned long iova, size_t size) |
| { |
| struct dmar_domain *dmar_domain = domain->priv; |
| int order; |
| |
| order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT, |
| (iova + size - 1) >> VTD_PAGE_SHIFT); |
| |
| if (dmar_domain->max_addr == iova + size) |
| dmar_domain->max_addr = iova; |
| |
| return PAGE_SIZE << order; |
| } |
| |
| static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, |
| unsigned long iova) |
| { |
| struct dmar_domain *dmar_domain = domain->priv; |
| struct dma_pte *pte; |
| u64 phys = 0; |
| |
| pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0); |
| if (pte) |
| phys = dma_pte_addr(pte); |
| |
| return phys; |
| } |
| |
| static int intel_iommu_domain_has_cap(struct iommu_domain *domain, |
| unsigned long cap) |
| { |
| struct dmar_domain *dmar_domain = domain->priv; |
| |
| if (cap == IOMMU_CAP_CACHE_COHERENCY) |
| return dmar_domain->iommu_snooping; |
| if (cap == IOMMU_CAP_INTR_REMAP) |
| return irq_remapping_enabled; |
| |
| return 0; |
| } |
| |
| static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to) |
| { |
| pci_dev_put(*from); |
| *from = to; |
| } |
| |
| #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) |
| |
| static int intel_iommu_add_device(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct pci_dev *bridge, *dma_pdev = NULL; |
| struct iommu_group *group; |
| int ret; |
| |
| if (!device_to_iommu(pci_domain_nr(pdev->bus), |
| pdev->bus->number, pdev->devfn)) |
| return -ENODEV; |
| |
| bridge = pci_find_upstream_pcie_bridge(pdev); |
| if (bridge) { |
| if (pci_is_pcie(bridge)) |
| dma_pdev = pci_get_domain_bus_and_slot( |
| pci_domain_nr(pdev->bus), |
| bridge->subordinate->number, 0); |
| if (!dma_pdev) |
| dma_pdev = pci_dev_get(bridge); |
| } else |
| dma_pdev = pci_dev_get(pdev); |
| |
| /* Account for quirked devices */ |
| swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev)); |
| |
| /* |
| * If it's a multifunction device that does not support our |
| * required ACS flags, add to the same group as function 0. |
| */ |
| if (dma_pdev->multifunction && |
| !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) |
| swap_pci_ref(&dma_pdev, |
| pci_get_slot(dma_pdev->bus, |
| PCI_DEVFN(PCI_SLOT(dma_pdev->devfn), |
| 0))); |
| |
| /* |
| * Devices on the root bus go through the iommu. If that's not us, |
| * find the next upstream device and test ACS up to the root bus. |
| * Finding the next device may require skipping virtual buses. |
| */ |
| while (!pci_is_root_bus(dma_pdev->bus)) { |
| struct pci_bus *bus = dma_pdev->bus; |
| |
| while (!bus->self) { |
| if (!pci_is_root_bus(bus)) |
| bus = bus->parent; |
| else |
| goto root_bus; |
| } |
| |
| if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) |
| break; |
| |
| swap_pci_ref(&dma_pdev, pci_dev_get(bus->self)); |
| } |
| |
| root_bus: |
| group = iommu_group_get(&dma_pdev->dev); |
| pci_dev_put(dma_pdev); |
| if (!group) { |
| group = iommu_group_alloc(); |
| if (IS_ERR(group)) |
| return PTR_ERR(group); |
| } |
| |
| ret = iommu_group_add_device(group, dev); |
| |
| iommu_group_put(group); |
| return ret; |
| } |
| |
| static void intel_iommu_remove_device(struct device *dev) |
| { |
| iommu_group_remove_device(dev); |
| } |
| |
| static struct iommu_ops intel_iommu_ops = { |
| .domain_init = intel_iommu_domain_init, |
| .domain_destroy = intel_iommu_domain_destroy, |
| .attach_dev = intel_iommu_attach_device, |
| .detach_dev = intel_iommu_detach_device, |
| .map = intel_iommu_map, |
| .unmap = intel_iommu_unmap, |
| .iova_to_phys = intel_iommu_iova_to_phys, |
| .domain_has_cap = intel_iommu_domain_has_cap, |
| .add_device = intel_iommu_add_device, |
| .remove_device = intel_iommu_remove_device, |
| .pgsize_bitmap = INTEL_IOMMU_PGSIZES, |
| }; |
| |
| static void quirk_iommu_rwbf(struct pci_dev *dev) |
| { |
| /* |
| * Mobile 4 Series Chipset neglects to set RWBF capability, |
| * but needs it: |
| */ |
| printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n"); |
| rwbf_quirk = 1; |
| |
| /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */ |
| if (dev->revision == 0x07) { |
| printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n"); |
| dmar_map_gfx = 0; |
| } |
| } |
| |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); |
| |
| #define GGC 0x52 |
| #define GGC_MEMORY_SIZE_MASK (0xf << 8) |
| #define GGC_MEMORY_SIZE_NONE (0x0 << 8) |
| #define GGC_MEMORY_SIZE_1M (0x1 << 8) |
| #define GGC_MEMORY_SIZE_2M (0x3 << 8) |
| #define GGC_MEMORY_VT_ENABLED (0x8 << 8) |
| #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) |
| #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) |
| #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) |
| |
| static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) |
| { |
| unsigned short ggc; |
| |
| if (pci_read_config_word(dev, GGC, &ggc)) |
| return; |
| |
| if (!(ggc & GGC_MEMORY_VT_ENABLED)) { |
| printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); |
| dmar_map_gfx = 0; |
| } else if (dmar_map_gfx) { |
| /* we have to ensure the gfx device is idle before we flush */ |
| printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n"); |
| intel_iommu_strict = 1; |
| } |
| } |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); |
| |
| /* On Tylersburg chipsets, some BIOSes have been known to enable the |
| ISOCH DMAR unit for the Azalia sound device, but not give it any |
| TLB entries, which causes it to deadlock. Check for that. We do |
| this in a function called from init_dmars(), instead of in a PCI |
| quirk, because we don't want to print the obnoxious "BIOS broken" |
| message if VT-d is actually disabled. |
| */ |
| static void __init check_tylersburg_isoch(void) |
| { |
| struct pci_dev *pdev; |
| uint32_t vtisochctrl; |
| |
| /* If there's no Azalia in the system anyway, forget it. */ |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); |
| if (!pdev) |
| return; |
| pci_dev_put(pdev); |
| |
| /* System Management Registers. Might be hidden, in which case |
| we can't do the sanity check. But that's OK, because the |
| known-broken BIOSes _don't_ actually hide it, so far. */ |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); |
| if (!pdev) |
| return; |
| |
| if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { |
| pci_dev_put(pdev); |
| return; |
| } |
| |
| pci_dev_put(pdev); |
| |
| /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ |
| if (vtisochctrl & 1) |
| return; |
| |
| /* Drop all bits other than the number of TLB entries */ |
| vtisochctrl &= 0x1c; |
| |
| /* If we have the recommended number of TLB entries (16), fine. */ |
| if (vtisochctrl == 0x10) |
| return; |
| |
| /* Zero TLB entries? You get to ride the short bus to school. */ |
| if (!vtisochctrl) { |
| WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" |
| "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| dmi_get_system_info(DMI_BIOS_VENDOR), |
| dmi_get_system_info(DMI_BIOS_VERSION), |
| dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| iommu_identity_mapping |= IDENTMAP_AZALIA; |
| return; |
| } |
| |
| printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", |
| vtisochctrl); |
| } |