| /* |
| * SMP related functions |
| * |
| * Copyright IBM Corp. 1999, 2012 |
| * Author(s): Denis Joseph Barrow, |
| * Martin Schwidefsky <schwidefsky@de.ibm.com>, |
| * Heiko Carstens <heiko.carstens@de.ibm.com>, |
| * |
| * based on other smp stuff by |
| * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> |
| * (c) 1998 Ingo Molnar |
| * |
| * The code outside of smp.c uses logical cpu numbers, only smp.c does |
| * the translation of logical to physical cpu ids. All new code that |
| * operates on physical cpu numbers needs to go into smp.c. |
| */ |
| |
| #define KMSG_COMPONENT "cpu" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <linux/workqueue.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/err.h> |
| #include <linux/spinlock.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/irqflags.h> |
| #include <linux/cpu.h> |
| #include <linux/slab.h> |
| #include <linux/crash_dump.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/switch_to.h> |
| #include <asm/facility.h> |
| #include <asm/ipl.h> |
| #include <asm/setup.h> |
| #include <asm/irq.h> |
| #include <asm/tlbflush.h> |
| #include <asm/vtimer.h> |
| #include <asm/lowcore.h> |
| #include <asm/sclp.h> |
| #include <asm/vdso.h> |
| #include <asm/debug.h> |
| #include <asm/os_info.h> |
| #include <asm/sigp.h> |
| #include "entry.h" |
| |
| enum { |
| ec_schedule = 0, |
| ec_call_function, |
| ec_call_function_single, |
| ec_stop_cpu, |
| }; |
| |
| enum { |
| CPU_STATE_STANDBY, |
| CPU_STATE_CONFIGURED, |
| }; |
| |
| struct pcpu { |
| struct cpu cpu; |
| struct _lowcore *lowcore; /* lowcore page(s) for the cpu */ |
| unsigned long async_stack; /* async stack for the cpu */ |
| unsigned long panic_stack; /* panic stack for the cpu */ |
| unsigned long ec_mask; /* bit mask for ec_xxx functions */ |
| int state; /* physical cpu state */ |
| int polarization; /* physical polarization */ |
| u16 address; /* physical cpu address */ |
| }; |
| |
| static u8 boot_cpu_type; |
| static u16 boot_cpu_address; |
| static struct pcpu pcpu_devices[NR_CPUS]; |
| |
| /* |
| * The smp_cpu_state_mutex must be held when changing the state or polarization |
| * member of a pcpu data structure within the pcpu_devices arreay. |
| */ |
| DEFINE_MUTEX(smp_cpu_state_mutex); |
| |
| /* |
| * Signal processor helper functions. |
| */ |
| static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status) |
| { |
| register unsigned int reg1 asm ("1") = parm; |
| int cc; |
| |
| asm volatile( |
| " sigp %1,%2,0(%3)\n" |
| " ipm %0\n" |
| " srl %0,28\n" |
| : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc"); |
| if (status && cc == 1) |
| *status = reg1; |
| return cc; |
| } |
| |
| static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status) |
| { |
| int cc; |
| |
| while (1) { |
| cc = __pcpu_sigp(addr, order, parm, NULL); |
| if (cc != SIGP_CC_BUSY) |
| return cc; |
| cpu_relax(); |
| } |
| } |
| |
| static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) |
| { |
| int cc, retry; |
| |
| for (retry = 0; ; retry++) { |
| cc = __pcpu_sigp(pcpu->address, order, parm, NULL); |
| if (cc != SIGP_CC_BUSY) |
| break; |
| if (retry >= 3) |
| udelay(10); |
| } |
| return cc; |
| } |
| |
| static inline int pcpu_stopped(struct pcpu *pcpu) |
| { |
| u32 uninitialized_var(status); |
| |
| if (__pcpu_sigp(pcpu->address, SIGP_SENSE, |
| 0, &status) != SIGP_CC_STATUS_STORED) |
| return 0; |
| return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); |
| } |
| |
| static inline int pcpu_running(struct pcpu *pcpu) |
| { |
| if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, |
| 0, NULL) != SIGP_CC_STATUS_STORED) |
| return 1; |
| /* Status stored condition code is equivalent to cpu not running. */ |
| return 0; |
| } |
| |
| /* |
| * Find struct pcpu by cpu address. |
| */ |
| static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address) |
| { |
| int cpu; |
| |
| for_each_cpu(cpu, mask) |
| if (pcpu_devices[cpu].address == address) |
| return pcpu_devices + cpu; |
| return NULL; |
| } |
| |
| static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) |
| { |
| int order; |
| |
| set_bit(ec_bit, &pcpu->ec_mask); |
| order = pcpu_running(pcpu) ? |
| SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; |
| pcpu_sigp_retry(pcpu, order, 0); |
| } |
| |
| static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) |
| { |
| struct _lowcore *lc; |
| |
| if (pcpu != &pcpu_devices[0]) { |
| pcpu->lowcore = (struct _lowcore *) |
| __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); |
| pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); |
| pcpu->panic_stack = __get_free_page(GFP_KERNEL); |
| if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack) |
| goto out; |
| } |
| lc = pcpu->lowcore; |
| memcpy(lc, &S390_lowcore, 512); |
| memset((char *) lc + 512, 0, sizeof(*lc) - 512); |
| lc->async_stack = pcpu->async_stack + ASYNC_SIZE; |
| lc->panic_stack = pcpu->panic_stack + PAGE_SIZE; |
| lc->cpu_nr = cpu; |
| #ifndef CONFIG_64BIT |
| if (MACHINE_HAS_IEEE) { |
| lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL); |
| if (!lc->extended_save_area_addr) |
| goto out; |
| } |
| #else |
| if (vdso_alloc_per_cpu(lc)) |
| goto out; |
| #endif |
| lowcore_ptr[cpu] = lc; |
| pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc); |
| return 0; |
| out: |
| if (pcpu != &pcpu_devices[0]) { |
| free_page(pcpu->panic_stack); |
| free_pages(pcpu->async_stack, ASYNC_ORDER); |
| free_pages((unsigned long) pcpu->lowcore, LC_ORDER); |
| } |
| return -ENOMEM; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static void pcpu_free_lowcore(struct pcpu *pcpu) |
| { |
| pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); |
| lowcore_ptr[pcpu - pcpu_devices] = NULL; |
| #ifndef CONFIG_64BIT |
| if (MACHINE_HAS_IEEE) { |
| struct _lowcore *lc = pcpu->lowcore; |
| |
| free_page((unsigned long) lc->extended_save_area_addr); |
| lc->extended_save_area_addr = 0; |
| } |
| #else |
| vdso_free_per_cpu(pcpu->lowcore); |
| #endif |
| if (pcpu != &pcpu_devices[0]) { |
| free_page(pcpu->panic_stack); |
| free_pages(pcpu->async_stack, ASYNC_ORDER); |
| free_pages((unsigned long) pcpu->lowcore, LC_ORDER); |
| } |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) |
| { |
| struct _lowcore *lc = pcpu->lowcore; |
| |
| atomic_inc(&init_mm.context.attach_count); |
| lc->cpu_nr = cpu; |
| lc->percpu_offset = __per_cpu_offset[cpu]; |
| lc->kernel_asce = S390_lowcore.kernel_asce; |
| lc->machine_flags = S390_lowcore.machine_flags; |
| lc->ftrace_func = S390_lowcore.ftrace_func; |
| lc->user_timer = lc->system_timer = lc->steal_timer = 0; |
| __ctl_store(lc->cregs_save_area, 0, 15); |
| save_access_regs((unsigned int *) lc->access_regs_save_area); |
| memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list, |
| MAX_FACILITY_BIT/8); |
| } |
| |
| static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) |
| { |
| struct _lowcore *lc = pcpu->lowcore; |
| struct thread_info *ti = task_thread_info(tsk); |
| |
| lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE; |
| lc->thread_info = (unsigned long) task_thread_info(tsk); |
| lc->current_task = (unsigned long) tsk; |
| lc->user_timer = ti->user_timer; |
| lc->system_timer = ti->system_timer; |
| lc->steal_timer = 0; |
| } |
| |
| static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) |
| { |
| struct _lowcore *lc = pcpu->lowcore; |
| |
| lc->restart_stack = lc->kernel_stack; |
| lc->restart_fn = (unsigned long) func; |
| lc->restart_data = (unsigned long) data; |
| lc->restart_source = -1UL; |
| pcpu_sigp_retry(pcpu, SIGP_RESTART, 0); |
| } |
| |
| /* |
| * Call function via PSW restart on pcpu and stop the current cpu. |
| */ |
| static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *), |
| void *data, unsigned long stack) |
| { |
| struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices]; |
| unsigned long source_cpu = stap(); |
| |
| __load_psw_mask(psw_kernel_bits); |
| if (pcpu->address == source_cpu) |
| func(data); /* should not return */ |
| /* Stop target cpu (if func returns this stops the current cpu). */ |
| pcpu_sigp_retry(pcpu, SIGP_STOP, 0); |
| /* Restart func on the target cpu and stop the current cpu. */ |
| mem_assign_absolute(lc->restart_stack, stack); |
| mem_assign_absolute(lc->restart_fn, (unsigned long) func); |
| mem_assign_absolute(lc->restart_data, (unsigned long) data); |
| mem_assign_absolute(lc->restart_source, source_cpu); |
| asm volatile( |
| "0: sigp 0,%0,%2 # sigp restart to target cpu\n" |
| " brc 2,0b # busy, try again\n" |
| "1: sigp 0,%1,%3 # sigp stop to current cpu\n" |
| " brc 2,1b # busy, try again\n" |
| : : "d" (pcpu->address), "d" (source_cpu), |
| "K" (SIGP_RESTART), "K" (SIGP_STOP) |
| : "0", "1", "cc"); |
| for (;;) ; |
| } |
| |
| /* |
| * Call function on an online CPU. |
| */ |
| void smp_call_online_cpu(void (*func)(void *), void *data) |
| { |
| struct pcpu *pcpu; |
| |
| /* Use the current cpu if it is online. */ |
| pcpu = pcpu_find_address(cpu_online_mask, stap()); |
| if (!pcpu) |
| /* Use the first online cpu. */ |
| pcpu = pcpu_devices + cpumask_first(cpu_online_mask); |
| pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); |
| } |
| |
| /* |
| * Call function on the ipl CPU. |
| */ |
| void smp_call_ipl_cpu(void (*func)(void *), void *data) |
| { |
| pcpu_delegate(&pcpu_devices[0], func, data, |
| pcpu_devices->panic_stack + PAGE_SIZE); |
| } |
| |
| int smp_find_processor_id(u16 address) |
| { |
| int cpu; |
| |
| for_each_present_cpu(cpu) |
| if (pcpu_devices[cpu].address == address) |
| return cpu; |
| return -1; |
| } |
| |
| int smp_vcpu_scheduled(int cpu) |
| { |
| return pcpu_running(pcpu_devices + cpu); |
| } |
| |
| void smp_yield(void) |
| { |
| if (MACHINE_HAS_DIAG44) |
| asm volatile("diag 0,0,0x44"); |
| } |
| |
| void smp_yield_cpu(int cpu) |
| { |
| if (MACHINE_HAS_DIAG9C) |
| asm volatile("diag %0,0,0x9c" |
| : : "d" (pcpu_devices[cpu].address)); |
| else if (MACHINE_HAS_DIAG44) |
| asm volatile("diag 0,0,0x44"); |
| } |
| |
| /* |
| * Send cpus emergency shutdown signal. This gives the cpus the |
| * opportunity to complete outstanding interrupts. |
| */ |
| void smp_emergency_stop(cpumask_t *cpumask) |
| { |
| u64 end; |
| int cpu; |
| |
| end = get_clock() + (1000000UL << 12); |
| for_each_cpu(cpu, cpumask) { |
| struct pcpu *pcpu = pcpu_devices + cpu; |
| set_bit(ec_stop_cpu, &pcpu->ec_mask); |
| while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, |
| 0, NULL) == SIGP_CC_BUSY && |
| get_clock() < end) |
| cpu_relax(); |
| } |
| while (get_clock() < end) { |
| for_each_cpu(cpu, cpumask) |
| if (pcpu_stopped(pcpu_devices + cpu)) |
| cpumask_clear_cpu(cpu, cpumask); |
| if (cpumask_empty(cpumask)) |
| break; |
| cpu_relax(); |
| } |
| } |
| |
| /* |
| * Stop all cpus but the current one. |
| */ |
| void smp_send_stop(void) |
| { |
| cpumask_t cpumask; |
| int cpu; |
| |
| /* Disable all interrupts/machine checks */ |
| __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT); |
| trace_hardirqs_off(); |
| |
| debug_set_critical(); |
| cpumask_copy(&cpumask, cpu_online_mask); |
| cpumask_clear_cpu(smp_processor_id(), &cpumask); |
| |
| if (oops_in_progress) |
| smp_emergency_stop(&cpumask); |
| |
| /* stop all processors */ |
| for_each_cpu(cpu, &cpumask) { |
| struct pcpu *pcpu = pcpu_devices + cpu; |
| pcpu_sigp_retry(pcpu, SIGP_STOP, 0); |
| while (!pcpu_stopped(pcpu)) |
| cpu_relax(); |
| } |
| } |
| |
| /* |
| * Stop the current cpu. |
| */ |
| void smp_stop_cpu(void) |
| { |
| pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); |
| for (;;) ; |
| } |
| |
| /* |
| * This is the main routine where commands issued by other |
| * cpus are handled. |
| */ |
| static void do_ext_call_interrupt(struct ext_code ext_code, |
| unsigned int param32, unsigned long param64) |
| { |
| unsigned long bits; |
| int cpu; |
| |
| cpu = smp_processor_id(); |
| if (ext_code.code == 0x1202) |
| inc_irq_stat(IRQEXT_EXC); |
| else |
| inc_irq_stat(IRQEXT_EMS); |
| /* |
| * handle bit signal external calls |
| */ |
| bits = xchg(&pcpu_devices[cpu].ec_mask, 0); |
| |
| if (test_bit(ec_stop_cpu, &bits)) |
| smp_stop_cpu(); |
| |
| if (test_bit(ec_schedule, &bits)) |
| scheduler_ipi(); |
| |
| if (test_bit(ec_call_function, &bits)) |
| generic_smp_call_function_interrupt(); |
| |
| if (test_bit(ec_call_function_single, &bits)) |
| generic_smp_call_function_single_interrupt(); |
| |
| } |
| |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask) |
| { |
| int cpu; |
| |
| for_each_cpu(cpu, mask) |
| pcpu_ec_call(pcpu_devices + cpu, ec_call_function); |
| } |
| |
| void arch_send_call_function_single_ipi(int cpu) |
| { |
| pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); |
| } |
| |
| #ifndef CONFIG_64BIT |
| /* |
| * this function sends a 'purge tlb' signal to another CPU. |
| */ |
| static void smp_ptlb_callback(void *info) |
| { |
| __tlb_flush_local(); |
| } |
| |
| void smp_ptlb_all(void) |
| { |
| on_each_cpu(smp_ptlb_callback, NULL, 1); |
| } |
| EXPORT_SYMBOL(smp_ptlb_all); |
| #endif /* ! CONFIG_64BIT */ |
| |
| /* |
| * this function sends a 'reschedule' IPI to another CPU. |
| * it goes straight through and wastes no time serializing |
| * anything. Worst case is that we lose a reschedule ... |
| */ |
| void smp_send_reschedule(int cpu) |
| { |
| pcpu_ec_call(pcpu_devices + cpu, ec_schedule); |
| } |
| |
| /* |
| * parameter area for the set/clear control bit callbacks |
| */ |
| struct ec_creg_mask_parms { |
| unsigned long orval; |
| unsigned long andval; |
| int cr; |
| }; |
| |
| /* |
| * callback for setting/clearing control bits |
| */ |
| static void smp_ctl_bit_callback(void *info) |
| { |
| struct ec_creg_mask_parms *pp = info; |
| unsigned long cregs[16]; |
| |
| __ctl_store(cregs, 0, 15); |
| cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; |
| __ctl_load(cregs, 0, 15); |
| } |
| |
| /* |
| * Set a bit in a control register of all cpus |
| */ |
| void smp_ctl_set_bit(int cr, int bit) |
| { |
| struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr }; |
| |
| on_each_cpu(smp_ctl_bit_callback, &parms, 1); |
| } |
| EXPORT_SYMBOL(smp_ctl_set_bit); |
| |
| /* |
| * Clear a bit in a control register of all cpus |
| */ |
| void smp_ctl_clear_bit(int cr, int bit) |
| { |
| struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr }; |
| |
| on_each_cpu(smp_ctl_bit_callback, &parms, 1); |
| } |
| EXPORT_SYMBOL(smp_ctl_clear_bit); |
| |
| #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP) |
| |
| struct save_area *zfcpdump_save_areas[NR_CPUS + 1]; |
| EXPORT_SYMBOL_GPL(zfcpdump_save_areas); |
| |
| static void __init smp_get_save_area(int cpu, u16 address) |
| { |
| void *lc = pcpu_devices[0].lowcore; |
| struct save_area *save_area; |
| |
| if (is_kdump_kernel()) |
| return; |
| if (!OLDMEM_BASE && (address == boot_cpu_address || |
| ipl_info.type != IPL_TYPE_FCP_DUMP)) |
| return; |
| if (cpu >= NR_CPUS) { |
| pr_warning("CPU %i exceeds the maximum %i and is excluded " |
| "from the dump\n", cpu, NR_CPUS - 1); |
| return; |
| } |
| save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL); |
| if (!save_area) |
| panic("could not allocate memory for save area\n"); |
| zfcpdump_save_areas[cpu] = save_area; |
| #ifdef CONFIG_CRASH_DUMP |
| if (address == boot_cpu_address) { |
| /* Copy the registers of the boot cpu. */ |
| copy_oldmem_page(1, (void *) save_area, sizeof(*save_area), |
| SAVE_AREA_BASE - PAGE_SIZE, 0); |
| return; |
| } |
| #endif |
| /* Get the registers of a non-boot cpu. */ |
| __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL); |
| memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area)); |
| } |
| |
| int smp_store_status(int cpu) |
| { |
| struct pcpu *pcpu; |
| |
| pcpu = pcpu_devices + cpu; |
| if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS, |
| 0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED) |
| return -EIO; |
| return 0; |
| } |
| |
| #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ |
| |
| static inline void smp_get_save_area(int cpu, u16 address) { } |
| |
| #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ |
| |
| void smp_cpu_set_polarization(int cpu, int val) |
| { |
| pcpu_devices[cpu].polarization = val; |
| } |
| |
| int smp_cpu_get_polarization(int cpu) |
| { |
| return pcpu_devices[cpu].polarization; |
| } |
| |
| static struct sclp_cpu_info *smp_get_cpu_info(void) |
| { |
| static int use_sigp_detection; |
| struct sclp_cpu_info *info; |
| int address; |
| |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (info && (use_sigp_detection || sclp_get_cpu_info(info))) { |
| use_sigp_detection = 1; |
| for (address = 0; address <= MAX_CPU_ADDRESS; address++) { |
| if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) == |
| SIGP_CC_NOT_OPERATIONAL) |
| continue; |
| info->cpu[info->configured].address = address; |
| info->configured++; |
| } |
| info->combined = info->configured; |
| } |
| return info; |
| } |
| |
| static int __cpuinit smp_add_present_cpu(int cpu); |
| |
| static int __cpuinit __smp_rescan_cpus(struct sclp_cpu_info *info, |
| int sysfs_add) |
| { |
| struct pcpu *pcpu; |
| cpumask_t avail; |
| int cpu, nr, i; |
| |
| nr = 0; |
| cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); |
| cpu = cpumask_first(&avail); |
| for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) { |
| if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type) |
| continue; |
| if (pcpu_find_address(cpu_present_mask, info->cpu[i].address)) |
| continue; |
| pcpu = pcpu_devices + cpu; |
| pcpu->address = info->cpu[i].address; |
| pcpu->state = (cpu >= info->configured) ? |
| CPU_STATE_STANDBY : CPU_STATE_CONFIGURED; |
| smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); |
| set_cpu_present(cpu, true); |
| if (sysfs_add && smp_add_present_cpu(cpu) != 0) |
| set_cpu_present(cpu, false); |
| else |
| nr++; |
| cpu = cpumask_next(cpu, &avail); |
| } |
| return nr; |
| } |
| |
| static void __init smp_detect_cpus(void) |
| { |
| unsigned int cpu, c_cpus, s_cpus; |
| struct sclp_cpu_info *info; |
| |
| info = smp_get_cpu_info(); |
| if (!info) |
| panic("smp_detect_cpus failed to allocate memory\n"); |
| if (info->has_cpu_type) { |
| for (cpu = 0; cpu < info->combined; cpu++) { |
| if (info->cpu[cpu].address != boot_cpu_address) |
| continue; |
| /* The boot cpu dictates the cpu type. */ |
| boot_cpu_type = info->cpu[cpu].type; |
| break; |
| } |
| } |
| c_cpus = s_cpus = 0; |
| for (cpu = 0; cpu < info->combined; cpu++) { |
| if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type) |
| continue; |
| if (cpu < info->configured) { |
| smp_get_save_area(c_cpus, info->cpu[cpu].address); |
| c_cpus++; |
| } else |
| s_cpus++; |
| } |
| pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); |
| get_online_cpus(); |
| __smp_rescan_cpus(info, 0); |
| put_online_cpus(); |
| kfree(info); |
| } |
| |
| /* |
| * Activate a secondary processor. |
| */ |
| static void __cpuinit smp_start_secondary(void *cpuvoid) |
| { |
| S390_lowcore.last_update_clock = get_clock(); |
| S390_lowcore.restart_stack = (unsigned long) restart_stack; |
| S390_lowcore.restart_fn = (unsigned long) do_restart; |
| S390_lowcore.restart_data = 0; |
| S390_lowcore.restart_source = -1UL; |
| restore_access_regs(S390_lowcore.access_regs_save_area); |
| __ctl_load(S390_lowcore.cregs_save_area, 0, 15); |
| __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT); |
| cpu_init(); |
| preempt_disable(); |
| init_cpu_timer(); |
| init_cpu_vtimer(); |
| pfault_init(); |
| notify_cpu_starting(smp_processor_id()); |
| set_cpu_online(smp_processor_id(), true); |
| inc_irq_stat(CPU_RST); |
| local_irq_enable(); |
| /* cpu_idle will call schedule for us */ |
| cpu_idle(); |
| } |
| |
| /* Upping and downing of CPUs */ |
| int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle) |
| { |
| struct pcpu *pcpu; |
| int rc; |
| |
| pcpu = pcpu_devices + cpu; |
| if (pcpu->state != CPU_STATE_CONFIGURED) |
| return -EIO; |
| if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) != |
| SIGP_CC_ORDER_CODE_ACCEPTED) |
| return -EIO; |
| |
| rc = pcpu_alloc_lowcore(pcpu, cpu); |
| if (rc) |
| return rc; |
| pcpu_prepare_secondary(pcpu, cpu); |
| pcpu_attach_task(pcpu, tidle); |
| pcpu_start_fn(pcpu, smp_start_secondary, NULL); |
| while (!cpu_online(cpu)) |
| cpu_relax(); |
| return 0; |
| } |
| |
| static int __init setup_possible_cpus(char *s) |
| { |
| int max, cpu; |
| |
| if (kstrtoint(s, 0, &max) < 0) |
| return 0; |
| init_cpu_possible(cpumask_of(0)); |
| for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++) |
| set_cpu_possible(cpu, true); |
| return 0; |
| } |
| early_param("possible_cpus", setup_possible_cpus); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| int __cpu_disable(void) |
| { |
| unsigned long cregs[16]; |
| |
| set_cpu_online(smp_processor_id(), false); |
| /* Disable pseudo page faults on this cpu. */ |
| pfault_fini(); |
| /* Disable interrupt sources via control register. */ |
| __ctl_store(cregs, 0, 15); |
| cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ |
| cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ |
| cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ |
| __ctl_load(cregs, 0, 15); |
| return 0; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| struct pcpu *pcpu; |
| |
| /* Wait until target cpu is down */ |
| pcpu = pcpu_devices + cpu; |
| while (!pcpu_stopped(pcpu)) |
| cpu_relax(); |
| pcpu_free_lowcore(pcpu); |
| atomic_dec(&init_mm.context.attach_count); |
| } |
| |
| void __noreturn cpu_die(void) |
| { |
| idle_task_exit(); |
| pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); |
| for (;;) ; |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| /* request the 0x1201 emergency signal external interrupt */ |
| if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0) |
| panic("Couldn't request external interrupt 0x1201"); |
| /* request the 0x1202 external call external interrupt */ |
| if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0) |
| panic("Couldn't request external interrupt 0x1202"); |
| smp_detect_cpus(); |
| } |
| |
| void __init smp_prepare_boot_cpu(void) |
| { |
| struct pcpu *pcpu = pcpu_devices; |
| |
| boot_cpu_address = stap(); |
| pcpu->state = CPU_STATE_CONFIGURED; |
| pcpu->address = boot_cpu_address; |
| pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix(); |
| pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE; |
| pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE; |
| S390_lowcore.percpu_offset = __per_cpu_offset[0]; |
| smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); |
| set_cpu_present(0, true); |
| set_cpu_online(0, true); |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| } |
| |
| void __init smp_setup_processor_id(void) |
| { |
| S390_lowcore.cpu_nr = 0; |
| } |
| |
| /* |
| * the frequency of the profiling timer can be changed |
| * by writing a multiplier value into /proc/profile. |
| * |
| * usually you want to run this on all CPUs ;) |
| */ |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return 0; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static ssize_t cpu_configure_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| ssize_t count; |
| |
| mutex_lock(&smp_cpu_state_mutex); |
| count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); |
| mutex_unlock(&smp_cpu_state_mutex); |
| return count; |
| } |
| |
| static ssize_t cpu_configure_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct pcpu *pcpu; |
| int cpu, val, rc; |
| char delim; |
| |
| if (sscanf(buf, "%d %c", &val, &delim) != 1) |
| return -EINVAL; |
| if (val != 0 && val != 1) |
| return -EINVAL; |
| get_online_cpus(); |
| mutex_lock(&smp_cpu_state_mutex); |
| rc = -EBUSY; |
| /* disallow configuration changes of online cpus and cpu 0 */ |
| cpu = dev->id; |
| if (cpu_online(cpu) || cpu == 0) |
| goto out; |
| pcpu = pcpu_devices + cpu; |
| rc = 0; |
| switch (val) { |
| case 0: |
| if (pcpu->state != CPU_STATE_CONFIGURED) |
| break; |
| rc = sclp_cpu_deconfigure(pcpu->address); |
| if (rc) |
| break; |
| pcpu->state = CPU_STATE_STANDBY; |
| smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); |
| topology_expect_change(); |
| break; |
| case 1: |
| if (pcpu->state != CPU_STATE_STANDBY) |
| break; |
| rc = sclp_cpu_configure(pcpu->address); |
| if (rc) |
| break; |
| pcpu->state = CPU_STATE_CONFIGURED; |
| smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); |
| topology_expect_change(); |
| break; |
| default: |
| break; |
| } |
| out: |
| mutex_unlock(&smp_cpu_state_mutex); |
| put_online_cpus(); |
| return rc ? rc : count; |
| } |
| static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| static ssize_t show_cpu_address(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); |
| } |
| static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); |
| |
| static struct attribute *cpu_common_attrs[] = { |
| #ifdef CONFIG_HOTPLUG_CPU |
| &dev_attr_configure.attr, |
| #endif |
| &dev_attr_address.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group cpu_common_attr_group = { |
| .attrs = cpu_common_attrs, |
| }; |
| |
| static ssize_t show_idle_count(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); |
| unsigned long long idle_count; |
| unsigned int sequence; |
| |
| do { |
| sequence = ACCESS_ONCE(idle->sequence); |
| idle_count = ACCESS_ONCE(idle->idle_count); |
| if (ACCESS_ONCE(idle->clock_idle_enter)) |
| idle_count++; |
| } while ((sequence & 1) || (idle->sequence != sequence)); |
| return sprintf(buf, "%llu\n", idle_count); |
| } |
| static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL); |
| |
| static ssize_t show_idle_time(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); |
| unsigned long long now, idle_time, idle_enter, idle_exit; |
| unsigned int sequence; |
| |
| do { |
| now = get_clock(); |
| sequence = ACCESS_ONCE(idle->sequence); |
| idle_time = ACCESS_ONCE(idle->idle_time); |
| idle_enter = ACCESS_ONCE(idle->clock_idle_enter); |
| idle_exit = ACCESS_ONCE(idle->clock_idle_exit); |
| } while ((sequence & 1) || (idle->sequence != sequence)); |
| idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0; |
| return sprintf(buf, "%llu\n", idle_time >> 12); |
| } |
| static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL); |
| |
| static struct attribute *cpu_online_attrs[] = { |
| &dev_attr_idle_count.attr, |
| &dev_attr_idle_time_us.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group cpu_online_attr_group = { |
| .attrs = cpu_online_attrs, |
| }; |
| |
| static int __cpuinit smp_cpu_notify(struct notifier_block *self, |
| unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (unsigned int)(long)hcpu; |
| struct cpu *c = &pcpu_devices[cpu].cpu; |
| struct device *s = &c->dev; |
| int err = 0; |
| |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_ONLINE: |
| err = sysfs_create_group(&s->kobj, &cpu_online_attr_group); |
| break; |
| case CPU_DEAD: |
| sysfs_remove_group(&s->kobj, &cpu_online_attr_group); |
| break; |
| } |
| return notifier_from_errno(err); |
| } |
| |
| static int __cpuinit smp_add_present_cpu(int cpu) |
| { |
| struct cpu *c = &pcpu_devices[cpu].cpu; |
| struct device *s = &c->dev; |
| int rc; |
| |
| c->hotpluggable = 1; |
| rc = register_cpu(c, cpu); |
| if (rc) |
| goto out; |
| rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); |
| if (rc) |
| goto out_cpu; |
| if (cpu_online(cpu)) { |
| rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); |
| if (rc) |
| goto out_online; |
| } |
| rc = topology_cpu_init(c); |
| if (rc) |
| goto out_topology; |
| return 0; |
| |
| out_topology: |
| if (cpu_online(cpu)) |
| sysfs_remove_group(&s->kobj, &cpu_online_attr_group); |
| out_online: |
| sysfs_remove_group(&s->kobj, &cpu_common_attr_group); |
| out_cpu: |
| #ifdef CONFIG_HOTPLUG_CPU |
| unregister_cpu(c); |
| #endif |
| out: |
| return rc; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| int __ref smp_rescan_cpus(void) |
| { |
| struct sclp_cpu_info *info; |
| int nr; |
| |
| info = smp_get_cpu_info(); |
| if (!info) |
| return -ENOMEM; |
| get_online_cpus(); |
| mutex_lock(&smp_cpu_state_mutex); |
| nr = __smp_rescan_cpus(info, 1); |
| mutex_unlock(&smp_cpu_state_mutex); |
| put_online_cpus(); |
| kfree(info); |
| if (nr) |
| topology_schedule_update(); |
| return 0; |
| } |
| |
| static ssize_t __ref rescan_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, |
| size_t count) |
| { |
| int rc; |
| |
| rc = smp_rescan_cpus(); |
| return rc ? rc : count; |
| } |
| static DEVICE_ATTR(rescan, 0200, NULL, rescan_store); |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| static int __init s390_smp_init(void) |
| { |
| int cpu, rc; |
| |
| hotcpu_notifier(smp_cpu_notify, 0); |
| #ifdef CONFIG_HOTPLUG_CPU |
| rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan); |
| if (rc) |
| return rc; |
| #endif |
| for_each_present_cpu(cpu) { |
| rc = smp_add_present_cpu(cpu); |
| if (rc) |
| return rc; |
| } |
| return 0; |
| } |
| subsys_initcall(s390_smp_init); |