| /* linux/arch/sparc/kernel/time.c |
| * |
| * Copyright (C) 1995 David S. Miller (davem@davemloft.net) |
| * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) |
| * |
| * Chris Davis (cdavis@cois.on.ca) 03/27/1998 |
| * Added support for the intersil on the sun4/4200 |
| * |
| * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998 |
| * Support for MicroSPARC-IIep, PCI CPU. |
| * |
| * This file handles the Sparc specific time handling details. |
| * |
| * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| */ |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/rtc/m48t59.h> |
| #include <linux/timex.h> |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/ioport.h> |
| #include <linux/profile.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| |
| #include <asm/mc146818rtc.h> |
| #include <asm/oplib.h> |
| #include <asm/timex.h> |
| #include <asm/timer.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/idprom.h> |
| #include <asm/page.h> |
| #include <asm/pcic.h> |
| #include <asm/irq_regs.h> |
| #include <asm/setup.h> |
| |
| #include "kernel.h" |
| #include "irq.h" |
| |
| static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock); |
| static __volatile__ u64 timer_cs_internal_counter = 0; |
| static char timer_cs_enabled = 0; |
| |
| static struct clock_event_device timer_ce; |
| static char timer_ce_enabled = 0; |
| |
| #ifdef CONFIG_SMP |
| DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent); |
| #endif |
| |
| DEFINE_SPINLOCK(rtc_lock); |
| EXPORT_SYMBOL(rtc_lock); |
| |
| unsigned long profile_pc(struct pt_regs *regs) |
| { |
| extern char __copy_user_begin[], __copy_user_end[]; |
| extern char __bzero_begin[], __bzero_end[]; |
| |
| unsigned long pc = regs->pc; |
| |
| if (in_lock_functions(pc) || |
| (pc >= (unsigned long) __copy_user_begin && |
| pc < (unsigned long) __copy_user_end) || |
| (pc >= (unsigned long) __bzero_begin && |
| pc < (unsigned long) __bzero_end)) |
| pc = regs->u_regs[UREG_RETPC]; |
| return pc; |
| } |
| |
| EXPORT_SYMBOL(profile_pc); |
| |
| volatile u32 __iomem *master_l10_counter; |
| |
| irqreturn_t notrace timer_interrupt(int dummy, void *dev_id) |
| { |
| if (timer_cs_enabled) { |
| write_seqlock(&timer_cs_lock); |
| timer_cs_internal_counter++; |
| sparc_config.clear_clock_irq(); |
| write_sequnlock(&timer_cs_lock); |
| } else { |
| sparc_config.clear_clock_irq(); |
| } |
| |
| if (timer_ce_enabled) |
| timer_ce.event_handler(&timer_ce); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int timer_ce_shutdown(struct clock_event_device *evt) |
| { |
| timer_ce_enabled = 0; |
| smp_mb(); |
| return 0; |
| } |
| |
| static int timer_ce_set_periodic(struct clock_event_device *evt) |
| { |
| timer_ce_enabled = 1; |
| smp_mb(); |
| return 0; |
| } |
| |
| static __init void setup_timer_ce(void) |
| { |
| struct clock_event_device *ce = &timer_ce; |
| |
| BUG_ON(smp_processor_id() != boot_cpu_id); |
| |
| ce->name = "timer_ce"; |
| ce->rating = 100; |
| ce->features = CLOCK_EVT_FEAT_PERIODIC; |
| ce->set_state_shutdown = timer_ce_shutdown; |
| ce->set_state_periodic = timer_ce_set_periodic; |
| ce->tick_resume = timer_ce_set_periodic; |
| ce->cpumask = cpu_possible_mask; |
| ce->shift = 32; |
| ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, |
| ce->shift); |
| clockevents_register_device(ce); |
| } |
| |
| static unsigned int sbus_cycles_offset(void) |
| { |
| u32 val, offset; |
| |
| val = sbus_readl(master_l10_counter); |
| offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK; |
| |
| /* Limit hit? */ |
| if (val & TIMER_LIMIT_BIT) |
| offset += sparc_config.cs_period; |
| |
| return offset; |
| } |
| |
| static cycle_t timer_cs_read(struct clocksource *cs) |
| { |
| unsigned int seq, offset; |
| u64 cycles; |
| |
| do { |
| seq = read_seqbegin(&timer_cs_lock); |
| |
| cycles = timer_cs_internal_counter; |
| offset = sparc_config.get_cycles_offset(); |
| } while (read_seqretry(&timer_cs_lock, seq)); |
| |
| /* Count absolute cycles */ |
| cycles *= sparc_config.cs_period; |
| cycles += offset; |
| |
| return cycles; |
| } |
| |
| static struct clocksource timer_cs = { |
| .name = "timer_cs", |
| .rating = 100, |
| .read = timer_cs_read, |
| .mask = CLOCKSOURCE_MASK(64), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static __init int setup_timer_cs(void) |
| { |
| timer_cs_enabled = 1; |
| return clocksource_register_hz(&timer_cs, sparc_config.clock_rate); |
| } |
| |
| #ifdef CONFIG_SMP |
| static int percpu_ce_shutdown(struct clock_event_device *evt) |
| { |
| int cpu = cpumask_first(evt->cpumask); |
| |
| sparc_config.load_profile_irq(cpu, 0); |
| return 0; |
| } |
| |
| static int percpu_ce_set_periodic(struct clock_event_device *evt) |
| { |
| int cpu = cpumask_first(evt->cpumask); |
| |
| sparc_config.load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ); |
| return 0; |
| } |
| |
| static int percpu_ce_set_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| int cpu = cpumask_first(evt->cpumask); |
| unsigned int next = (unsigned int)delta; |
| |
| sparc_config.load_profile_irq(cpu, next); |
| return 0; |
| } |
| |
| void register_percpu_ce(int cpu) |
| { |
| struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu); |
| unsigned int features = CLOCK_EVT_FEAT_PERIODIC; |
| |
| if (sparc_config.features & FEAT_L14_ONESHOT) |
| features |= CLOCK_EVT_FEAT_ONESHOT; |
| |
| ce->name = "percpu_ce"; |
| ce->rating = 200; |
| ce->features = features; |
| ce->set_state_shutdown = percpu_ce_shutdown; |
| ce->set_state_periodic = percpu_ce_set_periodic; |
| ce->set_state_oneshot = percpu_ce_shutdown; |
| ce->set_next_event = percpu_ce_set_next_event; |
| ce->cpumask = cpumask_of(cpu); |
| ce->shift = 32; |
| ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, |
| ce->shift); |
| ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce); |
| ce->min_delta_ns = clockevent_delta2ns(100, ce); |
| |
| clockevents_register_device(ce); |
| } |
| #endif |
| |
| static unsigned char mostek_read_byte(struct device *dev, u32 ofs) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct m48t59_plat_data *pdata = pdev->dev.platform_data; |
| |
| return readb(pdata->ioaddr + ofs); |
| } |
| |
| static void mostek_write_byte(struct device *dev, u32 ofs, u8 val) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct m48t59_plat_data *pdata = pdev->dev.platform_data; |
| |
| writeb(val, pdata->ioaddr + ofs); |
| } |
| |
| static struct m48t59_plat_data m48t59_data = { |
| .read_byte = mostek_read_byte, |
| .write_byte = mostek_write_byte, |
| }; |
| |
| /* resource is set at runtime */ |
| static struct platform_device m48t59_rtc = { |
| .name = "rtc-m48t59", |
| .id = 0, |
| .num_resources = 1, |
| .dev = { |
| .platform_data = &m48t59_data, |
| }, |
| }; |
| |
| static int clock_probe(struct platform_device *op) |
| { |
| struct device_node *dp = op->dev.of_node; |
| const char *model = of_get_property(dp, "model", NULL); |
| |
| if (!model) |
| return -ENODEV; |
| |
| /* Only the primary RTC has an address property */ |
| if (!of_find_property(dp, "address", NULL)) |
| return -ENODEV; |
| |
| m48t59_rtc.resource = &op->resource[0]; |
| if (!strcmp(model, "mk48t02")) { |
| /* Map the clock register io area read-only */ |
| m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, |
| 2048, "rtc-m48t59"); |
| m48t59_data.type = M48T59RTC_TYPE_M48T02; |
| } else if (!strcmp(model, "mk48t08")) { |
| m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, |
| 8192, "rtc-m48t59"); |
| m48t59_data.type = M48T59RTC_TYPE_M48T08; |
| } else |
| return -ENODEV; |
| |
| if (platform_device_register(&m48t59_rtc) < 0) |
| printk(KERN_ERR "Registering RTC device failed\n"); |
| |
| return 0; |
| } |
| |
| static struct of_device_id clock_match[] = { |
| { |
| .name = "eeprom", |
| }, |
| {}, |
| }; |
| |
| static struct platform_driver clock_driver = { |
| .probe = clock_probe, |
| .driver = { |
| .name = "rtc", |
| .of_match_table = clock_match, |
| }, |
| }; |
| |
| |
| /* Probe for the mostek real time clock chip. */ |
| static int __init clock_init(void) |
| { |
| return platform_driver_register(&clock_driver); |
| } |
| /* Must be after subsys_initcall() so that busses are probed. Must |
| * be before device_initcall() because things like the RTC driver |
| * need to see the clock registers. |
| */ |
| fs_initcall(clock_init); |
| |
| static void __init sparc32_late_time_init(void) |
| { |
| if (sparc_config.features & FEAT_L10_CLOCKEVENT) |
| setup_timer_ce(); |
| if (sparc_config.features & FEAT_L10_CLOCKSOURCE) |
| setup_timer_cs(); |
| #ifdef CONFIG_SMP |
| register_percpu_ce(smp_processor_id()); |
| #endif |
| } |
| |
| static void __init sbus_time_init(void) |
| { |
| sparc_config.get_cycles_offset = sbus_cycles_offset; |
| sparc_config.init_timers(); |
| } |
| |
| void __init time_init(void) |
| { |
| sparc_config.features = 0; |
| late_time_init = sparc32_late_time_init; |
| |
| if (pcic_present()) |
| pci_time_init(); |
| else |
| sbus_time_init(); |
| } |
| |