[PATCH] sparsemem hotplug base

Make sparse's initalization be accessible at runtime.  This allows sparse
mappings to be created after boot in a hotplug situation.

This patch is separated from the previous one just to give an indication how
much of the sparse infrastructure is *just* for hotplug memory.

The section_mem_map doesn't really store a pointer.  It stores something that
is convenient to do some math against to get a pointer.  It isn't valid to
just do *section_mem_map, so I don't think it should be stored as a pointer.

There are a couple of things I'd like to store about a section.  First of all,
the fact that it is !NULL does not mean that it is present.  There could be
such a combination where section_mem_map *is* NULL, but the math gets you
properly to a real mem_map.  So, I don't think that check is safe.

Since we're storing 32-bit-aligned structures, we have a few bits in the
bottom of the pointer to play with.  Use one bit to encode whether there's
really a mem_map there, and the other one to tell whether there's a valid
section there.  We need to distinguish between the two because sometimes
there's a gap between when a section is discovered to be present and when we
can get the mem_map for it.

Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 1eb683f..7ee675a 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -1650,8 +1650,8 @@
 		unsigned long start_pfn)
 {
 	struct page *page;
-	int end_pfn = start_pfn + size;
-	int pfn;
+	unsigned long end_pfn = start_pfn + size;
+	unsigned long pfn;
 
 	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
 		if (!early_pfn_valid(pfn))