| /* Faraday FOTG210 EHCI-like driver |
| * |
| * Copyright (c) 2013 Faraday Technology Corporation |
| * |
| * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com> |
| * Feng-Hsin Chiang <john453@faraday-tech.com> |
| * Po-Yu Chuang <ratbert.chuang@gmail.com> |
| * |
| * Most of code borrowed from the Linux-3.7 EHCI driver |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/dmapool.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/ioport.h> |
| #include <linux/sched.h> |
| #include <linux/vmalloc.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/hrtimer.h> |
| #include <linux/list.h> |
| #include <linux/interrupt.h> |
| #include <linux/usb.h> |
| #include <linux/usb/hcd.h> |
| #include <linux/moduleparam.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/debugfs.h> |
| #include <linux/slab.h> |
| #include <linux/uaccess.h> |
| #include <linux/platform_device.h> |
| #include <linux/io.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/irq.h> |
| #include <asm/unaligned.h> |
| |
| #define DRIVER_AUTHOR "Yuan-Hsin Chen" |
| #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver" |
| static const char hcd_name[] = "fotg210_hcd"; |
| |
| #undef FOTG210_URB_TRACE |
| #define FOTG210_STATS |
| |
| /* magic numbers that can affect system performance */ |
| #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ |
| #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ |
| #define FOTG210_TUNE_RL_TT 0 |
| #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ |
| #define FOTG210_TUNE_MULT_TT 1 |
| |
| /* Some drivers think it's safe to schedule isochronous transfers more than 256 |
| * ms into the future (partly as a result of an old bug in the scheduling |
| * code). In an attempt to avoid trouble, we will use a minimum scheduling |
| * length of 512 frames instead of 256. |
| */ |
| #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */ |
| |
| /* Initial IRQ latency: faster than hw default */ |
| static int log2_irq_thresh; /* 0 to 6 */ |
| module_param(log2_irq_thresh, int, S_IRUGO); |
| MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); |
| |
| /* initial park setting: slower than hw default */ |
| static unsigned park; |
| module_param(park, uint, S_IRUGO); |
| MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); |
| |
| /* for link power management(LPM) feature */ |
| static unsigned int hird; |
| module_param(hird, int, S_IRUGO); |
| MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us"); |
| |
| #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) |
| |
| #include "fotg210.h" |
| |
| #define fotg210_dbg(fotg210, fmt, args...) \ |
| dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) |
| #define fotg210_err(fotg210, fmt, args...) \ |
| dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) |
| #define fotg210_info(fotg210, fmt, args...) \ |
| dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) |
| #define fotg210_warn(fotg210, fmt, args...) \ |
| dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) |
| |
| /* check the values in the HCSPARAMS register (host controller _Structural_ |
| * parameters) see EHCI spec, Table 2-4 for each value |
| */ |
| static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label) |
| { |
| u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params); |
| |
| fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params, |
| HCS_N_PORTS(params)); |
| } |
| |
| /* check the values in the HCCPARAMS register (host controller _Capability_ |
| * parameters) see EHCI Spec, Table 2-5 for each value |
| */ |
| static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label) |
| { |
| u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); |
| |
| fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label, |
| params, |
| HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024", |
| HCC_CANPARK(params) ? " park" : ""); |
| } |
| |
| static void __maybe_unused |
| dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd) |
| { |
| fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd, |
| hc32_to_cpup(fotg210, &qtd->hw_next), |
| hc32_to_cpup(fotg210, &qtd->hw_alt_next), |
| hc32_to_cpup(fotg210, &qtd->hw_token), |
| hc32_to_cpup(fotg210, &qtd->hw_buf[0])); |
| if (qtd->hw_buf[1]) |
| fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n", |
| hc32_to_cpup(fotg210, &qtd->hw_buf[1]), |
| hc32_to_cpup(fotg210, &qtd->hw_buf[2]), |
| hc32_to_cpup(fotg210, &qtd->hw_buf[3]), |
| hc32_to_cpup(fotg210, &qtd->hw_buf[4])); |
| } |
| |
| static void __maybe_unused |
| dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh) |
| { |
| struct fotg210_qh_hw *hw = qh->hw; |
| |
| fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh, |
| hw->hw_next, hw->hw_info1, hw->hw_info2, |
| hw->hw_current); |
| |
| dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next); |
| } |
| |
| static void __maybe_unused |
| dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd) |
| { |
| fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label, |
| itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next), |
| itd->urb); |
| |
| fotg210_dbg(fotg210, |
| " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n", |
| hc32_to_cpu(fotg210, itd->hw_transaction[0]), |
| hc32_to_cpu(fotg210, itd->hw_transaction[1]), |
| hc32_to_cpu(fotg210, itd->hw_transaction[2]), |
| hc32_to_cpu(fotg210, itd->hw_transaction[3]), |
| hc32_to_cpu(fotg210, itd->hw_transaction[4]), |
| hc32_to_cpu(fotg210, itd->hw_transaction[5]), |
| hc32_to_cpu(fotg210, itd->hw_transaction[6]), |
| hc32_to_cpu(fotg210, itd->hw_transaction[7])); |
| |
| fotg210_dbg(fotg210, |
| " buf: %08x %08x %08x %08x %08x %08x %08x\n", |
| hc32_to_cpu(fotg210, itd->hw_bufp[0]), |
| hc32_to_cpu(fotg210, itd->hw_bufp[1]), |
| hc32_to_cpu(fotg210, itd->hw_bufp[2]), |
| hc32_to_cpu(fotg210, itd->hw_bufp[3]), |
| hc32_to_cpu(fotg210, itd->hw_bufp[4]), |
| hc32_to_cpu(fotg210, itd->hw_bufp[5]), |
| hc32_to_cpu(fotg210, itd->hw_bufp[6])); |
| |
| fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n", |
| itd->index[0], itd->index[1], itd->index[2], |
| itd->index[3], itd->index[4], itd->index[5], |
| itd->index[6], itd->index[7]); |
| } |
| |
| static int __maybe_unused |
| dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) |
| { |
| return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", |
| label, label[0] ? " " : "", status, |
| (status & STS_ASS) ? " Async" : "", |
| (status & STS_PSS) ? " Periodic" : "", |
| (status & STS_RECL) ? " Recl" : "", |
| (status & STS_HALT) ? " Halt" : "", |
| (status & STS_IAA) ? " IAA" : "", |
| (status & STS_FATAL) ? " FATAL" : "", |
| (status & STS_FLR) ? " FLR" : "", |
| (status & STS_PCD) ? " PCD" : "", |
| (status & STS_ERR) ? " ERR" : "", |
| (status & STS_INT) ? " INT" : ""); |
| } |
| |
| static int __maybe_unused |
| dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) |
| { |
| return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", |
| label, label[0] ? " " : "", enable, |
| (enable & STS_IAA) ? " IAA" : "", |
| (enable & STS_FATAL) ? " FATAL" : "", |
| (enable & STS_FLR) ? " FLR" : "", |
| (enable & STS_PCD) ? " PCD" : "", |
| (enable & STS_ERR) ? " ERR" : "", |
| (enable & STS_INT) ? " INT" : ""); |
| } |
| |
| static const char *const fls_strings[] = { "1024", "512", "256", "??" }; |
| |
| static int dbg_command_buf(char *buf, unsigned len, const char *label, |
| u32 command) |
| { |
| return scnprintf(buf, len, |
| "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s", |
| label, label[0] ? " " : "", command, |
| (command & CMD_PARK) ? " park" : "(park)", |
| CMD_PARK_CNT(command), |
| (command >> 16) & 0x3f, |
| (command & CMD_IAAD) ? " IAAD" : "", |
| (command & CMD_ASE) ? " Async" : "", |
| (command & CMD_PSE) ? " Periodic" : "", |
| fls_strings[(command >> 2) & 0x3], |
| (command & CMD_RESET) ? " Reset" : "", |
| (command & CMD_RUN) ? "RUN" : "HALT"); |
| } |
| |
| static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port, |
| u32 status) |
| { |
| char *sig; |
| |
| /* signaling state */ |
| switch (status & (3 << 10)) { |
| case 0 << 10: |
| sig = "se0"; |
| break; |
| case 1 << 10: |
| sig = "k"; |
| break; /* low speed */ |
| case 2 << 10: |
| sig = "j"; |
| break; |
| default: |
| sig = "?"; |
| break; |
| } |
| |
| scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s", |
| label, label[0] ? " " : "", port, status, |
| status >> 25, /*device address */ |
| sig, |
| (status & PORT_RESET) ? " RESET" : "", |
| (status & PORT_SUSPEND) ? " SUSPEND" : "", |
| (status & PORT_RESUME) ? " RESUME" : "", |
| (status & PORT_PEC) ? " PEC" : "", |
| (status & PORT_PE) ? " PE" : "", |
| (status & PORT_CSC) ? " CSC" : "", |
| (status & PORT_CONNECT) ? " CONNECT" : ""); |
| |
| return buf; |
| } |
| |
| /* functions have the "wrong" filename when they're output... */ |
| #define dbg_status(fotg210, label, status) { \ |
| char _buf[80]; \ |
| dbg_status_buf(_buf, sizeof(_buf), label, status); \ |
| fotg210_dbg(fotg210, "%s\n", _buf); \ |
| } |
| |
| #define dbg_cmd(fotg210, label, command) { \ |
| char _buf[80]; \ |
| dbg_command_buf(_buf, sizeof(_buf), label, command); \ |
| fotg210_dbg(fotg210, "%s\n", _buf); \ |
| } |
| |
| #define dbg_port(fotg210, label, port, status) { \ |
| char _buf[80]; \ |
| fotg210_dbg(fotg210, "%s\n", \ |
| dbg_port_buf(_buf, sizeof(_buf), label, port, status));\ |
| } |
| |
| /* troubleshooting help: expose state in debugfs */ |
| static int debug_async_open(struct inode *, struct file *); |
| static int debug_periodic_open(struct inode *, struct file *); |
| static int debug_registers_open(struct inode *, struct file *); |
| static int debug_async_open(struct inode *, struct file *); |
| |
| static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*); |
| static int debug_close(struct inode *, struct file *); |
| |
| static const struct file_operations debug_async_fops = { |
| .owner = THIS_MODULE, |
| .open = debug_async_open, |
| .read = debug_output, |
| .release = debug_close, |
| .llseek = default_llseek, |
| }; |
| static const struct file_operations debug_periodic_fops = { |
| .owner = THIS_MODULE, |
| .open = debug_periodic_open, |
| .read = debug_output, |
| .release = debug_close, |
| .llseek = default_llseek, |
| }; |
| static const struct file_operations debug_registers_fops = { |
| .owner = THIS_MODULE, |
| .open = debug_registers_open, |
| .read = debug_output, |
| .release = debug_close, |
| .llseek = default_llseek, |
| }; |
| |
| static struct dentry *fotg210_debug_root; |
| |
| struct debug_buffer { |
| ssize_t (*fill_func)(struct debug_buffer *); /* fill method */ |
| struct usb_bus *bus; |
| struct mutex mutex; /* protect filling of buffer */ |
| size_t count; /* number of characters filled into buffer */ |
| char *output_buf; |
| size_t alloc_size; |
| }; |
| |
| static inline char speed_char(u32 scratch) |
| { |
| switch (scratch & (3 << 12)) { |
| case QH_FULL_SPEED: |
| return 'f'; |
| |
| case QH_LOW_SPEED: |
| return 'l'; |
| |
| case QH_HIGH_SPEED: |
| return 'h'; |
| |
| default: |
| return '?'; |
| } |
| } |
| |
| static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token) |
| { |
| __u32 v = hc32_to_cpu(fotg210, token); |
| |
| if (v & QTD_STS_ACTIVE) |
| return '*'; |
| if (v & QTD_STS_HALT) |
| return '-'; |
| if (!IS_SHORT_READ(v)) |
| return ' '; |
| /* tries to advance through hw_alt_next */ |
| return '/'; |
| } |
| |
| static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh, |
| char **nextp, unsigned *sizep) |
| { |
| u32 scratch; |
| u32 hw_curr; |
| struct fotg210_qtd *td; |
| unsigned temp; |
| unsigned size = *sizep; |
| char *next = *nextp; |
| char mark; |
| __le32 list_end = FOTG210_LIST_END(fotg210); |
| struct fotg210_qh_hw *hw = qh->hw; |
| |
| if (hw->hw_qtd_next == list_end) /* NEC does this */ |
| mark = '@'; |
| else |
| mark = token_mark(fotg210, hw->hw_token); |
| if (mark == '/') { /* qh_alt_next controls qh advance? */ |
| if ((hw->hw_alt_next & QTD_MASK(fotg210)) == |
| fotg210->async->hw->hw_alt_next) |
| mark = '#'; /* blocked */ |
| else if (hw->hw_alt_next == list_end) |
| mark = '.'; /* use hw_qtd_next */ |
| /* else alt_next points to some other qtd */ |
| } |
| scratch = hc32_to_cpup(fotg210, &hw->hw_info1); |
| hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0; |
| temp = scnprintf(next, size, |
| "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)", |
| qh, scratch & 0x007f, |
| speed_char(scratch), |
| (scratch >> 8) & 0x000f, |
| scratch, hc32_to_cpup(fotg210, &hw->hw_info2), |
| hc32_to_cpup(fotg210, &hw->hw_token), mark, |
| (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token) |
| ? "data1" : "data0", |
| (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f); |
| size -= temp; |
| next += temp; |
| |
| /* hc may be modifying the list as we read it ... */ |
| list_for_each_entry(td, &qh->qtd_list, qtd_list) { |
| scratch = hc32_to_cpup(fotg210, &td->hw_token); |
| mark = ' '; |
| if (hw_curr == td->qtd_dma) |
| mark = '*'; |
| else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma)) |
| mark = '+'; |
| else if (QTD_LENGTH(scratch)) { |
| if (td->hw_alt_next == fotg210->async->hw->hw_alt_next) |
| mark = '#'; |
| else if (td->hw_alt_next != list_end) |
| mark = '/'; |
| } |
| temp = snprintf(next, size, |
| "\n\t%p%c%s len=%d %08x urb %p", |
| td, mark, ({ char *tmp; |
| switch ((scratch>>8)&0x03) { |
| case 0: |
| tmp = "out"; |
| break; |
| case 1: |
| tmp = "in"; |
| break; |
| case 2: |
| tmp = "setup"; |
| break; |
| default: |
| tmp = "?"; |
| break; |
| } tmp; }), |
| (scratch >> 16) & 0x7fff, |
| scratch, |
| td->urb); |
| if (size < temp) |
| temp = size; |
| size -= temp; |
| next += temp; |
| if (temp == size) |
| goto done; |
| } |
| |
| temp = snprintf(next, size, "\n"); |
| if (size < temp) |
| temp = size; |
| |
| size -= temp; |
| next += temp; |
| |
| done: |
| *sizep = size; |
| *nextp = next; |
| } |
| |
| static ssize_t fill_async_buffer(struct debug_buffer *buf) |
| { |
| struct usb_hcd *hcd; |
| struct fotg210_hcd *fotg210; |
| unsigned long flags; |
| unsigned temp, size; |
| char *next; |
| struct fotg210_qh *qh; |
| |
| hcd = bus_to_hcd(buf->bus); |
| fotg210 = hcd_to_fotg210(hcd); |
| next = buf->output_buf; |
| size = buf->alloc_size; |
| |
| *next = 0; |
| |
| /* dumps a snapshot of the async schedule. |
| * usually empty except for long-term bulk reads, or head. |
| * one QH per line, and TDs we know about |
| */ |
| spin_lock_irqsave(&fotg210->lock, flags); |
| for (qh = fotg210->async->qh_next.qh; size > 0 && qh; |
| qh = qh->qh_next.qh) |
| qh_lines(fotg210, qh, &next, &size); |
| if (fotg210->async_unlink && size > 0) { |
| temp = scnprintf(next, size, "\nunlink =\n"); |
| size -= temp; |
| next += temp; |
| |
| for (qh = fotg210->async_unlink; size > 0 && qh; |
| qh = qh->unlink_next) |
| qh_lines(fotg210, qh, &next, &size); |
| } |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| |
| return strlen(buf->output_buf); |
| } |
| |
| /* count tds, get ep direction */ |
| static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210, |
| struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size) |
| { |
| u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); |
| struct fotg210_qtd *qtd; |
| char *type = ""; |
| unsigned temp = 0; |
| |
| /* count tds, get ep direction */ |
| list_for_each_entry(qtd, &qh->qtd_list, qtd_list) { |
| temp++; |
| switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) { |
| case 0: |
| type = "out"; |
| continue; |
| case 1: |
| type = "in"; |
| continue; |
| } |
| } |
| |
| return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)", |
| speed_char(scratch), scratch & 0x007f, |
| (scratch >> 8) & 0x000f, type, qh->usecs, |
| qh->c_usecs, temp, (scratch >> 16) & 0x7ff); |
| } |
| |
| #define DBG_SCHED_LIMIT 64 |
| static ssize_t fill_periodic_buffer(struct debug_buffer *buf) |
| { |
| struct usb_hcd *hcd; |
| struct fotg210_hcd *fotg210; |
| unsigned long flags; |
| union fotg210_shadow p, *seen; |
| unsigned temp, size, seen_count; |
| char *next; |
| unsigned i; |
| __hc32 tag; |
| |
| seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC); |
| if (!seen) |
| return 0; |
| |
| seen_count = 0; |
| |
| hcd = bus_to_hcd(buf->bus); |
| fotg210 = hcd_to_fotg210(hcd); |
| next = buf->output_buf; |
| size = buf->alloc_size; |
| |
| temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size); |
| size -= temp; |
| next += temp; |
| |
| /* dump a snapshot of the periodic schedule. |
| * iso changes, interrupt usually doesn't. |
| */ |
| spin_lock_irqsave(&fotg210->lock, flags); |
| for (i = 0; i < fotg210->periodic_size; i++) { |
| p = fotg210->pshadow[i]; |
| if (likely(!p.ptr)) |
| continue; |
| |
| tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]); |
| |
| temp = scnprintf(next, size, "%4d: ", i); |
| size -= temp; |
| next += temp; |
| |
| do { |
| struct fotg210_qh_hw *hw; |
| |
| switch (hc32_to_cpu(fotg210, tag)) { |
| case Q_TYPE_QH: |
| hw = p.qh->hw; |
| temp = scnprintf(next, size, " qh%d-%04x/%p", |
| p.qh->period, |
| hc32_to_cpup(fotg210, |
| &hw->hw_info2) |
| /* uframe masks */ |
| & (QH_CMASK | QH_SMASK), |
| p.qh); |
| size -= temp; |
| next += temp; |
| /* don't repeat what follows this qh */ |
| for (temp = 0; temp < seen_count; temp++) { |
| if (seen[temp].ptr != p.ptr) |
| continue; |
| if (p.qh->qh_next.ptr) { |
| temp = scnprintf(next, size, |
| " ..."); |
| size -= temp; |
| next += temp; |
| } |
| break; |
| } |
| /* show more info the first time around */ |
| if (temp == seen_count) { |
| temp = output_buf_tds_dir(next, |
| fotg210, hw, |
| p.qh, size); |
| |
| if (seen_count < DBG_SCHED_LIMIT) |
| seen[seen_count++].qh = p.qh; |
| } else |
| temp = 0; |
| tag = Q_NEXT_TYPE(fotg210, hw->hw_next); |
| p = p.qh->qh_next; |
| break; |
| case Q_TYPE_FSTN: |
| temp = scnprintf(next, size, |
| " fstn-%8x/%p", |
| p.fstn->hw_prev, p.fstn); |
| tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next); |
| p = p.fstn->fstn_next; |
| break; |
| case Q_TYPE_ITD: |
| temp = scnprintf(next, size, |
| " itd/%p", p.itd); |
| tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next); |
| p = p.itd->itd_next; |
| break; |
| } |
| size -= temp; |
| next += temp; |
| } while (p.ptr); |
| |
| temp = scnprintf(next, size, "\n"); |
| size -= temp; |
| next += temp; |
| } |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| kfree(seen); |
| |
| return buf->alloc_size - size; |
| } |
| #undef DBG_SCHED_LIMIT |
| |
| static const char *rh_state_string(struct fotg210_hcd *fotg210) |
| { |
| switch (fotg210->rh_state) { |
| case FOTG210_RH_HALTED: |
| return "halted"; |
| case FOTG210_RH_SUSPENDED: |
| return "suspended"; |
| case FOTG210_RH_RUNNING: |
| return "running"; |
| case FOTG210_RH_STOPPING: |
| return "stopping"; |
| } |
| return "?"; |
| } |
| |
| static ssize_t fill_registers_buffer(struct debug_buffer *buf) |
| { |
| struct usb_hcd *hcd; |
| struct fotg210_hcd *fotg210; |
| unsigned long flags; |
| unsigned temp, size, i; |
| char *next, scratch[80]; |
| static const char fmt[] = "%*s\n"; |
| static const char label[] = ""; |
| |
| hcd = bus_to_hcd(buf->bus); |
| fotg210 = hcd_to_fotg210(hcd); |
| next = buf->output_buf; |
| size = buf->alloc_size; |
| |
| spin_lock_irqsave(&fotg210->lock, flags); |
| |
| if (!HCD_HW_ACCESSIBLE(hcd)) { |
| size = scnprintf(next, size, |
| "bus %s, device %s\n" |
| "%s\n" |
| "SUSPENDED(no register access)\n", |
| hcd->self.controller->bus->name, |
| dev_name(hcd->self.controller), |
| hcd->product_desc); |
| goto done; |
| } |
| |
| /* Capability Registers */ |
| i = HC_VERSION(fotg210, fotg210_readl(fotg210, |
| &fotg210->caps->hc_capbase)); |
| temp = scnprintf(next, size, |
| "bus %s, device %s\n" |
| "%s\n" |
| "EHCI %x.%02x, rh state %s\n", |
| hcd->self.controller->bus->name, |
| dev_name(hcd->self.controller), |
| hcd->product_desc, |
| i >> 8, i & 0x0ff, rh_state_string(fotg210)); |
| size -= temp; |
| next += temp; |
| |
| /* FIXME interpret both types of params */ |
| i = fotg210_readl(fotg210, &fotg210->caps->hcs_params); |
| temp = scnprintf(next, size, "structural params 0x%08x\n", i); |
| size -= temp; |
| next += temp; |
| |
| i = fotg210_readl(fotg210, &fotg210->caps->hcc_params); |
| temp = scnprintf(next, size, "capability params 0x%08x\n", i); |
| size -= temp; |
| next += temp; |
| |
| /* Operational Registers */ |
| temp = dbg_status_buf(scratch, sizeof(scratch), label, |
| fotg210_readl(fotg210, &fotg210->regs->status)); |
| temp = scnprintf(next, size, fmt, temp, scratch); |
| size -= temp; |
| next += temp; |
| |
| temp = dbg_command_buf(scratch, sizeof(scratch), label, |
| fotg210_readl(fotg210, &fotg210->regs->command)); |
| temp = scnprintf(next, size, fmt, temp, scratch); |
| size -= temp; |
| next += temp; |
| |
| temp = dbg_intr_buf(scratch, sizeof(scratch), label, |
| fotg210_readl(fotg210, &fotg210->regs->intr_enable)); |
| temp = scnprintf(next, size, fmt, temp, scratch); |
| size -= temp; |
| next += temp; |
| |
| temp = scnprintf(next, size, "uframe %04x\n", |
| fotg210_read_frame_index(fotg210)); |
| size -= temp; |
| next += temp; |
| |
| if (fotg210->async_unlink) { |
| temp = scnprintf(next, size, "async unlink qh %p\n", |
| fotg210->async_unlink); |
| size -= temp; |
| next += temp; |
| } |
| |
| #ifdef FOTG210_STATS |
| temp = scnprintf(next, size, |
| "irq normal %ld err %ld iaa %ld(lost %ld)\n", |
| fotg210->stats.normal, fotg210->stats.error, |
| fotg210->stats.iaa, fotg210->stats.lost_iaa); |
| size -= temp; |
| next += temp; |
| |
| temp = scnprintf(next, size, "complete %ld unlink %ld\n", |
| fotg210->stats.complete, fotg210->stats.unlink); |
| size -= temp; |
| next += temp; |
| #endif |
| |
| done: |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| |
| return buf->alloc_size - size; |
| } |
| |
| static struct debug_buffer |
| *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *)) |
| { |
| struct debug_buffer *buf; |
| |
| buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL); |
| |
| if (buf) { |
| buf->bus = bus; |
| buf->fill_func = fill_func; |
| mutex_init(&buf->mutex); |
| buf->alloc_size = PAGE_SIZE; |
| } |
| |
| return buf; |
| } |
| |
| static int fill_buffer(struct debug_buffer *buf) |
| { |
| int ret = 0; |
| |
| if (!buf->output_buf) |
| buf->output_buf = vmalloc(buf->alloc_size); |
| |
| if (!buf->output_buf) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = buf->fill_func(buf); |
| |
| if (ret >= 0) { |
| buf->count = ret; |
| ret = 0; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static ssize_t debug_output(struct file *file, char __user *user_buf, |
| size_t len, loff_t *offset) |
| { |
| struct debug_buffer *buf = file->private_data; |
| int ret = 0; |
| |
| mutex_lock(&buf->mutex); |
| if (buf->count == 0) { |
| ret = fill_buffer(buf); |
| if (ret != 0) { |
| mutex_unlock(&buf->mutex); |
| goto out; |
| } |
| } |
| mutex_unlock(&buf->mutex); |
| |
| ret = simple_read_from_buffer(user_buf, len, offset, |
| buf->output_buf, buf->count); |
| |
| out: |
| return ret; |
| |
| } |
| |
| static int debug_close(struct inode *inode, struct file *file) |
| { |
| struct debug_buffer *buf = file->private_data; |
| |
| if (buf) { |
| vfree(buf->output_buf); |
| kfree(buf); |
| } |
| |
| return 0; |
| } |
| static int debug_async_open(struct inode *inode, struct file *file) |
| { |
| file->private_data = alloc_buffer(inode->i_private, fill_async_buffer); |
| |
| return file->private_data ? 0 : -ENOMEM; |
| } |
| |
| static int debug_periodic_open(struct inode *inode, struct file *file) |
| { |
| struct debug_buffer *buf; |
| |
| buf = alloc_buffer(inode->i_private, fill_periodic_buffer); |
| if (!buf) |
| return -ENOMEM; |
| |
| buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE; |
| file->private_data = buf; |
| return 0; |
| } |
| |
| static int debug_registers_open(struct inode *inode, struct file *file) |
| { |
| file->private_data = alloc_buffer(inode->i_private, |
| fill_registers_buffer); |
| |
| return file->private_data ? 0 : -ENOMEM; |
| } |
| |
| static inline void create_debug_files(struct fotg210_hcd *fotg210) |
| { |
| struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; |
| |
| fotg210->debug_dir = debugfs_create_dir(bus->bus_name, |
| fotg210_debug_root); |
| if (!fotg210->debug_dir) |
| return; |
| |
| if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus, |
| &debug_async_fops)) |
| goto file_error; |
| |
| if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus, |
| &debug_periodic_fops)) |
| goto file_error; |
| |
| if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus, |
| &debug_registers_fops)) |
| goto file_error; |
| |
| return; |
| |
| file_error: |
| debugfs_remove_recursive(fotg210->debug_dir); |
| } |
| |
| static inline void remove_debug_files(struct fotg210_hcd *fotg210) |
| { |
| debugfs_remove_recursive(fotg210->debug_dir); |
| } |
| |
| /* handshake - spin reading hc until handshake completes or fails |
| * @ptr: address of hc register to be read |
| * @mask: bits to look at in result of read |
| * @done: value of those bits when handshake succeeds |
| * @usec: timeout in microseconds |
| * |
| * Returns negative errno, or zero on success |
| * |
| * Success happens when the "mask" bits have the specified value (hardware |
| * handshake done). There are two failure modes: "usec" have passed (major |
| * hardware flakeout), or the register reads as all-ones (hardware removed). |
| * |
| * That last failure should_only happen in cases like physical cardbus eject |
| * before driver shutdown. But it also seems to be caused by bugs in cardbus |
| * bridge shutdown: shutting down the bridge before the devices using it. |
| */ |
| static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr, |
| u32 mask, u32 done, int usec) |
| { |
| u32 result; |
| |
| do { |
| result = fotg210_readl(fotg210, ptr); |
| if (result == ~(u32)0) /* card removed */ |
| return -ENODEV; |
| result &= mask; |
| if (result == done) |
| return 0; |
| udelay(1); |
| usec--; |
| } while (usec > 0); |
| return -ETIMEDOUT; |
| } |
| |
| /* Force HC to halt state from unknown (EHCI spec section 2.3). |
| * Must be called with interrupts enabled and the lock not held. |
| */ |
| static int fotg210_halt(struct fotg210_hcd *fotg210) |
| { |
| u32 temp; |
| |
| spin_lock_irq(&fotg210->lock); |
| |
| /* disable any irqs left enabled by previous code */ |
| fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); |
| |
| /* |
| * This routine gets called during probe before fotg210->command |
| * has been initialized, so we can't rely on its value. |
| */ |
| fotg210->command &= ~CMD_RUN; |
| temp = fotg210_readl(fotg210, &fotg210->regs->command); |
| temp &= ~(CMD_RUN | CMD_IAAD); |
| fotg210_writel(fotg210, temp, &fotg210->regs->command); |
| |
| spin_unlock_irq(&fotg210->lock); |
| synchronize_irq(fotg210_to_hcd(fotg210)->irq); |
| |
| return handshake(fotg210, &fotg210->regs->status, |
| STS_HALT, STS_HALT, 16 * 125); |
| } |
| |
| /* Reset a non-running (STS_HALT == 1) controller. |
| * Must be called with interrupts enabled and the lock not held. |
| */ |
| static int fotg210_reset(struct fotg210_hcd *fotg210) |
| { |
| int retval; |
| u32 command = fotg210_readl(fotg210, &fotg210->regs->command); |
| |
| /* If the EHCI debug controller is active, special care must be |
| * taken before and after a host controller reset |
| */ |
| if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210))) |
| fotg210->debug = NULL; |
| |
| command |= CMD_RESET; |
| dbg_cmd(fotg210, "reset", command); |
| fotg210_writel(fotg210, command, &fotg210->regs->command); |
| fotg210->rh_state = FOTG210_RH_HALTED; |
| fotg210->next_statechange = jiffies; |
| retval = handshake(fotg210, &fotg210->regs->command, |
| CMD_RESET, 0, 250 * 1000); |
| |
| if (retval) |
| return retval; |
| |
| if (fotg210->debug) |
| dbgp_external_startup(fotg210_to_hcd(fotg210)); |
| |
| fotg210->port_c_suspend = fotg210->suspended_ports = |
| fotg210->resuming_ports = 0; |
| return retval; |
| } |
| |
| /* Idle the controller (turn off the schedules). |
| * Must be called with interrupts enabled and the lock not held. |
| */ |
| static void fotg210_quiesce(struct fotg210_hcd *fotg210) |
| { |
| u32 temp; |
| |
| if (fotg210->rh_state != FOTG210_RH_RUNNING) |
| return; |
| |
| /* wait for any schedule enables/disables to take effect */ |
| temp = (fotg210->command << 10) & (STS_ASS | STS_PSS); |
| handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp, |
| 16 * 125); |
| |
| /* then disable anything that's still active */ |
| spin_lock_irq(&fotg210->lock); |
| fotg210->command &= ~(CMD_ASE | CMD_PSE); |
| fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); |
| spin_unlock_irq(&fotg210->lock); |
| |
| /* hardware can take 16 microframes to turn off ... */ |
| handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0, |
| 16 * 125); |
| } |
| |
| static void end_unlink_async(struct fotg210_hcd *fotg210); |
| static void unlink_empty_async(struct fotg210_hcd *fotg210); |
| static void fotg210_work(struct fotg210_hcd *fotg210); |
| static void start_unlink_intr(struct fotg210_hcd *fotg210, |
| struct fotg210_qh *qh); |
| static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); |
| |
| /* Set a bit in the USBCMD register */ |
| static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit) |
| { |
| fotg210->command |= bit; |
| fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); |
| |
| /* unblock posted write */ |
| fotg210_readl(fotg210, &fotg210->regs->command); |
| } |
| |
| /* Clear a bit in the USBCMD register */ |
| static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit) |
| { |
| fotg210->command &= ~bit; |
| fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); |
| |
| /* unblock posted write */ |
| fotg210_readl(fotg210, &fotg210->regs->command); |
| } |
| |
| /* EHCI timer support... Now using hrtimers. |
| * |
| * Lots of different events are triggered from fotg210->hrtimer. Whenever |
| * the timer routine runs, it checks each possible event; events that are |
| * currently enabled and whose expiration time has passed get handled. |
| * The set of enabled events is stored as a collection of bitflags in |
| * fotg210->enabled_hrtimer_events, and they are numbered in order of |
| * increasing delay values (ranging between 1 ms and 100 ms). |
| * |
| * Rather than implementing a sorted list or tree of all pending events, |
| * we keep track only of the lowest-numbered pending event, in |
| * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its |
| * expiration time is set to the timeout value for this event. |
| * |
| * As a result, events might not get handled right away; the actual delay |
| * could be anywhere up to twice the requested delay. This doesn't |
| * matter, because none of the events are especially time-critical. The |
| * ones that matter most all have a delay of 1 ms, so they will be |
| * handled after 2 ms at most, which is okay. In addition to this, we |
| * allow for an expiration range of 1 ms. |
| */ |
| |
| /* Delay lengths for the hrtimer event types. |
| * Keep this list sorted by delay length, in the same order as |
| * the event types indexed by enum fotg210_hrtimer_event in fotg210.h. |
| */ |
| static unsigned event_delays_ns[] = { |
| 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */ |
| 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */ |
| 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */ |
| 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */ |
| 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */ |
| 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ |
| 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */ |
| 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ |
| 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */ |
| 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */ |
| }; |
| |
| /* Enable a pending hrtimer event */ |
| static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event, |
| bool resched) |
| { |
| ktime_t *timeout = &fotg210->hr_timeouts[event]; |
| |
| if (resched) |
| *timeout = ktime_add(ktime_get(), event_delays_ns[event]); |
| fotg210->enabled_hrtimer_events |= (1 << event); |
| |
| /* Track only the lowest-numbered pending event */ |
| if (event < fotg210->next_hrtimer_event) { |
| fotg210->next_hrtimer_event = event; |
| hrtimer_start_range_ns(&fotg210->hrtimer, *timeout, |
| NSEC_PER_MSEC, HRTIMER_MODE_ABS); |
| } |
| } |
| |
| |
| /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */ |
| static void fotg210_poll_ASS(struct fotg210_hcd *fotg210) |
| { |
| unsigned actual, want; |
| |
| /* Don't enable anything if the controller isn't running (e.g., died) */ |
| if (fotg210->rh_state != FOTG210_RH_RUNNING) |
| return; |
| |
| want = (fotg210->command & CMD_ASE) ? STS_ASS : 0; |
| actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS; |
| |
| if (want != actual) { |
| |
| /* Poll again later, but give up after about 20 ms */ |
| if (fotg210->ASS_poll_count++ < 20) { |
| fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS, |
| true); |
| return; |
| } |
| fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n", |
| want, actual); |
| } |
| fotg210->ASS_poll_count = 0; |
| |
| /* The status is up-to-date; restart or stop the schedule as needed */ |
| if (want == 0) { /* Stopped */ |
| if (fotg210->async_count > 0) |
| fotg210_set_command_bit(fotg210, CMD_ASE); |
| |
| } else { /* Running */ |
| if (fotg210->async_count == 0) { |
| |
| /* Turn off the schedule after a while */ |
| fotg210_enable_event(fotg210, |
| FOTG210_HRTIMER_DISABLE_ASYNC, |
| true); |
| } |
| } |
| } |
| |
| /* Turn off the async schedule after a brief delay */ |
| static void fotg210_disable_ASE(struct fotg210_hcd *fotg210) |
| { |
| fotg210_clear_command_bit(fotg210, CMD_ASE); |
| } |
| |
| |
| /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */ |
| static void fotg210_poll_PSS(struct fotg210_hcd *fotg210) |
| { |
| unsigned actual, want; |
| |
| /* Don't do anything if the controller isn't running (e.g., died) */ |
| if (fotg210->rh_state != FOTG210_RH_RUNNING) |
| return; |
| |
| want = (fotg210->command & CMD_PSE) ? STS_PSS : 0; |
| actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS; |
| |
| if (want != actual) { |
| |
| /* Poll again later, but give up after about 20 ms */ |
| if (fotg210->PSS_poll_count++ < 20) { |
| fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS, |
| true); |
| return; |
| } |
| fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n", |
| want, actual); |
| } |
| fotg210->PSS_poll_count = 0; |
| |
| /* The status is up-to-date; restart or stop the schedule as needed */ |
| if (want == 0) { /* Stopped */ |
| if (fotg210->periodic_count > 0) |
| fotg210_set_command_bit(fotg210, CMD_PSE); |
| |
| } else { /* Running */ |
| if (fotg210->periodic_count == 0) { |
| |
| /* Turn off the schedule after a while */ |
| fotg210_enable_event(fotg210, |
| FOTG210_HRTIMER_DISABLE_PERIODIC, |
| true); |
| } |
| } |
| } |
| |
| /* Turn off the periodic schedule after a brief delay */ |
| static void fotg210_disable_PSE(struct fotg210_hcd *fotg210) |
| { |
| fotg210_clear_command_bit(fotg210, CMD_PSE); |
| } |
| |
| |
| /* Poll the STS_HALT status bit; see when a dead controller stops */ |
| static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210) |
| { |
| if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) { |
| |
| /* Give up after a few milliseconds */ |
| if (fotg210->died_poll_count++ < 5) { |
| /* Try again later */ |
| fotg210_enable_event(fotg210, |
| FOTG210_HRTIMER_POLL_DEAD, true); |
| return; |
| } |
| fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n"); |
| } |
| |
| /* Clean up the mess */ |
| fotg210->rh_state = FOTG210_RH_HALTED; |
| fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); |
| fotg210_work(fotg210); |
| end_unlink_async(fotg210); |
| |
| /* Not in process context, so don't try to reset the controller */ |
| } |
| |
| |
| /* Handle unlinked interrupt QHs once they are gone from the hardware */ |
| static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210) |
| { |
| bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); |
| |
| /* |
| * Process all the QHs on the intr_unlink list that were added |
| * before the current unlink cycle began. The list is in |
| * temporal order, so stop when we reach the first entry in the |
| * current cycle. But if the root hub isn't running then |
| * process all the QHs on the list. |
| */ |
| fotg210->intr_unlinking = true; |
| while (fotg210->intr_unlink) { |
| struct fotg210_qh *qh = fotg210->intr_unlink; |
| |
| if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle) |
| break; |
| fotg210->intr_unlink = qh->unlink_next; |
| qh->unlink_next = NULL; |
| end_unlink_intr(fotg210, qh); |
| } |
| |
| /* Handle remaining entries later */ |
| if (fotg210->intr_unlink) { |
| fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, |
| true); |
| ++fotg210->intr_unlink_cycle; |
| } |
| fotg210->intr_unlinking = false; |
| } |
| |
| |
| /* Start another free-iTDs/siTDs cycle */ |
| static void start_free_itds(struct fotg210_hcd *fotg210) |
| { |
| if (!(fotg210->enabled_hrtimer_events & |
| BIT(FOTG210_HRTIMER_FREE_ITDS))) { |
| fotg210->last_itd_to_free = list_entry( |
| fotg210->cached_itd_list.prev, |
| struct fotg210_itd, itd_list); |
| fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true); |
| } |
| } |
| |
| /* Wait for controller to stop using old iTDs and siTDs */ |
| static void end_free_itds(struct fotg210_hcd *fotg210) |
| { |
| struct fotg210_itd *itd, *n; |
| |
| if (fotg210->rh_state < FOTG210_RH_RUNNING) |
| fotg210->last_itd_to_free = NULL; |
| |
| list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) { |
| list_del(&itd->itd_list); |
| dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma); |
| if (itd == fotg210->last_itd_to_free) |
| break; |
| } |
| |
| if (!list_empty(&fotg210->cached_itd_list)) |
| start_free_itds(fotg210); |
| } |
| |
| |
| /* Handle lost (or very late) IAA interrupts */ |
| static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210) |
| { |
| if (fotg210->rh_state != FOTG210_RH_RUNNING) |
| return; |
| |
| /* |
| * Lost IAA irqs wedge things badly; seen first with a vt8235. |
| * So we need this watchdog, but must protect it against both |
| * (a) SMP races against real IAA firing and retriggering, and |
| * (b) clean HC shutdown, when IAA watchdog was pending. |
| */ |
| if (fotg210->async_iaa) { |
| u32 cmd, status; |
| |
| /* If we get here, IAA is *REALLY* late. It's barely |
| * conceivable that the system is so busy that CMD_IAAD |
| * is still legitimately set, so let's be sure it's |
| * clear before we read STS_IAA. (The HC should clear |
| * CMD_IAAD when it sets STS_IAA.) |
| */ |
| cmd = fotg210_readl(fotg210, &fotg210->regs->command); |
| |
| /* |
| * If IAA is set here it either legitimately triggered |
| * after the watchdog timer expired (_way_ late, so we'll |
| * still count it as lost) ... or a silicon erratum: |
| * - VIA seems to set IAA without triggering the IRQ; |
| * - IAAD potentially cleared without setting IAA. |
| */ |
| status = fotg210_readl(fotg210, &fotg210->regs->status); |
| if ((status & STS_IAA) || !(cmd & CMD_IAAD)) { |
| COUNT(fotg210->stats.lost_iaa); |
| fotg210_writel(fotg210, STS_IAA, |
| &fotg210->regs->status); |
| } |
| |
| fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n", |
| status, cmd); |
| end_unlink_async(fotg210); |
| } |
| } |
| |
| |
| /* Enable the I/O watchdog, if appropriate */ |
| static void turn_on_io_watchdog(struct fotg210_hcd *fotg210) |
| { |
| /* Not needed if the controller isn't running or it's already enabled */ |
| if (fotg210->rh_state != FOTG210_RH_RUNNING || |
| (fotg210->enabled_hrtimer_events & |
| BIT(FOTG210_HRTIMER_IO_WATCHDOG))) |
| return; |
| |
| /* |
| * Isochronous transfers always need the watchdog. |
| * For other sorts we use it only if the flag is set. |
| */ |
| if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog && |
| fotg210->async_count + fotg210->intr_count > 0)) |
| fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG, |
| true); |
| } |
| |
| |
| /* Handler functions for the hrtimer event types. |
| * Keep this array in the same order as the event types indexed by |
| * enum fotg210_hrtimer_event in fotg210.h. |
| */ |
| static void (*event_handlers[])(struct fotg210_hcd *) = { |
| fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */ |
| fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */ |
| fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */ |
| fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */ |
| end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */ |
| unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ |
| fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */ |
| fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ |
| fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */ |
| fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */ |
| }; |
| |
| static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t) |
| { |
| struct fotg210_hcd *fotg210 = |
| container_of(t, struct fotg210_hcd, hrtimer); |
| ktime_t now; |
| unsigned long events; |
| unsigned long flags; |
| unsigned e; |
| |
| spin_lock_irqsave(&fotg210->lock, flags); |
| |
| events = fotg210->enabled_hrtimer_events; |
| fotg210->enabled_hrtimer_events = 0; |
| fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; |
| |
| /* |
| * Check each pending event. If its time has expired, handle |
| * the event; otherwise re-enable it. |
| */ |
| now = ktime_get(); |
| for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) { |
| if (now >= fotg210->hr_timeouts[e]) |
| event_handlers[e](fotg210); |
| else |
| fotg210_enable_event(fotg210, e, false); |
| } |
| |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| return HRTIMER_NORESTART; |
| } |
| |
| #define fotg210_bus_suspend NULL |
| #define fotg210_bus_resume NULL |
| |
| static int check_reset_complete(struct fotg210_hcd *fotg210, int index, |
| u32 __iomem *status_reg, int port_status) |
| { |
| if (!(port_status & PORT_CONNECT)) |
| return port_status; |
| |
| /* if reset finished and it's still not enabled -- handoff */ |
| if (!(port_status & PORT_PE)) |
| /* with integrated TT, there's nobody to hand it to! */ |
| fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n", |
| index + 1); |
| else |
| fotg210_dbg(fotg210, "port %d reset complete, port enabled\n", |
| index + 1); |
| |
| return port_status; |
| } |
| |
| |
| /* build "status change" packet (one or two bytes) from HC registers */ |
| |
| static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| u32 temp, status; |
| u32 mask; |
| int retval = 1; |
| unsigned long flags; |
| |
| /* init status to no-changes */ |
| buf[0] = 0; |
| |
| /* Inform the core about resumes-in-progress by returning |
| * a non-zero value even if there are no status changes. |
| */ |
| status = fotg210->resuming_ports; |
| |
| mask = PORT_CSC | PORT_PEC; |
| /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */ |
| |
| /* no hub change reports (bit 0) for now (power, ...) */ |
| |
| /* port N changes (bit N)? */ |
| spin_lock_irqsave(&fotg210->lock, flags); |
| |
| temp = fotg210_readl(fotg210, &fotg210->regs->port_status); |
| |
| /* |
| * Return status information even for ports with OWNER set. |
| * Otherwise hub_wq wouldn't see the disconnect event when a |
| * high-speed device is switched over to the companion |
| * controller by the user. |
| */ |
| |
| if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) || |
| (fotg210->reset_done[0] && |
| time_after_eq(jiffies, fotg210->reset_done[0]))) { |
| buf[0] |= 1 << 1; |
| status = STS_PCD; |
| } |
| /* FIXME autosuspend idle root hubs */ |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| return status ? retval : 0; |
| } |
| |
| static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210, |
| struct usb_hub_descriptor *desc) |
| { |
| int ports = HCS_N_PORTS(fotg210->hcs_params); |
| u16 temp; |
| |
| desc->bDescriptorType = USB_DT_HUB; |
| desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */ |
| desc->bHubContrCurrent = 0; |
| |
| desc->bNbrPorts = ports; |
| temp = 1 + (ports / 8); |
| desc->bDescLength = 7 + 2 * temp; |
| |
| /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */ |
| memset(&desc->u.hs.DeviceRemovable[0], 0, temp); |
| memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); |
| |
| temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ |
| temp |= HUB_CHAR_NO_LPSM; /* no power switching */ |
| desc->wHubCharacteristics = cpu_to_le16(temp); |
| } |
| |
| static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, |
| u16 wIndex, char *buf, u16 wLength) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| int ports = HCS_N_PORTS(fotg210->hcs_params); |
| u32 __iomem *status_reg = &fotg210->regs->port_status; |
| u32 temp, temp1, status; |
| unsigned long flags; |
| int retval = 0; |
| unsigned selector; |
| |
| /* |
| * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. |
| * HCS_INDICATOR may say we can change LEDs to off/amber/green. |
| * (track current state ourselves) ... blink for diagnostics, |
| * power, "this is the one", etc. EHCI spec supports this. |
| */ |
| |
| spin_lock_irqsave(&fotg210->lock, flags); |
| switch (typeReq) { |
| case ClearHubFeature: |
| switch (wValue) { |
| case C_HUB_LOCAL_POWER: |
| case C_HUB_OVER_CURRENT: |
| /* no hub-wide feature/status flags */ |
| break; |
| default: |
| goto error; |
| } |
| break; |
| case ClearPortFeature: |
| if (!wIndex || wIndex > ports) |
| goto error; |
| wIndex--; |
| temp = fotg210_readl(fotg210, status_reg); |
| temp &= ~PORT_RWC_BITS; |
| |
| /* |
| * Even if OWNER is set, so the port is owned by the |
| * companion controller, hub_wq needs to be able to clear |
| * the port-change status bits (especially |
| * USB_PORT_STAT_C_CONNECTION). |
| */ |
| |
| switch (wValue) { |
| case USB_PORT_FEAT_ENABLE: |
| fotg210_writel(fotg210, temp & ~PORT_PE, status_reg); |
| break; |
| case USB_PORT_FEAT_C_ENABLE: |
| fotg210_writel(fotg210, temp | PORT_PEC, status_reg); |
| break; |
| case USB_PORT_FEAT_SUSPEND: |
| if (temp & PORT_RESET) |
| goto error; |
| if (!(temp & PORT_SUSPEND)) |
| break; |
| if ((temp & PORT_PE) == 0) |
| goto error; |
| |
| /* resume signaling for 20 msec */ |
| fotg210_writel(fotg210, temp | PORT_RESUME, status_reg); |
| fotg210->reset_done[wIndex] = jiffies |
| + msecs_to_jiffies(USB_RESUME_TIMEOUT); |
| break; |
| case USB_PORT_FEAT_C_SUSPEND: |
| clear_bit(wIndex, &fotg210->port_c_suspend); |
| break; |
| case USB_PORT_FEAT_C_CONNECTION: |
| fotg210_writel(fotg210, temp | PORT_CSC, status_reg); |
| break; |
| case USB_PORT_FEAT_C_OVER_CURRENT: |
| fotg210_writel(fotg210, temp | OTGISR_OVC, |
| &fotg210->regs->otgisr); |
| break; |
| case USB_PORT_FEAT_C_RESET: |
| /* GetPortStatus clears reset */ |
| break; |
| default: |
| goto error; |
| } |
| fotg210_readl(fotg210, &fotg210->regs->command); |
| break; |
| case GetHubDescriptor: |
| fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *) |
| buf); |
| break; |
| case GetHubStatus: |
| /* no hub-wide feature/status flags */ |
| memset(buf, 0, 4); |
| /*cpu_to_le32s ((u32 *) buf); */ |
| break; |
| case GetPortStatus: |
| if (!wIndex || wIndex > ports) |
| goto error; |
| wIndex--; |
| status = 0; |
| temp = fotg210_readl(fotg210, status_reg); |
| |
| /* wPortChange bits */ |
| if (temp & PORT_CSC) |
| status |= USB_PORT_STAT_C_CONNECTION << 16; |
| if (temp & PORT_PEC) |
| status |= USB_PORT_STAT_C_ENABLE << 16; |
| |
| temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); |
| if (temp1 & OTGISR_OVC) |
| status |= USB_PORT_STAT_C_OVERCURRENT << 16; |
| |
| /* whoever resumes must GetPortStatus to complete it!! */ |
| if (temp & PORT_RESUME) { |
| |
| /* Remote Wakeup received? */ |
| if (!fotg210->reset_done[wIndex]) { |
| /* resume signaling for 20 msec */ |
| fotg210->reset_done[wIndex] = jiffies |
| + msecs_to_jiffies(20); |
| /* check the port again */ |
| mod_timer(&fotg210_to_hcd(fotg210)->rh_timer, |
| fotg210->reset_done[wIndex]); |
| } |
| |
| /* resume completed? */ |
| else if (time_after_eq(jiffies, |
| fotg210->reset_done[wIndex])) { |
| clear_bit(wIndex, &fotg210->suspended_ports); |
| set_bit(wIndex, &fotg210->port_c_suspend); |
| fotg210->reset_done[wIndex] = 0; |
| |
| /* stop resume signaling */ |
| temp = fotg210_readl(fotg210, status_reg); |
| fotg210_writel(fotg210, temp & |
| ~(PORT_RWC_BITS | PORT_RESUME), |
| status_reg); |
| clear_bit(wIndex, &fotg210->resuming_ports); |
| retval = handshake(fotg210, status_reg, |
| PORT_RESUME, 0, 2000);/* 2ms */ |
| if (retval != 0) { |
| fotg210_err(fotg210, |
| "port %d resume error %d\n", |
| wIndex + 1, retval); |
| goto error; |
| } |
| temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); |
| } |
| } |
| |
| /* whoever resets must GetPortStatus to complete it!! */ |
| if ((temp & PORT_RESET) && time_after_eq(jiffies, |
| fotg210->reset_done[wIndex])) { |
| status |= USB_PORT_STAT_C_RESET << 16; |
| fotg210->reset_done[wIndex] = 0; |
| clear_bit(wIndex, &fotg210->resuming_ports); |
| |
| /* force reset to complete */ |
| fotg210_writel(fotg210, |
| temp & ~(PORT_RWC_BITS | PORT_RESET), |
| status_reg); |
| /* REVISIT: some hardware needs 550+ usec to clear |
| * this bit; seems too long to spin routinely... |
| */ |
| retval = handshake(fotg210, status_reg, |
| PORT_RESET, 0, 1000); |
| if (retval != 0) { |
| fotg210_err(fotg210, "port %d reset error %d\n", |
| wIndex + 1, retval); |
| goto error; |
| } |
| |
| /* see what we found out */ |
| temp = check_reset_complete(fotg210, wIndex, status_reg, |
| fotg210_readl(fotg210, status_reg)); |
| } |
| |
| if (!(temp & (PORT_RESUME|PORT_RESET))) { |
| fotg210->reset_done[wIndex] = 0; |
| clear_bit(wIndex, &fotg210->resuming_ports); |
| } |
| |
| /* transfer dedicated ports to the companion hc */ |
| if ((temp & PORT_CONNECT) && |
| test_bit(wIndex, &fotg210->companion_ports)) { |
| temp &= ~PORT_RWC_BITS; |
| fotg210_writel(fotg210, temp, status_reg); |
| fotg210_dbg(fotg210, "port %d --> companion\n", |
| wIndex + 1); |
| temp = fotg210_readl(fotg210, status_reg); |
| } |
| |
| /* |
| * Even if OWNER is set, there's no harm letting hub_wq |
| * see the wPortStatus values (they should all be 0 except |
| * for PORT_POWER anyway). |
| */ |
| |
| if (temp & PORT_CONNECT) { |
| status |= USB_PORT_STAT_CONNECTION; |
| status |= fotg210_port_speed(fotg210, temp); |
| } |
| if (temp & PORT_PE) |
| status |= USB_PORT_STAT_ENABLE; |
| |
| /* maybe the port was unsuspended without our knowledge */ |
| if (temp & (PORT_SUSPEND|PORT_RESUME)) { |
| status |= USB_PORT_STAT_SUSPEND; |
| } else if (test_bit(wIndex, &fotg210->suspended_ports)) { |
| clear_bit(wIndex, &fotg210->suspended_ports); |
| clear_bit(wIndex, &fotg210->resuming_ports); |
| fotg210->reset_done[wIndex] = 0; |
| if (temp & PORT_PE) |
| set_bit(wIndex, &fotg210->port_c_suspend); |
| } |
| |
| temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); |
| if (temp1 & OTGISR_OVC) |
| status |= USB_PORT_STAT_OVERCURRENT; |
| if (temp & PORT_RESET) |
| status |= USB_PORT_STAT_RESET; |
| if (test_bit(wIndex, &fotg210->port_c_suspend)) |
| status |= USB_PORT_STAT_C_SUSPEND << 16; |
| |
| if (status & ~0xffff) /* only if wPortChange is interesting */ |
| dbg_port(fotg210, "GetStatus", wIndex + 1, temp); |
| put_unaligned_le32(status, buf); |
| break; |
| case SetHubFeature: |
| switch (wValue) { |
| case C_HUB_LOCAL_POWER: |
| case C_HUB_OVER_CURRENT: |
| /* no hub-wide feature/status flags */ |
| break; |
| default: |
| goto error; |
| } |
| break; |
| case SetPortFeature: |
| selector = wIndex >> 8; |
| wIndex &= 0xff; |
| |
| if (!wIndex || wIndex > ports) |
| goto error; |
| wIndex--; |
| temp = fotg210_readl(fotg210, status_reg); |
| temp &= ~PORT_RWC_BITS; |
| switch (wValue) { |
| case USB_PORT_FEAT_SUSPEND: |
| if ((temp & PORT_PE) == 0 |
| || (temp & PORT_RESET) != 0) |
| goto error; |
| |
| /* After above check the port must be connected. |
| * Set appropriate bit thus could put phy into low power |
| * mode if we have hostpc feature |
| */ |
| fotg210_writel(fotg210, temp | PORT_SUSPEND, |
| status_reg); |
| set_bit(wIndex, &fotg210->suspended_ports); |
| break; |
| case USB_PORT_FEAT_RESET: |
| if (temp & PORT_RESUME) |
| goto error; |
| /* line status bits may report this as low speed, |
| * which can be fine if this root hub has a |
| * transaction translator built in. |
| */ |
| fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1); |
| temp |= PORT_RESET; |
| temp &= ~PORT_PE; |
| |
| /* |
| * caller must wait, then call GetPortStatus |
| * usb 2.0 spec says 50 ms resets on root |
| */ |
| fotg210->reset_done[wIndex] = jiffies |
| + msecs_to_jiffies(50); |
| fotg210_writel(fotg210, temp, status_reg); |
| break; |
| |
| /* For downstream facing ports (these): one hub port is put |
| * into test mode according to USB2 11.24.2.13, then the hub |
| * must be reset (which for root hub now means rmmod+modprobe, |
| * or else system reboot). See EHCI 2.3.9 and 4.14 for info |
| * about the EHCI-specific stuff. |
| */ |
| case USB_PORT_FEAT_TEST: |
| if (!selector || selector > 5) |
| goto error; |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| fotg210_quiesce(fotg210); |
| spin_lock_irqsave(&fotg210->lock, flags); |
| |
| /* Put all enabled ports into suspend */ |
| temp = fotg210_readl(fotg210, status_reg) & |
| ~PORT_RWC_BITS; |
| if (temp & PORT_PE) |
| fotg210_writel(fotg210, temp | PORT_SUSPEND, |
| status_reg); |
| |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| fotg210_halt(fotg210); |
| spin_lock_irqsave(&fotg210->lock, flags); |
| |
| temp = fotg210_readl(fotg210, status_reg); |
| temp |= selector << 16; |
| fotg210_writel(fotg210, temp, status_reg); |
| break; |
| |
| default: |
| goto error; |
| } |
| fotg210_readl(fotg210, &fotg210->regs->command); |
| break; |
| |
| default: |
| error: |
| /* "stall" on error */ |
| retval = -EPIPE; |
| } |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| return retval; |
| } |
| |
| static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd, |
| int portnum) |
| { |
| return; |
| } |
| |
| static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd, |
| int portnum) |
| { |
| return 0; |
| } |
| |
| /* There's basically three types of memory: |
| * - data used only by the HCD ... kmalloc is fine |
| * - async and periodic schedules, shared by HC and HCD ... these |
| * need to use dma_pool or dma_alloc_coherent |
| * - driver buffers, read/written by HC ... single shot DMA mapped |
| * |
| * There's also "register" data (e.g. PCI or SOC), which is memory mapped. |
| * No memory seen by this driver is pageable. |
| */ |
| |
| /* Allocate the key transfer structures from the previously allocated pool */ |
| static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210, |
| struct fotg210_qtd *qtd, dma_addr_t dma) |
| { |
| memset(qtd, 0, sizeof(*qtd)); |
| qtd->qtd_dma = dma; |
| qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); |
| qtd->hw_next = FOTG210_LIST_END(fotg210); |
| qtd->hw_alt_next = FOTG210_LIST_END(fotg210); |
| INIT_LIST_HEAD(&qtd->qtd_list); |
| } |
| |
| static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210, |
| gfp_t flags) |
| { |
| struct fotg210_qtd *qtd; |
| dma_addr_t dma; |
| |
| qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma); |
| if (qtd != NULL) |
| fotg210_qtd_init(fotg210, qtd, dma); |
| |
| return qtd; |
| } |
| |
| static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210, |
| struct fotg210_qtd *qtd) |
| { |
| dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma); |
| } |
| |
| |
| static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) |
| { |
| /* clean qtds first, and know this is not linked */ |
| if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { |
| fotg210_dbg(fotg210, "unused qh not empty!\n"); |
| BUG(); |
| } |
| if (qh->dummy) |
| fotg210_qtd_free(fotg210, qh->dummy); |
| dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); |
| kfree(qh); |
| } |
| |
| static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210, |
| gfp_t flags) |
| { |
| struct fotg210_qh *qh; |
| dma_addr_t dma; |
| |
| qh = kzalloc(sizeof(*qh), GFP_ATOMIC); |
| if (!qh) |
| goto done; |
| qh->hw = (struct fotg210_qh_hw *) |
| dma_pool_alloc(fotg210->qh_pool, flags, &dma); |
| if (!qh->hw) |
| goto fail; |
| memset(qh->hw, 0, sizeof(*qh->hw)); |
| qh->qh_dma = dma; |
| INIT_LIST_HEAD(&qh->qtd_list); |
| |
| /* dummy td enables safe urb queuing */ |
| qh->dummy = fotg210_qtd_alloc(fotg210, flags); |
| if (qh->dummy == NULL) { |
| fotg210_dbg(fotg210, "no dummy td\n"); |
| goto fail1; |
| } |
| done: |
| return qh; |
| fail1: |
| dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); |
| fail: |
| kfree(qh); |
| return NULL; |
| } |
| |
| /* The queue heads and transfer descriptors are managed from pools tied |
| * to each of the "per device" structures. |
| * This is the initialisation and cleanup code. |
| */ |
| |
| static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210) |
| { |
| if (fotg210->async) |
| qh_destroy(fotg210, fotg210->async); |
| fotg210->async = NULL; |
| |
| if (fotg210->dummy) |
| qh_destroy(fotg210, fotg210->dummy); |
| fotg210->dummy = NULL; |
| |
| /* DMA consistent memory and pools */ |
| dma_pool_destroy(fotg210->qtd_pool); |
| fotg210->qtd_pool = NULL; |
| |
| dma_pool_destroy(fotg210->qh_pool); |
| fotg210->qh_pool = NULL; |
| |
| dma_pool_destroy(fotg210->itd_pool); |
| fotg210->itd_pool = NULL; |
| |
| if (fotg210->periodic) |
| dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller, |
| fotg210->periodic_size * sizeof(u32), |
| fotg210->periodic, fotg210->periodic_dma); |
| fotg210->periodic = NULL; |
| |
| /* shadow periodic table */ |
| kfree(fotg210->pshadow); |
| fotg210->pshadow = NULL; |
| } |
| |
| /* remember to add cleanup code (above) if you add anything here */ |
| static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags) |
| { |
| int i; |
| |
| /* QTDs for control/bulk/intr transfers */ |
| fotg210->qtd_pool = dma_pool_create("fotg210_qtd", |
| fotg210_to_hcd(fotg210)->self.controller, |
| sizeof(struct fotg210_qtd), |
| 32 /* byte alignment (for hw parts) */, |
| 4096 /* can't cross 4K */); |
| if (!fotg210->qtd_pool) |
| goto fail; |
| |
| /* QHs for control/bulk/intr transfers */ |
| fotg210->qh_pool = dma_pool_create("fotg210_qh", |
| fotg210_to_hcd(fotg210)->self.controller, |
| sizeof(struct fotg210_qh_hw), |
| 32 /* byte alignment (for hw parts) */, |
| 4096 /* can't cross 4K */); |
| if (!fotg210->qh_pool) |
| goto fail; |
| |
| fotg210->async = fotg210_qh_alloc(fotg210, flags); |
| if (!fotg210->async) |
| goto fail; |
| |
| /* ITD for high speed ISO transfers */ |
| fotg210->itd_pool = dma_pool_create("fotg210_itd", |
| fotg210_to_hcd(fotg210)->self.controller, |
| sizeof(struct fotg210_itd), |
| 64 /* byte alignment (for hw parts) */, |
| 4096 /* can't cross 4K */); |
| if (!fotg210->itd_pool) |
| goto fail; |
| |
| /* Hardware periodic table */ |
| fotg210->periodic = (__le32 *) |
| dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller, |
| fotg210->periodic_size * sizeof(__le32), |
| &fotg210->periodic_dma, 0); |
| if (fotg210->periodic == NULL) |
| goto fail; |
| |
| for (i = 0; i < fotg210->periodic_size; i++) |
| fotg210->periodic[i] = FOTG210_LIST_END(fotg210); |
| |
| /* software shadow of hardware table */ |
| fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *), |
| flags); |
| if (fotg210->pshadow != NULL) |
| return 0; |
| |
| fail: |
| fotg210_dbg(fotg210, "couldn't init memory\n"); |
| fotg210_mem_cleanup(fotg210); |
| return -ENOMEM; |
| } |
| /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation. |
| * |
| * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" |
| * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned |
| * buffers needed for the larger number). We use one QH per endpoint, queue |
| * multiple urbs (all three types) per endpoint. URBs may need several qtds. |
| * |
| * ISO traffic uses "ISO TD" (itd) records, and (along with |
| * interrupts) needs careful scheduling. Performance improvements can be |
| * an ongoing challenge. That's in "ehci-sched.c". |
| * |
| * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, |
| * or otherwise through transaction translators (TTs) in USB 2.0 hubs using |
| * (b) special fields in qh entries or (c) split iso entries. TTs will |
| * buffer low/full speed data so the host collects it at high speed. |
| */ |
| |
| /* fill a qtd, returning how much of the buffer we were able to queue up */ |
| static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, |
| dma_addr_t buf, size_t len, int token, int maxpacket) |
| { |
| int i, count; |
| u64 addr = buf; |
| |
| /* one buffer entry per 4K ... first might be short or unaligned */ |
| qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr); |
| qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32)); |
| count = 0x1000 - (buf & 0x0fff); /* rest of that page */ |
| if (likely(len < count)) /* ... iff needed */ |
| count = len; |
| else { |
| buf += 0x1000; |
| buf &= ~0x0fff; |
| |
| /* per-qtd limit: from 16K to 20K (best alignment) */ |
| for (i = 1; count < len && i < 5; i++) { |
| addr = buf; |
| qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr); |
| qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210, |
| (u32)(addr >> 32)); |
| buf += 0x1000; |
| if ((count + 0x1000) < len) |
| count += 0x1000; |
| else |
| count = len; |
| } |
| |
| /* short packets may only terminate transfers */ |
| if (count != len) |
| count -= (count % maxpacket); |
| } |
| qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token); |
| qtd->length = count; |
| |
| return count; |
| } |
| |
| static inline void qh_update(struct fotg210_hcd *fotg210, |
| struct fotg210_qh *qh, struct fotg210_qtd *qtd) |
| { |
| struct fotg210_qh_hw *hw = qh->hw; |
| |
| /* writes to an active overlay are unsafe */ |
| BUG_ON(qh->qh_state != QH_STATE_IDLE); |
| |
| hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma); |
| hw->hw_alt_next = FOTG210_LIST_END(fotg210); |
| |
| /* Except for control endpoints, we make hardware maintain data |
| * toggle (like OHCI) ... here (re)initialize the toggle in the QH, |
| * and set the pseudo-toggle in udev. Only usb_clear_halt() will |
| * ever clear it. |
| */ |
| if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) { |
| unsigned is_out, epnum; |
| |
| is_out = qh->is_out; |
| epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f; |
| if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { |
| hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE); |
| usb_settoggle(qh->dev, epnum, is_out, 1); |
| } |
| } |
| |
| hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING); |
| } |
| |
| /* if it weren't for a common silicon quirk (writing the dummy into the qh |
| * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault |
| * recovery (including urb dequeue) would need software changes to a QH... |
| */ |
| static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) |
| { |
| struct fotg210_qtd *qtd; |
| |
| if (list_empty(&qh->qtd_list)) |
| qtd = qh->dummy; |
| else { |
| qtd = list_entry(qh->qtd_list.next, |
| struct fotg210_qtd, qtd_list); |
| /* |
| * first qtd may already be partially processed. |
| * If we come here during unlink, the QH overlay region |
| * might have reference to the just unlinked qtd. The |
| * qtd is updated in qh_completions(). Update the QH |
| * overlay here. |
| */ |
| if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) { |
| qh->hw->hw_qtd_next = qtd->hw_next; |
| qtd = NULL; |
| } |
| } |
| |
| if (qtd) |
| qh_update(fotg210, qh, qtd); |
| } |
| |
| static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); |
| |
| static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd, |
| struct usb_host_endpoint *ep) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| struct fotg210_qh *qh = ep->hcpriv; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fotg210->lock, flags); |
| qh->clearing_tt = 0; |
| if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) |
| && fotg210->rh_state == FOTG210_RH_RUNNING) |
| qh_link_async(fotg210, qh); |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| } |
| |
| static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210, |
| struct fotg210_qh *qh, struct urb *urb, u32 token) |
| { |
| |
| /* If an async split transaction gets an error or is unlinked, |
| * the TT buffer may be left in an indeterminate state. We |
| * have to clear the TT buffer. |
| * |
| * Note: this routine is never called for Isochronous transfers. |
| */ |
| if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { |
| struct usb_device *tt = urb->dev->tt->hub; |
| |
| dev_dbg(&tt->dev, |
| "clear tt buffer port %d, a%d ep%d t%08x\n", |
| urb->dev->ttport, urb->dev->devnum, |
| usb_pipeendpoint(urb->pipe), token); |
| |
| if (urb->dev->tt->hub != |
| fotg210_to_hcd(fotg210)->self.root_hub) { |
| if (usb_hub_clear_tt_buffer(urb) == 0) |
| qh->clearing_tt = 1; |
| } |
| } |
| } |
| |
| static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb, |
| size_t length, u32 token) |
| { |
| int status = -EINPROGRESS; |
| |
| /* count IN/OUT bytes, not SETUP (even short packets) */ |
| if (likely(QTD_PID(token) != 2)) |
| urb->actual_length += length - QTD_LENGTH(token); |
| |
| /* don't modify error codes */ |
| if (unlikely(urb->unlinked)) |
| return status; |
| |
| /* force cleanup after short read; not always an error */ |
| if (unlikely(IS_SHORT_READ(token))) |
| status = -EREMOTEIO; |
| |
| /* serious "can't proceed" faults reported by the hardware */ |
| if (token & QTD_STS_HALT) { |
| if (token & QTD_STS_BABBLE) { |
| /* FIXME "must" disable babbling device's port too */ |
| status = -EOVERFLOW; |
| /* CERR nonzero + halt --> stall */ |
| } else if (QTD_CERR(token)) { |
| status = -EPIPE; |
| |
| /* In theory, more than one of the following bits can be set |
| * since they are sticky and the transaction is retried. |
| * Which to test first is rather arbitrary. |
| */ |
| } else if (token & QTD_STS_MMF) { |
| /* fs/ls interrupt xfer missed the complete-split */ |
| status = -EPROTO; |
| } else if (token & QTD_STS_DBE) { |
| status = (QTD_PID(token) == 1) /* IN ? */ |
| ? -ENOSR /* hc couldn't read data */ |
| : -ECOMM; /* hc couldn't write data */ |
| } else if (token & QTD_STS_XACT) { |
| /* timeout, bad CRC, wrong PID, etc */ |
| fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n", |
| urb->dev->devpath, |
| usb_pipeendpoint(urb->pipe), |
| usb_pipein(urb->pipe) ? "in" : "out"); |
| status = -EPROTO; |
| } else { /* unknown */ |
| status = -EPROTO; |
| } |
| |
| fotg210_dbg(fotg210, |
| "dev%d ep%d%s qtd token %08x --> status %d\n", |
| usb_pipedevice(urb->pipe), |
| usb_pipeendpoint(urb->pipe), |
| usb_pipein(urb->pipe) ? "in" : "out", |
| token, status); |
| } |
| |
| return status; |
| } |
| |
| static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, |
| int status) |
| __releases(fotg210->lock) |
| __acquires(fotg210->lock) |
| { |
| if (likely(urb->hcpriv != NULL)) { |
| struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv; |
| |
| /* S-mask in a QH means it's an interrupt urb */ |
| if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) { |
| |
| /* ... update hc-wide periodic stats (for usbfs) */ |
| fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--; |
| } |
| } |
| |
| if (unlikely(urb->unlinked)) { |
| COUNT(fotg210->stats.unlink); |
| } else { |
| /* report non-error and short read status as zero */ |
| if (status == -EINPROGRESS || status == -EREMOTEIO) |
| status = 0; |
| COUNT(fotg210->stats.complete); |
| } |
| |
| #ifdef FOTG210_URB_TRACE |
| fotg210_dbg(fotg210, |
| "%s %s urb %p ep%d%s status %d len %d/%d\n", |
| __func__, urb->dev->devpath, urb, |
| usb_pipeendpoint(urb->pipe), |
| usb_pipein(urb->pipe) ? "in" : "out", |
| status, |
| urb->actual_length, urb->transfer_buffer_length); |
| #endif |
| |
| /* complete() can reenter this HCD */ |
| usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); |
| spin_unlock(&fotg210->lock); |
| usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status); |
| spin_lock(&fotg210->lock); |
| } |
| |
| static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); |
| |
| /* Process and free completed qtds for a qh, returning URBs to drivers. |
| * Chases up to qh->hw_current. Returns number of completions called, |
| * indicating how much "real" work we did. |
| */ |
| static unsigned qh_completions(struct fotg210_hcd *fotg210, |
| struct fotg210_qh *qh) |
| { |
| struct fotg210_qtd *last, *end = qh->dummy; |
| struct fotg210_qtd *qtd, *tmp; |
| int last_status; |
| int stopped; |
| unsigned count = 0; |
| u8 state; |
| struct fotg210_qh_hw *hw = qh->hw; |
| |
| if (unlikely(list_empty(&qh->qtd_list))) |
| return count; |
| |
| /* completions (or tasks on other cpus) must never clobber HALT |
| * till we've gone through and cleaned everything up, even when |
| * they add urbs to this qh's queue or mark them for unlinking. |
| * |
| * NOTE: unlinking expects to be done in queue order. |
| * |
| * It's a bug for qh->qh_state to be anything other than |
| * QH_STATE_IDLE, unless our caller is scan_async() or |
| * scan_intr(). |
| */ |
| state = qh->qh_state; |
| qh->qh_state = QH_STATE_COMPLETING; |
| stopped = (state == QH_STATE_IDLE); |
| |
| rescan: |
| last = NULL; |
| last_status = -EINPROGRESS; |
| qh->needs_rescan = 0; |
| |
| /* remove de-activated QTDs from front of queue. |
| * after faults (including short reads), cleanup this urb |
| * then let the queue advance. |
| * if queue is stopped, handles unlinks. |
| */ |
| list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { |
| struct urb *urb; |
| u32 token = 0; |
| |
| urb = qtd->urb; |
| |
| /* clean up any state from previous QTD ...*/ |
| if (last) { |
| if (likely(last->urb != urb)) { |
| fotg210_urb_done(fotg210, last->urb, |
| last_status); |
| count++; |
| last_status = -EINPROGRESS; |
| } |
| fotg210_qtd_free(fotg210, last); |
| last = NULL; |
| } |
| |
| /* ignore urbs submitted during completions we reported */ |
| if (qtd == end) |
| break; |
| |
| /* hardware copies qtd out of qh overlay */ |
| rmb(); |
| token = hc32_to_cpu(fotg210, qtd->hw_token); |
| |
| /* always clean up qtds the hc de-activated */ |
| retry_xacterr: |
| if ((token & QTD_STS_ACTIVE) == 0) { |
| |
| /* Report Data Buffer Error: non-fatal but useful */ |
| if (token & QTD_STS_DBE) |
| fotg210_dbg(fotg210, |
| "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", |
| urb, usb_endpoint_num(&urb->ep->desc), |
| usb_endpoint_dir_in(&urb->ep->desc) |
| ? "in" : "out", |
| urb->transfer_buffer_length, qtd, qh); |
| |
| /* on STALL, error, and short reads this urb must |
| * complete and all its qtds must be recycled. |
| */ |
| if ((token & QTD_STS_HALT) != 0) { |
| |
| /* retry transaction errors until we |
| * reach the software xacterr limit |
| */ |
| if ((token & QTD_STS_XACT) && |
| QTD_CERR(token) == 0 && |
| ++qh->xacterrs < QH_XACTERR_MAX && |
| !urb->unlinked) { |
| fotg210_dbg(fotg210, |
| "detected XactErr len %zu/%zu retry %d\n", |
| qtd->length - QTD_LENGTH(token), |
| qtd->length, |
| qh->xacterrs); |
| |
| /* reset the token in the qtd and the |
| * qh overlay (which still contains |
| * the qtd) so that we pick up from |
| * where we left off |
| */ |
| token &= ~QTD_STS_HALT; |
| token |= QTD_STS_ACTIVE | |
| (FOTG210_TUNE_CERR << 10); |
| qtd->hw_token = cpu_to_hc32(fotg210, |
| token); |
| wmb(); |
| hw->hw_token = cpu_to_hc32(fotg210, |
| token); |
| goto retry_xacterr; |
| } |
| stopped = 1; |
| |
| /* magic dummy for some short reads; qh won't advance. |
| * that silicon quirk can kick in with this dummy too. |
| * |
| * other short reads won't stop the queue, including |
| * control transfers (status stage handles that) or |
| * most other single-qtd reads ... the queue stops if |
| * URB_SHORT_NOT_OK was set so the driver submitting |
| * the urbs could clean it up. |
| */ |
| } else if (IS_SHORT_READ(token) && |
| !(qtd->hw_alt_next & |
| FOTG210_LIST_END(fotg210))) { |
| stopped = 1; |
| } |
| |
| /* stop scanning when we reach qtds the hc is using */ |
| } else if (likely(!stopped |
| && fotg210->rh_state >= FOTG210_RH_RUNNING)) { |
| break; |
| |
| /* scan the whole queue for unlinks whenever it stops */ |
| } else { |
| stopped = 1; |
| |
| /* cancel everything if we halt, suspend, etc */ |
| if (fotg210->rh_state < FOTG210_RH_RUNNING) |
| last_status = -ESHUTDOWN; |
| |
| /* this qtd is active; skip it unless a previous qtd |
| * for its urb faulted, or its urb was canceled. |
| */ |
| else if (last_status == -EINPROGRESS && !urb->unlinked) |
| continue; |
| |
| /* qh unlinked; token in overlay may be most current */ |
| if (state == QH_STATE_IDLE && |
| cpu_to_hc32(fotg210, qtd->qtd_dma) |
| == hw->hw_current) { |
| token = hc32_to_cpu(fotg210, hw->hw_token); |
| |
| /* An unlink may leave an incomplete |
| * async transaction in the TT buffer. |
| * We have to clear it. |
| */ |
| fotg210_clear_tt_buffer(fotg210, qh, urb, |
| token); |
| } |
| } |
| |
| /* unless we already know the urb's status, collect qtd status |
| * and update count of bytes transferred. in common short read |
| * cases with only one data qtd (including control transfers), |
| * queue processing won't halt. but with two or more qtds (for |
| * example, with a 32 KB transfer), when the first qtd gets a |
| * short read the second must be removed by hand. |
| */ |
| if (last_status == -EINPROGRESS) { |
| last_status = qtd_copy_status(fotg210, urb, |
| qtd->length, token); |
| if (last_status == -EREMOTEIO && |
| (qtd->hw_alt_next & |
| FOTG210_LIST_END(fotg210))) |
| last_status = -EINPROGRESS; |
| |
| /* As part of low/full-speed endpoint-halt processing |
| * we must clear the TT buffer (11.17.5). |
| */ |
| if (unlikely(last_status != -EINPROGRESS && |
| last_status != -EREMOTEIO)) { |
| /* The TT's in some hubs malfunction when they |
| * receive this request following a STALL (they |
| * stop sending isochronous packets). Since a |
| * STALL can't leave the TT buffer in a busy |
| * state (if you believe Figures 11-48 - 11-51 |
| * in the USB 2.0 spec), we won't clear the TT |
| * buffer in this case. Strictly speaking this |
| * is a violation of the spec. |
| */ |
| if (last_status != -EPIPE) |
| fotg210_clear_tt_buffer(fotg210, qh, |
| urb, token); |
| } |
| } |
| |
| /* if we're removing something not at the queue head, |
| * patch the hardware queue pointer. |
| */ |
| if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { |
| last = list_entry(qtd->qtd_list.prev, |
| struct fotg210_qtd, qtd_list); |
| last->hw_next = qtd->hw_next; |
| } |
| |
| /* remove qtd; it's recycled after possible urb completion */ |
| list_del(&qtd->qtd_list); |
| last = qtd; |
| |
| /* reinit the xacterr counter for the next qtd */ |
| qh->xacterrs = 0; |
| } |
| |
| /* last urb's completion might still need calling */ |
| if (likely(last != NULL)) { |
| fotg210_urb_done(fotg210, last->urb, last_status); |
| count++; |
| fotg210_qtd_free(fotg210, last); |
| } |
| |
| /* Do we need to rescan for URBs dequeued during a giveback? */ |
| if (unlikely(qh->needs_rescan)) { |
| /* If the QH is already unlinked, do the rescan now. */ |
| if (state == QH_STATE_IDLE) |
| goto rescan; |
| |
| /* Otherwise we have to wait until the QH is fully unlinked. |
| * Our caller will start an unlink if qh->needs_rescan is |
| * set. But if an unlink has already started, nothing needs |
| * to be done. |
| */ |
| if (state != QH_STATE_LINKED) |
| qh->needs_rescan = 0; |
| } |
| |
| /* restore original state; caller must unlink or relink */ |
| qh->qh_state = state; |
| |
| /* be sure the hardware's done with the qh before refreshing |
| * it after fault cleanup, or recovering from silicon wrongly |
| * overlaying the dummy qtd (which reduces DMA chatter). |
| */ |
| if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) { |
| switch (state) { |
| case QH_STATE_IDLE: |
| qh_refresh(fotg210, qh); |
| break; |
| case QH_STATE_LINKED: |
| /* We won't refresh a QH that's linked (after the HC |
| * stopped the queue). That avoids a race: |
| * - HC reads first part of QH; |
| * - CPU updates that first part and the token; |
| * - HC reads rest of that QH, including token |
| * Result: HC gets an inconsistent image, and then |
| * DMAs to/from the wrong memory (corrupting it). |
| * |
| * That should be rare for interrupt transfers, |
| * except maybe high bandwidth ... |
| */ |
| |
| /* Tell the caller to start an unlink */ |
| qh->needs_rescan = 1; |
| break; |
| /* otherwise, unlink already started */ |
| } |
| } |
| |
| return count; |
| } |
| |
| /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */ |
| #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) |
| /* ... and packet size, for any kind of endpoint descriptor */ |
| #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) |
| |
| /* reverse of qh_urb_transaction: free a list of TDs. |
| * used for cleanup after errors, before HC sees an URB's TDs. |
| */ |
| static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb, |
| struct list_head *head) |
| { |
| struct fotg210_qtd *qtd, *temp; |
| |
| list_for_each_entry_safe(qtd, temp, head, qtd_list) { |
| list_del(&qtd->qtd_list); |
| fotg210_qtd_free(fotg210, qtd); |
| } |
| } |
| |
| /* create a list of filled qtds for this URB; won't link into qh. |
| */ |
| static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210, |
| struct urb *urb, struct list_head *head, gfp_t flags) |
| { |
| struct fotg210_qtd *qtd, *qtd_prev; |
| dma_addr_t buf; |
| int len, this_sg_len, maxpacket; |
| int is_input; |
| u32 token; |
| int i; |
| struct scatterlist *sg; |
| |
| /* |
| * URBs map to sequences of QTDs: one logical transaction |
| */ |
| qtd = fotg210_qtd_alloc(fotg210, flags); |
| if (unlikely(!qtd)) |
| return NULL; |
| list_add_tail(&qtd->qtd_list, head); |
| qtd->urb = urb; |
| |
| token = QTD_STS_ACTIVE; |
| token |= (FOTG210_TUNE_CERR << 10); |
| /* for split transactions, SplitXState initialized to zero */ |
| |
| len = urb->transfer_buffer_length; |
| is_input = usb_pipein(urb->pipe); |
| if (usb_pipecontrol(urb->pipe)) { |
| /* SETUP pid */ |
| qtd_fill(fotg210, qtd, urb->setup_dma, |
| sizeof(struct usb_ctrlrequest), |
| token | (2 /* "setup" */ << 8), 8); |
| |
| /* ... and always at least one more pid */ |
| token ^= QTD_TOGGLE; |
| qtd_prev = qtd; |
| qtd = fotg210_qtd_alloc(fotg210, flags); |
| if (unlikely(!qtd)) |
| goto cleanup; |
| qtd->urb = urb; |
| qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); |
| list_add_tail(&qtd->qtd_list, head); |
| |
| /* for zero length DATA stages, STATUS is always IN */ |
| if (len == 0) |
| token |= (1 /* "in" */ << 8); |
| } |
| |
| /* |
| * data transfer stage: buffer setup |
| */ |
| i = urb->num_mapped_sgs; |
| if (len > 0 && i > 0) { |
| sg = urb->sg; |
| buf = sg_dma_address(sg); |
| |
| /* urb->transfer_buffer_length may be smaller than the |
| * size of the scatterlist (or vice versa) |
| */ |
| this_sg_len = min_t(int, sg_dma_len(sg), len); |
| } else { |
| sg = NULL; |
| buf = urb->transfer_dma; |
| this_sg_len = len; |
| } |
| |
| if (is_input) |
| token |= (1 /* "in" */ << 8); |
| /* else it's already initted to "out" pid (0 << 8) */ |
| |
| maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); |
| |
| /* |
| * buffer gets wrapped in one or more qtds; |
| * last one may be "short" (including zero len) |
| * and may serve as a control status ack |
| */ |
| for (;;) { |
| int this_qtd_len; |
| |
| this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token, |
| maxpacket); |
| this_sg_len -= this_qtd_len; |
| len -= this_qtd_len; |
| buf += this_qtd_len; |
| |
| /* |
| * short reads advance to a "magic" dummy instead of the next |
| * qtd ... that forces the queue to stop, for manual cleanup. |
| * (this will usually be overridden later.) |
| */ |
| if (is_input) |
| qtd->hw_alt_next = fotg210->async->hw->hw_alt_next; |
| |
| /* qh makes control packets use qtd toggle; maybe switch it */ |
| if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) |
| token ^= QTD_TOGGLE; |
| |
| if (likely(this_sg_len <= 0)) { |
| if (--i <= 0 || len <= 0) |
| break; |
| sg = sg_next(sg); |
| buf = sg_dma_address(sg); |
| this_sg_len = min_t(int, sg_dma_len(sg), len); |
| } |
| |
| qtd_prev = qtd; |
| qtd = fotg210_qtd_alloc(fotg210, flags); |
| if (unlikely(!qtd)) |
| goto cleanup; |
| qtd->urb = urb; |
| qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); |
| list_add_tail(&qtd->qtd_list, head); |
| } |
| |
| /* |
| * unless the caller requires manual cleanup after short reads, |
| * have the alt_next mechanism keep the queue running after the |
| * last data qtd (the only one, for control and most other cases). |
| */ |
| if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 || |
| usb_pipecontrol(urb->pipe))) |
| qtd->hw_alt_next = FOTG210_LIST_END(fotg210); |
| |
| /* |
| * control requests may need a terminating data "status" ack; |
| * other OUT ones may need a terminating short packet |
| * (zero length). |
| */ |
| if (likely(urb->transfer_buffer_length != 0)) { |
| int one_more = 0; |
| |
| if (usb_pipecontrol(urb->pipe)) { |
| one_more = 1; |
| token ^= 0x0100; /* "in" <--> "out" */ |
| token |= QTD_TOGGLE; /* force DATA1 */ |
| } else if (usb_pipeout(urb->pipe) |
| && (urb->transfer_flags & URB_ZERO_PACKET) |
| && !(urb->transfer_buffer_length % maxpacket)) { |
| one_more = 1; |
| } |
| if (one_more) { |
| qtd_prev = qtd; |
| qtd = fotg210_qtd_alloc(fotg210, flags); |
| if (unlikely(!qtd)) |
| goto cleanup; |
| qtd->urb = urb; |
| qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); |
| list_add_tail(&qtd->qtd_list, head); |
| |
| /* never any data in such packets */ |
| qtd_fill(fotg210, qtd, 0, 0, token, 0); |
| } |
| } |
| |
| /* by default, enable interrupt on urb completion */ |
| if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) |
| qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC); |
| return head; |
| |
| cleanup: |
| qtd_list_free(fotg210, urb, head); |
| return NULL; |
| } |
| |
| /* Would be best to create all qh's from config descriptors, |
| * when each interface/altsetting is established. Unlink |
| * any previous qh and cancel its urbs first; endpoints are |
| * implicitly reset then (data toggle too). |
| * That'd mean updating how usbcore talks to HCDs. (2.7?) |
| */ |
| |
| |
| /* Each QH holds a qtd list; a QH is used for everything except iso. |
| * |
| * For interrupt urbs, the scheduler must set the microframe scheduling |
| * mask(s) each time the QH gets scheduled. For highspeed, that's |
| * just one microframe in the s-mask. For split interrupt transactions |
| * there are additional complications: c-mask, maybe FSTNs. |
| */ |
| static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb, |
| gfp_t flags) |
| { |
| struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags); |
| u32 info1 = 0, info2 = 0; |
| int is_input, type; |
| int maxp = 0; |
| struct usb_tt *tt = urb->dev->tt; |
| struct fotg210_qh_hw *hw; |
| |
| if (!qh) |
| return qh; |
| |
| /* |
| * init endpoint/device data for this QH |
| */ |
| info1 |= usb_pipeendpoint(urb->pipe) << 8; |
| info1 |= usb_pipedevice(urb->pipe) << 0; |
| |
| is_input = usb_pipein(urb->pipe); |
| type = usb_pipetype(urb->pipe); |
| maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); |
| |
| /* 1024 byte maxpacket is a hardware ceiling. High bandwidth |
| * acts like up to 3KB, but is built from smaller packets. |
| */ |
| if (max_packet(maxp) > 1024) { |
| fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", |
| max_packet(maxp)); |
| goto done; |
| } |
| |
| /* Compute interrupt scheduling parameters just once, and save. |
| * - allowing for high bandwidth, how many nsec/uframe are used? |
| * - split transactions need a second CSPLIT uframe; same question |
| * - splits also need a schedule gap (for full/low speed I/O) |
| * - qh has a polling interval |
| * |
| * For control/bulk requests, the HC or TT handles these. |
| */ |
| if (type == PIPE_INTERRUPT) { |
| qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, |
| is_input, 0, |
| hb_mult(maxp) * max_packet(maxp))); |
| qh->start = NO_FRAME; |
| |
| if (urb->dev->speed == USB_SPEED_HIGH) { |
| qh->c_usecs = 0; |
| qh->gap_uf = 0; |
| |
| qh->period = urb->interval >> 3; |
| if (qh->period == 0 && urb->interval != 1) { |
| /* NOTE interval 2 or 4 uframes could work. |
| * But interval 1 scheduling is simpler, and |
| * includes high bandwidth. |
| */ |
| urb->interval = 1; |
| } else if (qh->period > fotg210->periodic_size) { |
| qh->period = fotg210->periodic_size; |
| urb->interval = qh->period << 3; |
| } |
| } else { |
| int think_time; |
| |
| /* gap is f(FS/LS transfer times) */ |
| qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, |
| is_input, 0, maxp) / (125 * 1000); |
| |
| /* FIXME this just approximates SPLIT/CSPLIT times */ |
| if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ |
| qh->c_usecs = qh->usecs + HS_USECS(0); |
| qh->usecs = HS_USECS(1); |
| } else { /* SPLIT+DATA, gap, CSPLIT */ |
| qh->usecs += HS_USECS(1); |
| qh->c_usecs = HS_USECS(0); |
| } |
| |
| think_time = tt ? tt->think_time : 0; |
| qh->tt_usecs = NS_TO_US(think_time + |
| usb_calc_bus_time(urb->dev->speed, |
| is_input, 0, max_packet(maxp))); |
| qh->period = urb->interval; |
| if (qh->period > fotg210->periodic_size) { |
| qh->period = fotg210->periodic_size; |
| urb->interval = qh->period; |
| } |
| } |
| } |
| |
| /* support for tt scheduling, and access to toggles */ |
| qh->dev = urb->dev; |
| |
| /* using TT? */ |
| switch (urb->dev->speed) { |
| case USB_SPEED_LOW: |
| info1 |= QH_LOW_SPEED; |
| /* FALL THROUGH */ |
| |
| case USB_SPEED_FULL: |
| /* EPS 0 means "full" */ |
| if (type != PIPE_INTERRUPT) |
| info1 |= (FOTG210_TUNE_RL_TT << 28); |
| if (type == PIPE_CONTROL) { |
| info1 |= QH_CONTROL_EP; /* for TT */ |
| info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ |
| } |
| info1 |= maxp << 16; |
| |
| info2 |= (FOTG210_TUNE_MULT_TT << 30); |
| |
| /* Some Freescale processors have an erratum in which the |
| * port number in the queue head was 0..N-1 instead of 1..N. |
| */ |
| if (fotg210_has_fsl_portno_bug(fotg210)) |
| info2 |= (urb->dev->ttport-1) << 23; |
| else |
| info2 |= urb->dev->ttport << 23; |
| |
| /* set the address of the TT; for TDI's integrated |
| * root hub tt, leave it zeroed. |
| */ |
| if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub) |
| info2 |= tt->hub->devnum << 16; |
| |
| /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ |
| |
| break; |
| |
| case USB_SPEED_HIGH: /* no TT involved */ |
| info1 |= QH_HIGH_SPEED; |
| if (type == PIPE_CONTROL) { |
| info1 |= (FOTG210_TUNE_RL_HS << 28); |
| info1 |= 64 << 16; /* usb2 fixed maxpacket */ |
| info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ |
| info2 |= (FOTG210_TUNE_MULT_HS << 30); |
| } else if (type == PIPE_BULK) { |
| info1 |= (FOTG210_TUNE_RL_HS << 28); |
| /* The USB spec says that high speed bulk endpoints |
| * always use 512 byte maxpacket. But some device |
| * vendors decided to ignore that, and MSFT is happy |
| * to help them do so. So now people expect to use |
| * such nonconformant devices with Linux too; sigh. |
| */ |
| info1 |= max_packet(maxp) << 16; |
| info2 |= (FOTG210_TUNE_MULT_HS << 30); |
| } else { /* PIPE_INTERRUPT */ |
| info1 |= max_packet(maxp) << 16; |
| info2 |= hb_mult(maxp) << 30; |
| } |
| break; |
| default: |
| fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev, |
| urb->dev->speed); |
| done: |
| qh_destroy(fotg210, qh); |
| return NULL; |
| } |
| |
| /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ |
| |
| /* init as live, toggle clear, advance to dummy */ |
| qh->qh_state = QH_STATE_IDLE; |
| hw = qh->hw; |
| hw->hw_info1 = cpu_to_hc32(fotg210, info1); |
| hw->hw_info2 = cpu_to_hc32(fotg210, info2); |
| qh->is_out = !is_input; |
| usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); |
| qh_refresh(fotg210, qh); |
| return qh; |
| } |
| |
| static void enable_async(struct fotg210_hcd *fotg210) |
| { |
| if (fotg210->async_count++) |
| return; |
| |
| /* Stop waiting to turn off the async schedule */ |
| fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC); |
| |
| /* Don't start the schedule until ASS is 0 */ |
| fotg210_poll_ASS(fotg210); |
| turn_on_io_watchdog(fotg210); |
| } |
| |
| static void disable_async(struct fotg210_hcd *fotg210) |
| { |
| if (--fotg210->async_count) |
| return; |
| |
| /* The async schedule and async_unlink list are supposed to be empty */ |
| WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink); |
| |
| /* Don't turn off the schedule until ASS is 1 */ |
| fotg210_poll_ASS(fotg210); |
| } |
| |
| /* move qh (and its qtds) onto async queue; maybe enable queue. */ |
| |
| static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) |
| { |
| __hc32 dma = QH_NEXT(fotg210, qh->qh_dma); |
| struct fotg210_qh *head; |
| |
| /* Don't link a QH if there's a Clear-TT-Buffer pending */ |
| if (unlikely(qh->clearing_tt)) |
| return; |
| |
| WARN_ON(qh->qh_state != QH_STATE_IDLE); |
| |
| /* clear halt and/or toggle; and maybe recover from silicon quirk */ |
| qh_refresh(fotg210, qh); |
| |
| /* splice right after start */ |
| head = fotg210->async; |
| qh->qh_next = head->qh_next; |
| qh->hw->hw_next = head->hw->hw_next; |
| wmb(); |
| |
| head->qh_next.qh = qh; |
| head->hw->hw_next = dma; |
| |
| qh->xacterrs = 0; |
| qh->qh_state = QH_STATE_LINKED; |
| /* qtd completions reported later by interrupt */ |
| |
| enable_async(fotg210); |
| } |
| |
| /* For control/bulk/interrupt, return QH with these TDs appended. |
| * Allocates and initializes the QH if necessary. |
| * Returns null if it can't allocate a QH it needs to. |
| * If the QH has TDs (urbs) already, that's great. |
| */ |
| static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210, |
| struct urb *urb, struct list_head *qtd_list, |
| int epnum, void **ptr) |
| { |
| struct fotg210_qh *qh = NULL; |
| __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f); |
| |
| qh = (struct fotg210_qh *) *ptr; |
| if (unlikely(qh == NULL)) { |
| /* can't sleep here, we have fotg210->lock... */ |
| qh = qh_make(fotg210, urb, GFP_ATOMIC); |
| *ptr = qh; |
| } |
| if (likely(qh != NULL)) { |
| struct fotg210_qtd *qtd; |
| |
| if (unlikely(list_empty(qtd_list))) |
| qtd = NULL; |
| else |
| qtd = list_entry(qtd_list->next, struct fotg210_qtd, |
| qtd_list); |
| |
| /* control qh may need patching ... */ |
| if (unlikely(epnum == 0)) { |
| /* usb_reset_device() briefly reverts to address 0 */ |
| if (usb_pipedevice(urb->pipe) == 0) |
| qh->hw->hw_info1 &= ~qh_addr_mask; |
| } |
| |
| /* just one way to queue requests: swap with the dummy qtd. |
| * only hc or qh_refresh() ever modify the overlay. |
| */ |
| if (likely(qtd != NULL)) { |
| struct fotg210_qtd *dummy; |
| dma_addr_t dma; |
| __hc32 token; |
| |
| /* to avoid racing the HC, use the dummy td instead of |
| * the first td of our list (becomes new dummy). both |
| * tds stay deactivated until we're done, when the |
| * HC is allowed to fetch the old dummy (4.10.2). |
| */ |
| token = qtd->hw_token; |
| qtd->hw_token = HALT_BIT(fotg210); |
| |
| dummy = qh->dummy; |
| |
| dma = dummy->qtd_dma; |
| *dummy = *qtd; |
| dummy->qtd_dma = dma; |
| |
| list_del(&qtd->qtd_list); |
| list_add(&dummy->qtd_list, qtd_list); |
| list_splice_tail(qtd_list, &qh->qtd_list); |
| |
| fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma); |
| qh->dummy = qtd; |
| |
| /* hc must see the new dummy at list end */ |
| dma = qtd->qtd_dma; |
| qtd = list_entry(qh->qtd_list.prev, |
| struct fotg210_qtd, qtd_list); |
| qtd->hw_next = QTD_NEXT(fotg210, dma); |
| |
| /* let the hc process these next qtds */ |
| wmb(); |
| dummy->hw_token = token; |
| |
| urb->hcpriv = qh; |
| } |
| } |
| return qh; |
| } |
| |
| static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb, |
| struct list_head *qtd_list, gfp_t mem_flags) |
| { |
| int epnum; |
| unsigned long flags; |
| struct fotg210_qh *qh = NULL; |
| int rc; |
| |
| epnum = urb->ep->desc.bEndpointAddress; |
| |
| #ifdef FOTG210_URB_TRACE |
| { |
| struct fotg210_qtd *qtd; |
| |
| qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list); |
| fotg210_dbg(fotg210, |
| "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", |
| __func__, urb->dev->devpath, urb, |
| epnum & 0x0f, (epnum & USB_DIR_IN) |
| ? "in" : "out", |
| urb->transfer_buffer_length, |
| qtd, urb->ep->hcpriv); |
| } |
| #endif |
| |
| spin_lock_irqsave(&fotg210->lock, flags); |
| if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { |
| rc = -ESHUTDOWN; |
| goto done; |
| } |
| rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); |
| if (unlikely(rc)) |
| goto done; |
| |
| qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); |
| if (unlikely(qh == NULL)) { |
| usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); |
| rc = -ENOMEM; |
| goto done; |
| } |
| |
| /* Control/bulk operations through TTs don't need scheduling, |
| * the HC and TT handle it when the TT has a buffer ready. |
| */ |
| if (likely(qh->qh_state == QH_STATE_IDLE)) |
| qh_link_async(fotg210, qh); |
| done: |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| if (unlikely(qh == NULL)) |
| qtd_list_free(fotg210, urb, qtd_list); |
| return rc; |
| } |
| |
| static void single_unlink_async(struct fotg210_hcd *fotg210, |
| struct fotg210_qh *qh) |
| { |
| struct fotg210_qh *prev; |
| |
| /* Add to the end of the list of QHs waiting for the next IAAD */ |
| qh->qh_state = QH_STATE_UNLINK; |
| if (fotg210->async_unlink) |
| fotg210->async_unlink_last->unlink_next = qh; |
| else |
| fotg210->async_unlink = qh; |
| fotg210->async_unlink_last = qh; |
| |
| /* Unlink it from the schedule */ |
| prev = fotg210->async; |
| while (prev->qh_next.qh != qh) |
| prev = prev->qh_next.qh; |
| |
| prev->hw->hw_next = qh->hw->hw_next; |
| prev->qh_next = qh->qh_next; |
| if (fotg210->qh_scan_next == qh) |
| fotg210->qh_scan_next = qh->qh_next.qh; |
| } |
| |
| static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested) |
| { |
| /* |
| * Do nothing if an IAA cycle is already running or |
| * if one will be started shortly. |
| */ |
| if (fotg210->async_iaa || fotg210->async_unlinking) |
| return; |
| |
| /* Do all the waiting QHs at once */ |
| fotg210->async_iaa = fotg210->async_unlink; |
| fotg210->async_unlink = NULL; |
| |
| /* If the controller isn't running, we don't have to wait for it */ |
| if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) { |
| if (!nested) /* Avoid recursion */ |
| end_unlink_async(fotg210); |
| |
| /* Otherwise start a new IAA cycle */ |
| } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) { |
| /* Make sure the unlinks are all visible to the hardware */ |
| wmb(); |
| |
| fotg210_writel(fotg210, fotg210->command | CMD_IAAD, |
| &fotg210->regs->command); |
| fotg210_readl(fotg210, &fotg210->regs->command); |
| fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG, |
| true); |
| } |
| } |
| |
| /* the async qh for the qtds being unlinked are now gone from the HC */ |
| |
| static void end_unlink_async(struct fotg210_hcd *fotg210) |
| { |
| struct fotg210_qh *qh; |
| |
| /* Process the idle QHs */ |
| restart: |
| fotg210->async_unlinking = true; |
| while (fotg210->async_iaa) { |
| qh = fotg210->async_iaa; |
| fotg210->async_iaa = qh->unlink_next; |
| qh->unlink_next = NULL; |
| |
| qh->qh_state = QH_STATE_IDLE; |
| qh->qh_next.qh = NULL; |
| |
| qh_completions(fotg210, qh); |
| if (!list_empty(&qh->qtd_list) && |
| fotg210->rh_state == FOTG210_RH_RUNNING) |
| qh_link_async(fotg210, qh); |
| disable_async(fotg210); |
| } |
| fotg210->async_unlinking = false; |
| |
| /* Start a new IAA cycle if any QHs are waiting for it */ |
| if (fotg210->async_unlink) { |
| start_iaa_cycle(fotg210, true); |
| if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) |
| goto restart; |
| } |
| } |
| |
| static void unlink_empty_async(struct fotg210_hcd *fotg210) |
| { |
| struct fotg210_qh *qh, *next; |
| bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); |
| bool check_unlinks_later = false; |
| |
| /* Unlink all the async QHs that have been empty for a timer cycle */ |
| next = fotg210->async->qh_next.qh; |
| while (next) { |
| qh = next; |
| next = qh->qh_next.qh; |
| |
| if (list_empty(&qh->qtd_list) && |
| qh->qh_state == QH_STATE_LINKED) { |
| if (!stopped && qh->unlink_cycle == |
| fotg210->async_unlink_cycle) |
| check_unlinks_later = true; |
| else |
| single_unlink_async(fotg210, qh); |
| } |
| } |
| |
| /* Start a new IAA cycle if any QHs are waiting for it */ |
| if (fotg210->async_unlink) |
| start_iaa_cycle(fotg210, false); |
| |
| /* QHs that haven't been empty for long enough will be handled later */ |
| if (check_unlinks_later) { |
| fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, |
| true); |
| ++fotg210->async_unlink_cycle; |
| } |
| } |
| |
| /* makes sure the async qh will become idle */ |
| /* caller must own fotg210->lock */ |
| |
| static void start_unlink_async(struct fotg210_hcd *fotg210, |
| struct fotg210_qh *qh) |
| { |
| /* |
| * If the QH isn't linked then there's nothing we can do |
| * unless we were called during a giveback, in which case |
| * qh_completions() has to deal with it. |
| */ |
| if (qh->qh_state != QH_STATE_LINKED) { |
| if (qh->qh_state == QH_STATE_COMPLETING) |
| qh->needs_rescan = 1; |
| return; |
| } |
| |
| single_unlink_async(fotg210, qh); |
| start_iaa_cycle(fotg210, false); |
| } |
| |
| static void scan_async(struct fotg210_hcd *fotg210) |
| { |
| struct fotg210_qh *qh; |
| bool check_unlinks_later = false; |
| |
| fotg210->qh_scan_next = fotg210->async->qh_next.qh; |
| while (fotg210->qh_scan_next) { |
| qh = fotg210->qh_scan_next; |
| fotg210->qh_scan_next = qh->qh_next.qh; |
| rescan: |
| /* clean any finished work for this qh */ |
| if (!list_empty(&qh->qtd_list)) { |
| int temp; |
| |
| /* |
| * Unlinks could happen here; completion reporting |
| * drops the lock. That's why fotg210->qh_scan_next |
| * always holds the next qh to scan; if the next qh |
| * gets unlinked then fotg210->qh_scan_next is adjusted |
| * in single_unlink_async(). |
| */ |
| temp = qh_completions(fotg210, qh); |
| if (qh->needs_rescan) { |
| start_unlink_async(fotg210, qh); |
| } else if (list_empty(&qh->qtd_list) |
| && qh->qh_state == QH_STATE_LINKED) { |
| qh->unlink_cycle = fotg210->async_unlink_cycle; |
| check_unlinks_later = true; |
| } else if (temp != 0) |
| goto rescan; |
| } |
| } |
| |
| /* |
| * Unlink empty entries, reducing DMA usage as well |
| * as HCD schedule-scanning costs. Delay for any qh |
| * we just scanned, there's a not-unusual case that it |
| * doesn't stay idle for long. |
| */ |
| if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING && |
| !(fotg210->enabled_hrtimer_events & |
| BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) { |
| fotg210_enable_event(fotg210, |
| FOTG210_HRTIMER_ASYNC_UNLINKS, true); |
| ++fotg210->async_unlink_cycle; |
| } |
| } |
| /* EHCI scheduled transaction support: interrupt, iso, split iso |
| * These are called "periodic" transactions in the EHCI spec. |
| * |
| * Note that for interrupt transfers, the QH/QTD manipulation is shared |
| * with the "asynchronous" transaction support (control/bulk transfers). |
| * The only real difference is in how interrupt transfers are scheduled. |
| * |
| * For ISO, we make an "iso_stream" head to serve the same role as a QH. |
| * It keeps track of every ITD (or SITD) that's linked, and holds enough |
| * pre-calculated schedule data to make appending to the queue be quick. |
| */ |
| static int fotg210_get_frame(struct usb_hcd *hcd); |
| |
| /* periodic_next_shadow - return "next" pointer on shadow list |
| * @periodic: host pointer to qh/itd |
| * @tag: hardware tag for type of this record |
| */ |
| static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210, |
| union fotg210_shadow *periodic, __hc32 tag) |
| { |
| switch (hc32_to_cpu(fotg210, tag)) { |
| case Q_TYPE_QH: |
| return &periodic->qh->qh_next; |
| case Q_TYPE_FSTN: |
| return &periodic->fstn->fstn_next; |
| default: |
| return &periodic->itd->itd_next; |
| } |
| } |
| |
| static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210, |
| union fotg210_shadow *periodic, __hc32 tag) |
| { |
| switch (hc32_to_cpu(fotg210, tag)) { |
| /* our fotg210_shadow.qh is actually software part */ |
| case Q_TYPE_QH: |
| return &periodic->qh->hw->hw_next; |
| /* others are hw parts */ |
| default: |
| return periodic->hw_next; |
| } |
| } |
| |
| /* caller must hold fotg210->lock */ |
| static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame, |
| void *ptr) |
| { |
| union fotg210_shadow *prev_p = &fotg210->pshadow[frame]; |
| __hc32 *hw_p = &fotg210->periodic[frame]; |
| union fotg210_shadow here = *prev_p; |
| |
| /* find predecessor of "ptr"; hw and shadow lists are in sync */ |
| while (here.ptr && here.ptr != ptr) { |
| prev_p = periodic_next_shadow(fotg210, prev_p, |
| Q_NEXT_TYPE(fotg210, *hw_p)); |
| hw_p = shadow_next_periodic(fotg210, &here, |
| Q_NEXT_TYPE(fotg210, *hw_p)); |
| here = *prev_p; |
| } |
| /* an interrupt entry (at list end) could have been shared */ |
| if (!here.ptr) |
| return; |
| |
| /* update shadow and hardware lists ... the old "next" pointers |
| * from ptr may still be in use, the caller updates them. |
| */ |
| *prev_p = *periodic_next_shadow(fotg210, &here, |
| Q_NEXT_TYPE(fotg210, *hw_p)); |
| |
| *hw_p = *shadow_next_periodic(fotg210, &here, |
| Q_NEXT_TYPE(fotg210, *hw_p)); |
| } |
| |
| /* how many of the uframe's 125 usecs are allocated? */ |
| static unsigned short periodic_usecs(struct fotg210_hcd *fotg210, |
| unsigned frame, unsigned uframe) |
| { |
| __hc32 *hw_p = &fotg210->periodic[frame]; |
| union fotg210_shadow *q = &fotg210->pshadow[frame]; |
| unsigned usecs = 0; |
| struct fotg210_qh_hw *hw; |
| |
| while (q->ptr) { |
| switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) { |
| case Q_TYPE_QH: |
| hw = q->qh->hw; |
| /* is it in the S-mask? */ |
| if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe)) |
| usecs += q->qh->usecs; |
| /* ... or C-mask? */ |
| if (hw->hw_info2 & cpu_to_hc32(fotg210, |
| 1 << (8 + uframe))) |
| usecs += q->qh->c_usecs; |
| hw_p = &hw->hw_next; |
| q = &q->qh->qh_next; |
| break; |
| /* case Q_TYPE_FSTN: */ |
| default: |
| /* for "save place" FSTNs, count the relevant INTR |
| * bandwidth from the previous frame |
| */ |
| if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210)) |
| fotg210_dbg(fotg210, "ignoring FSTN cost ...\n"); |
| |
| hw_p = &q->fstn->hw_next; |
| q = &q->fstn->fstn_next; |
| break; |
| case Q_TYPE_ITD: |
| if (q->itd->hw_transaction[uframe]) |
| usecs += q->itd->stream->usecs; |
| hw_p = &q->itd->hw_next; |
| q = &q->itd->itd_next; |
| break; |
| } |
| } |
| if (usecs > fotg210->uframe_periodic_max) |
| fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n", |
| frame * 8 + uframe, usecs); |
| return usecs; |
| } |
| |
| static int same_tt(struct usb_device *dev1, struct usb_device *dev2) |
| { |
| if (!dev1->tt || !dev2->tt) |
| return 0; |
| if (dev1->tt != dev2->tt) |
| return 0; |
| if (dev1->tt->multi) |
| return dev1->ttport == dev2->ttport; |
| else |
| return 1; |
| } |
| |
| /* return true iff the device's transaction translator is available |
| * for a periodic transfer starting at the specified frame, using |
| * all the uframes in the mask. |
| */ |
| static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period, |
| struct usb_device *dev, unsigned frame, u32 uf_mask) |
| { |
| if (period == 0) /* error */ |
| return 0; |
| |
| /* note bandwidth wastage: split never follows csplit |
| * (different dev or endpoint) until the next uframe. |
| * calling convention doesn't make that distinction. |
| */ |
| for (; frame < fotg210->periodic_size; frame += period) { |
| union fotg210_shadow here; |
| __hc32 type; |
| struct fotg210_qh_hw *hw; |
| |
| here = fotg210->pshadow[frame]; |
| type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]); |
| while (here.ptr) { |
| switch (hc32_to_cpu(fotg210, type)) { |
| case Q_TYPE_ITD: |
| type = Q_NEXT_TYPE(fotg210, here.itd->hw_next); |
| here = here.itd->itd_next; |
| continue; |
| case Q_TYPE_QH: |
| hw = here.qh->hw; |
| if (same_tt(dev, here.qh->dev)) { |
| u32 mask; |
| |
| mask = hc32_to_cpu(fotg210, |
| hw->hw_info2); |
| /* "knows" no gap is needed */ |
| mask |= mask >> 8; |
| if (mask & uf_mask) |
| break; |
| } |
| type = Q_NEXT_TYPE(fotg210, hw->hw_next); |
| here = here.qh->qh_next; |
| continue; |
| /* case Q_TYPE_FSTN: */ |
| default: |
| fotg210_dbg(fotg210, |
| "periodic frame %d bogus type %d\n", |
| frame, type); |
| } |
| |
| /* collision or error */ |
| return 0; |
| } |
| } |
| |
| /* no collision */ |
| return 1; |
| } |
| |
| static void enable_periodic(struct fotg210_hcd *fotg210) |
| { |
| if (fotg210->periodic_count++) |
| return; |
| |
| /* Stop waiting to turn off the periodic schedule */ |
| fotg210->enabled_hrtimer_events &= |
| ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC); |
| |
| /* Don't start the schedule until PSS is 0 */ |
| fotg210_poll_PSS(fotg210); |
| turn_on_io_watchdog(fotg210); |
| } |
| |
| static void disable_periodic(struct fotg210_hcd *fotg210) |
| { |
| if (--fotg210->periodic_count) |
| return; |
| |
| /* Don't turn off the schedule until PSS is 1 */ |
| fotg210_poll_PSS(fotg210); |
| } |
| |
| /* periodic schedule slots have iso tds (normal or split) first, then a |
| * sparse tree for active interrupt transfers. |
| * |
| * this just links in a qh; caller guarantees uframe masks are set right. |
| * no FSTN support (yet; fotg210 0.96+) |
| */ |
| static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) |
| { |
| unsigned i; |
| unsigned period = qh->period; |
| |
| dev_dbg(&qh->dev->dev, |
| "link qh%d-%04x/%p start %d [%d/%d us]\n", period, |
| hc32_to_cpup(fotg210, &qh->hw->hw_info2) & |
| (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, |
| qh->c_usecs); |
| |
| /* high bandwidth, or otherwise every microframe */ |
| if (period == 0) |
| period = 1; |
| |
| for (i = qh->start; i < fotg210->periodic_size; i += period) { |
| union fotg210_shadow *prev = &fotg210->pshadow[i]; |
| __hc32 *hw_p = &fotg210->periodic[i]; |
| union fotg210_shadow here = *prev; |
| __hc32 type = 0; |
| |
| /* skip the iso nodes at list head */ |
| while (here.ptr) { |
| type = Q_NEXT_TYPE(fotg210, *hw_p); |
| if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) |
| break; |
| prev = periodic_next_shadow(fotg210, prev, type); |
| hw_p = shadow_next_periodic(fotg210, &here, type); |
| here = *prev; |
| } |
| |
| /* sorting each branch by period (slow-->fast) |
| * enables sharing interior tree nodes |
| */ |
| while (here.ptr && qh != here.qh) { |
| if (qh->period > here.qh->period) |
| break; |
| prev = &here.qh->qh_next; |
| hw_p = &here.qh->hw->hw_next; |
| here = *prev; |
| } |
| /* link in this qh, unless some earlier pass did that */ |
| if (qh != here.qh) { |
| qh->qh_next = here; |
| if (here.qh) |
| qh->hw->hw_next = *hw_p; |
| wmb(); |
| prev->qh = qh; |
| *hw_p = QH_NEXT(fotg210, qh->qh_dma); |
| } |
| } |
| qh->qh_state = QH_STATE_LINKED; |
| qh->xacterrs = 0; |
| |
| /* update per-qh bandwidth for usbfs */ |
| fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period |
| ? ((qh->usecs + qh->c_usecs) / qh->period) |
| : (qh->usecs * 8); |
| |
| list_add(&qh->intr_node, &fotg210->intr_qh_list); |
| |
| /* maybe enable periodic schedule processing */ |
| ++fotg210->intr_count; |
| enable_periodic(fotg210); |
| } |
| |
| static void qh_unlink_periodic(struct fotg210_hcd *fotg210, |
| struct fotg210_qh *qh) |
| { |
| unsigned i; |
| unsigned period; |
| |
| /* |
| * If qh is for a low/full-speed device, simply unlinking it |
| * could interfere with an ongoing split transaction. To unlink |
| * it safely would require setting the QH_INACTIVATE bit and |
| * waiting at least one frame, as described in EHCI 4.12.2.5. |
| * |
| * We won't bother with any of this. Instead, we assume that the |
| * only reason for unlinking an interrupt QH while the current URB |
| * is still active is to dequeue all the URBs (flush the whole |
| * endpoint queue). |
| * |
| * If rebalancing the periodic schedule is ever implemented, this |
| * approach will no longer be valid. |
| */ |
| |
| /* high bandwidth, or otherwise part of every microframe */ |
| period = qh->period; |
| if (!period) |
| period = 1; |
| |
| for (i = qh->start; i < fotg210->periodic_size; i += period) |
| periodic_unlink(fotg210, i, qh); |
| |
| /* update per-qh bandwidth for usbfs */ |
| fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period |
| ? ((qh->usecs + qh->c_usecs) / qh->period) |
| : (qh->usecs * 8); |
| |
| dev_dbg(&qh->dev->dev, |
| "unlink qh%d-%04x/%p start %d [%d/%d us]\n", |
| qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) & |
| (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, |
| qh->c_usecs); |
| |
| /* qh->qh_next still "live" to HC */ |
| qh->qh_state = QH_STATE_UNLINK; |
| qh->qh_next.ptr = NULL; |
| |
| if (fotg210->qh_scan_next == qh) |
| fotg210->qh_scan_next = list_entry(qh->intr_node.next, |
| struct fotg210_qh, intr_node); |
| list_del(&qh->intr_node); |
| } |
| |
| static void start_unlink_intr(struct fotg210_hcd *fotg210, |
| struct fotg210_qh *qh) |
| { |
| /* If the QH isn't linked then there's nothing we can do |
| * unless we were called during a giveback, in which case |
| * qh_completions() has to deal with it. |
| */ |
| if (qh->qh_state != QH_STATE_LINKED) { |
| if (qh->qh_state == QH_STATE_COMPLETING) |
| qh->needs_rescan = 1; |
| return; |
| } |
| |
| qh_unlink_periodic(fotg210, qh); |
| |
| /* Make sure the unlinks are visible before starting the timer */ |
| wmb(); |
| |
| /* |
| * The EHCI spec doesn't say how long it takes the controller to |
| * stop accessing an unlinked interrupt QH. The timer delay is |
| * 9 uframes; presumably that will be long enough. |
| */ |
| qh->unlink_cycle = fotg210->intr_unlink_cycle; |
| |
| /* New entries go at the end of the intr_unlink list */ |
| if (fotg210->intr_unlink) |
| fotg210->intr_unlink_last->unlink_next = qh; |
| else |
| fotg210->intr_unlink = qh; |
| fotg210->intr_unlink_last = qh; |
| |
| if (fotg210->intr_unlinking) |
| ; /* Avoid recursive calls */ |
| else if (fotg210->rh_state < FOTG210_RH_RUNNING) |
| fotg210_handle_intr_unlinks(fotg210); |
| else if (fotg210->intr_unlink == qh) { |
| fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, |
| true); |
| ++fotg210->intr_unlink_cycle; |
| } |
| } |
| |
| static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) |
| { |
| struct fotg210_qh_hw *hw = qh->hw; |
| int rc; |
| |
| qh->qh_state = QH_STATE_IDLE; |
| hw->hw_next = FOTG210_LIST_END(fotg210); |
| |
| qh_completions(fotg210, qh); |
| |
| /* reschedule QH iff another request is queued */ |
| if (!list_empty(&qh->qtd_list) && |
| fotg210->rh_state == FOTG210_RH_RUNNING) { |
| rc = qh_schedule(fotg210, qh); |
| |
| /* An error here likely indicates handshake failure |
| * or no space left in the schedule. Neither fault |
| * should happen often ... |
| * |
| * FIXME kill the now-dysfunctional queued urbs |
| */ |
| if (rc != 0) |
| fotg210_err(fotg210, "can't reschedule qh %p, err %d\n", |
| qh, rc); |
| } |
| |
| /* maybe turn off periodic schedule */ |
| --fotg210->intr_count; |
| disable_periodic(fotg210); |
| } |
| |
| static int check_period(struct fotg210_hcd *fotg210, unsigned frame, |
| unsigned uframe, unsigned period, unsigned usecs) |
| { |
| int claimed; |
| |
| /* complete split running into next frame? |
| * given FSTN support, we could sometimes check... |
| */ |
| if (uframe >= 8) |
| return 0; |
| |
| /* convert "usecs we need" to "max already claimed" */ |
| usecs = fotg210->uframe_periodic_max - usecs; |
| |
| /* we "know" 2 and 4 uframe intervals were rejected; so |
| * for period 0, check _every_ microframe in the schedule. |
| */ |
| if (unlikely(period == 0)) { |
| do { |
| for (uframe = 0; uframe < 7; uframe++) { |
| claimed = periodic_usecs(fotg210, frame, |
| uframe); |
| if (claimed > usecs) |
| return 0; |
| } |
| } while ((frame += 1) < fotg210->periodic_size); |
| |
| /* just check the specified uframe, at that period */ |
| } else { |
| do { |
| claimed = periodic_usecs(fotg210, frame, uframe); |
| if (claimed > usecs) |
| return 0; |
| } while ((frame += period) < fotg210->periodic_size); |
| } |
| |
| /* success! */ |
| return 1; |
| } |
| |
| static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame, |
| unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp) |
| { |
| int retval = -ENOSPC; |
| u8 mask = 0; |
| |
| if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ |
| goto done; |
| |
| if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs)) |
| goto done; |
| if (!qh->c_usecs) { |
| retval = 0; |
| *c_maskp = 0; |
| goto done; |
| } |
| |
| /* Make sure this tt's buffer is also available for CSPLITs. |
| * We pessimize a bit; probably the typical full speed case |
| * doesn't need the second CSPLIT. |
| * |
| * NOTE: both SPLIT and CSPLIT could be checked in just |
| * one smart pass... |
| */ |
| mask = 0x03 << (uframe + qh->gap_uf); |
| *c_maskp = cpu_to_hc32(fotg210, mask << 8); |
| |
| mask |= 1 << uframe; |
| if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) { |
| if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1, |
| qh->period, qh->c_usecs)) |
| goto done; |
| if (!check_period(fotg210, frame, uframe + qh->gap_uf, |
| qh->period, qh->c_usecs)) |
| goto done; |
| retval = 0; |
| } |
| done: |
| return retval; |
| } |
| |
| /* "first fit" scheduling policy used the first time through, |
| * or when the previous schedule slot can't be re-used. |
| */ |
| static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) |
| { |
| int status; |
| unsigned uframe; |
| __hc32 c_mask; |
| unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ |
| struct fotg210_qh_hw *hw = qh->hw; |
| |
| qh_refresh(fotg210, qh); |
| hw->hw_next = FOTG210_LIST_END(fotg210); |
| frame = qh->start; |
| |
| /* reuse the previous schedule slots, if we can */ |
| if (frame < qh->period) { |
| uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK); |
| status = check_intr_schedule(fotg210, frame, --uframe, |
| qh, &c_mask); |
| } else { |
| uframe = 0; |
| c_mask = 0; |
| status = -ENOSPC; |
| } |
| |
| /* else scan the schedule to find a group of slots such that all |
| * uframes have enough periodic bandwidth available. |
| */ |
| if (status) { |
| /* "normal" case, uframing flexible except with splits */ |
| if (qh->period) { |
| int i; |
| |
| for (i = qh->period; status && i > 0; --i) { |
| frame = ++fotg210->random_frame % qh->period; |
| for (uframe = 0; uframe < 8; uframe++) { |
| status = check_intr_schedule(fotg210, |
| frame, uframe, qh, |
| &c_mask); |
| if (status == 0) |
| break; |
| } |
| } |
| |
| /* qh->period == 0 means every uframe */ |
| } else { |
| frame = 0; |
| status = check_intr_schedule(fotg210, 0, 0, qh, |
| &c_mask); |
| } |
| if (status) |
| goto done; |
| qh->start = frame; |
| |
| /* reset S-frame and (maybe) C-frame masks */ |
| hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK)); |
| hw->hw_info2 |= qh->period |
| ? cpu_to_hc32(fotg210, 1 << uframe) |
| : cpu_to_hc32(fotg210, QH_SMASK); |
| hw->hw_info2 |= c_mask; |
| } else |
| fotg210_dbg(fotg210, "reused qh %p schedule\n", qh); |
| |
| /* stuff into the periodic schedule */ |
| qh_link_periodic(fotg210, qh); |
| done: |
| return status; |
| } |
| |
| static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb, |
| struct list_head *qtd_list, gfp_t mem_flags) |
| { |
| unsigned epnum; |
| unsigned long flags; |
| struct fotg210_qh *qh; |
| int status; |
| struct list_head empty; |
| |
| /* get endpoint and transfer/schedule data */ |
| epnum = urb->ep->desc.bEndpointAddress; |
| |
| spin_lock_irqsave(&fotg210->lock, flags); |
| |
| if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { |
| status = -ESHUTDOWN; |
| goto done_not_linked; |
| } |
| status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); |
| if (unlikely(status)) |
| goto done_not_linked; |
| |
| /* get qh and force any scheduling errors */ |
| INIT_LIST_HEAD(&empty); |
| qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv); |
| if (qh == NULL) { |
| status = -ENOMEM; |
| goto done; |
| } |
| if (qh->qh_state == QH_STATE_IDLE) { |
| status = qh_schedule(fotg210, qh); |
| if (status) |
| goto done; |
| } |
| |
| /* then queue the urb's tds to the qh */ |
| qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); |
| BUG_ON(qh == NULL); |
| |
| /* ... update usbfs periodic stats */ |
| fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++; |
| |
| done: |
| if (unlikely(status)) |
| usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); |
| done_not_linked: |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| if (status) |
| qtd_list_free(fotg210, urb, qtd_list); |
| |
| return status; |
| } |
| |
| static void scan_intr(struct fotg210_hcd *fotg210) |
| { |
| struct fotg210_qh *qh; |
| |
| list_for_each_entry_safe(qh, fotg210->qh_scan_next, |
| &fotg210->intr_qh_list, intr_node) { |
| rescan: |
| /* clean any finished work for this qh */ |
| if (!list_empty(&qh->qtd_list)) { |
| int temp; |
| |
| /* |
| * Unlinks could happen here; completion reporting |
| * drops the lock. That's why fotg210->qh_scan_next |
| * always holds the next qh to scan; if the next qh |
| * gets unlinked then fotg210->qh_scan_next is adjusted |
| * in qh_unlink_periodic(). |
| */ |
| temp = qh_completions(fotg210, qh); |
| if (unlikely(qh->needs_rescan || |
| (list_empty(&qh->qtd_list) && |
| qh->qh_state == QH_STATE_LINKED))) |
| start_unlink_intr(fotg210, qh); |
| else if (temp != 0) |
| goto rescan; |
| } |
| } |
| } |
| |
| /* fotg210_iso_stream ops work with both ITD and SITD */ |
| |
| static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags) |
| { |
| struct fotg210_iso_stream *stream; |
| |
| stream = kzalloc(sizeof(*stream), mem_flags); |
| if (likely(stream != NULL)) { |
| INIT_LIST_HEAD(&stream->td_list); |
| INIT_LIST_HEAD(&stream->free_list); |
| stream->next_uframe = -1; |
| } |
| return stream; |
| } |
| |
| static void iso_stream_init(struct fotg210_hcd *fotg210, |
| struct fotg210_iso_stream *stream, struct usb_device *dev, |
| int pipe, unsigned interval) |
| { |
| u32 buf1; |
| unsigned epnum, maxp; |
| int is_input; |
| long bandwidth; |
| unsigned multi; |
| |
| /* |
| * this might be a "high bandwidth" highspeed endpoint, |
| * as encoded in the ep descriptor's wMaxPacket field |
| */ |
| epnum = usb_pipeendpoint(pipe); |
| is_input = usb_pipein(pipe) ? USB_DIR_IN : 0; |
| maxp = usb_maxpacket(dev, pipe, !is_input); |
| if (is_input) |
| buf1 = (1 << 11); |
| else |
| buf1 = 0; |
| |
| maxp = max_packet(maxp); |
| multi = hb_mult(maxp); |
| buf1 |= maxp; |
| maxp *= multi; |
| |
| stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum); |
| stream->buf1 = cpu_to_hc32(fotg210, buf1); |
| stream->buf2 = cpu_to_hc32(fotg210, multi); |
| |
| /* usbfs wants to report the average usecs per frame tied up |
| * when transfers on this endpoint are scheduled ... |
| */ |
| if (dev->speed == USB_SPEED_FULL) { |
| interval <<= 3; |
| stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed, |
| is_input, 1, maxp)); |
| stream->usecs /= 8; |
| } else { |
| stream->highspeed = 1; |
| stream->usecs = HS_USECS_ISO(maxp); |
| } |
| bandwidth = stream->usecs * 8; |
| bandwidth /= interval; |
| |
| stream->bandwidth = bandwidth; |
| stream->udev = dev; |
| stream->bEndpointAddress = is_input | epnum; |
| stream->interval = interval; |
| stream->maxp = maxp; |
| } |
| |
| static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210, |
| struct urb *urb) |
| { |
| unsigned epnum; |
| struct fotg210_iso_stream *stream; |
| struct usb_host_endpoint *ep; |
| unsigned long flags; |
| |
| epnum = usb_pipeendpoint(urb->pipe); |
| if (usb_pipein(urb->pipe)) |
| ep = urb->dev->ep_in[epnum]; |
| else |
| ep = urb->dev->ep_out[epnum]; |
| |
| spin_lock_irqsave(&fotg210->lock, flags); |
| stream = ep->hcpriv; |
| |
| if (unlikely(stream == NULL)) { |
| stream = iso_stream_alloc(GFP_ATOMIC); |
| if (likely(stream != NULL)) { |
| ep->hcpriv = stream; |
| stream->ep = ep; |
| iso_stream_init(fotg210, stream, urb->dev, urb->pipe, |
| urb->interval); |
| } |
| |
| /* if dev->ep[epnum] is a QH, hw is set */ |
| } else if (unlikely(stream->hw != NULL)) { |
| fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n", |
| urb->dev->devpath, epnum, |
| usb_pipein(urb->pipe) ? "in" : "out"); |
| stream = NULL; |
| } |
| |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| return stream; |
| } |
| |
| /* fotg210_iso_sched ops can be ITD-only or SITD-only */ |
| |
| static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets, |
| gfp_t mem_flags) |
| { |
| struct fotg210_iso_sched *iso_sched; |
| int size = sizeof(*iso_sched); |
| |
| size += packets * sizeof(struct fotg210_iso_packet); |
| iso_sched = kzalloc(size, mem_flags); |
| if (likely(iso_sched != NULL)) |
| INIT_LIST_HEAD(&iso_sched->td_list); |
| |
| return iso_sched; |
| } |
| |
| static inline void itd_sched_init(struct fotg210_hcd *fotg210, |
| struct fotg210_iso_sched *iso_sched, |
| struct fotg210_iso_stream *stream, struct urb *urb) |
| { |
| unsigned i; |
| dma_addr_t dma = urb->transfer_dma; |
| |
| /* how many uframes are needed for these transfers */ |
| iso_sched->span = urb->number_of_packets * stream->interval; |
| |
| /* figure out per-uframe itd fields that we'll need later |
| * when we fit new itds into the schedule. |
| */ |
| for (i = 0; i < urb->number_of_packets; i++) { |
| struct fotg210_iso_packet *uframe = &iso_sched->packet[i]; |
| unsigned length; |
| dma_addr_t buf; |
| u32 trans; |
| |
| length = urb->iso_frame_desc[i].length; |
| buf = dma + urb->iso_frame_desc[i].offset; |
| |
| trans = FOTG210_ISOC_ACTIVE; |
| trans |= buf & 0x0fff; |
| if (unlikely(((i + 1) == urb->number_of_packets)) |
| && !(urb->transfer_flags & URB_NO_INTERRUPT)) |
| trans |= FOTG210_ITD_IOC; |
| trans |= length << 16; |
| uframe->transaction = cpu_to_hc32(fotg210, trans); |
| |
| /* might need to cross a buffer page within a uframe */ |
| uframe->bufp = (buf & ~(u64)0x0fff); |
| buf += length; |
| if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) |
| uframe->cross = 1; |
| } |
| } |
| |
| static void iso_sched_free(struct fotg210_iso_stream *stream, |
| struct fotg210_iso_sched *iso_sched) |
| { |
| if (!iso_sched) |
| return; |
| /* caller must hold fotg210->lock!*/ |
| list_splice(&iso_sched->td_list, &stream->free_list); |
| kfree(iso_sched); |
| } |
| |
| static int itd_urb_transaction(struct fotg210_iso_stream *stream, |
| struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags) |
| { |
| struct fotg210_itd *itd; |
| dma_addr_t itd_dma; |
| int i; |
| unsigned num_itds; |
| struct fotg210_iso_sched *sched; |
| unsigned long flags; |
| |
| sched = iso_sched_alloc(urb->number_of_packets, mem_flags); |
| if (unlikely(sched == NULL)) |
| return -ENOMEM; |
| |
| itd_sched_init(fotg210, sched, stream, urb); |
| |
| if (urb->interval < 8) |
| num_itds = 1 + (sched->span + 7) / 8; |
| else |
| num_itds = urb->number_of_packets; |
| |
| /* allocate/init ITDs */ |
| spin_lock_irqsave(&fotg210->lock, flags); |
| for (i = 0; i < num_itds; i++) { |
| |
| /* |
| * Use iTDs from the free list, but not iTDs that may |
| * still be in use by the hardware. |
| */ |
| if (likely(!list_empty(&stream->free_list))) { |
| itd = list_first_entry(&stream->free_list, |
| struct fotg210_itd, itd_list); |
| if (itd->frame == fotg210->now_frame) |
| goto alloc_itd; |
| list_del(&itd->itd_list); |
| itd_dma = itd->itd_dma; |
| } else { |
| alloc_itd: |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| itd = dma_pool_alloc(fotg210->itd_pool, mem_flags, |
| &itd_dma); |
| spin_lock_irqsave(&fotg210->lock, flags); |
| if (!itd) { |
| iso_sched_free(stream, sched); |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| return -ENOMEM; |
| } |
| } |
| |
| memset(itd, 0, sizeof(*itd)); |
| itd->itd_dma = itd_dma; |
| list_add(&itd->itd_list, &sched->td_list); |
| } |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| |
| /* temporarily store schedule info in hcpriv */ |
| urb->hcpriv = sched; |
| urb->error_count = 0; |
| return 0; |
| } |
| |
| static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe, |
| u8 usecs, u32 period) |
| { |
| uframe %= period; |
| do { |
| /* can't commit more than uframe_periodic_max usec */ |
| if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7) |
| > (fotg210->uframe_periodic_max - usecs)) |
| return 0; |
| |
| /* we know urb->interval is 2^N uframes */ |
| uframe += period; |
| } while (uframe < mod); |
| return 1; |
| } |
| |
| /* This scheduler plans almost as far into the future as it has actual |
| * periodic schedule slots. (Affected by TUNE_FLS, which defaults to |
| * "as small as possible" to be cache-friendlier.) That limits the size |
| * transfers you can stream reliably; avoid more than 64 msec per urb. |
| * Also avoid queue depths of less than fotg210's worst irq latency (affected |
| * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, |
| * and other factors); or more than about 230 msec total (for portability, |
| * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler! |
| */ |
| |
| #define SCHEDULE_SLOP 80 /* microframes */ |
| |
| static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb, |
| struct fotg210_iso_stream *stream) |
| { |
| u32 now, next, start, period, span; |
| int status; |
| unsigned mod = fotg210->periodic_size << 3; |
| struct fotg210_iso_sched *sched = urb->hcpriv; |
| |
| period = urb->interval; |
| span = sched->span; |
| |
| if (span > mod - SCHEDULE_SLOP) { |
| fotg210_dbg(fotg210, "iso request %p too long\n", urb); |
| status = -EFBIG; |
| goto fail; |
| } |
| |
| now = fotg210_read_frame_index(fotg210) & (mod - 1); |
| |
| /* Typical case: reuse current schedule, stream is still active. |
| * Hopefully there are no gaps from the host falling behind |
| * (irq delays etc), but if there are we'll take the next |
| * slot in the schedule, implicitly assuming URB_ISO_ASAP. |
| */ |
| if (likely(!list_empty(&stream->td_list))) { |
| u32 excess; |
| |
| /* For high speed devices, allow scheduling within the |
| * isochronous scheduling threshold. For full speed devices |
| * and Intel PCI-based controllers, don't (work around for |
| * Intel ICH9 bug). |
| */ |
| if (!stream->highspeed && fotg210->fs_i_thresh) |
| next = now + fotg210->i_thresh; |
| else |
| next = now; |
| |
| /* Fell behind (by up to twice the slop amount)? |
| * We decide based on the time of the last currently-scheduled |
| * slot, not the time of the next available slot. |
| */ |
| excess = (stream->next_uframe - period - next) & (mod - 1); |
| if (excess >= mod - 2 * SCHEDULE_SLOP) |
| start = next + excess - mod + period * |
| DIV_ROUND_UP(mod - excess, period); |
| else |
| start = next + excess + period; |
| if (start - now >= mod) { |
| fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", |
| urb, start - now - period, period, |
| mod); |
| status = -EFBIG; |
| goto fail; |
| } |
| } |
| |
| /* need to schedule; when's the next (u)frame we could start? |
| * this is bigger than fotg210->i_thresh allows; scheduling itself |
| * isn't free, the slop should handle reasonably slow cpus. it |
| * can also help high bandwidth if the dma and irq loads don't |
| * jump until after the queue is primed. |
| */ |
| else { |
| int done = 0; |
| |
| start = SCHEDULE_SLOP + (now & ~0x07); |
| |
| /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */ |
| |
| /* find a uframe slot with enough bandwidth. |
| * Early uframes are more precious because full-speed |
| * iso IN transfers can't use late uframes, |
| * and therefore they should be allocated last. |
| */ |
| next = start; |
| start += period; |
| do { |
| start--; |
| /* check schedule: enough space? */ |
| if (itd_slot_ok(fotg210, mod, start, |
| stream->usecs, period)) |
| done = 1; |
| } while (start > next && !done); |
| |
| /* no room in the schedule */ |
| if (!done) { |
| fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n", |
| urb, now, now + mod); |
| status = -ENOSPC; |
| goto fail; |
| } |
| } |
| |
| /* Tried to schedule too far into the future? */ |
| if (unlikely(start - now + span - period >= |
| mod - 2 * SCHEDULE_SLOP)) { |
| fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", |
| urb, start - now, span - period, |
| mod - 2 * SCHEDULE_SLOP); |
| status = -EFBIG; |
| goto fail; |
| } |
| |
| stream->next_uframe = start & (mod - 1); |
| |
| /* report high speed start in uframes; full speed, in frames */ |
| urb->start_frame = stream->next_uframe; |
| if (!stream->highspeed) |
| urb->start_frame >>= 3; |
| |
| /* Make sure scan_isoc() sees these */ |
| if (fotg210->isoc_count == 0) |
| fotg210->next_frame = now >> 3; |
| return 0; |
| |
| fail: |
| iso_sched_free(stream, sched); |
| urb->hcpriv = NULL; |
| return status; |
| } |
| |
| static inline void itd_init(struct fotg210_hcd *fotg210, |
| struct fotg210_iso_stream *stream, struct fotg210_itd *itd) |
| { |
| int i; |
| |
| /* it's been recently zeroed */ |
| itd->hw_next = FOTG210_LIST_END(fotg210); |
| itd->hw_bufp[0] = stream->buf0; |
| itd->hw_bufp[1] = stream->buf1; |
| itd->hw_bufp[2] = stream->buf2; |
| |
| for (i = 0; i < 8; i++) |
| itd->index[i] = -1; |
| |
| /* All other fields are filled when scheduling */ |
| } |
| |
| static inline void itd_patch(struct fotg210_hcd *fotg210, |
| struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched, |
| unsigned index, u16 uframe) |
| { |
| struct fotg210_iso_packet *uf = &iso_sched->packet[index]; |
| unsigned pg = itd->pg; |
| |
| uframe &= 0x07; |
| itd->index[uframe] = index; |
| |
| itd->hw_transaction[uframe] = uf->transaction; |
| itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12); |
| itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0); |
| itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32)); |
| |
| /* iso_frame_desc[].offset must be strictly increasing */ |
| if (unlikely(uf->cross)) { |
| u64 bufp = uf->bufp + 4096; |
| |
| itd->pg = ++pg; |
| itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0); |
| itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32)); |
| } |
| } |
| |
| static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame, |
| struct fotg210_itd *itd) |
| { |
| union fotg210_shadow *prev = &fotg210->pshadow[frame]; |
| __hc32 *hw_p = &fotg210->periodic[frame]; |
| union fotg210_shadow here = *prev; |
| __hc32 type = 0; |
| |
| /* skip any iso nodes which might belong to previous microframes */ |
| while (here.ptr) { |
| type = Q_NEXT_TYPE(fotg210, *hw_p); |
| if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) |
| break; |
| prev = periodic_next_shadow(fotg210, prev, type); |
| hw_p = shadow_next_periodic(fotg210, &here, type); |
| here = *prev; |
| } |
| |
| itd->itd_next = here; |
| itd->hw_next = *hw_p; |
| prev->itd = itd; |
| itd->frame = frame; |
| wmb(); |
| *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD); |
| } |
| |
| /* fit urb's itds into the selected schedule slot; activate as needed */ |
| static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb, |
| unsigned mod, struct fotg210_iso_stream *stream) |
| { |
| int packet; |
| unsigned next_uframe, uframe, frame; |
| struct fotg210_iso_sched *iso_sched = urb->hcpriv; |
| struct fotg210_itd *itd; |
| |
| next_uframe = stream->next_uframe & (mod - 1); |
| |
| if (unlikely(list_empty(&stream->td_list))) { |
| fotg210_to_hcd(fotg210)->self.bandwidth_allocated |
| += stream->bandwidth; |
| fotg210_dbg(fotg210, |
| "schedule devp %s ep%d%s-iso period %d start %d.%d\n", |
| urb->dev->devpath, stream->bEndpointAddress & 0x0f, |
| (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", |
| urb->interval, |
| next_uframe >> 3, next_uframe & 0x7); |
| } |
| |
| /* fill iTDs uframe by uframe */ |
| for (packet = 0, itd = NULL; packet < urb->number_of_packets;) { |
| if (itd == NULL) { |
| /* ASSERT: we have all necessary itds */ |
| |
| /* ASSERT: no itds for this endpoint in this uframe */ |
| |
| itd = list_entry(iso_sched->td_list.next, |
| struct fotg210_itd, itd_list); |
| list_move_tail(&itd->itd_list, &stream->td_list); |
| itd->stream = stream; |
| itd->urb = urb; |
| itd_init(fotg210, stream, itd); |
| } |
| |
| uframe = next_uframe & 0x07; |
| frame = next_uframe >> 3; |
| |
| itd_patch(fotg210, itd, iso_sched, packet, uframe); |
| |
| next_uframe += stream->interval; |
| next_uframe &= mod - 1; |
| packet++; |
| |
| /* link completed itds into the schedule */ |
| if (((next_uframe >> 3) != frame) |
| || packet == urb->number_of_packets) { |
| itd_link(fotg210, frame & (fotg210->periodic_size - 1), |
| itd); |
| itd = NULL; |
| } |
| } |
| stream->next_uframe = next_uframe; |
| |
| /* don't need that schedule data any more */ |
| iso_sched_free(stream, iso_sched); |
| urb->hcpriv = NULL; |
| |
| ++fotg210->isoc_count; |
| enable_periodic(fotg210); |
| } |
| |
| #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\ |
| FOTG210_ISOC_XACTERR) |
| |
| /* Process and recycle a completed ITD. Return true iff its urb completed, |
| * and hence its completion callback probably added things to the hardware |
| * schedule. |
| * |
| * Note that we carefully avoid recycling this descriptor until after any |
| * completion callback runs, so that it won't be reused quickly. That is, |
| * assuming (a) no more than two urbs per frame on this endpoint, and also |
| * (b) only this endpoint's completions submit URBs. It seems some silicon |
| * corrupts things if you reuse completed descriptors very quickly... |
| */ |
| static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd) |
| { |
| struct urb *urb = itd->urb; |
| struct usb_iso_packet_descriptor *desc; |
| u32 t; |
| unsigned uframe; |
| int urb_index = -1; |
| struct fotg210_iso_stream *stream = itd->stream; |
| struct usb_device *dev; |
| bool retval = false; |
| |
| /* for each uframe with a packet */ |
| for (uframe = 0; uframe < 8; uframe++) { |
| if (likely(itd->index[uframe] == -1)) |
| continue; |
| urb_index = itd->index[uframe]; |
| desc = &urb->iso_frame_desc[urb_index]; |
| |
| t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]); |
| itd->hw_transaction[uframe] = 0; |
| |
| /* report transfer status */ |
| if (unlikely(t & ISO_ERRS)) { |
| urb->error_count++; |
| if (t & FOTG210_ISOC_BUF_ERR) |
| desc->status = usb_pipein(urb->pipe) |
| ? -ENOSR /* hc couldn't read */ |
| : -ECOMM; /* hc couldn't write */ |
| else if (t & FOTG210_ISOC_BABBLE) |
| desc->status = -EOVERFLOW; |
| else /* (t & FOTG210_ISOC_XACTERR) */ |
| desc->status = -EPROTO; |
| |
| /* HC need not update length with this error */ |
| if (!(t & FOTG210_ISOC_BABBLE)) { |
| desc->actual_length = |
| fotg210_itdlen(urb, desc, t); |
| urb->actual_length += desc->actual_length; |
| } |
| } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) { |
| desc->status = 0; |
| desc->actual_length = fotg210_itdlen(urb, desc, t); |
| urb->actual_length += desc->actual_length; |
| } else { |
| /* URB was too late */ |
| desc->status = -EXDEV; |
| } |
| } |
| |
| /* handle completion now? */ |
| if (likely((urb_index + 1) != urb->number_of_packets)) |
| goto done; |
| |
| /* ASSERT: it's really the last itd for this urb |
| * list_for_each_entry (itd, &stream->td_list, itd_list) |
| * BUG_ON (itd->urb == urb); |
| */ |
| |
| /* give urb back to the driver; completion often (re)submits */ |
| dev = urb->dev; |
| fotg210_urb_done(fotg210, urb, 0); |
| retval = true; |
| urb = NULL; |
| |
| --fotg210->isoc_count; |
| disable_periodic(fotg210); |
| |
| if (unlikely(list_is_singular(&stream->td_list))) { |
| fotg210_to_hcd(fotg210)->self.bandwidth_allocated |
| -= stream->bandwidth; |
| fotg210_dbg(fotg210, |
| "deschedule devp %s ep%d%s-iso\n", |
| dev->devpath, stream->bEndpointAddress & 0x0f, |
| (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); |
| } |
| |
| done: |
| itd->urb = NULL; |
| |
| /* Add to the end of the free list for later reuse */ |
| list_move_tail(&itd->itd_list, &stream->free_list); |
| |
| /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ |
| if (list_empty(&stream->td_list)) { |
| list_splice_tail_init(&stream->free_list, |
| &fotg210->cached_itd_list); |
| start_free_itds(fotg210); |
| } |
| |
| return retval; |
| } |
| |
| static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| int status = -EINVAL; |
| unsigned long flags; |
| struct fotg210_iso_stream *stream; |
| |
| /* Get iso_stream head */ |
| stream = iso_stream_find(fotg210, urb); |
| if (unlikely(stream == NULL)) { |
| fotg210_dbg(fotg210, "can't get iso stream\n"); |
| return -ENOMEM; |
| } |
| if (unlikely(urb->interval != stream->interval && |
| fotg210_port_speed(fotg210, 0) == |
| USB_PORT_STAT_HIGH_SPEED)) { |
| fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n", |
| stream->interval, urb->interval); |
| goto done; |
| } |
| |
| #ifdef FOTG210_URB_TRACE |
| fotg210_dbg(fotg210, |
| "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n", |
| __func__, urb->dev->devpath, urb, |
| usb_pipeendpoint(urb->pipe), |
| usb_pipein(urb->pipe) ? "in" : "out", |
| urb->transfer_buffer_length, |
| urb->number_of_packets, urb->interval, |
| stream); |
| #endif |
| |
| /* allocate ITDs w/o locking anything */ |
| status = itd_urb_transaction(stream, fotg210, urb, mem_flags); |
| if (unlikely(status < 0)) { |
| fotg210_dbg(fotg210, "can't init itds\n"); |
| goto done; |
| } |
| |
| /* schedule ... need to lock */ |
| spin_lock_irqsave(&fotg210->lock, flags); |
| if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { |
| status = -ESHUTDOWN; |
| goto done_not_linked; |
| } |
| status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); |
| if (unlikely(status)) |
| goto done_not_linked; |
| status = iso_stream_schedule(fotg210, urb, stream); |
| if (likely(status == 0)) |
| itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream); |
| else |
| usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); |
| done_not_linked: |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| done: |
| return status; |
| } |
| |
| static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame, |
| unsigned now_frame, bool live) |
| { |
| unsigned uf; |
| bool modified; |
| union fotg210_shadow q, *q_p; |
| __hc32 type, *hw_p; |
| |
| /* scan each element in frame's queue for completions */ |
| q_p = &fotg210->pshadow[frame]; |
| hw_p = &fotg210->periodic[frame]; |
| q.ptr = q_p->ptr; |
| type = Q_NEXT_TYPE(fotg210, *hw_p); |
| modified = false; |
| |
| while (q.ptr) { |
| switch (hc32_to_cpu(fotg210, type)) { |
| case Q_TYPE_ITD: |
| /* If this ITD is still active, leave it for |
| * later processing ... check the next entry. |
| * No need to check for activity unless the |
| * frame is current. |
| */ |
| if (frame == now_frame && live) { |
| rmb(); |
| for (uf = 0; uf < 8; uf++) { |
| if (q.itd->hw_transaction[uf] & |
| ITD_ACTIVE(fotg210)) |
| break; |
| } |
| if (uf < 8) { |
| q_p = &q.itd->itd_next; |
| hw_p = &q.itd->hw_next; |
| type = Q_NEXT_TYPE(fotg210, |
| q.itd->hw_next); |
| q = *q_p; |
| break; |
| } |
| } |
| |
| /* Take finished ITDs out of the schedule |
| * and process them: recycle, maybe report |
| * URB completion. HC won't cache the |
| * pointer for much longer, if at all. |
| */ |
| *q_p = q.itd->itd_next; |
| *hw_p = q.itd->hw_next; |
| type = Q_NEXT_TYPE(fotg210, q.itd->hw_next); |
| wmb(); |
| modified = itd_complete(fotg210, q.itd); |
| q = *q_p; |
| break; |
| default: |
| fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n", |
| type, frame, q.ptr); |
| /* FALL THROUGH */ |
| case Q_TYPE_QH: |
| case Q_TYPE_FSTN: |
| /* End of the iTDs and siTDs */ |
| q.ptr = NULL; |
| break; |
| } |
| |
| /* assume completion callbacks modify the queue */ |
| if (unlikely(modified && fotg210->isoc_count > 0)) |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static void scan_isoc(struct fotg210_hcd *fotg210) |
| { |
| unsigned uf, now_frame, frame, ret; |
| unsigned fmask = fotg210->periodic_size - 1; |
| bool live; |
| |
| /* |
| * When running, scan from last scan point up to "now" |
| * else clean up by scanning everything that's left. |
| * Touches as few pages as possible: cache-friendly. |
| */ |
| if (fotg210->rh_state >= FOTG210_RH_RUNNING) { |
| uf = fotg210_read_frame_index(fotg210); |
| now_frame = (uf >> 3) & fmask; |
| live = true; |
| } else { |
| now_frame = (fotg210->next_frame - 1) & fmask; |
| live = false; |
| } |
| fotg210->now_frame = now_frame; |
| |
| frame = fotg210->next_frame; |
| for (;;) { |
| ret = 1; |
| while (ret != 0) |
| ret = scan_frame_queue(fotg210, frame, |
| now_frame, live); |
| |
| /* Stop when we have reached the current frame */ |
| if (frame == now_frame) |
| break; |
| frame = (frame + 1) & fmask; |
| } |
| fotg210->next_frame = now_frame; |
| } |
| |
| /* Display / Set uframe_periodic_max |
| */ |
| static ssize_t show_uframe_periodic_max(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct fotg210_hcd *fotg210; |
| int n; |
| |
| fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); |
| n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max); |
| return n; |
| } |
| |
| |
| static ssize_t store_uframe_periodic_max(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| struct fotg210_hcd *fotg210; |
| unsigned uframe_periodic_max; |
| unsigned frame, uframe; |
| unsigned short allocated_max; |
| unsigned long flags; |
| ssize_t ret; |
| |
| fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); |
| if (kstrtouint(buf, 0, &uframe_periodic_max) < 0) |
| return -EINVAL; |
| |
| if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) { |
| fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n", |
| uframe_periodic_max); |
| return -EINVAL; |
| } |
| |
| ret = -EINVAL; |
| |
| /* |
| * lock, so that our checking does not race with possible periodic |
| * bandwidth allocation through submitting new urbs. |
| */ |
| spin_lock_irqsave(&fotg210->lock, flags); |
| |
| /* |
| * for request to decrease max periodic bandwidth, we have to check |
| * every microframe in the schedule to see whether the decrease is |
| * possible. |
| */ |
| if (uframe_periodic_max < fotg210->uframe_periodic_max) { |
| allocated_max = 0; |
| |
| for (frame = 0; frame < fotg210->periodic_size; ++frame) |
| for (uframe = 0; uframe < 7; ++uframe) |
| allocated_max = max(allocated_max, |
| periodic_usecs(fotg210, frame, |
| uframe)); |
| |
| if (allocated_max > uframe_periodic_max) { |
| fotg210_info(fotg210, |
| "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n", |
| allocated_max, uframe_periodic_max); |
| goto out_unlock; |
| } |
| } |
| |
| /* increasing is always ok */ |
| |
| fotg210_info(fotg210, |
| "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n", |
| 100 * uframe_periodic_max/125, uframe_periodic_max); |
| |
| if (uframe_periodic_max != 100) |
| fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n"); |
| |
| fotg210->uframe_periodic_max = uframe_periodic_max; |
| ret = count; |
| |
| out_unlock: |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| return ret; |
| } |
| |
| static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max, |
| store_uframe_periodic_max); |
| |
| static inline int create_sysfs_files(struct fotg210_hcd *fotg210) |
| { |
| struct device *controller = fotg210_to_hcd(fotg210)->self.controller; |
| |
| return device_create_file(controller, &dev_attr_uframe_periodic_max); |
| } |
| |
| static inline void remove_sysfs_files(struct fotg210_hcd *fotg210) |
| { |
| struct device *controller = fotg210_to_hcd(fotg210)->self.controller; |
| |
| device_remove_file(controller, &dev_attr_uframe_periodic_max); |
| } |
| /* On some systems, leaving remote wakeup enabled prevents system shutdown. |
| * The firmware seems to think that powering off is a wakeup event! |
| * This routine turns off remote wakeup and everything else, on all ports. |
| */ |
| static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210) |
| { |
| u32 __iomem *status_reg = &fotg210->regs->port_status; |
| |
| fotg210_writel(fotg210, PORT_RWC_BITS, status_reg); |
| } |
| |
| /* Halt HC, turn off all ports, and let the BIOS use the companion controllers. |
| * Must be called with interrupts enabled and the lock not held. |
| */ |
| static void fotg210_silence_controller(struct fotg210_hcd *fotg210) |
| { |
| fotg210_halt(fotg210); |
| |
| spin_lock_irq(&fotg210->lock); |
| fotg210->rh_state = FOTG210_RH_HALTED; |
| fotg210_turn_off_all_ports(fotg210); |
| spin_unlock_irq(&fotg210->lock); |
| } |
| |
| /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc). |
| * This forcibly disables dma and IRQs, helping kexec and other cases |
| * where the next system software may expect clean state. |
| */ |
| static void fotg210_shutdown(struct usb_hcd *hcd) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| |
| spin_lock_irq(&fotg210->lock); |
| fotg210->shutdown = true; |
| fotg210->rh_state = FOTG210_RH_STOPPING; |
| fotg210->enabled_hrtimer_events = 0; |
| spin_unlock_irq(&fotg210->lock); |
| |
| fotg210_silence_controller(fotg210); |
| |
| hrtimer_cancel(&fotg210->hrtimer); |
| } |
| |
| /* fotg210_work is called from some interrupts, timers, and so on. |
| * it calls driver completion functions, after dropping fotg210->lock. |
| */ |
| static void fotg210_work(struct fotg210_hcd *fotg210) |
| { |
| /* another CPU may drop fotg210->lock during a schedule scan while |
| * it reports urb completions. this flag guards against bogus |
| * attempts at re-entrant schedule scanning. |
| */ |
| if (fotg210->scanning) { |
| fotg210->need_rescan = true; |
| return; |
| } |
| fotg210->scanning = true; |
| |
| rescan: |
| fotg210->need_rescan = false; |
| if (fotg210->async_count) |
| scan_async(fotg210); |
| if (fotg210->intr_count > 0) |
| scan_intr(fotg210); |
| if (fotg210->isoc_count > 0) |
| scan_isoc(fotg210); |
| if (fotg210->need_rescan) |
| goto rescan; |
| fotg210->scanning = false; |
| |
| /* the IO watchdog guards against hardware or driver bugs that |
| * misplace IRQs, and should let us run completely without IRQs. |
| * such lossage has been observed on both VT6202 and VT8235. |
| */ |
| turn_on_io_watchdog(fotg210); |
| } |
| |
| /* Called when the fotg210_hcd module is removed. |
| */ |
| static void fotg210_stop(struct usb_hcd *hcd) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| |
| fotg210_dbg(fotg210, "stop\n"); |
| |
| /* no more interrupts ... */ |
| |
| spin_lock_irq(&fotg210->lock); |
| fotg210->enabled_hrtimer_events = 0; |
| spin_unlock_irq(&fotg210->lock); |
| |
| fotg210_quiesce(fotg210); |
| fotg210_silence_controller(fotg210); |
| fotg210_reset(fotg210); |
| |
| hrtimer_cancel(&fotg210->hrtimer); |
| remove_sysfs_files(fotg210); |
| remove_debug_files(fotg210); |
| |
| /* root hub is shut down separately (first, when possible) */ |
| spin_lock_irq(&fotg210->lock); |
| end_free_itds(fotg210); |
| spin_unlock_irq(&fotg210->lock); |
| fotg210_mem_cleanup(fotg210); |
| |
| #ifdef FOTG210_STATS |
| fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n", |
| fotg210->stats.normal, fotg210->stats.error, |
| fotg210->stats.iaa, fotg210->stats.lost_iaa); |
| fotg210_dbg(fotg210, "complete %ld unlink %ld\n", |
| fotg210->stats.complete, fotg210->stats.unlink); |
| #endif |
| |
| dbg_status(fotg210, "fotg210_stop completed", |
| fotg210_readl(fotg210, &fotg210->regs->status)); |
| } |
| |
| /* one-time init, only for memory state */ |
| static int hcd_fotg210_init(struct usb_hcd *hcd) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| u32 temp; |
| int retval; |
| u32 hcc_params; |
| struct fotg210_qh_hw *hw; |
| |
| spin_lock_init(&fotg210->lock); |
| |
| /* |
| * keep io watchdog by default, those good HCDs could turn off it later |
| */ |
| fotg210->need_io_watchdog = 1; |
| |
| hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| fotg210->hrtimer.function = fotg210_hrtimer_func; |
| fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; |
| |
| hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); |
| |
| /* |
| * by default set standard 80% (== 100 usec/uframe) max periodic |
| * bandwidth as required by USB 2.0 |
| */ |
| fotg210->uframe_periodic_max = 100; |
| |
| /* |
| * hw default: 1K periodic list heads, one per frame. |
| * periodic_size can shrink by USBCMD update if hcc_params allows. |
| */ |
| fotg210->periodic_size = DEFAULT_I_TDPS; |
| INIT_LIST_HEAD(&fotg210->intr_qh_list); |
| INIT_LIST_HEAD(&fotg210->cached_itd_list); |
| |
| if (HCC_PGM_FRAMELISTLEN(hcc_params)) { |
| /* periodic schedule size can be smaller than default */ |
| switch (FOTG210_TUNE_FLS) { |
| case 0: |
| fotg210->periodic_size = 1024; |
| break; |
| case 1: |
| fotg210->periodic_size = 512; |
| break; |
| case 2: |
| fotg210->periodic_size = 256; |
| break; |
| default: |
| BUG(); |
| } |
| } |
| retval = fotg210_mem_init(fotg210, GFP_KERNEL); |
| if (retval < 0) |
| return retval; |
| |
| /* controllers may cache some of the periodic schedule ... */ |
| fotg210->i_thresh = 2; |
| |
| /* |
| * dedicate a qh for the async ring head, since we couldn't unlink |
| * a 'real' qh without stopping the async schedule [4.8]. use it |
| * as the 'reclamation list head' too. |
| * its dummy is used in hw_alt_next of many tds, to prevent the qh |
| * from automatically advancing to the next td after short reads. |
| */ |
| fotg210->async->qh_next.qh = NULL; |
| hw = fotg210->async->hw; |
| hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma); |
| hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD); |
| hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); |
| hw->hw_qtd_next = FOTG210_LIST_END(fotg210); |
| fotg210->async->qh_state = QH_STATE_LINKED; |
| hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma); |
| |
| /* clear interrupt enables, set irq latency */ |
| if (log2_irq_thresh < 0 || log2_irq_thresh > 6) |
| log2_irq_thresh = 0; |
| temp = 1 << (16 + log2_irq_thresh); |
| if (HCC_CANPARK(hcc_params)) { |
| /* HW default park == 3, on hardware that supports it (like |
| * NVidia and ALI silicon), maximizes throughput on the async |
| * schedule by avoiding QH fetches between transfers. |
| * |
| * With fast usb storage devices and NForce2, "park" seems to |
| * make problems: throughput reduction (!), data errors... |
| */ |
| if (park) { |
| park = min_t(unsigned, park, 3); |
| temp |= CMD_PARK; |
| temp |= park << 8; |
| } |
| fotg210_dbg(fotg210, "park %d\n", park); |
| } |
| if (HCC_PGM_FRAMELISTLEN(hcc_params)) { |
| /* periodic schedule size can be smaller than default */ |
| temp &= ~(3 << 2); |
| temp |= (FOTG210_TUNE_FLS << 2); |
| } |
| fotg210->command = temp; |
| |
| /* Accept arbitrarily long scatter-gather lists */ |
| if (!(hcd->driver->flags & HCD_LOCAL_MEM)) |
| hcd->self.sg_tablesize = ~0; |
| return 0; |
| } |
| |
| /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */ |
| static int fotg210_run(struct usb_hcd *hcd) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| u32 temp; |
| u32 hcc_params; |
| |
| hcd->uses_new_polling = 1; |
| |
| /* EHCI spec section 4.1 */ |
| |
| fotg210_writel(fotg210, fotg210->periodic_dma, |
| &fotg210->regs->frame_list); |
| fotg210_writel(fotg210, (u32)fotg210->async->qh_dma, |
| &fotg210->regs->async_next); |
| |
| /* |
| * hcc_params controls whether fotg210->regs->segment must (!!!) |
| * be used; it constrains QH/ITD/SITD and QTD locations. |
| * pci_pool consistent memory always uses segment zero. |
| * streaming mappings for I/O buffers, like pci_map_single(), |
| * can return segments above 4GB, if the device allows. |
| * |
| * NOTE: the dma mask is visible through dev->dma_mask, so |
| * drivers can pass this info along ... like NETIF_F_HIGHDMA, |
| * Scsi_Host.highmem_io, and so forth. It's readonly to all |
| * host side drivers though. |
| */ |
| hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); |
| |
| /* |
| * Philips, Intel, and maybe others need CMD_RUN before the |
| * root hub will detect new devices (why?); NEC doesn't |
| */ |
| fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET); |
| fotg210->command |= CMD_RUN; |
| fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); |
| dbg_cmd(fotg210, "init", fotg210->command); |
| |
| /* |
| * Start, enabling full USB 2.0 functionality ... usb 1.1 devices |
| * are explicitly handed to companion controller(s), so no TT is |
| * involved with the root hub. (Except where one is integrated, |
| * and there's no companion controller unless maybe for USB OTG.) |
| * |
| * Turning on the CF flag will transfer ownership of all ports |
| * from the companions to the EHCI controller. If any of the |
| * companions are in the middle of a port reset at the time, it |
| * could cause trouble. Write-locking ehci_cf_port_reset_rwsem |
| * guarantees that no resets are in progress. After we set CF, |
| * a short delay lets the hardware catch up; new resets shouldn't |
| * be started before the port switching actions could complete. |
| */ |
| down_write(&ehci_cf_port_reset_rwsem); |
| fotg210->rh_state = FOTG210_RH_RUNNING; |
| /* unblock posted writes */ |
| fotg210_readl(fotg210, &fotg210->regs->command); |
| usleep_range(5000, 10000); |
| up_write(&ehci_cf_port_reset_rwsem); |
| fotg210->last_periodic_enable = ktime_get_real(); |
| |
| temp = HC_VERSION(fotg210, |
| fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); |
| fotg210_info(fotg210, |
| "USB %x.%x started, EHCI %x.%02x\n", |
| ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f), |
| temp >> 8, temp & 0xff); |
| |
| fotg210_writel(fotg210, INTR_MASK, |
| &fotg210->regs->intr_enable); /* Turn On Interrupts */ |
| |
| /* GRR this is run-once init(), being done every time the HC starts. |
| * So long as they're part of class devices, we can't do it init() |
| * since the class device isn't created that early. |
| */ |
| create_debug_files(fotg210); |
| create_sysfs_files(fotg210); |
| |
| return 0; |
| } |
| |
| static int fotg210_setup(struct usb_hcd *hcd) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| int retval; |
| |
| fotg210->regs = (void __iomem *)fotg210->caps + |
| HC_LENGTH(fotg210, |
| fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); |
| dbg_hcs_params(fotg210, "reset"); |
| dbg_hcc_params(fotg210, "reset"); |
| |
| /* cache this readonly data; minimize chip reads */ |
| fotg210->hcs_params = fotg210_readl(fotg210, |
| &fotg210->caps->hcs_params); |
| |
| fotg210->sbrn = HCD_USB2; |
| |
| /* data structure init */ |
| retval = hcd_fotg210_init(hcd); |
| if (retval) |
| return retval; |
| |
| retval = fotg210_halt(fotg210); |
| if (retval) |
| return retval; |
| |
| fotg210_reset(fotg210); |
| |
| return 0; |
| } |
| |
| static irqreturn_t fotg210_irq(struct usb_hcd *hcd) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| u32 status, masked_status, pcd_status = 0, cmd; |
| int bh; |
| |
| spin_lock(&fotg210->lock); |
| |
| status = fotg210_readl(fotg210, &fotg210->regs->status); |
| |
| /* e.g. cardbus physical eject */ |
| if (status == ~(u32) 0) { |
| fotg210_dbg(fotg210, "device removed\n"); |
| goto dead; |
| } |
| |
| /* |
| * We don't use STS_FLR, but some controllers don't like it to |
| * remain on, so mask it out along with the other status bits. |
| */ |
| masked_status = status & (INTR_MASK | STS_FLR); |
| |
| /* Shared IRQ? */ |
| if (!masked_status || |
| unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) { |
| spin_unlock(&fotg210->lock); |
| return IRQ_NONE; |
| } |
| |
| /* clear (just) interrupts */ |
| fotg210_writel(fotg210, masked_status, &fotg210->regs->status); |
| cmd = fotg210_readl(fotg210, &fotg210->regs->command); |
| bh = 0; |
| |
| /* unrequested/ignored: Frame List Rollover */ |
| dbg_status(fotg210, "irq", status); |
| |
| /* INT, ERR, and IAA interrupt rates can be throttled */ |
| |
| /* normal [4.15.1.2] or error [4.15.1.1] completion */ |
| if (likely((status & (STS_INT|STS_ERR)) != 0)) { |
| if (likely((status & STS_ERR) == 0)) |
| COUNT(fotg210->stats.normal); |
| else |
| COUNT(fotg210->stats.error); |
| bh = 1; |
| } |
| |
| /* complete the unlinking of some qh [4.15.2.3] */ |
| if (status & STS_IAA) { |
| |
| /* Turn off the IAA watchdog */ |
| fotg210->enabled_hrtimer_events &= |
| ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG); |
| |
| /* |
| * Mild optimization: Allow another IAAD to reset the |
| * hrtimer, if one occurs before the next expiration. |
| * In theory we could always cancel the hrtimer, but |
| * tests show that about half the time it will be reset |
| * for some other event anyway. |
| */ |
| if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG) |
| ++fotg210->next_hrtimer_event; |
| |
| /* guard against (alleged) silicon errata */ |
| if (cmd & CMD_IAAD) |
| fotg210_dbg(fotg210, "IAA with IAAD still set?\n"); |
| if (fotg210->async_iaa) { |
| COUNT(fotg210->stats.iaa); |
| end_unlink_async(fotg210); |
| } else |
| fotg210_dbg(fotg210, "IAA with nothing unlinked?\n"); |
| } |
| |
| /* remote wakeup [4.3.1] */ |
| if (status & STS_PCD) { |
| int pstatus; |
| u32 __iomem *status_reg = &fotg210->regs->port_status; |
| |
| /* kick root hub later */ |
| pcd_status = status; |
| |
| /* resume root hub? */ |
| if (fotg210->rh_state == FOTG210_RH_SUSPENDED) |
| usb_hcd_resume_root_hub(hcd); |
| |
| pstatus = fotg210_readl(fotg210, status_reg); |
| |
| if (test_bit(0, &fotg210->suspended_ports) && |
| ((pstatus & PORT_RESUME) || |
| !(pstatus & PORT_SUSPEND)) && |
| (pstatus & PORT_PE) && |
| fotg210->reset_done[0] == 0) { |
| |
| /* start 20 msec resume signaling from this port, |
| * and make hub_wq collect PORT_STAT_C_SUSPEND to |
| * stop that signaling. Use 5 ms extra for safety, |
| * like usb_port_resume() does. |
| */ |
| fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25); |
| set_bit(0, &fotg210->resuming_ports); |
| fotg210_dbg(fotg210, "port 1 remote wakeup\n"); |
| mod_timer(&hcd->rh_timer, fotg210->reset_done[0]); |
| } |
| } |
| |
| /* PCI errors [4.15.2.4] */ |
| if (unlikely((status & STS_FATAL) != 0)) { |
| fotg210_err(fotg210, "fatal error\n"); |
| dbg_cmd(fotg210, "fatal", cmd); |
| dbg_status(fotg210, "fatal", status); |
| dead: |
| usb_hc_died(hcd); |
| |
| /* Don't let the controller do anything more */ |
| fotg210->shutdown = true; |
| fotg210->rh_state = FOTG210_RH_STOPPING; |
| fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE); |
| fotg210_writel(fotg210, fotg210->command, |
| &fotg210->regs->command); |
| fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); |
| fotg210_handle_controller_death(fotg210); |
| |
| /* Handle completions when the controller stops */ |
| bh = 0; |
| } |
| |
| if (bh) |
| fotg210_work(fotg210); |
| spin_unlock(&fotg210->lock); |
| if (pcd_status) |
| usb_hcd_poll_rh_status(hcd); |
| return IRQ_HANDLED; |
| } |
| |
| /* non-error returns are a promise to giveback() the urb later |
| * we drop ownership so next owner (or urb unlink) can get it |
| * |
| * urb + dev is in hcd.self.controller.urb_list |
| * we're queueing TDs onto software and hardware lists |
| * |
| * hcd-specific init for hcpriv hasn't been done yet |
| * |
| * NOTE: control, bulk, and interrupt share the same code to append TDs |
| * to a (possibly active) QH, and the same QH scanning code. |
| */ |
| static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| struct list_head qtd_list; |
| |
| INIT_LIST_HEAD(&qtd_list); |
| |
| switch (usb_pipetype(urb->pipe)) { |
| case PIPE_CONTROL: |
| /* qh_completions() code doesn't handle all the fault cases |
| * in multi-TD control transfers. Even 1KB is rare anyway. |
| */ |
| if (urb->transfer_buffer_length > (16 * 1024)) |
| return -EMSGSIZE; |
| /* FALLTHROUGH */ |
| /* case PIPE_BULK: */ |
| default: |
| if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) |
| return -ENOMEM; |
| return submit_async(fotg210, urb, &qtd_list, mem_flags); |
| |
| case PIPE_INTERRUPT: |
| if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) |
| return -ENOMEM; |
| return intr_submit(fotg210, urb, &qtd_list, mem_flags); |
| |
| case PIPE_ISOCHRONOUS: |
| return itd_submit(fotg210, urb, mem_flags); |
| } |
| } |
| |
| /* remove from hardware lists |
| * completions normally happen asynchronously |
| */ |
| |
| static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| struct fotg210_qh *qh; |
| unsigned long flags; |
| int rc; |
| |
| spin_lock_irqsave(&fotg210->lock, flags); |
| rc = usb_hcd_check_unlink_urb(hcd, urb, status); |
| if (rc) |
| goto done; |
| |
| switch (usb_pipetype(urb->pipe)) { |
| /* case PIPE_CONTROL: */ |
| /* case PIPE_BULK:*/ |
| default: |
| qh = (struct fotg210_qh *) urb->hcpriv; |
| if (!qh) |
| break; |
| switch (qh->qh_state) { |
| case QH_STATE_LINKED: |
| case QH_STATE_COMPLETING: |
| start_unlink_async(fotg210, qh); |
| break; |
| case QH_STATE_UNLINK: |
| case QH_STATE_UNLINK_WAIT: |
| /* already started */ |
| break; |
| case QH_STATE_IDLE: |
| /* QH might be waiting for a Clear-TT-Buffer */ |
| qh_completions(fotg210, qh); |
| break; |
| } |
| break; |
| |
| case PIPE_INTERRUPT: |
| qh = (struct fotg210_qh *) urb->hcpriv; |
| if (!qh) |
| break; |
| switch (qh->qh_state) { |
| case QH_STATE_LINKED: |
| case QH_STATE_COMPLETING: |
| start_unlink_intr(fotg210, qh); |
| break; |
| case QH_STATE_IDLE: |
| qh_completions(fotg210, qh); |
| break; |
| default: |
| fotg210_dbg(fotg210, "bogus qh %p state %d\n", |
| qh, qh->qh_state); |
| goto done; |
| } |
| break; |
| |
| case PIPE_ISOCHRONOUS: |
| /* itd... */ |
| |
| /* wait till next completion, do it then. */ |
| /* completion irqs can wait up to 1024 msec, */ |
| break; |
| } |
| done: |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| return rc; |
| } |
| |
| /* bulk qh holds the data toggle */ |
| |
| static void fotg210_endpoint_disable(struct usb_hcd *hcd, |
| struct usb_host_endpoint *ep) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| unsigned long flags; |
| struct fotg210_qh *qh, *tmp; |
| |
| /* ASSERT: any requests/urbs are being unlinked */ |
| /* ASSERT: nobody can be submitting urbs for this any more */ |
| |
| rescan: |
| spin_lock_irqsave(&fotg210->lock, flags); |
| qh = ep->hcpriv; |
| if (!qh) |
| goto done; |
| |
| /* endpoints can be iso streams. for now, we don't |
| * accelerate iso completions ... so spin a while. |
| */ |
| if (qh->hw == NULL) { |
| struct fotg210_iso_stream *stream = ep->hcpriv; |
| |
| if (!list_empty(&stream->td_list)) |
| goto idle_timeout; |
| |
| /* BUG_ON(!list_empty(&stream->free_list)); */ |
| kfree(stream); |
| goto done; |
| } |
| |
| if (fotg210->rh_state < FOTG210_RH_RUNNING) |
| qh->qh_state = QH_STATE_IDLE; |
| switch (qh->qh_state) { |
| case QH_STATE_LINKED: |
| case QH_STATE_COMPLETING: |
| for (tmp = fotg210->async->qh_next.qh; |
| tmp && tmp != qh; |
| tmp = tmp->qh_next.qh) |
| continue; |
| /* periodic qh self-unlinks on empty, and a COMPLETING qh |
| * may already be unlinked. |
| */ |
| if (tmp) |
| start_unlink_async(fotg210, qh); |
| /* FALL THROUGH */ |
| case QH_STATE_UNLINK: /* wait for hw to finish? */ |
| case QH_STATE_UNLINK_WAIT: |
| idle_timeout: |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| schedule_timeout_uninterruptible(1); |
| goto rescan; |
| case QH_STATE_IDLE: /* fully unlinked */ |
| if (qh->clearing_tt) |
| goto idle_timeout; |
| if (list_empty(&qh->qtd_list)) { |
| qh_destroy(fotg210, qh); |
| break; |
| } |
| /* else FALL THROUGH */ |
| default: |
| /* caller was supposed to have unlinked any requests; |
| * that's not our job. just leak this memory. |
| */ |
| fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n", |
| qh, ep->desc.bEndpointAddress, qh->qh_state, |
| list_empty(&qh->qtd_list) ? "" : "(has tds)"); |
| break; |
| } |
| done: |
| ep->hcpriv = NULL; |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| } |
| |
| static void fotg210_endpoint_reset(struct usb_hcd *hcd, |
| struct usb_host_endpoint *ep) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| struct fotg210_qh *qh; |
| int eptype = usb_endpoint_type(&ep->desc); |
| int epnum = usb_endpoint_num(&ep->desc); |
| int is_out = usb_endpoint_dir_out(&ep->desc); |
| unsigned long flags; |
| |
| if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT) |
| return; |
| |
| spin_lock_irqsave(&fotg210->lock, flags); |
| qh = ep->hcpriv; |
| |
| /* For Bulk and Interrupt endpoints we maintain the toggle state |
| * in the hardware; the toggle bits in udev aren't used at all. |
| * When an endpoint is reset by usb_clear_halt() we must reset |
| * the toggle bit in the QH. |
| */ |
| if (qh) { |
| usb_settoggle(qh->dev, epnum, is_out, 0); |
| if (!list_empty(&qh->qtd_list)) { |
| WARN_ONCE(1, "clear_halt for a busy endpoint\n"); |
| } else if (qh->qh_state == QH_STATE_LINKED || |
| qh->qh_state == QH_STATE_COMPLETING) { |
| |
| /* The toggle value in the QH can't be updated |
| * while the QH is active. Unlink it now; |
| * re-linking will call qh_refresh(). |
| */ |
| if (eptype == USB_ENDPOINT_XFER_BULK) |
| start_unlink_async(fotg210, qh); |
| else |
| start_unlink_intr(fotg210, qh); |
| } |
| } |
| spin_unlock_irqrestore(&fotg210->lock, flags); |
| } |
| |
| static int fotg210_get_frame(struct usb_hcd *hcd) |
| { |
| struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); |
| |
| return (fotg210_read_frame_index(fotg210) >> 3) % |
| fotg210->periodic_size; |
| } |
| |
| /* The EHCI in ChipIdea HDRC cannot be a separate module or device, |
| * because its registers (and irq) are shared between host/gadget/otg |
| * functions and in order to facilitate role switching we cannot |
| * give the fotg210 driver exclusive access to those. |
| */ |
| MODULE_DESCRIPTION(DRIVER_DESC); |
| MODULE_AUTHOR(DRIVER_AUTHOR); |
| MODULE_LICENSE("GPL"); |
| |
| static const struct hc_driver fotg210_fotg210_hc_driver = { |
| .description = hcd_name, |
| .product_desc = "Faraday USB2.0 Host Controller", |
| .hcd_priv_size = sizeof(struct fotg210_hcd), |
| |
| /* |
| * generic hardware linkage |
| */ |
| .irq = fotg210_irq, |
| .flags = HCD_MEMORY | HCD_USB2, |
| |
| /* |
| * basic lifecycle operations |
| */ |
| .reset = hcd_fotg210_init, |
| .start = fotg210_run, |
| .stop = fotg210_stop, |
| .shutdown = fotg210_shutdown, |
| |
| /* |
| * managing i/o requests and associated device resources |
| */ |
| .urb_enqueue = fotg210_urb_enqueue, |
| .urb_dequeue = fotg210_urb_dequeue, |
| .endpoint_disable = fotg210_endpoint_disable, |
| .endpoint_reset = fotg210_endpoint_reset, |
| |
| /* |
| * scheduling support |
| */ |
| .get_frame_number = fotg210_get_frame, |
| |
| /* |
| * root hub support |
| */ |
| .hub_status_data = fotg210_hub_status_data, |
| .hub_control = fotg210_hub_control, |
| .bus_suspend = fotg210_bus_suspend, |
| .bus_resume = fotg210_bus_resume, |
| |
| .relinquish_port = fotg210_relinquish_port, |
| .port_handed_over = fotg210_port_handed_over, |
| |
| .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete, |
| }; |
| |
| static void fotg210_init(struct fotg210_hcd *fotg210) |
| { |
| u32 value; |
| |
| iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY, |
| &fotg210->regs->gmir); |
| |
| value = ioread32(&fotg210->regs->otgcsr); |
| value &= ~OTGCSR_A_BUS_DROP; |
| value |= OTGCSR_A_BUS_REQ; |
| iowrite32(value, &fotg210->regs->otgcsr); |
| } |
| |
| /** |
| * fotg210_hcd_probe - initialize faraday FOTG210 HCDs |
| * |
| * Allocates basic resources for this USB host controller, and |
| * then invokes the start() method for the HCD associated with it |
| * through the hotplug entry's driver_data. |
| */ |
| static int fotg210_hcd_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct usb_hcd *hcd; |
| struct resource *res; |
| int irq; |
| int retval = -ENODEV; |
| struct fotg210_hcd *fotg210; |
| |
| if (usb_disabled()) |
| return -ENODEV; |
| |
| pdev->dev.power.power_state = PMSG_ON; |
| |
| res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
| if (!res) { |
| dev_err(dev, "Found HC with no IRQ. Check %s setup!\n", |
| dev_name(dev)); |
| return -ENODEV; |
| } |
| |
| irq = res->start; |
| |
| hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev, |
| dev_name(dev)); |
| if (!hcd) { |
| dev_err(dev, "failed to create hcd with err %d\n", retval); |
| retval = -ENOMEM; |
| goto fail_create_hcd; |
| } |
| |
| hcd->has_tt = 1; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| hcd->regs = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(hcd->regs)) { |
| retval = PTR_ERR(hcd->regs); |
| goto failed; |
| } |
| |
| hcd->rsrc_start = res->start; |
| hcd->rsrc_len = resource_size(res); |
| |
| fotg210 = hcd_to_fotg210(hcd); |
| |
| fotg210->caps = hcd->regs; |
| |
| retval = fotg210_setup(hcd); |
| if (retval) |
| goto failed; |
| |
| fotg210_init(fotg210); |
| |
| retval = usb_add_hcd(hcd, irq, IRQF_SHARED); |
| if (retval) { |
| dev_err(dev, "failed to add hcd with err %d\n", retval); |
| goto failed; |
| } |
| device_wakeup_enable(hcd->self.controller); |
| |
| return retval; |
| |
| failed: |
| usb_put_hcd(hcd); |
| fail_create_hcd: |
| dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval); |
| return retval; |
| } |
| |
| /** |
| * fotg210_hcd_remove - shutdown processing for EHCI HCDs |
| * @dev: USB Host Controller being removed |
| * |
| */ |
| static int fotg210_hcd_remove(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct usb_hcd *hcd = dev_get_drvdata(dev); |
| |
| if (!hcd) |
| return 0; |
| |
| usb_remove_hcd(hcd); |
| usb_put_hcd(hcd); |
| |
| return 0; |
| } |
| |
| static struct platform_driver fotg210_hcd_driver = { |
| .driver = { |
| .name = "fotg210-hcd", |
| }, |
| .probe = fotg210_hcd_probe, |
| .remove = fotg210_hcd_remove, |
| }; |
| |
| static int __init fotg210_hcd_init(void) |
| { |
| int retval = 0; |
| |
| if (usb_disabled()) |
| return -ENODEV; |
| |
| pr_info("%s: " DRIVER_DESC "\n", hcd_name); |
| set_bit(USB_EHCI_LOADED, &usb_hcds_loaded); |
| if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) || |
| test_bit(USB_OHCI_LOADED, &usb_hcds_loaded)) |
| pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n"); |
| |
| pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n", |
| hcd_name, sizeof(struct fotg210_qh), |
| sizeof(struct fotg210_qtd), |
| sizeof(struct fotg210_itd)); |
| |
| fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root); |
| if (!fotg210_debug_root) { |
| retval = -ENOENT; |
| goto err_debug; |
| } |
| |
| retval = platform_driver_register(&fotg210_hcd_driver); |
| if (retval < 0) |
| goto clean; |
| return retval; |
| |
| clean: |
| debugfs_remove(fotg210_debug_root); |
| fotg210_debug_root = NULL; |
| err_debug: |
| clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); |
| return retval; |
| } |
| module_init(fotg210_hcd_init); |
| |
| static void __exit fotg210_hcd_cleanup(void) |
| { |
| platform_driver_unregister(&fotg210_hcd_driver); |
| debugfs_remove(fotg210_debug_root); |
| clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); |
| } |
| module_exit(fotg210_hcd_cleanup); |