Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/include/math-emu/double.h b/include/math-emu/double.h
new file mode 100644
index 0000000..655ccf1
--- /dev/null
+++ b/include/math-emu/double.h
@@ -0,0 +1,205 @@
+/* Software floating-point emulation.
+   Definitions for IEEE Double Precision
+   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz),
+		  David S. Miller (davem@redhat.com) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If
+   not, write to the Free Software Foundation, Inc.,
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+#ifndef    __MATH_EMU_DOUBLE_H__
+#define    __MATH_EMU_DOUBLE_H__
+
+#if _FP_W_TYPE_SIZE < 32
+#error "Here's a nickel kid.  Go buy yourself a real computer."
+#endif
+
+#if _FP_W_TYPE_SIZE < 64
+#define _FP_FRACTBITS_D		(2 * _FP_W_TYPE_SIZE)
+#else
+#define _FP_FRACTBITS_D		_FP_W_TYPE_SIZE
+#endif
+
+#define _FP_FRACBITS_D		53
+#define _FP_FRACXBITS_D		(_FP_FRACTBITS_D - _FP_FRACBITS_D)
+#define _FP_WFRACBITS_D		(_FP_WORKBITS + _FP_FRACBITS_D)
+#define _FP_WFRACXBITS_D	(_FP_FRACTBITS_D - _FP_WFRACBITS_D)
+#define _FP_EXPBITS_D		11
+#define _FP_EXPBIAS_D		1023
+#define _FP_EXPMAX_D		2047
+
+#define _FP_QNANBIT_D		\
+	((_FP_W_TYPE)1 << (_FP_FRACBITS_D-2) % _FP_W_TYPE_SIZE)
+#define _FP_IMPLBIT_D		\
+	((_FP_W_TYPE)1 << (_FP_FRACBITS_D-1) % _FP_W_TYPE_SIZE)
+#define _FP_OVERFLOW_D		\
+	((_FP_W_TYPE)1 << _FP_WFRACBITS_D % _FP_W_TYPE_SIZE)
+
+#if _FP_W_TYPE_SIZE < 64
+
+union _FP_UNION_D
+{
+  double flt;
+  struct {
+#if __BYTE_ORDER == __BIG_ENDIAN
+    unsigned sign  : 1;
+    unsigned exp   : _FP_EXPBITS_D;
+    unsigned frac1 : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0) - _FP_W_TYPE_SIZE;
+    unsigned frac0 : _FP_W_TYPE_SIZE;
+#else
+    unsigned frac0 : _FP_W_TYPE_SIZE;
+    unsigned frac1 : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0) - _FP_W_TYPE_SIZE;
+    unsigned exp   : _FP_EXPBITS_D;
+    unsigned sign  : 1;
+#endif
+  } bits __attribute__((packed));
+};
+
+#define FP_DECL_D(X)		_FP_DECL(2,X)
+#define FP_UNPACK_RAW_D(X,val)	_FP_UNPACK_RAW_2(D,X,val)
+#define FP_UNPACK_RAW_DP(X,val)	_FP_UNPACK_RAW_2_P(D,X,val)
+#define FP_PACK_RAW_D(val,X)	_FP_PACK_RAW_2(D,val,X)
+#define FP_PACK_RAW_DP(val,X)		\
+  do {					\
+    if (!FP_INHIBIT_RESULTS)		\
+      _FP_PACK_RAW_2_P(D,val,X);	\
+  } while (0)
+
+#define FP_UNPACK_D(X,val)		\
+  do {					\
+    _FP_UNPACK_RAW_2(D,X,val);		\
+    _FP_UNPACK_CANONICAL(D,2,X);	\
+  } while (0)
+
+#define FP_UNPACK_DP(X,val)		\
+  do {					\
+    _FP_UNPACK_RAW_2_P(D,X,val);	\
+    _FP_UNPACK_CANONICAL(D,2,X);	\
+  } while (0)
+
+#define FP_PACK_D(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(D,2,X);		\
+    _FP_PACK_RAW_2(D,val,X);		\
+  } while (0)
+
+#define FP_PACK_DP(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(D,2,X);		\
+    if (!FP_INHIBIT_RESULTS)		\
+      _FP_PACK_RAW_2_P(D,val,X);	\
+  } while (0)
+
+#define FP_ISSIGNAN_D(X)		_FP_ISSIGNAN(D,2,X)
+#define FP_NEG_D(R,X)			_FP_NEG(D,2,R,X)
+#define FP_ADD_D(R,X,Y)			_FP_ADD(D,2,R,X,Y)
+#define FP_SUB_D(R,X,Y)			_FP_SUB(D,2,R,X,Y)
+#define FP_MUL_D(R,X,Y)			_FP_MUL(D,2,R,X,Y)
+#define FP_DIV_D(R,X,Y)			_FP_DIV(D,2,R,X,Y)
+#define FP_SQRT_D(R,X)			_FP_SQRT(D,2,R,X)
+#define _FP_SQRT_MEAT_D(R,S,T,X,Q)	_FP_SQRT_MEAT_2(R,S,T,X,Q)
+
+#define FP_CMP_D(r,X,Y,un)	_FP_CMP(D,2,r,X,Y,un)
+#define FP_CMP_EQ_D(r,X,Y)	_FP_CMP_EQ(D,2,r,X,Y)
+
+#define FP_TO_INT_D(r,X,rsz,rsg)	_FP_TO_INT(D,2,r,X,rsz,rsg)
+#define FP_TO_INT_ROUND_D(r,X,rsz,rsg)	_FP_TO_INT_ROUND(D,2,r,X,rsz,rsg)
+#define FP_FROM_INT_D(X,r,rs,rt)	_FP_FROM_INT(D,2,X,r,rs,rt)
+
+#define _FP_FRAC_HIGH_D(X)	_FP_FRAC_HIGH_2(X)
+#define _FP_FRAC_HIGH_RAW_D(X)	_FP_FRAC_HIGH_2(X)
+
+#else
+
+union _FP_UNION_D
+{
+  double flt;
+  struct {
+#if __BYTE_ORDER == __BIG_ENDIAN
+    unsigned sign : 1;
+    unsigned exp  : _FP_EXPBITS_D;
+    unsigned long frac : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0);
+#else
+    unsigned long frac : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0);
+    unsigned exp  : _FP_EXPBITS_D;
+    unsigned sign : 1;
+#endif
+  } bits __attribute__((packed));
+};
+
+#define FP_DECL_D(X)		_FP_DECL(1,X)
+#define FP_UNPACK_RAW_D(X,val)	_FP_UNPACK_RAW_1(D,X,val)
+#define FP_UNPACK_RAW_DP(X,val)	_FP_UNPACK_RAW_1_P(D,X,val)
+#define FP_PACK_RAW_D(val,X)	_FP_PACK_RAW_1(D,val,X)
+#define FP_PACK_RAW_DP(val,X)		\
+  do {					\
+    if (!FP_INHIBIT_RESULTS)		\
+      _FP_PACK_RAW_1_P(D,val,X);	\
+  } while (0)
+
+#define FP_UNPACK_D(X,val)		\
+  do {					\
+    _FP_UNPACK_RAW_1(D,X,val);		\
+    _FP_UNPACK_CANONICAL(D,1,X);	\
+  } while (0)
+
+#define FP_UNPACK_DP(X,val)		\
+  do {					\
+    _FP_UNPACK_RAW_1_P(D,X,val);	\
+    _FP_UNPACK_CANONICAL(D,1,X);	\
+  } while (0)
+
+#define FP_PACK_D(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(D,1,X);		\
+    _FP_PACK_RAW_1(D,val,X);		\
+  } while (0)
+
+#define FP_PACK_DP(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(D,1,X);		\
+    if (!FP_INHIBIT_RESULTS)		\
+      _FP_PACK_RAW_1_P(D,val,X);	\
+  } while (0)
+
+#define FP_ISSIGNAN_D(X)		_FP_ISSIGNAN(D,1,X)
+#define FP_NEG_D(R,X)			_FP_NEG(D,1,R,X)
+#define FP_ADD_D(R,X,Y)			_FP_ADD(D,1,R,X,Y)
+#define FP_SUB_D(R,X,Y)			_FP_SUB(D,1,R,X,Y)
+#define FP_MUL_D(R,X,Y)			_FP_MUL(D,1,R,X,Y)
+#define FP_DIV_D(R,X,Y)			_FP_DIV(D,1,R,X,Y)
+#define FP_SQRT_D(R,X)			_FP_SQRT(D,1,R,X)
+#define _FP_SQRT_MEAT_D(R,S,T,X,Q)	_FP_SQRT_MEAT_1(R,S,T,X,Q)
+
+/* The implementation of _FP_MUL_D and _FP_DIV_D should be chosen by
+   the target machine.  */
+
+#define FP_CMP_D(r,X,Y,un)	_FP_CMP(D,1,r,X,Y,un)
+#define FP_CMP_EQ_D(r,X,Y)	_FP_CMP_EQ(D,1,r,X,Y)
+
+#define FP_TO_INT_D(r,X,rsz,rsg)	_FP_TO_INT(D,1,r,X,rsz,rsg)
+#define FP_TO_INT_ROUND_D(r,X,rsz,rsg)	_FP_TO_INT_ROUND(D,1,r,X,rsz,rsg)
+#define FP_FROM_INT_D(X,r,rs,rt)	_FP_FROM_INT(D,1,X,r,rs,rt)
+
+#define _FP_FRAC_HIGH_D(X)	_FP_FRAC_HIGH_1(X)
+#define _FP_FRAC_HIGH_RAW_D(X)	_FP_FRAC_HIGH_1(X)
+
+#endif /* W_TYPE_SIZE < 64 */
+
+
+#endif /* __MATH_EMU_DOUBLE_H__ */
diff --git a/include/math-emu/extended.h b/include/math-emu/extended.h
new file mode 100644
index 0000000..84770fc
--- /dev/null
+++ b/include/math-emu/extended.h
@@ -0,0 +1,396 @@
+/* Software floating-point emulation.
+   Definitions for IEEE Extended Precision.
+   Copyright (C) 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Jakub Jelinek (jj@ultra.linux.cz).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If
+   not, write to the Free Software Foundation, Inc.,
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+
+#ifndef    __MATH_EMU_EXTENDED_H__
+#define    __MATH_EMU_EXTENDED_H__
+
+#if _FP_W_TYPE_SIZE < 32
+#error "Here's a nickel, kid. Go buy yourself a real computer."
+#endif
+
+#if _FP_W_TYPE_SIZE < 64
+#define _FP_FRACTBITS_E         (4*_FP_W_TYPE_SIZE)
+#else
+#define _FP_FRACTBITS_E		(2*_FP_W_TYPE_SIZE)
+#endif
+
+#define _FP_FRACBITS_E		64
+#define _FP_FRACXBITS_E		(_FP_FRACTBITS_E - _FP_FRACBITS_E)
+#define _FP_WFRACBITS_E		(_FP_WORKBITS + _FP_FRACBITS_E)
+#define _FP_WFRACXBITS_E	(_FP_FRACTBITS_E - _FP_WFRACBITS_E)
+#define _FP_EXPBITS_E		15
+#define _FP_EXPBIAS_E		16383
+#define _FP_EXPMAX_E		32767
+
+#define _FP_QNANBIT_E		\
+	((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
+#define _FP_IMPLBIT_E		\
+	((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
+#define _FP_OVERFLOW_E		\
+	((_FP_W_TYPE)1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
+
+#if _FP_W_TYPE_SIZE < 64
+
+union _FP_UNION_E
+{
+   long double flt;
+   struct 
+   {
+#if __BYTE_ORDER == __BIG_ENDIAN
+      unsigned long pad1 : _FP_W_TYPE_SIZE;
+      unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
+      unsigned long sign : 1;
+      unsigned long exp : _FP_EXPBITS_E;
+      unsigned long frac1 : _FP_W_TYPE_SIZE;
+      unsigned long frac0 : _FP_W_TYPE_SIZE;
+#else
+      unsigned long frac0 : _FP_W_TYPE_SIZE;
+      unsigned long frac1 : _FP_W_TYPE_SIZE;
+      unsigned exp : _FP_EXPBITS_E;
+      unsigned sign : 1;
+#endif /* not bigendian */
+   } bits __attribute__((packed));
+};
+
+
+#define FP_DECL_E(X)		_FP_DECL(4,X)
+
+#define FP_UNPACK_RAW_E(X, val)				\
+  do {							\
+    union _FP_UNION_E _flo; _flo.flt = (val);		\
+							\
+    X##_f[2] = 0; X##_f[3] = 0;				\
+    X##_f[0] = _flo.bits.frac0;				\
+    X##_f[1] = _flo.bits.frac1;				\
+    X##_e  = _flo.bits.exp;				\
+    X##_s  = _flo.bits.sign;				\
+    if (!X##_e && (X##_f[1] || X##_f[0])		\
+        && !(X##_f[1] & _FP_IMPLBIT_E))			\
+      {							\
+        X##_e++;					\
+        FP_SET_EXCEPTION(FP_EX_DENORM);			\
+      }							\
+  } while (0)
+
+#define FP_UNPACK_RAW_EP(X, val)			\
+  do {							\
+    union _FP_UNION_E *_flo =				\
+    (union _FP_UNION_E *)(val);				\
+							\
+    X##_f[2] = 0; X##_f[3] = 0;				\
+    X##_f[0] = _flo->bits.frac0;			\
+    X##_f[1] = _flo->bits.frac1;			\
+    X##_e  = _flo->bits.exp;				\
+    X##_s  = _flo->bits.sign;				\
+    if (!X##_e && (X##_f[1] || X##_f[0])		\
+        && !(X##_f[1] & _FP_IMPLBIT_E))			\
+      {							\
+        X##_e++;					\
+        FP_SET_EXCEPTION(FP_EX_DENORM);			\
+      }							\
+  } while (0)
+
+#define FP_PACK_RAW_E(val, X)				\
+  do {							\
+    union _FP_UNION_E _flo;				\
+							\
+    if (X##_e) X##_f[1] |= _FP_IMPLBIT_E;		\
+    else X##_f[1] &= ~(_FP_IMPLBIT_E);			\
+    _flo.bits.frac0 = X##_f[0];				\
+    _flo.bits.frac1 = X##_f[1];				\
+    _flo.bits.exp   = X##_e;				\
+    _flo.bits.sign  = X##_s;				\
+							\
+    (val) = _flo.flt;					\
+  } while (0)
+
+#define FP_PACK_RAW_EP(val, X)				\
+  do {							\
+    if (!FP_INHIBIT_RESULTS)				\
+      {							\
+	union _FP_UNION_E *_flo =			\
+	  (union _FP_UNION_E *)(val);			\
+							\
+	if (X##_e) X##_f[1] |= _FP_IMPLBIT_E;		\
+	else X##_f[1] &= ~(_FP_IMPLBIT_E);		\
+	_flo->bits.frac0 = X##_f[0];			\
+	_flo->bits.frac1 = X##_f[1];			\
+	_flo->bits.exp   = X##_e;			\
+	_flo->bits.sign  = X##_s;			\
+      }							\
+  } while (0)
+
+#define FP_UNPACK_E(X,val)		\
+  do {					\
+    FP_UNPACK_RAW_E(X,val);		\
+    _FP_UNPACK_CANONICAL(E,4,X);	\
+  } while (0)
+
+#define FP_UNPACK_EP(X,val)		\
+  do {					\
+    FP_UNPACK_RAW_2_P(X,val);		\
+    _FP_UNPACK_CANONICAL(E,4,X);	\
+  } while (0)
+
+#define FP_PACK_E(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(E,4,X);		\
+    FP_PACK_RAW_E(val,X);		\
+  } while (0)
+
+#define FP_PACK_EP(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(E,4,X);		\
+    FP_PACK_RAW_EP(val,X);		\
+  } while (0)
+
+#define FP_ISSIGNAN_E(X)	_FP_ISSIGNAN(E,4,X)
+#define FP_NEG_E(R,X)		_FP_NEG(E,4,R,X)
+#define FP_ADD_E(R,X,Y)		_FP_ADD(E,4,R,X,Y)
+#define FP_SUB_E(R,X,Y)		_FP_SUB(E,4,R,X,Y)
+#define FP_MUL_E(R,X,Y)		_FP_MUL(E,4,R,X,Y)
+#define FP_DIV_E(R,X,Y)		_FP_DIV(E,4,R,X,Y)
+#define FP_SQRT_E(R,X)		_FP_SQRT(E,4,R,X)
+
+/*
+ * Square root algorithms:
+ * We have just one right now, maybe Newton approximation
+ * should be added for those machines where division is fast.
+ * This has special _E version because standard _4 square
+ * root would not work (it has to start normally with the
+ * second word and not the first), but as we have to do it
+ * anyway, we optimize it by doing most of the calculations
+ * in two UWtype registers instead of four.
+ */
+ 
+#define _FP_SQRT_MEAT_E(R, S, T, X, q)			\
+  do {							\
+    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\
+    _FP_FRAC_SRL_4(X, (_FP_WORKBITS));			\
+    while (q)						\
+      {							\
+	T##_f[1] = S##_f[1] + q;			\
+	if (T##_f[1] <= X##_f[1])			\
+	  {						\
+	    S##_f[1] = T##_f[1] + q;			\
+	    X##_f[1] -= T##_f[1];			\
+	    R##_f[1] += q;				\
+	  }						\
+	_FP_FRAC_SLL_2(X, 1);				\
+	q >>= 1;					\
+      }							\
+    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\
+    while (q)						\
+      {							\
+	T##_f[0] = S##_f[0] + q;			\
+	T##_f[1] = S##_f[1];				\
+	if (T##_f[1] < X##_f[1] || 			\
+	    (T##_f[1] == X##_f[1] &&			\
+	     T##_f[0] <= X##_f[0]))			\
+	  {						\
+	    S##_f[0] = T##_f[0] + q;			\
+	    S##_f[1] += (T##_f[0] > S##_f[0]);		\
+	    _FP_FRAC_DEC_2(X, T);			\
+	    R##_f[0] += q;				\
+	  }						\
+	_FP_FRAC_SLL_2(X, 1);				\
+	q >>= 1;					\
+      }							\
+    _FP_FRAC_SLL_4(R, (_FP_WORKBITS));			\
+    if (X##_f[0] | X##_f[1])				\
+      {							\
+	if (S##_f[1] < X##_f[1] || 			\
+	    (S##_f[1] == X##_f[1] &&			\
+	     S##_f[0] < X##_f[0]))			\
+	  R##_f[0] |= _FP_WORK_ROUND;			\
+	R##_f[0] |= _FP_WORK_STICKY;			\
+      }							\
+  } while (0)
+
+#define FP_CMP_E(r,X,Y,un)	_FP_CMP(E,4,r,X,Y,un)
+#define FP_CMP_EQ_E(r,X,Y)	_FP_CMP_EQ(E,4,r,X,Y)
+
+#define FP_TO_INT_E(r,X,rsz,rsg)	_FP_TO_INT(E,4,r,X,rsz,rsg)
+#define FP_TO_INT_ROUND_E(r,X,rsz,rsg)	_FP_TO_INT_ROUND(E,4,r,X,rsz,rsg)
+#define FP_FROM_INT_E(X,r,rs,rt)	_FP_FROM_INT(E,4,X,r,rs,rt)
+
+#define _FP_FRAC_HIGH_E(X)	(X##_f[2])
+#define _FP_FRAC_HIGH_RAW_E(X)	(X##_f[1])
+
+#else   /* not _FP_W_TYPE_SIZE < 64 */
+union _FP_UNION_E
+{
+  long double flt /* __attribute__((mode(TF))) */ ;
+  struct {
+#if __BYTE_ORDER == __BIG_ENDIAN
+    unsigned long pad : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
+    unsigned sign  : 1;
+    unsigned exp   : _FP_EXPBITS_E;
+    unsigned long frac : _FP_W_TYPE_SIZE;
+#else
+    unsigned long frac : _FP_W_TYPE_SIZE;
+    unsigned exp   : _FP_EXPBITS_E;
+    unsigned sign  : 1;
+#endif
+  } bits;
+};
+
+#define FP_DECL_E(X)		_FP_DECL(2,X)
+
+#define FP_UNPACK_RAW_E(X, val)					\
+  do {								\
+    union _FP_UNION_E _flo; _flo.flt = (val);			\
+								\
+    X##_f0 = _flo.bits.frac;					\
+    X##_f1 = 0;							\
+    X##_e = _flo.bits.exp;					\
+    X##_s = _flo.bits.sign;					\
+    if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E))		\
+      {								\
+        X##_e++;						\
+        FP_SET_EXCEPTION(FP_EX_DENORM);				\
+      }								\
+  } while (0)
+
+#define FP_UNPACK_RAW_EP(X, val)				\
+  do {								\
+    union _FP_UNION_E *_flo =					\
+      (union _FP_UNION_E *)(val);				\
+								\
+    X##_f0 = _flo->bits.frac;					\
+    X##_f1 = 0;							\
+    X##_e = _flo->bits.exp;					\
+    X##_s = _flo->bits.sign;					\
+    if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E))		\
+      {								\
+        X##_e++;						\
+        FP_SET_EXCEPTION(FP_EX_DENORM);				\
+      }								\
+  } while (0)
+
+#define FP_PACK_RAW_E(val, X)					\
+  do {								\
+    union _FP_UNION_E _flo;					\
+								\
+    if (X##_e) X##_f0 |= _FP_IMPLBIT_E;				\
+    else X##_f0 &= ~(_FP_IMPLBIT_E);				\
+    _flo.bits.frac = X##_f0;					\
+    _flo.bits.exp  = X##_e;					\
+    _flo.bits.sign = X##_s;					\
+								\
+    (val) = _flo.flt;						\
+  } while (0)
+
+#define FP_PACK_RAW_EP(fs, val, X)				\
+  do {								\
+    if (!FP_INHIBIT_RESULTS)					\
+      {								\
+	union _FP_UNION_E *_flo =				\
+	  (union _FP_UNION_E *)(val);				\
+								\
+	if (X##_e) X##_f0 |= _FP_IMPLBIT_E;			\
+	else X##_f0 &= ~(_FP_IMPLBIT_E);			\
+	_flo->bits.frac = X##_f0;				\
+	_flo->bits.exp  = X##_e;				\
+	_flo->bits.sign = X##_s;				\
+      }								\
+  } while (0)
+
+
+#define FP_UNPACK_E(X,val)		\
+  do {					\
+    FP_UNPACK_RAW_E(X,val);		\
+    _FP_UNPACK_CANONICAL(E,2,X);	\
+  } while (0)
+
+#define FP_UNPACK_EP(X,val)		\
+  do {					\
+    FP_UNPACK_RAW_EP(X,val);		\
+    _FP_UNPACK_CANONICAL(E,2,X);	\
+  } while (0)
+
+#define FP_PACK_E(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(E,2,X);		\
+    FP_PACK_RAW_E(val,X);		\
+  } while (0)
+
+#define FP_PACK_EP(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(E,2,X);		\
+    FP_PACK_RAW_EP(val,X);		\
+  } while (0)
+
+#define FP_ISSIGNAN_E(X)	_FP_ISSIGNAN(E,2,X)
+#define FP_NEG_E(R,X)		_FP_NEG(E,2,R,X)
+#define FP_ADD_E(R,X,Y)		_FP_ADD(E,2,R,X,Y)
+#define FP_SUB_E(R,X,Y)		_FP_SUB(E,2,R,X,Y)
+#define FP_MUL_E(R,X,Y)		_FP_MUL(E,2,R,X,Y)
+#define FP_DIV_E(R,X,Y)		_FP_DIV(E,2,R,X,Y)
+#define FP_SQRT_E(R,X)		_FP_SQRT(E,2,R,X)
+
+/*
+ * Square root algorithms:
+ * We have just one right now, maybe Newton approximation
+ * should be added for those machines where division is fast.
+ * We optimize it by doing most of the calculations
+ * in one UWtype registers instead of two, although we don't
+ * have to.
+ */
+#define _FP_SQRT_MEAT_E(R, S, T, X, q)			\
+  do {							\
+    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\
+    _FP_FRAC_SRL_2(X, (_FP_WORKBITS));			\
+    while (q)						\
+      {							\
+        T##_f0 = S##_f0 + q;				\
+        if (T##_f0 <= X##_f0)				\
+          {						\
+            S##_f0 = T##_f0 + q;			\
+            X##_f0 -= T##_f0;				\
+            R##_f0 += q;				\
+          }						\
+        _FP_FRAC_SLL_1(X, 1);				\
+        q >>= 1;					\
+      }							\
+    _FP_FRAC_SLL_2(R, (_FP_WORKBITS));			\
+    if (X##_f0)						\
+      {							\
+	if (S##_f0 < X##_f0)				\
+	  R##_f0 |= _FP_WORK_ROUND;			\
+	R##_f0 |= _FP_WORK_STICKY;			\
+      }							\
+  } while (0)
+ 
+#define FP_CMP_E(r,X,Y,un)	_FP_CMP(E,2,r,X,Y,un)
+#define FP_CMP_EQ_E(r,X,Y)	_FP_CMP_EQ(E,2,r,X,Y)
+
+#define FP_TO_INT_E(r,X,rsz,rsg)	_FP_TO_INT(E,2,r,X,rsz,rsg)
+#define FP_TO_INT_ROUND_E(r,X,rsz,rsg)	_FP_TO_INT_ROUND(E,2,r,X,rsz,rsg)
+#define FP_FROM_INT_E(X,r,rs,rt)	_FP_FROM_INT(E,2,X,r,rs,rt)
+
+#define _FP_FRAC_HIGH_E(X)	(X##_f1)
+#define _FP_FRAC_HIGH_RAW_E(X)	(X##_f0)
+
+#endif /* not _FP_W_TYPE_SIZE < 64 */
+
+#endif /* __MATH_EMU_EXTENDED_H__ */
diff --git a/include/math-emu/op-1.h b/include/math-emu/op-1.h
new file mode 100644
index 0000000..3be3bb4
--- /dev/null
+++ b/include/math-emu/op-1.h
@@ -0,0 +1,303 @@
+/* Software floating-point emulation.
+   Basic one-word fraction declaration and manipulation.
+   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz),
+		  David S. Miller (davem@redhat.com) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If
+   not, write to the Free Software Foundation, Inc.,
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+#ifndef    __MATH_EMU_OP_1_H__
+#define    __MATH_EMU_OP_1_H__
+
+#define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f=0
+#define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f)
+#define _FP_FRAC_SET_1(X,I)	(X##_f = I)
+#define _FP_FRAC_HIGH_1(X)	(X##_f)
+#define _FP_FRAC_LOW_1(X)	(X##_f)
+#define _FP_FRAC_WORD_1(X,w)	(X##_f)
+
+#define _FP_FRAC_ADDI_1(X,I)	(X##_f += I)
+#define _FP_FRAC_SLL_1(X,N)			\
+  do {						\
+    if (__builtin_constant_p(N) && (N) == 1)	\
+      X##_f += X##_f;				\
+    else					\
+      X##_f <<= (N);				\
+  } while (0)
+#define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N)
+
+/* Right shift with sticky-lsb.  */
+#define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz)
+
+#define __FP_FRAC_SRS_1(X,N,sz)						\
+   (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\
+		     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
+
+#define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f)
+#define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f)
+#define _FP_FRAC_DEC_1(X,Y)	(X##_f -= Y##_f)
+#define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f)
+
+/* Predicates */
+#define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0)
+#define _FP_FRAC_ZEROP_1(X)	(X##_f == 0)
+#define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs)
+#define _FP_FRAC_CLEAR_OVERP_1(fs,X)	(X##_f &= ~_FP_OVERFLOW_##fs)
+#define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f)
+#define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f)
+#define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f)
+
+#define _FP_ZEROFRAC_1		0
+#define _FP_MINFRAC_1		1
+#define _FP_MAXFRAC_1		(~(_FP_WS_TYPE)0)
+
+/*
+ * Unpack the raw bits of a native fp value.  Do not classify or
+ * normalize the data.
+ */
+
+#define _FP_UNPACK_RAW_1(fs, X, val)				\
+  do {								\
+    union _FP_UNION_##fs _flo; _flo.flt = (val);		\
+								\
+    X##_f = _flo.bits.frac;					\
+    X##_e = _flo.bits.exp;					\
+    X##_s = _flo.bits.sign;					\
+  } while (0)
+
+#define _FP_UNPACK_RAW_1_P(fs, X, val)				\
+  do {								\
+    union _FP_UNION_##fs *_flo =				\
+      (union _FP_UNION_##fs *)(val);				\
+								\
+    X##_f = _flo->bits.frac;					\
+    X##_e = _flo->bits.exp;					\
+    X##_s = _flo->bits.sign;					\
+  } while (0)
+
+/*
+ * Repack the raw bits of a native fp value.
+ */
+
+#define _FP_PACK_RAW_1(fs, val, X)				\
+  do {								\
+    union _FP_UNION_##fs _flo;					\
+								\
+    _flo.bits.frac = X##_f;					\
+    _flo.bits.exp  = X##_e;					\
+    _flo.bits.sign = X##_s;					\
+								\
+    (val) = _flo.flt;						\
+  } while (0)
+
+#define _FP_PACK_RAW_1_P(fs, val, X)				\
+  do {								\
+    union _FP_UNION_##fs *_flo =				\
+      (union _FP_UNION_##fs *)(val);				\
+								\
+    _flo->bits.frac = X##_f;					\
+    _flo->bits.exp  = X##_e;					\
+    _flo->bits.sign = X##_s;					\
+  } while (0)
+
+
+/*
+ * Multiplication algorithms:
+ */
+
+/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
+   multiplication immediately.  */
+
+#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\
+  do {									\
+    R##_f = X##_f * Y##_f;						\
+    /* Normalize since we know where the msb of the multiplicands	\
+       were (bit B), we know that the msb of the of the product is	\
+       at either 2B or 2B-1.  */					\
+    _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);			\
+  } while (0)
+
+/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
+
+#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\
+  do {									\
+    _FP_W_TYPE _Z_f0, _Z_f1;						\
+    doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\
+    /* Normalize since we know where the msb of the multiplicands	\
+       were (bit B), we know that the msb of the of the product is	\
+       at either 2B or 2B-1.  */					\
+    _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);			\
+    R##_f = _Z_f0;							\
+  } while (0)
+
+/* Finally, a simple widening multiply algorithm.  What fun!  */
+
+#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)				\
+  do {									\
+    _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\
+									\
+    /* split the words in half */					\
+    _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\
+    _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
+    _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\
+    _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
+									\
+    /* multiply the pieces */						\
+    _z_f0 = _xl * _yl;							\
+    _a_f0 = _xh * _yl;							\
+    _a_f1 = _xl * _yh;							\
+    _z_f1 = _xh * _yh;							\
+									\
+    /* reassemble into two full words */				\
+    if ((_a_f0 += _a_f1) < _a_f1)					\
+      _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\
+    _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\
+    _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\
+    _FP_FRAC_ADD_2(_z, _z, _a);						\
+									\
+    /* normalize */							\
+    _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);			\
+    R##_f = _z_f0;							\
+  } while (0)
+
+
+/*
+ * Division algorithms:
+ */
+
+/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
+   division immediately.  Give this macro either _FP_DIV_HELP_imm for
+   C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
+   choose will depend on what the compiler does with divrem4.  */
+
+#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\
+  do {							\
+    _FP_W_TYPE _q, _r;					\
+    X##_f <<= (X##_f < Y##_f				\
+	       ? R##_e--, _FP_WFRACBITS_##fs		\
+	       : _FP_WFRACBITS_##fs - 1);		\
+    doit(_q, _r, X##_f, Y##_f);				\
+    R##_f = _q | (_r != 0);				\
+  } while (0)
+
+/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
+   that may be useful in this situation.  This first is for a primitive
+   that requires normalization, the second for one that does not.  Look
+   for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
+
+#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\
+  do {									\
+    _FP_W_TYPE _nh, _nl, _q, _r, _y;					\
+									\
+    /* Normalize Y -- i.e. make the most significant bit set.  */	\
+    _y = Y##_f << _FP_WFRACXBITS_##fs;					\
+									\
+    /* Shift X op correspondingly high, that is, up one full word.  */	\
+    if (X##_f < Y##_f)							\
+      {									\
+	R##_e--;							\
+	_nl = 0;							\
+	_nh = X##_f;							\
+      }									\
+    else								\
+      {									\
+	_nl = X##_f << (_FP_W_TYPE_SIZE - 1);				\
+	_nh = X##_f >> 1;						\
+      }									\
+    									\
+    udiv_qrnnd(_q, _r, _nh, _nl, _y);					\
+    R##_f = _q | (_r != 0);						\
+  } while (0)
+
+#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\
+  do {							\
+    _FP_W_TYPE _nh, _nl, _q, _r;			\
+    if (X##_f < Y##_f)					\
+      {							\
+	R##_e--;					\
+	_nl = X##_f << _FP_WFRACBITS_##fs;		\
+	_nh = X##_f >> _FP_WFRACXBITS_##fs;		\
+      }							\
+    else						\
+      {							\
+	_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\
+	_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\
+      }							\
+    udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\
+    R##_f = _q | (_r != 0);				\
+  } while (0)
+  
+  
+/*
+ * Square root algorithms:
+ * We have just one right now, maybe Newton approximation
+ * should be added for those machines where division is fast.
+ */
+ 
+#define _FP_SQRT_MEAT_1(R, S, T, X, q)			\
+  do {							\
+    while (q != _FP_WORK_ROUND)				\
+      {							\
+        T##_f = S##_f + q;				\
+        if (T##_f <= X##_f)				\
+          {						\
+            S##_f = T##_f + q;				\
+            X##_f -= T##_f;				\
+            R##_f += q;					\
+          }						\
+        _FP_FRAC_SLL_1(X, 1);				\
+        q >>= 1;					\
+      }							\
+    if (X##_f)						\
+      {							\
+	if (S##_f < X##_f)				\
+	  R##_f |= _FP_WORK_ROUND;			\
+	R##_f |= _FP_WORK_STICKY;			\
+      }							\
+  } while (0)
+
+/*
+ * Assembly/disassembly for converting to/from integral types.  
+ * No shifting or overflow handled here.
+ */
+
+#define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f)
+#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r)
+
+
+/*
+ * Convert FP values between word sizes
+ */
+
+#define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)				\
+  do {									\
+    D##_f = S##_f;							\
+    if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)			\
+      {									\
+	if (S##_c != FP_CLS_NAN)					\
+	  _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),	\
+			 _FP_WFRACBITS_##sfs);				\
+	else								\
+	  _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs));	\
+      }									\
+    else								\
+      D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;		\
+  } while (0)
+
+#endif /* __MATH_EMU_OP_1_H__ */
diff --git a/include/math-emu/op-2.h b/include/math-emu/op-2.h
new file mode 100644
index 0000000..e193fb0
--- /dev/null
+++ b/include/math-emu/op-2.h
@@ -0,0 +1,613 @@
+/* Software floating-point emulation.
+   Basic two-word fraction declaration and manipulation.
+   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz),
+		  David S. Miller (davem@redhat.com) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If
+   not, write to the Free Software Foundation, Inc.,
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+#ifndef __MATH_EMU_OP_2_H__
+#define __MATH_EMU_OP_2_H__
+
+#define _FP_FRAC_DECL_2(X)	_FP_W_TYPE X##_f0, X##_f1
+#define _FP_FRAC_COPY_2(D,S)	(D##_f0 = S##_f0, D##_f1 = S##_f1)
+#define _FP_FRAC_SET_2(X,I)	__FP_FRAC_SET_2(X, I)
+#define _FP_FRAC_HIGH_2(X)	(X##_f1)
+#define _FP_FRAC_LOW_2(X)	(X##_f0)
+#define _FP_FRAC_WORD_2(X,w)	(X##_f##w)
+
+#define _FP_FRAC_SLL_2(X,N)						\
+  do {									\
+    if ((N) < _FP_W_TYPE_SIZE)						\
+      {									\
+	if (__builtin_constant_p(N) && (N) == 1) 			\
+	  {								\
+	    X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0);	\
+	    X##_f0 += X##_f0;						\
+	  }								\
+	else								\
+	  {								\
+	    X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N));	\
+	    X##_f0 <<= (N);						\
+	  }								\
+      }									\
+    else								\
+      {									\
+	X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE);			\
+	X##_f0 = 0;							\
+      }									\
+  } while (0)
+
+#define _FP_FRAC_SRL_2(X,N)						\
+  do {									\
+    if ((N) < _FP_W_TYPE_SIZE)						\
+      {									\
+	X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N));	\
+	X##_f1 >>= (N);							\
+      }									\
+    else								\
+      {									\
+	X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE);			\
+	X##_f1 = 0;							\
+      }									\
+  } while (0)
+
+/* Right shift with sticky-lsb.  */
+#define _FP_FRAC_SRS_2(X,N,sz)						\
+  do {									\
+    if ((N) < _FP_W_TYPE_SIZE)						\
+      {									\
+	X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) |	\
+		  (__builtin_constant_p(N) && (N) == 1			\
+		   ? X##_f0 & 1						\
+		   : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0));	\
+	X##_f1 >>= (N);							\
+      }									\
+    else								\
+      {									\
+	X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) |			\
+		(((X##_f1 << (2*_FP_W_TYPE_SIZE - (N))) | X##_f0) != 0)); \
+	X##_f1 = 0;							\
+      }									\
+  } while (0)
+
+#define _FP_FRAC_ADDI_2(X,I)	\
+  __FP_FRAC_ADDI_2(X##_f1, X##_f0, I)
+
+#define _FP_FRAC_ADD_2(R,X,Y)	\
+  __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
+
+#define _FP_FRAC_SUB_2(R,X,Y)	\
+  __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
+
+#define _FP_FRAC_DEC_2(X,Y)	\
+  __FP_FRAC_DEC_2(X##_f1, X##_f0, Y##_f1, Y##_f0)
+
+#define _FP_FRAC_CLZ_2(R,X)	\
+  do {				\
+    if (X##_f1)			\
+      __FP_CLZ(R,X##_f1);	\
+    else 			\
+    {				\
+      __FP_CLZ(R,X##_f0);	\
+      R += _FP_W_TYPE_SIZE;	\
+    }				\
+  } while(0)
+
+/* Predicates */
+#define _FP_FRAC_NEGP_2(X)	((_FP_WS_TYPE)X##_f1 < 0)
+#define _FP_FRAC_ZEROP_2(X)	((X##_f1 | X##_f0) == 0)
+#define _FP_FRAC_OVERP_2(fs,X)	(_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs)
+#define _FP_FRAC_CLEAR_OVERP_2(fs,X)	(_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs)
+#define _FP_FRAC_EQ_2(X, Y)	(X##_f1 == Y##_f1 && X##_f0 == Y##_f0)
+#define _FP_FRAC_GT_2(X, Y)	\
+  (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0))
+#define _FP_FRAC_GE_2(X, Y)	\
+  (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0))
+
+#define _FP_ZEROFRAC_2		0, 0
+#define _FP_MINFRAC_2		0, 1
+#define _FP_MAXFRAC_2		(~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0)
+
+/*
+ * Internals 
+ */
+
+#define __FP_FRAC_SET_2(X,I1,I0)	(X##_f0 = I0, X##_f1 = I1)
+
+#define __FP_CLZ_2(R, xh, xl)	\
+  do {				\
+    if (xh)			\
+      __FP_CLZ(R,xh);		\
+    else 			\
+    {				\
+      __FP_CLZ(R,xl);		\
+      R += _FP_W_TYPE_SIZE;	\
+    }				\
+  } while(0)
+
+#if 0
+
+#ifndef __FP_FRAC_ADDI_2
+#define __FP_FRAC_ADDI_2(xh, xl, i)	\
+  (xh += ((xl += i) < i))
+#endif
+#ifndef __FP_FRAC_ADD_2
+#define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl)	\
+  (rh = xh + yh + ((rl = xl + yl) < xl))
+#endif
+#ifndef __FP_FRAC_SUB_2
+#define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl)	\
+  (rh = xh - yh - ((rl = xl - yl) > xl))
+#endif
+#ifndef __FP_FRAC_DEC_2
+#define __FP_FRAC_DEC_2(xh, xl, yh, yl)	\
+  do {					\
+    UWtype _t = xl;			\
+    xh -= yh + ((xl -= yl) > _t);	\
+  } while (0)
+#endif
+
+#else
+
+#undef __FP_FRAC_ADDI_2
+#define __FP_FRAC_ADDI_2(xh, xl, i)	add_ssaaaa(xh, xl, xh, xl, 0, i)
+#undef __FP_FRAC_ADD_2
+#define __FP_FRAC_ADD_2			add_ssaaaa
+#undef __FP_FRAC_SUB_2
+#define __FP_FRAC_SUB_2			sub_ddmmss
+#undef __FP_FRAC_DEC_2
+#define __FP_FRAC_DEC_2(xh, xl, yh, yl)	sub_ddmmss(xh, xl, xh, xl, yh, yl)
+
+#endif
+
+/*
+ * Unpack the raw bits of a native fp value.  Do not classify or
+ * normalize the data.
+ */
+
+#define _FP_UNPACK_RAW_2(fs, X, val)			\
+  do {							\
+    union _FP_UNION_##fs _flo; _flo.flt = (val);	\
+							\
+    X##_f0 = _flo.bits.frac0;				\
+    X##_f1 = _flo.bits.frac1;				\
+    X##_e  = _flo.bits.exp;				\
+    X##_s  = _flo.bits.sign;				\
+  } while (0)
+
+#define _FP_UNPACK_RAW_2_P(fs, X, val)			\
+  do {							\
+    union _FP_UNION_##fs *_flo =			\
+      (union _FP_UNION_##fs *)(val);			\
+							\
+    X##_f0 = _flo->bits.frac0;				\
+    X##_f1 = _flo->bits.frac1;				\
+    X##_e  = _flo->bits.exp;				\
+    X##_s  = _flo->bits.sign;				\
+  } while (0)
+
+
+/*
+ * Repack the raw bits of a native fp value.
+ */
+
+#define _FP_PACK_RAW_2(fs, val, X)			\
+  do {							\
+    union _FP_UNION_##fs _flo;				\
+							\
+    _flo.bits.frac0 = X##_f0;				\
+    _flo.bits.frac1 = X##_f1;				\
+    _flo.bits.exp   = X##_e;				\
+    _flo.bits.sign  = X##_s;				\
+							\
+    (val) = _flo.flt;					\
+  } while (0)
+
+#define _FP_PACK_RAW_2_P(fs, val, X)			\
+  do {							\
+    union _FP_UNION_##fs *_flo =			\
+      (union _FP_UNION_##fs *)(val);			\
+							\
+    _flo->bits.frac0 = X##_f0;				\
+    _flo->bits.frac1 = X##_f1;				\
+    _flo->bits.exp   = X##_e;				\
+    _flo->bits.sign  = X##_s;				\
+  } while (0)
+
+
+/*
+ * Multiplication algorithms:
+ */
+
+/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
+
+#define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit)			\
+  do {									\
+    _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	\
+									\
+    doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0);	\
+    doit(_b_f1, _b_f0, X##_f0, Y##_f1);					\
+    doit(_c_f1, _c_f0, X##_f1, Y##_f0);					\
+    doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1);	\
+									\
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
+		    _FP_FRAC_WORD_4(_z,1), 0, _b_f1, _b_f0,		\
+		    _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
+		    _FP_FRAC_WORD_4(_z,1));				\
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
+		    _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0,		\
+		    _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
+		    _FP_FRAC_WORD_4(_z,1));				\
+									\
+    /* Normalize since we know where the msb of the multiplicands	\
+       were (bit B), we know that the msb of the of the product is	\
+       at either 2B or 2B-1.  */					\
+    _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\
+    R##_f0 = _FP_FRAC_WORD_4(_z,0);					\
+    R##_f1 = _FP_FRAC_WORD_4(_z,1);					\
+  } while (0)
+
+/* Given a 1W * 1W => 2W primitive, do the extended multiplication.
+   Do only 3 multiplications instead of four. This one is for machines
+   where multiplication is much more expensive than subtraction.  */
+
+#define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit)		\
+  do {									\
+    _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	\
+    _FP_W_TYPE _d;							\
+    int _c1, _c2;							\
+									\
+    _b_f0 = X##_f0 + X##_f1;						\
+    _c1 = _b_f0 < X##_f0;						\
+    _b_f1 = Y##_f0 + Y##_f1;						\
+    _c2 = _b_f1 < Y##_f0;						\
+    doit(_d, _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0);			\
+    doit(_FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1), _b_f0, _b_f1);	\
+    doit(_c_f1, _c_f0, X##_f1, Y##_f1);					\
+									\
+    _b_f0 &= -_c2;							\
+    _b_f1 &= -_c1;							\
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
+		    _FP_FRAC_WORD_4(_z,1), (_c1 & _c2), 0, _d,		\
+		    0, _FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1));	\
+    __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
+		     _b_f0);						\
+    __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
+		     _b_f1);						\
+    __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
+		    _FP_FRAC_WORD_4(_z,1),				\
+		    0, _d, _FP_FRAC_WORD_4(_z,0));			\
+    __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
+		    _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0);		\
+    __FP_FRAC_ADD_2(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2),	\
+		    _c_f1, _c_f0,					\
+		    _FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2));	\
+									\
+    /* Normalize since we know where the msb of the multiplicands	\
+       were (bit B), we know that the msb of the of the product is	\
+       at either 2B or 2B-1.  */					\
+    _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\
+    R##_f0 = _FP_FRAC_WORD_4(_z,0);					\
+    R##_f1 = _FP_FRAC_WORD_4(_z,1);					\
+  } while (0)
+
+#define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y)				\
+  do {									\
+    _FP_FRAC_DECL_4(_z);						\
+    _FP_W_TYPE _x[2], _y[2];						\
+    _x[0] = X##_f0; _x[1] = X##_f1;					\
+    _y[0] = Y##_f0; _y[1] = Y##_f1;					\
+									\
+    mpn_mul_n(_z_f, _x, _y, 2);						\
+									\
+    /* Normalize since we know where the msb of the multiplicands	\
+       were (bit B), we know that the msb of the of the product is	\
+       at either 2B or 2B-1.  */					\
+    _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\
+    R##_f0 = _z_f[0];							\
+    R##_f1 = _z_f[1];							\
+  } while (0)
+
+/* Do at most 120x120=240 bits multiplication using double floating
+   point multiplication.  This is useful if floating point
+   multiplication has much bigger throughput than integer multiply.
+   It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits
+   between 106 and 120 only.  
+   Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set.
+   SETFETZ is a macro which will disable all FPU exceptions and set rounding
+   towards zero,  RESETFE should optionally reset it back.  */
+
+#define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe)	\
+  do {										\
+    static const double _const[] = {						\
+      /* 2^-24 */ 5.9604644775390625e-08,					\
+      /* 2^-48 */ 3.5527136788005009e-15,					\
+      /* 2^-72 */ 2.1175823681357508e-22,					\
+      /* 2^-96 */ 1.2621774483536189e-29,					\
+      /* 2^28 */ 2.68435456e+08,						\
+      /* 2^4 */ 1.600000e+01,							\
+      /* 2^-20 */ 9.5367431640625e-07,						\
+      /* 2^-44 */ 5.6843418860808015e-14,					\
+      /* 2^-68 */ 3.3881317890172014e-21,					\
+      /* 2^-92 */ 2.0194839173657902e-28,					\
+      /* 2^-116 */ 1.2037062152420224e-35};					\
+    double _a240, _b240, _c240, _d240, _e240, _f240, 				\
+	   _g240, _h240, _i240, _j240, _k240;					\
+    union { double d; UDItype i; } _l240, _m240, _n240, _o240,			\
+				   _p240, _q240, _r240, _s240;			\
+    UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0;			\
+										\
+    if (wfracbits < 106 || wfracbits > 120)					\
+      abort();									\
+										\
+    setfetz;									\
+										\
+    _e240 = (double)(long)(X##_f0 & 0xffffff);					\
+    _j240 = (double)(long)(Y##_f0 & 0xffffff);					\
+    _d240 = (double)(long)((X##_f0 >> 24) & 0xffffff);				\
+    _i240 = (double)(long)((Y##_f0 >> 24) & 0xffffff);				\
+    _c240 = (double)(long)(((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48));	\
+    _h240 = (double)(long)(((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48));	\
+    _b240 = (double)(long)((X##_f1 >> 8) & 0xffffff);				\
+    _g240 = (double)(long)((Y##_f1 >> 8) & 0xffffff);				\
+    _a240 = (double)(long)(X##_f1 >> 32);					\
+    _f240 = (double)(long)(Y##_f1 >> 32);					\
+    _e240 *= _const[3];								\
+    _j240 *= _const[3];								\
+    _d240 *= _const[2];								\
+    _i240 *= _const[2];								\
+    _c240 *= _const[1];								\
+    _h240 *= _const[1];								\
+    _b240 *= _const[0];								\
+    _g240 *= _const[0];								\
+    _s240.d =							      _e240*_j240;\
+    _r240.d =						_d240*_j240 + _e240*_i240;\
+    _q240.d =				  _c240*_j240 + _d240*_i240 + _e240*_h240;\
+    _p240.d =		    _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240;\
+    _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240;\
+    _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240;		\
+    _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240;				\
+    _l240.d = _a240*_g240 + _b240*_f240;					\
+    _k240 =   _a240*_f240;							\
+    _r240.d += _s240.d;								\
+    _q240.d += _r240.d;								\
+    _p240.d += _q240.d;								\
+    _o240.d += _p240.d;								\
+    _n240.d += _o240.d;								\
+    _m240.d += _n240.d;								\
+    _l240.d += _m240.d;								\
+    _k240 += _l240.d;								\
+    _s240.d -= ((_const[10]+_s240.d)-_const[10]);				\
+    _r240.d -= ((_const[9]+_r240.d)-_const[9]);					\
+    _q240.d -= ((_const[8]+_q240.d)-_const[8]);					\
+    _p240.d -= ((_const[7]+_p240.d)-_const[7]);					\
+    _o240.d += _const[7];							\
+    _n240.d += _const[6];							\
+    _m240.d += _const[5];							\
+    _l240.d += _const[4];							\
+    if (_s240.d != 0.0) _y240 = 1;						\
+    if (_r240.d != 0.0) _y240 = 1;						\
+    if (_q240.d != 0.0) _y240 = 1;						\
+    if (_p240.d != 0.0) _y240 = 1;						\
+    _t240 = (DItype)_k240;							\
+    _u240 = _l240.i;								\
+    _v240 = _m240.i;								\
+    _w240 = _n240.i;								\
+    _x240 = _o240.i;								\
+    R##_f1 = (_t240 << (128 - (wfracbits - 1)))					\
+	     | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104));			\
+    R##_f0 = ((_u240 & 0xffffff) << (168 - (wfracbits - 1)))			\
+    	     | ((_v240 & 0xffffff) << (144 - (wfracbits - 1)))			\
+    	     | ((_w240 & 0xffffff) << (120 - (wfracbits - 1)))			\
+    	     | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96))			\
+    	     | _y240;								\
+    resetfe;									\
+  } while (0)
+
+/*
+ * Division algorithms:
+ */
+
+#define _FP_DIV_MEAT_2_udiv(fs, R, X, Y)				\
+  do {									\
+    _FP_W_TYPE _n_f2, _n_f1, _n_f0, _r_f1, _r_f0, _m_f1, _m_f0;		\
+    if (_FP_FRAC_GT_2(X, Y))						\
+      {									\
+	_n_f2 = X##_f1 >> 1;						\
+	_n_f1 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;		\
+	_n_f0 = X##_f0 << (_FP_W_TYPE_SIZE - 1);			\
+      }									\
+    else								\
+      {									\
+	R##_e--;							\
+	_n_f2 = X##_f1;							\
+	_n_f1 = X##_f0;							\
+	_n_f0 = 0;							\
+      }									\
+									\
+    /* Normalize, i.e. make the most significant bit of the 		\
+       denominator set. */						\
+    _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs);				\
+									\
+    udiv_qrnnd(R##_f1, _r_f1, _n_f2, _n_f1, Y##_f1);			\
+    umul_ppmm(_m_f1, _m_f0, R##_f1, Y##_f0);				\
+    _r_f0 = _n_f0;							\
+    if (_FP_FRAC_GT_2(_m, _r))						\
+      {									\
+	R##_f1--;							\
+	_FP_FRAC_ADD_2(_r, Y, _r);					\
+	if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\
+	  {								\
+	    R##_f1--;							\
+	    _FP_FRAC_ADD_2(_r, Y, _r);					\
+	  }								\
+      }									\
+    _FP_FRAC_DEC_2(_r, _m);						\
+									\
+    if (_r_f1 == Y##_f1)						\
+      {									\
+	/* This is a special case, not an optimization			\
+	   (_r/Y##_f1 would not fit into UWtype).			\
+	   As _r is guaranteed to be < Y,  R##_f0 can be either		\
+	   (UWtype)-1 or (UWtype)-2.  But as we know what kind		\
+	   of bits it is (sticky, guard, round),  we don't care.	\
+	   We also don't care what the reminder is,  because the	\
+	   guard bit will be set anyway.  -jj */			\
+	R##_f0 = -1;							\
+      }									\
+    else								\
+      {									\
+	udiv_qrnnd(R##_f0, _r_f1, _r_f1, _r_f0, Y##_f1);		\
+	umul_ppmm(_m_f1, _m_f0, R##_f0, Y##_f0);			\
+	_r_f0 = 0;							\
+	if (_FP_FRAC_GT_2(_m, _r))					\
+	  {								\
+	    R##_f0--;							\
+	    _FP_FRAC_ADD_2(_r, Y, _r);					\
+	    if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\
+	      {								\
+		R##_f0--;						\
+		_FP_FRAC_ADD_2(_r, Y, _r);				\
+	      }								\
+	  }								\
+	if (!_FP_FRAC_EQ_2(_r, _m))					\
+	  R##_f0 |= _FP_WORK_STICKY;					\
+      }									\
+  } while (0)
+
+
+#define _FP_DIV_MEAT_2_gmp(fs, R, X, Y)					\
+  do {									\
+    _FP_W_TYPE _x[4], _y[2], _z[4];					\
+    _y[0] = Y##_f0; _y[1] = Y##_f1;					\
+    _x[0] = _x[3] = 0;							\
+    if (_FP_FRAC_GT_2(X, Y))						\
+      {									\
+	R##_e++;							\
+	_x[1] = (X##_f0 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE) |	\
+		 X##_f1 >> (_FP_W_TYPE_SIZE -				\
+			    (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE)));	\
+	_x[2] = X##_f1 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE);	\
+      }									\
+    else								\
+      {									\
+	_x[1] = (X##_f0 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE) |	\
+		 X##_f1 >> (_FP_W_TYPE_SIZE -				\
+			    (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE)));	\
+	_x[2] = X##_f1 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE);	\
+      }									\
+									\
+    (void) mpn_divrem (_z, 0, _x, 4, _y, 2);				\
+    R##_f1 = _z[1];							\
+    R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0);				\
+  } while (0)
+
+
+/*
+ * Square root algorithms:
+ * We have just one right now, maybe Newton approximation
+ * should be added for those machines where division is fast.
+ */
+ 
+#define _FP_SQRT_MEAT_2(R, S, T, X, q)			\
+  do {							\
+    while (q)						\
+      {							\
+	T##_f1 = S##_f1 + q;				\
+	if (T##_f1 <= X##_f1)				\
+	  {						\
+	    S##_f1 = T##_f1 + q;			\
+	    X##_f1 -= T##_f1;				\
+	    R##_f1 += q;				\
+	  }						\
+	_FP_FRAC_SLL_2(X, 1);				\
+	q >>= 1;					\
+      }							\
+    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\
+    while (q != _FP_WORK_ROUND)				\
+      {							\
+	T##_f0 = S##_f0 + q;				\
+	T##_f1 = S##_f1;				\
+	if (T##_f1 < X##_f1 || 				\
+	    (T##_f1 == X##_f1 && T##_f0 <= X##_f0))	\
+	  {						\
+	    S##_f0 = T##_f0 + q;			\
+	    S##_f1 += (T##_f0 > S##_f0);		\
+	    _FP_FRAC_DEC_2(X, T);			\
+	    R##_f0 += q;				\
+	  }						\
+	_FP_FRAC_SLL_2(X, 1);				\
+	q >>= 1;					\
+      }							\
+    if (X##_f0 | X##_f1)				\
+      {							\
+	if (S##_f1 < X##_f1 || 				\
+	    (S##_f1 == X##_f1 && S##_f0 < X##_f0))	\
+	  R##_f0 |= _FP_WORK_ROUND;			\
+	R##_f0 |= _FP_WORK_STICKY;			\
+      }							\
+  } while (0)
+
+
+/*
+ * Assembly/disassembly for converting to/from integral types.  
+ * No shifting or overflow handled here.
+ */
+
+#define _FP_FRAC_ASSEMBLE_2(r, X, rsize)	\
+  do {						\
+    if (rsize <= _FP_W_TYPE_SIZE)		\
+      r = X##_f0;				\
+    else					\
+      {						\
+	r = X##_f1;				\
+	r <<= _FP_W_TYPE_SIZE;			\
+	r += X##_f0;				\
+      }						\
+  } while (0)
+
+#define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)				\
+  do {									\
+    X##_f0 = r;								\
+    X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);	\
+  } while (0)
+
+/*
+ * Convert FP values between word sizes
+ */
+
+#define _FP_FRAC_CONV_1_2(dfs, sfs, D, S)				\
+  do {									\
+    if (S##_c != FP_CLS_NAN)						\
+      _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),	\
+		     _FP_WFRACBITS_##sfs);				\
+    else								\
+      _FP_FRAC_SRL_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs));	\
+    D##_f = S##_f0;							\
+  } while (0)
+
+#define _FP_FRAC_CONV_2_1(dfs, sfs, D, S)				\
+  do {									\
+    D##_f0 = S##_f;							\
+    D##_f1 = 0;								\
+    _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));	\
+  } while (0)
+
+#endif
diff --git a/include/math-emu/op-4.h b/include/math-emu/op-4.h
new file mode 100644
index 0000000..ba226f8
--- /dev/null
+++ b/include/math-emu/op-4.h
@@ -0,0 +1,692 @@
+/* Software floating-point emulation.
+   Basic four-word fraction declaration and manipulation.
+   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz),
+		  David S. Miller (davem@redhat.com) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If
+   not, write to the Free Software Foundation, Inc.,
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+#ifndef __MATH_EMU_OP_4_H__
+#define __MATH_EMU_OP_4_H__
+
+#define _FP_FRAC_DECL_4(X)	_FP_W_TYPE X##_f[4]
+#define _FP_FRAC_COPY_4(D,S)			\
+  (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1],	\
+   D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
+#define _FP_FRAC_SET_4(X,I)	__FP_FRAC_SET_4(X, I)
+#define _FP_FRAC_HIGH_4(X)	(X##_f[3])
+#define _FP_FRAC_LOW_4(X)	(X##_f[0])
+#define _FP_FRAC_WORD_4(X,w)	(X##_f[w])
+
+#define _FP_FRAC_SLL_4(X,N)						\
+  do {									\
+    _FP_I_TYPE _up, _down, _skip, _i;					\
+    _skip = (N) / _FP_W_TYPE_SIZE;					\
+    _up = (N) % _FP_W_TYPE_SIZE;					\
+    _down = _FP_W_TYPE_SIZE - _up;					\
+    if (!_up)								\
+      for (_i = 3; _i >= _skip; --_i)					\
+	X##_f[_i] = X##_f[_i-_skip];					\
+    else								\
+      {									\
+	for (_i = 3; _i > _skip; --_i)					\
+	  X##_f[_i] = X##_f[_i-_skip] << _up				\
+		      | X##_f[_i-_skip-1] >> _down;			\
+	X##_f[_i--] = X##_f[0] << _up; 					\
+      }									\
+    for (; _i >= 0; --_i)						\
+      X##_f[_i] = 0;							\
+  } while (0)
+
+/* This one was broken too */
+#define _FP_FRAC_SRL_4(X,N)						\
+  do {									\
+    _FP_I_TYPE _up, _down, _skip, _i;					\
+    _skip = (N) / _FP_W_TYPE_SIZE;					\
+    _down = (N) % _FP_W_TYPE_SIZE;					\
+    _up = _FP_W_TYPE_SIZE - _down;					\
+    if (!_down)								\
+      for (_i = 0; _i <= 3-_skip; ++_i)					\
+	X##_f[_i] = X##_f[_i+_skip];					\
+    else								\
+      {									\
+	for (_i = 0; _i < 3-_skip; ++_i)				\
+	  X##_f[_i] = X##_f[_i+_skip] >> _down				\
+		      | X##_f[_i+_skip+1] << _up;			\
+	X##_f[_i++] = X##_f[3] >> _down;				\
+      }									\
+    for (; _i < 4; ++_i)						\
+      X##_f[_i] = 0;							\
+  } while (0)
+
+
+/* Right shift with sticky-lsb. 
+ * What this actually means is that we do a standard right-shift,
+ * but that if any of the bits that fall off the right hand side
+ * were one then we always set the LSbit.
+ */
+#define _FP_FRAC_SRS_4(X,N,size)					\
+  do {									\
+    _FP_I_TYPE _up, _down, _skip, _i;					\
+    _FP_W_TYPE _s;							\
+    _skip = (N) / _FP_W_TYPE_SIZE;					\
+    _down = (N) % _FP_W_TYPE_SIZE;					\
+    _up = _FP_W_TYPE_SIZE - _down;					\
+    for (_s = _i = 0; _i < _skip; ++_i)					\
+      _s |= X##_f[_i];							\
+    _s |= X##_f[_i] << _up;						\
+/* s is now != 0 if we want to set the LSbit */				\
+    if (!_down)								\
+      for (_i = 0; _i <= 3-_skip; ++_i)					\
+	X##_f[_i] = X##_f[_i+_skip];					\
+    else								\
+      {									\
+	for (_i = 0; _i < 3-_skip; ++_i)				\
+	  X##_f[_i] = X##_f[_i+_skip] >> _down				\
+		      | X##_f[_i+_skip+1] << _up;			\
+	X##_f[_i++] = X##_f[3] >> _down;				\
+      }									\
+    for (; _i < 4; ++_i)						\
+      X##_f[_i] = 0;							\
+    /* don't fix the LSB until the very end when we're sure f[0] is stable */	\
+    X##_f[0] |= (_s != 0);						\
+  } while (0)
+
+#define _FP_FRAC_ADD_4(R,X,Y)						\
+  __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0],		\
+		  X##_f[3], X##_f[2], X##_f[1], X##_f[0],		\
+		  Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
+
+#define _FP_FRAC_SUB_4(R,X,Y)						\
+  __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0],		\
+		  X##_f[3], X##_f[2], X##_f[1], X##_f[0],		\
+		  Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
+
+#define _FP_FRAC_DEC_4(X,Y)						\
+  __FP_FRAC_DEC_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0],		\
+		  Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
+
+#define _FP_FRAC_ADDI_4(X,I)						\
+  __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
+
+#define _FP_ZEROFRAC_4  0,0,0,0
+#define _FP_MINFRAC_4   0,0,0,1
+#define _FP_MAXFRAC_4	(~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0)
+
+#define _FP_FRAC_ZEROP_4(X)     ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
+#define _FP_FRAC_NEGP_4(X)      ((_FP_WS_TYPE)X##_f[3] < 0)
+#define _FP_FRAC_OVERP_4(fs,X)  (_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs)
+#define _FP_FRAC_CLEAR_OVERP_4(fs,X)  (_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs)
+
+#define _FP_FRAC_EQ_4(X,Y)				\
+ (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1]		\
+  && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
+
+#define _FP_FRAC_GT_4(X,Y)				\
+ (X##_f[3] > Y##_f[3] ||				\
+  (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] ||	\
+   (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] ||	\
+    (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0])	\
+   ))							\
+  ))							\
+ )
+
+#define _FP_FRAC_GE_4(X,Y)				\
+ (X##_f[3] > Y##_f[3] ||				\
+  (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] ||	\
+   (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] ||	\
+    (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0])	\
+   ))							\
+  ))							\
+ )
+
+
+#define _FP_FRAC_CLZ_4(R,X)		\
+  do {					\
+    if (X##_f[3])			\
+    {					\
+	__FP_CLZ(R,X##_f[3]);		\
+    }					\
+    else if (X##_f[2])			\
+    {					\
+	__FP_CLZ(R,X##_f[2]);		\
+	R += _FP_W_TYPE_SIZE;		\
+    }					\
+    else if (X##_f[1])			\
+    {					\
+	__FP_CLZ(R,X##_f[2]);		\
+	R += _FP_W_TYPE_SIZE*2;		\
+    }					\
+    else				\
+    {					\
+	__FP_CLZ(R,X##_f[0]);		\
+	R += _FP_W_TYPE_SIZE*3;		\
+    }					\
+  } while(0)
+
+
+#define _FP_UNPACK_RAW_4(fs, X, val)				\
+  do {								\
+    union _FP_UNION_##fs _flo; _flo.flt = (val);		\
+    X##_f[0] = _flo.bits.frac0;					\
+    X##_f[1] = _flo.bits.frac1;					\
+    X##_f[2] = _flo.bits.frac2;					\
+    X##_f[3] = _flo.bits.frac3;					\
+    X##_e  = _flo.bits.exp;					\
+    X##_s  = _flo.bits.sign;					\
+  } while (0)
+
+#define _FP_UNPACK_RAW_4_P(fs, X, val)				\
+  do {								\
+    union _FP_UNION_##fs *_flo =				\
+      (union _FP_UNION_##fs *)(val);				\
+								\
+    X##_f[0] = _flo->bits.frac0;				\
+    X##_f[1] = _flo->bits.frac1;				\
+    X##_f[2] = _flo->bits.frac2;				\
+    X##_f[3] = _flo->bits.frac3;				\
+    X##_e  = _flo->bits.exp;					\
+    X##_s  = _flo->bits.sign;					\
+  } while (0)
+
+#define _FP_PACK_RAW_4(fs, val, X)				\
+  do {								\
+    union _FP_UNION_##fs _flo;					\
+    _flo.bits.frac0 = X##_f[0];					\
+    _flo.bits.frac1 = X##_f[1];					\
+    _flo.bits.frac2 = X##_f[2];					\
+    _flo.bits.frac3 = X##_f[3];					\
+    _flo.bits.exp   = X##_e;					\
+    _flo.bits.sign  = X##_s;					\
+    (val) = _flo.flt;				   		\
+  } while (0)
+
+#define _FP_PACK_RAW_4_P(fs, val, X)				\
+  do {								\
+    union _FP_UNION_##fs *_flo =				\
+      (union _FP_UNION_##fs *)(val);				\
+								\
+    _flo->bits.frac0 = X##_f[0];				\
+    _flo->bits.frac1 = X##_f[1];				\
+    _flo->bits.frac2 = X##_f[2];				\
+    _flo->bits.frac3 = X##_f[3];				\
+    _flo->bits.exp   = X##_e;					\
+    _flo->bits.sign  = X##_s;					\
+  } while (0)
+
+/*
+ * Multiplication algorithms:
+ */
+
+/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
+
+#define _FP_MUL_MEAT_4_wide(wfracbits, R, X, Y, doit)			    \
+  do {									    \
+    _FP_FRAC_DECL_8(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	    \
+    _FP_FRAC_DECL_2(_d); _FP_FRAC_DECL_2(_e); _FP_FRAC_DECL_2(_f);	    \
+									    \
+    doit(_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0), X##_f[0], Y##_f[0]); \
+    doit(_b_f1, _b_f0, X##_f[0], Y##_f[1]);				    \
+    doit(_c_f1, _c_f0, X##_f[1], Y##_f[0]);				    \
+    doit(_d_f1, _d_f0, X##_f[1], Y##_f[1]);				    \
+    doit(_e_f1, _e_f0, X##_f[0], Y##_f[2]);				    \
+    doit(_f_f1, _f_f0, X##_f[2], Y##_f[0]);				    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2),	    \
+		    _FP_FRAC_WORD_8(_z,1), 0,_b_f1,_b_f0,		    \
+		    0,0,_FP_FRAC_WORD_8(_z,1));				    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2),	    \
+		    _FP_FRAC_WORD_8(_z,1), 0,_c_f1,_c_f0,		    \
+		    _FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2),	    \
+		    _FP_FRAC_WORD_8(_z,1));				    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3),	    \
+		    _FP_FRAC_WORD_8(_z,2), 0,_d_f1,_d_f0,		    \
+		    0,_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2));	    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3),	    \
+		    _FP_FRAC_WORD_8(_z,2), 0,_e_f1,_e_f0,		    \
+		    _FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3),	    \
+		    _FP_FRAC_WORD_8(_z,2));				    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3),	    \
+		    _FP_FRAC_WORD_8(_z,2), 0,_f_f1,_f_f0,		    \
+		    _FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3),	    \
+		    _FP_FRAC_WORD_8(_z,2));				    \
+    doit(_b_f1, _b_f0, X##_f[0], Y##_f[3]);				    \
+    doit(_c_f1, _c_f0, X##_f[3], Y##_f[0]);				    \
+    doit(_d_f1, _d_f0, X##_f[1], Y##_f[2]);				    \
+    doit(_e_f1, _e_f0, X##_f[2], Y##_f[1]);				    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4),	    \
+		    _FP_FRAC_WORD_8(_z,3), 0,_b_f1,_b_f0,		    \
+		    0,_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3));	    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4),	    \
+		    _FP_FRAC_WORD_8(_z,3), 0,_c_f1,_c_f0,		    \
+		    _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4),	    \
+		    _FP_FRAC_WORD_8(_z,3));				    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4),	    \
+		    _FP_FRAC_WORD_8(_z,3), 0,_d_f1,_d_f0,		    \
+		    _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4),	    \
+		    _FP_FRAC_WORD_8(_z,3));				    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4),	    \
+		    _FP_FRAC_WORD_8(_z,3), 0,_e_f1,_e_f0,		    \
+		    _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4),	    \
+		    _FP_FRAC_WORD_8(_z,3));				    \
+    doit(_b_f1, _b_f0, X##_f[2], Y##_f[2]);				    \
+    doit(_c_f1, _c_f0, X##_f[1], Y##_f[3]);				    \
+    doit(_d_f1, _d_f0, X##_f[3], Y##_f[1]);				    \
+    doit(_e_f1, _e_f0, X##_f[2], Y##_f[3]);				    \
+    doit(_f_f1, _f_f0, X##_f[3], Y##_f[2]);				    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5),	    \
+		    _FP_FRAC_WORD_8(_z,4), 0,_b_f1,_b_f0,		    \
+		    0,_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4));	    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5),	    \
+		    _FP_FRAC_WORD_8(_z,4), 0,_c_f1,_c_f0,		    \
+		    _FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5),	    \
+		    _FP_FRAC_WORD_8(_z,4));				    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5),	    \
+		    _FP_FRAC_WORD_8(_z,4), 0,_d_f1,_d_f0,		    \
+		    _FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5),	    \
+		    _FP_FRAC_WORD_8(_z,4));				    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6),	    \
+		    _FP_FRAC_WORD_8(_z,5), 0,_e_f1,_e_f0,		    \
+		    0,_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5));	    \
+    __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6),	    \
+		    _FP_FRAC_WORD_8(_z,5), 0,_f_f1,_f_f0,		    \
+		    _FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6),	    \
+		    _FP_FRAC_WORD_8(_z,5));				    \
+    doit(_b_f1, _b_f0, X##_f[3], Y##_f[3]);				    \
+    __FP_FRAC_ADD_2(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6),	    \
+		    _b_f1,_b_f0,					    \
+		    _FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6));	    \
+									    \
+    /* Normalize since we know where the msb of the multiplicands	    \
+       were (bit B), we know that the msb of the of the product is	    \
+       at either 2B or 2B-1.  */					    \
+    _FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits);			    \
+    __FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2),	    \
+		    _FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0));	    \
+  } while (0)
+
+#define _FP_MUL_MEAT_4_gmp(wfracbits, R, X, Y)				    \
+  do {									    \
+    _FP_FRAC_DECL_8(_z);						    \
+									    \
+    mpn_mul_n(_z_f, _x_f, _y_f, 4);					    \
+									    \
+    /* Normalize since we know where the msb of the multiplicands	    \
+       were (bit B), we know that the msb of the of the product is	    \
+       at either 2B or 2B-1.  */					    \
+    _FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits);	 		    \
+    __FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2),	    \
+		    _FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0));	    \
+  } while (0)
+
+/*
+ * Helper utility for _FP_DIV_MEAT_4_udiv:
+ * pppp = m * nnn
+ */
+#define umul_ppppmnnn(p3,p2,p1,p0,m,n2,n1,n0)				    \
+  do {									    \
+    UWtype _t;								    \
+    umul_ppmm(p1,p0,m,n0);						    \
+    umul_ppmm(p2,_t,m,n1);						    \
+    __FP_FRAC_ADDI_2(p2,p1,_t);						    \
+    umul_ppmm(p3,_t,m,n2);						    \
+    __FP_FRAC_ADDI_2(p3,p2,_t);						    \
+  } while (0)
+
+/*
+ * Division algorithms:
+ */
+
+#define _FP_DIV_MEAT_4_udiv(fs, R, X, Y)				    \
+  do {									    \
+    int _i;								    \
+    _FP_FRAC_DECL_4(_n); _FP_FRAC_DECL_4(_m);				    \
+    _FP_FRAC_SET_4(_n, _FP_ZEROFRAC_4);					    \
+    if (_FP_FRAC_GT_4(X, Y))						    \
+      {									    \
+	_n_f[3] = X##_f[0] << (_FP_W_TYPE_SIZE - 1);			    \
+	_FP_FRAC_SRL_4(X, 1);						    \
+      }									    \
+    else								    \
+      R##_e--;								    \
+									    \
+    /* Normalize, i.e. make the most significant bit of the 		    \
+       denominator set. */						    \
+    _FP_FRAC_SLL_4(Y, _FP_WFRACXBITS_##fs);				    \
+									    \
+    for (_i = 3; ; _i--)						    \
+      {									    \
+        if (X##_f[3] == Y##_f[3])					    \
+          {								    \
+            /* This is a special case, not an optimization		    \
+               (X##_f[3]/Y##_f[3] would not fit into UWtype).		    \
+               As X## is guaranteed to be < Y,  R##_f[_i] can be either	    \
+               (UWtype)-1 or (UWtype)-2.  */				    \
+            R##_f[_i] = -1;						    \
+            if (!_i)							    \
+	      break;							    \
+            __FP_FRAC_SUB_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0],	    \
+			    Y##_f[2], Y##_f[1], Y##_f[0], 0,		    \
+			    X##_f[2], X##_f[1], X##_f[0], _n_f[_i]);	    \
+            _FP_FRAC_SUB_4(X, Y, X);					    \
+            if (X##_f[3] > Y##_f[3])					    \
+              {								    \
+                R##_f[_i] = -2;						    \
+                _FP_FRAC_ADD_4(X, Y, X);				    \
+              }								    \
+          }								    \
+        else								    \
+          {								    \
+            udiv_qrnnd(R##_f[_i], X##_f[3], X##_f[3], X##_f[2], Y##_f[3]);  \
+            umul_ppppmnnn(_m_f[3], _m_f[2], _m_f[1], _m_f[0],		    \
+			  R##_f[_i], Y##_f[2], Y##_f[1], Y##_f[0]);	    \
+            X##_f[2] = X##_f[1];					    \
+            X##_f[1] = X##_f[0];					    \
+            X##_f[0] = _n_f[_i];					    \
+            if (_FP_FRAC_GT_4(_m, X))					    \
+              {								    \
+                R##_f[_i]--;						    \
+                _FP_FRAC_ADD_4(X, Y, X);				    \
+                if (_FP_FRAC_GE_4(X, Y) && _FP_FRAC_GT_4(_m, X))	    \
+                  {							    \
+		    R##_f[_i]--;					    \
+		    _FP_FRAC_ADD_4(X, Y, X);				    \
+                  }							    \
+              }								    \
+            _FP_FRAC_DEC_4(X, _m);					    \
+            if (!_i)							    \
+	      {								    \
+		if (!_FP_FRAC_EQ_4(X, _m))				    \
+		  R##_f[0] |= _FP_WORK_STICKY;				    \
+		break;							    \
+	      }								    \
+          }								    \
+      }									    \
+  } while (0)
+
+
+/*
+ * Square root algorithms:
+ * We have just one right now, maybe Newton approximation
+ * should be added for those machines where division is fast.
+ */
+ 
+#define _FP_SQRT_MEAT_4(R, S, T, X, q)				\
+  do {								\
+    while (q)							\
+      {								\
+	T##_f[3] = S##_f[3] + q;				\
+	if (T##_f[3] <= X##_f[3])				\
+	  {							\
+	    S##_f[3] = T##_f[3] + q;				\
+	    X##_f[3] -= T##_f[3];				\
+	    R##_f[3] += q;					\
+	  }							\
+	_FP_FRAC_SLL_4(X, 1);					\
+	q >>= 1;						\
+      }								\
+    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);			\
+    while (q)							\
+      {								\
+	T##_f[2] = S##_f[2] + q;				\
+	T##_f[3] = S##_f[3];					\
+	if (T##_f[3] < X##_f[3] || 				\
+	    (T##_f[3] == X##_f[3] && T##_f[2] <= X##_f[2]))	\
+	  {							\
+	    S##_f[2] = T##_f[2] + q;				\
+	    S##_f[3] += (T##_f[2] > S##_f[2]);			\
+	    __FP_FRAC_DEC_2(X##_f[3], X##_f[2],			\
+			    T##_f[3], T##_f[2]);		\
+	    R##_f[2] += q;					\
+	  }							\
+	_FP_FRAC_SLL_4(X, 1);					\
+	q >>= 1;						\
+      }								\
+    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);			\
+    while (q)							\
+      {								\
+	T##_f[1] = S##_f[1] + q;				\
+	T##_f[2] = S##_f[2];					\
+	T##_f[3] = S##_f[3];					\
+	if (T##_f[3] < X##_f[3] || 				\
+	    (T##_f[3] == X##_f[3] && (T##_f[2] < X##_f[2] ||	\
+	     (T##_f[2] == X##_f[2] && T##_f[1] <= X##_f[1]))))	\
+	  {							\
+	    S##_f[1] = T##_f[1] + q;				\
+	    S##_f[2] += (T##_f[1] > S##_f[1]);			\
+	    S##_f[3] += (T##_f[2] > S##_f[2]);			\
+	    __FP_FRAC_DEC_3(X##_f[3], X##_f[2], X##_f[1],	\
+	    		    T##_f[3], T##_f[2], T##_f[1]);	\
+	    R##_f[1] += q;					\
+	  }							\
+	_FP_FRAC_SLL_4(X, 1);					\
+	q >>= 1;						\
+      }								\
+    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);			\
+    while (q != _FP_WORK_ROUND)					\
+      {								\
+	T##_f[0] = S##_f[0] + q;				\
+	T##_f[1] = S##_f[1];					\
+	T##_f[2] = S##_f[2];					\
+	T##_f[3] = S##_f[3];					\
+	if (_FP_FRAC_GE_4(X,T))					\
+	  {							\
+	    S##_f[0] = T##_f[0] + q;				\
+	    S##_f[1] += (T##_f[0] > S##_f[0]);			\
+	    S##_f[2] += (T##_f[1] > S##_f[1]);			\
+	    S##_f[3] += (T##_f[2] > S##_f[2]);			\
+	    _FP_FRAC_DEC_4(X, T);				\
+	    R##_f[0] += q;					\
+	  }							\
+	_FP_FRAC_SLL_4(X, 1);					\
+	q >>= 1;						\
+      }								\
+    if (!_FP_FRAC_ZEROP_4(X))					\
+      {								\
+	if (_FP_FRAC_GT_4(X,S))					\
+	  R##_f[0] |= _FP_WORK_ROUND;				\
+	R##_f[0] |= _FP_WORK_STICKY;				\
+      }								\
+  } while (0)
+
+
+/*
+ * Internals 
+ */
+
+#define __FP_FRAC_SET_4(X,I3,I2,I1,I0)					\
+  (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
+
+#ifndef __FP_FRAC_ADD_3
+#define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0)		\
+  do {								\
+    int _c1, _c2;							\
+    r0 = x0 + y0;						\
+    _c1 = r0 < x0;						\
+    r1 = x1 + y1;						\
+    _c2 = r1 < x1;						\
+    r1 += _c1;							\
+    _c2 |= r1 < _c1;						\
+    r2 = x2 + y2 + _c2;						\
+  } while (0)
+#endif
+
+#ifndef __FP_FRAC_ADD_4
+#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)	\
+  do {								\
+    int _c1, _c2, _c3;						\
+    r0 = x0 + y0;						\
+    _c1 = r0 < x0;						\
+    r1 = x1 + y1;						\
+    _c2 = r1 < x1;						\
+    r1 += _c1;							\
+    _c2 |= r1 < _c1;						\
+    r2 = x2 + y2;						\
+    _c3 = r2 < x2;						\
+    r2 += _c2;							\
+    _c3 |= r2 < _c2;						\
+    r3 = x3 + y3 + _c3;						\
+  } while (0)
+#endif
+
+#ifndef __FP_FRAC_SUB_3
+#define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0)		\
+  do {								\
+    int _c1, _c2;							\
+    r0 = x0 - y0;						\
+    _c1 = r0 > x0;						\
+    r1 = x1 - y1;						\
+    _c2 = r1 > x1;						\
+    r1 -= _c1;							\
+    _c2 |= r1 > _c1;						\
+    r2 = x2 - y2 - _c2;						\
+  } while (0)
+#endif
+
+#ifndef __FP_FRAC_SUB_4
+#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)	\
+  do {								\
+    int _c1, _c2, _c3;						\
+    r0 = x0 - y0;						\
+    _c1 = r0 > x0;						\
+    r1 = x1 - y1;						\
+    _c2 = r1 > x1;						\
+    r1 -= _c1;							\
+    _c2 |= r1 > _c1;						\
+    r2 = x2 - y2;						\
+    _c3 = r2 > x2;						\
+    r2 -= _c2;							\
+    _c3 |= r2 > _c2;						\
+    r3 = x3 - y3 - _c3;						\
+  } while (0)
+#endif
+
+#ifndef __FP_FRAC_DEC_3
+#define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0)				\
+  do {									\
+    UWtype _t0, _t1, _t2;						\
+    _t0 = x0, _t1 = x1, _t2 = x2;					\
+    __FP_FRAC_SUB_3 (x2, x1, x0, _t2, _t1, _t0, y2, y1, y0);		\
+  } while (0)
+#endif
+
+#ifndef __FP_FRAC_DEC_4
+#define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0)			\
+  do {									\
+    UWtype _t0, _t1, _t2, _t3;						\
+    _t0 = x0, _t1 = x1, _t2 = x2, _t3 = x3;				\
+    __FP_FRAC_SUB_4 (x3,x2,x1,x0,_t3,_t2,_t1,_t0, y3,y2,y1,y0);		\
+  } while (0)
+#endif
+
+#ifndef __FP_FRAC_ADDI_4
+#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i)					\
+  do {									\
+    UWtype _t;								\
+    _t = ((x0 += i) < i);						\
+    x1 += _t; _t = (x1 < _t);						\
+    x2 += _t; _t = (x2 < _t);						\
+    x3 += _t;								\
+  } while (0)
+#endif
+
+/* Convert FP values between word sizes. This appears to be more
+ * complicated than I'd have expected it to be, so these might be
+ * wrong... These macros are in any case somewhat bogus because they
+ * use information about what various FRAC_n variables look like 
+ * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
+ * the ones in op-2.h and op-1.h. 
+ */
+#define _FP_FRAC_CONV_1_4(dfs, sfs, D, S)				\
+   do {									\
+     if (S##_c != FP_CLS_NAN)						\
+       _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),	\
+			  _FP_WFRACBITS_##sfs);				\
+     else								\
+       _FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs));	\
+     D##_f = S##_f[0];							\
+  } while (0)
+
+#define _FP_FRAC_CONV_2_4(dfs, sfs, D, S)				\
+   do {									\
+     if (S##_c != FP_CLS_NAN)						\
+       _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),	\
+		      _FP_WFRACBITS_##sfs);				\
+     else								\
+       _FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs));	\
+     D##_f0 = S##_f[0];							\
+     D##_f1 = S##_f[1];							\
+  } while (0)
+
+/* Assembly/disassembly for converting to/from integral types.  
+ * No shifting or overflow handled here.
+ */
+/* Put the FP value X into r, which is an integer of size rsize. */
+#define _FP_FRAC_ASSEMBLE_4(r, X, rsize)				\
+  do {									\
+    if (rsize <= _FP_W_TYPE_SIZE)					\
+      r = X##_f[0];							\
+    else if (rsize <= 2*_FP_W_TYPE_SIZE)				\
+    {									\
+      r = X##_f[1];							\
+      r <<= _FP_W_TYPE_SIZE;						\
+      r += X##_f[0];							\
+    }									\
+    else								\
+    {									\
+      /* I'm feeling lazy so we deal with int == 3words (implausible)*/	\
+      /* and int == 4words as a single case.			 */	\
+      r = X##_f[3];							\
+      r <<= _FP_W_TYPE_SIZE;						\
+      r += X##_f[2];							\
+      r <<= _FP_W_TYPE_SIZE;						\
+      r += X##_f[1];							\
+      r <<= _FP_W_TYPE_SIZE;						\
+      r += X##_f[0];							\
+    }									\
+  } while (0)
+
+/* "No disassemble Number Five!" */
+/* move an integer of size rsize into X's fractional part. We rely on
+ * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
+ * having to mask the values we store into it.
+ */
+#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize)				\
+  do {									\
+    X##_f[0] = r;							\
+    X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);	\
+    X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \
+    X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \
+  } while (0)
+
+#define _FP_FRAC_CONV_4_1(dfs, sfs, D, S)				\
+   do {									\
+     D##_f[0] = S##_f;							\
+     D##_f[1] = D##_f[2] = D##_f[3] = 0;				\
+     _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));	\
+   } while (0)
+
+#define _FP_FRAC_CONV_4_2(dfs, sfs, D, S)				\
+   do {									\
+     D##_f[0] = S##_f0;							\
+     D##_f[1] = S##_f1;							\
+     D##_f[2] = D##_f[3] = 0;						\
+     _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));	\
+   } while (0)
+
+#endif
diff --git a/include/math-emu/op-8.h b/include/math-emu/op-8.h
new file mode 100644
index 0000000..8b8c05e
--- /dev/null
+++ b/include/math-emu/op-8.h
@@ -0,0 +1,107 @@
+/* Software floating-point emulation.
+   Basic eight-word fraction declaration and manipulation.
+   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
+                                                         
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If
+   not, write to the Free Software Foundation, Inc.,
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+#ifndef __MATH_EMU_OP_8_H__
+#define __MATH_EMU_OP_8_H__
+
+/* We need just a few things from here for op-4, if we ever need some
+   other macros, they can be added. */
+#define _FP_FRAC_DECL_8(X)	_FP_W_TYPE X##_f[8]
+#define _FP_FRAC_HIGH_8(X)	(X##_f[7])
+#define _FP_FRAC_LOW_8(X)	(X##_f[0])
+#define _FP_FRAC_WORD_8(X,w)	(X##_f[w])
+
+#define _FP_FRAC_SLL_8(X,N)						\
+  do {									\
+    _FP_I_TYPE _up, _down, _skip, _i;					\
+    _skip = (N) / _FP_W_TYPE_SIZE;					\
+    _up = (N) % _FP_W_TYPE_SIZE;					\
+    _down = _FP_W_TYPE_SIZE - _up;					\
+    if (!_up)								\
+      for (_i = 7; _i >= _skip; --_i)					\
+	X##_f[_i] = X##_f[_i-_skip];					\
+    else								\
+      {									\
+	for (_i = 7; _i > _skip; --_i)					\
+	  X##_f[_i] = X##_f[_i-_skip] << _up				\
+		      | X##_f[_i-_skip-1] >> _down;			\
+	X##_f[_i--] = X##_f[0] << _up; 					\
+      }									\
+    for (; _i >= 0; --_i)						\
+      X##_f[_i] = 0;							\
+  } while (0)
+
+#define _FP_FRAC_SRL_8(X,N)						\
+  do {									\
+    _FP_I_TYPE _up, _down, _skip, _i;					\
+    _skip = (N) / _FP_W_TYPE_SIZE;					\
+    _down = (N) % _FP_W_TYPE_SIZE;					\
+    _up = _FP_W_TYPE_SIZE - _down;					\
+    if (!_down)								\
+      for (_i = 0; _i <= 7-_skip; ++_i)					\
+	X##_f[_i] = X##_f[_i+_skip];					\
+    else								\
+      {									\
+	for (_i = 0; _i < 7-_skip; ++_i)				\
+	  X##_f[_i] = X##_f[_i+_skip] >> _down				\
+		      | X##_f[_i+_skip+1] << _up;			\
+	X##_f[_i++] = X##_f[7] >> _down;				\
+      }									\
+    for (; _i < 8; ++_i)						\
+      X##_f[_i] = 0;							\
+  } while (0)
+
+
+/* Right shift with sticky-lsb. 
+ * What this actually means is that we do a standard right-shift,
+ * but that if any of the bits that fall off the right hand side
+ * were one then we always set the LSbit.
+ */
+#define _FP_FRAC_SRS_8(X,N,size)					\
+  do {									\
+    _FP_I_TYPE _up, _down, _skip, _i;					\
+    _FP_W_TYPE _s;							\
+    _skip = (N) / _FP_W_TYPE_SIZE;					\
+    _down = (N) % _FP_W_TYPE_SIZE;					\
+    _up = _FP_W_TYPE_SIZE - _down;					\
+    for (_s = _i = 0; _i < _skip; ++_i)					\
+      _s |= X##_f[_i];							\
+    _s |= X##_f[_i] << _up;						\
+/* s is now != 0 if we want to set the LSbit */				\
+    if (!_down)								\
+      for (_i = 0; _i <= 7-_skip; ++_i)					\
+	X##_f[_i] = X##_f[_i+_skip];					\
+    else								\
+      {									\
+	for (_i = 0; _i < 7-_skip; ++_i)				\
+	  X##_f[_i] = X##_f[_i+_skip] >> _down				\
+		      | X##_f[_i+_skip+1] << _up;			\
+	X##_f[_i++] = X##_f[7] >> _down;				\
+      }									\
+    for (; _i < 8; ++_i)						\
+      X##_f[_i] = 0;							\
+    /* don't fix the LSB until the very end when we're sure f[0] is stable */	\
+    X##_f[0] |= (_s != 0);						\
+  } while (0)
+
+#endif
diff --git a/include/math-emu/op-common.h b/include/math-emu/op-common.h
new file mode 100644
index 0000000..93780ab
--- /dev/null
+++ b/include/math-emu/op-common.h
@@ -0,0 +1,853 @@
+/* Software floating-point emulation. Common operations.
+   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz),
+		  David S. Miller (davem@redhat.com) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If
+   not, write to the Free Software Foundation, Inc.,
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+#ifndef __MATH_EMU_OP_COMMON_H__
+#define __MATH_EMU_OP_COMMON_H__
+
+#define _FP_DECL(wc, X)			\
+  _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0;	\
+  _FP_FRAC_DECL_##wc(X)
+
+/*
+ * Finish truely unpacking a native fp value by classifying the kind
+ * of fp value and normalizing both the exponent and the fraction.
+ */
+
+#define _FP_UNPACK_CANONICAL(fs, wc, X)					\
+do {									\
+  switch (X##_e)							\
+  {									\
+  default:								\
+    _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs;			\
+    _FP_FRAC_SLL_##wc(X, _FP_WORKBITS);					\
+    X##_e -= _FP_EXPBIAS_##fs;						\
+    X##_c = FP_CLS_NORMAL;						\
+    break;								\
+									\
+  case 0:								\
+    if (_FP_FRAC_ZEROP_##wc(X))						\
+      X##_c = FP_CLS_ZERO;						\
+    else								\
+      {									\
+	/* a denormalized number */					\
+	_FP_I_TYPE _shift;						\
+	_FP_FRAC_CLZ_##wc(_shift, X);					\
+	_shift -= _FP_FRACXBITS_##fs;					\
+	_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS));			\
+	X##_e -= _FP_EXPBIAS_##fs - 1 + _shift;				\
+	X##_c = FP_CLS_NORMAL;						\
+	FP_SET_EXCEPTION(FP_EX_DENORM);					\
+	if (FP_DENORM_ZERO)						\
+	  {								\
+	    FP_SET_EXCEPTION(FP_EX_INEXACT);				\
+	    X##_c = FP_CLS_ZERO;					\
+	  }								\
+      }									\
+    break;								\
+									\
+  case _FP_EXPMAX_##fs:							\
+    if (_FP_FRAC_ZEROP_##wc(X))						\
+      X##_c = FP_CLS_INF;						\
+    else								\
+      {									\
+	X##_c = FP_CLS_NAN;						\
+	/* Check for signaling NaN */					\
+	if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))		\
+	  FP_SET_EXCEPTION(FP_EX_INVALID);				\
+      }									\
+    break;								\
+  }									\
+} while (0)
+
+/*
+ * Before packing the bits back into the native fp result, take care
+ * of such mundane things as rounding and overflow.  Also, for some
+ * kinds of fp values, the original parts may not have been fully
+ * extracted -- but that is ok, we can regenerate them now.
+ */
+
+#define _FP_PACK_CANONICAL(fs, wc, X)				\
+do {								\
+  switch (X##_c)						\
+  {								\
+  case FP_CLS_NORMAL:						\
+    X##_e += _FP_EXPBIAS_##fs;					\
+    if (X##_e > 0)						\
+      {								\
+	_FP_ROUND(wc, X);					\
+	if (_FP_FRAC_OVERP_##wc(fs, X))				\
+	  {							\
+	    _FP_FRAC_CLEAR_OVERP_##wc(fs, X);			\
+	    X##_e++;						\
+	  }							\
+	_FP_FRAC_SRL_##wc(X, _FP_WORKBITS);			\
+	if (X##_e >= _FP_EXPMAX_##fs)				\
+	  {							\
+	    /* overflow */					\
+	    switch (FP_ROUNDMODE)				\
+	      {							\
+	      case FP_RND_NEAREST:				\
+		X##_c = FP_CLS_INF;				\
+		break;						\
+	      case FP_RND_PINF:					\
+		if (!X##_s) X##_c = FP_CLS_INF;			\
+		break;						\
+	      case FP_RND_MINF:					\
+		if (X##_s) X##_c = FP_CLS_INF;			\
+		break;						\
+	      }							\
+	    if (X##_c == FP_CLS_INF)				\
+	      {							\
+		/* Overflow to infinity */			\
+		X##_e = _FP_EXPMAX_##fs;			\
+		_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
+	      }							\
+	    else						\
+	      {							\
+		/* Overflow to maximum normal */		\
+		X##_e = _FP_EXPMAX_##fs - 1;			\
+		_FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc);		\
+	      }							\
+	    FP_SET_EXCEPTION(FP_EX_OVERFLOW);			\
+            FP_SET_EXCEPTION(FP_EX_INEXACT);			\
+	  }							\
+      }								\
+    else							\
+      {								\
+	/* we've got a denormalized number */			\
+	X##_e = -X##_e + 1;					\
+	if (X##_e <= _FP_WFRACBITS_##fs)			\
+	  {							\
+	    _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs);	\
+	    _FP_ROUND(wc, X);					\
+	    if (_FP_FRAC_HIGH_##fs(X)				\
+		& (_FP_OVERFLOW_##fs >> 1))			\
+	      {							\
+	        X##_e = 1;					\
+	        _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
+	      }							\
+	    else						\
+	      {							\
+		X##_e = 0;					\
+		_FP_FRAC_SRL_##wc(X, _FP_WORKBITS);		\
+		FP_SET_EXCEPTION(FP_EX_UNDERFLOW);		\
+	      }							\
+	  }							\
+	else							\
+	  {							\
+	    /* underflow to zero */				\
+	    X##_e = 0;						\
+	    if (!_FP_FRAC_ZEROP_##wc(X))			\
+	      {							\
+	        _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);		\
+	        _FP_ROUND(wc, X);				\
+	        _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS);	\
+	      }							\
+	    FP_SET_EXCEPTION(FP_EX_UNDERFLOW);			\
+	  }							\
+      }								\
+    break;							\
+								\
+  case FP_CLS_ZERO:						\
+    X##_e = 0;							\
+    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
+    break;							\
+								\
+  case FP_CLS_INF:						\
+    X##_e = _FP_EXPMAX_##fs;					\
+    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
+    break;							\
+								\
+  case FP_CLS_NAN:						\
+    X##_e = _FP_EXPMAX_##fs;					\
+    if (!_FP_KEEPNANFRACP)					\
+      {								\
+	_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs);			\
+	X##_s = _FP_NANSIGN_##fs;				\
+      }								\
+    else							\
+      _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs;		\
+    break;							\
+  }								\
+} while (0)
+
+/* This one accepts raw argument and not cooked,  returns
+ * 1 if X is a signaling NaN.
+ */
+#define _FP_ISSIGNAN(fs, wc, X)					\
+({								\
+  int __ret = 0;						\
+  if (X##_e == _FP_EXPMAX_##fs)					\
+    {								\
+      if (!_FP_FRAC_ZEROP_##wc(X)				\
+	  && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))	\
+	__ret = 1;						\
+    }								\
+  __ret;							\
+})
+
+
+
+
+
+/*
+ * Main addition routine.  The input values should be cooked.
+ */
+
+#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP)				     \
+do {									     \
+  switch (_FP_CLS_COMBINE(X##_c, Y##_c))				     \
+  {									     \
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):			     \
+    {									     \
+      /* shift the smaller number so that its exponent matches the larger */ \
+      _FP_I_TYPE diff = X##_e - Y##_e;					     \
+									     \
+      if (diff < 0)							     \
+	{								     \
+	  diff = -diff;							     \
+	  if (diff <= _FP_WFRACBITS_##fs)				     \
+	    _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs);		     \
+	  else if (!_FP_FRAC_ZEROP_##wc(X))				     \
+	    _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);			     \
+	  R##_e = Y##_e;						     \
+	}								     \
+      else								     \
+	{								     \
+	  if (diff > 0)							     \
+	    {								     \
+	      if (diff <= _FP_WFRACBITS_##fs)				     \
+	        _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs);		     \
+	      else if (!_FP_FRAC_ZEROP_##wc(Y))				     \
+	        _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc);			     \
+	    }								     \
+	  R##_e = X##_e;						     \
+	}								     \
+									     \
+      R##_c = FP_CLS_NORMAL;						     \
+									     \
+      if (X##_s == Y##_s)						     \
+	{								     \
+	  R##_s = X##_s;						     \
+	  _FP_FRAC_ADD_##wc(R, X, Y);					     \
+	  if (_FP_FRAC_OVERP_##wc(fs, R))				     \
+	    {								     \
+	      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);		     \
+	      R##_e++;							     \
+	    }								     \
+	}								     \
+      else								     \
+	{								     \
+	  R##_s = X##_s;						     \
+	  _FP_FRAC_SUB_##wc(R, X, Y);					     \
+	  if (_FP_FRAC_ZEROP_##wc(R))					     \
+	    {								     \
+	      /* return an exact zero */				     \
+	      if (FP_ROUNDMODE == FP_RND_MINF)				     \
+		R##_s |= Y##_s;						     \
+	      else							     \
+		R##_s &= Y##_s;						     \
+	      R##_c = FP_CLS_ZERO;					     \
+	    }								     \
+	  else								     \
+	    {								     \
+	      if (_FP_FRAC_NEGP_##wc(R))				     \
+		{							     \
+		  _FP_FRAC_SUB_##wc(R, Y, X);				     \
+		  R##_s = Y##_s;					     \
+		}							     \
+									     \
+	      /* renormalize after subtraction */			     \
+	      _FP_FRAC_CLZ_##wc(diff, R);				     \
+	      diff -= _FP_WFRACXBITS_##fs;				     \
+	      if (diff)							     \
+		{							     \
+		  R##_e -= diff;					     \
+		  _FP_FRAC_SLL_##wc(R, diff);				     \
+		}							     \
+	    }								     \
+	}								     \
+      break;								     \
+    }									     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):				     \
+    _FP_CHOOSENAN(fs, wc, R, X, Y, OP);					     \
+    break;								     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):			     \
+    R##_e = X##_e;							     \
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):			     \
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):				     \
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):				     \
+    _FP_FRAC_COPY_##wc(R, X);						     \
+    R##_s = X##_s;							     \
+    R##_c = X##_c;							     \
+    break;								     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):			     \
+    R##_e = Y##_e;							     \
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):			     \
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):				     \
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):				     \
+    _FP_FRAC_COPY_##wc(R, Y);						     \
+    R##_s = Y##_s;							     \
+    R##_c = Y##_c;							     \
+    break;								     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):				     \
+    if (X##_s != Y##_s)							     \
+      {									     \
+	/* +INF + -INF => NAN */					     \
+	_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);				     \
+	R##_s = _FP_NANSIGN_##fs;					     \
+	R##_c = FP_CLS_NAN;						     \
+	FP_SET_EXCEPTION(FP_EX_INVALID);				     \
+	break;								     \
+      }									     \
+    /* FALLTHRU */							     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):			     \
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):				     \
+    R##_s = X##_s;							     \
+    R##_c = FP_CLS_INF;							     \
+    break;								     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):			     \
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):				     \
+    R##_s = Y##_s;							     \
+    R##_c = FP_CLS_INF;							     \
+    break;								     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):			     \
+    /* make sure the sign is correct */					     \
+    if (FP_ROUNDMODE == FP_RND_MINF)					     \
+      R##_s = X##_s | Y##_s;						     \
+    else								     \
+      R##_s = X##_s & Y##_s;						     \
+    R##_c = FP_CLS_ZERO;						     \
+    break;								     \
+									     \
+  default:								     \
+    abort();								     \
+  }									     \
+} while (0)
+
+#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
+#define _FP_SUB(fs, wc, R, X, Y)					     \
+  do {									     \
+    if (Y##_c != FP_CLS_NAN) Y##_s ^= 1;				     \
+    _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-');				     \
+  } while (0)
+
+
+/*
+ * Main negation routine.  FIXME -- when we care about setting exception
+ * bits reliably, this will not do.  We should examine all of the fp classes.
+ */
+
+#define _FP_NEG(fs, wc, R, X)		\
+  do {					\
+    _FP_FRAC_COPY_##wc(R, X);		\
+    R##_c = X##_c;			\
+    R##_e = X##_e;			\
+    R##_s = 1 ^ X##_s;			\
+  } while (0)
+
+
+/*
+ * Main multiplication routine.  The input values should be cooked.
+ */
+
+#define _FP_MUL(fs, wc, R, X, Y)			\
+do {							\
+  R##_s = X##_s ^ Y##_s;				\
+  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
+  {							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
+    R##_c = FP_CLS_NORMAL;				\
+    R##_e = X##_e + Y##_e + 1;				\
+							\
+    _FP_MUL_MEAT_##fs(R,X,Y);				\
+							\
+    if (_FP_FRAC_OVERP_##wc(fs, R))			\
+      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);	\
+    else						\
+      R##_e--;						\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
+    _FP_CHOOSENAN(fs, wc, R, X, Y, '*');		\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
+    R##_s = X##_s;					\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
+    _FP_FRAC_COPY_##wc(R, X);				\
+    R##_c = X##_c;					\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
+    R##_s = Y##_s;					\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
+    _FP_FRAC_COPY_##wc(R, Y);				\
+    R##_c = Y##_c;					\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
+    R##_s = _FP_NANSIGN_##fs;				\
+    R##_c = FP_CLS_NAN;					\
+    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
+    FP_SET_EXCEPTION(FP_EX_INVALID);			\
+    break;						\
+							\
+  default:						\
+    abort();						\
+  }							\
+} while (0)
+
+
+/*
+ * Main division routine.  The input values should be cooked.
+ */
+
+#define _FP_DIV(fs, wc, R, X, Y)			\
+do {							\
+  R##_s = X##_s ^ Y##_s;				\
+  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
+  {							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
+    R##_c = FP_CLS_NORMAL;				\
+    R##_e = X##_e - Y##_e;				\
+							\
+    _FP_DIV_MEAT_##fs(R,X,Y);				\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
+    _FP_CHOOSENAN(fs, wc, R, X, Y, '/');		\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
+    R##_s = X##_s;					\
+    _FP_FRAC_COPY_##wc(R, X);				\
+    R##_c = X##_c;					\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
+    R##_s = Y##_s;					\
+    _FP_FRAC_COPY_##wc(R, Y);				\
+    R##_c = Y##_c;					\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
+    R##_c = FP_CLS_ZERO;				\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
+    FP_SET_EXCEPTION(FP_EX_DIVZERO);			\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
+    R##_c = FP_CLS_INF;					\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
+    R##_s = _FP_NANSIGN_##fs;				\
+    R##_c = FP_CLS_NAN;					\
+    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
+    FP_SET_EXCEPTION(FP_EX_INVALID);			\
+    break;						\
+							\
+  default:						\
+    abort();						\
+  }							\
+} while (0)
+
+
+/*
+ * Main differential comparison routine.  The inputs should be raw not
+ * cooked.  The return is -1,0,1 for normal values, 2 otherwise.
+ */
+
+#define _FP_CMP(fs, wc, ret, X, Y, un)					\
+  do {									\
+    /* NANs are unordered */						\
+    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		\
+	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	\
+      {									\
+	ret = un;							\
+      }									\
+    else								\
+      {									\
+	int __is_zero_x;						\
+	int __is_zero_y;						\
+									\
+	__is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0;	\
+	__is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0;	\
+									\
+	if (__is_zero_x && __is_zero_y)					\
+		ret = 0;						\
+	else if (__is_zero_x)						\
+		ret = Y##_s ? 1 : -1;					\
+	else if (__is_zero_y)						\
+		ret = X##_s ? -1 : 1;					\
+	else if (X##_s != Y##_s)					\
+	  ret = X##_s ? -1 : 1;						\
+	else if (X##_e > Y##_e)						\
+	  ret = X##_s ? -1 : 1;						\
+	else if (X##_e < Y##_e)						\
+	  ret = X##_s ? 1 : -1;						\
+	else if (_FP_FRAC_GT_##wc(X, Y))				\
+	  ret = X##_s ? -1 : 1;						\
+	else if (_FP_FRAC_GT_##wc(Y, X))				\
+	  ret = X##_s ? 1 : -1;						\
+	else								\
+	  ret = 0;							\
+      }									\
+  } while (0)
+
+
+/* Simplification for strict equality.  */
+
+#define _FP_CMP_EQ(fs, wc, ret, X, Y)					  \
+  do {									  \
+    /* NANs are unordered */						  \
+    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		  \
+	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	  \
+      {									  \
+	ret = 1;							  \
+      }									  \
+    else								  \
+      {									  \
+	ret = !(X##_e == Y##_e						  \
+		&& _FP_FRAC_EQ_##wc(X, Y)				  \
+		&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
+      }									  \
+  } while (0)
+
+/*
+ * Main square root routine.  The input value should be cooked.
+ */
+
+#define _FP_SQRT(fs, wc, R, X)						\
+do {									\
+    _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S);			\
+    _FP_W_TYPE q;							\
+    switch (X##_c)							\
+    {									\
+    case FP_CLS_NAN:							\
+	_FP_FRAC_COPY_##wc(R, X);					\
+	R##_s = X##_s;							\
+    	R##_c = FP_CLS_NAN;						\
+    	break;								\
+    case FP_CLS_INF:							\
+    	if (X##_s)							\
+    	  {								\
+    	    R##_s = _FP_NANSIGN_##fs;					\
+	    R##_c = FP_CLS_NAN; /* NAN */				\
+	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
+	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
+    	  }								\
+    	else								\
+    	  {								\
+    	    R##_s = 0;							\
+    	    R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */			\
+    	  }								\
+    	break;								\
+    case FP_CLS_ZERO:							\
+	R##_s = X##_s;							\
+	R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */			\
+	break;								\
+    case FP_CLS_NORMAL:							\
+    	R##_s = 0;							\
+        if (X##_s)							\
+          {								\
+	    R##_c = FP_CLS_NAN; /* sNAN */				\
+	    R##_s = _FP_NANSIGN_##fs;					\
+	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
+	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
+	    break;							\
+          }								\
+    	R##_c = FP_CLS_NORMAL;						\
+        if (X##_e & 1)							\
+          _FP_FRAC_SLL_##wc(X, 1);					\
+        R##_e = X##_e >> 1;						\
+        _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc);			\
+        _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc);			\
+        q = _FP_OVERFLOW_##fs >> 1;					\
+        _FP_SQRT_MEAT_##wc(R, S, T, X, q);				\
+    }									\
+  } while (0)
+
+/*
+ * Convert from FP to integer
+ */
+
+/* RSIGNED can have following values:
+ * 0:  the number is required to be 0..(2^rsize)-1, if not, NV is set plus
+ *     the result is either 0 or (2^rsize)-1 depending on the sign in such case.
+ * 1:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
+ *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
+ *     on the sign in such case.
+ * 2:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
+ *     set plus the result is truncated to fit into destination.
+ * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
+ *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
+ *     on the sign in such case.
+ */
+#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned)				\
+  do {										\
+    switch (X##_c)								\
+      {										\
+      case FP_CLS_NORMAL:							\
+	if (X##_e < 0)								\
+	  {									\
+	    FP_SET_EXCEPTION(FP_EX_INEXACT);					\
+	  case FP_CLS_ZERO:							\
+	    r = 0;								\
+	  }									\
+	else if (X##_e >= rsize - (rsigned > 0 || X##_s)			\
+		 || (!rsigned && X##_s))					\
+	  {	/* overflow */							\
+	  case FP_CLS_NAN:                                                      \
+	  case FP_CLS_INF:							\
+	    if (rsigned == 2)							\
+	      {									\
+		if (X##_c != FP_CLS_NORMAL					\
+		    || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs)			\
+		  r = 0;							\
+		else								\
+		  {								\
+		    _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
+		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
+		  }								\
+	      }									\
+	    else if (rsigned)							\
+	      {									\
+		r = 1;								\
+		r <<= rsize - 1;						\
+		r -= 1 - X##_s;							\
+	      }									\
+	    else								\
+	      {									\
+		r = 0;								\
+		if (X##_s)							\
+		  r = ~r;							\
+	      }									\
+	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
+	  }									\
+	else									\
+	  {									\
+	    if (_FP_W_TYPE_SIZE*wc < rsize)					\
+	      {									\
+		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
+		r <<= X##_e - _FP_WFRACBITS_##fs;				\
+	      }									\
+	    else								\
+	      {									\
+		if (X##_e >= _FP_WFRACBITS_##fs)				\
+		  _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
+		else if (X##_e < _FP_WFRACBITS_##fs - 1)			\
+		  {								\
+		    _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2),	\
+				      _FP_WFRACBITS_##fs);			\
+		    if (_FP_FRAC_LOW_##wc(X) & 1)				\
+		      FP_SET_EXCEPTION(FP_EX_INEXACT);				\
+		    _FP_FRAC_SRL_##wc(X, 1);					\
+		  }								\
+		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
+	      }									\
+	    if (rsigned && X##_s)						\
+	      r = -r;								\
+	  }									\
+	break;									\
+      }										\
+  } while (0)
+
+#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned)				\
+  do {										\
+    r = 0;									\
+    switch (X##_c)								\
+      {										\
+      case FP_CLS_NORMAL:							\
+	if (X##_e >= _FP_FRACBITS_##fs - 1)					\
+	  {									\
+	    if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs)				\
+	      {									\
+		if (X##_e >= _FP_WFRACBITS_##fs - 1)				\
+		  {								\
+		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
+		    r <<= X##_e - _FP_WFRACBITS_##fs + 1;			\
+		  }								\
+		else								\
+		  {								\
+		    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e			\
+				      + _FP_FRACBITS_##fs - 1);			\
+		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
+		  }								\
+	      }									\
+	  }									\
+	else									\
+	  {									\
+	    if (X##_e <= -_FP_WORKBITS - 1)					\
+	      _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);				\
+	    else								\
+	      _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e,		\
+				_FP_WFRACBITS_##fs);				\
+	    _FP_ROUND(wc, X);							\
+	    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);					\
+	    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
+	  }									\
+	if (rsigned && X##_s)							\
+	  r = -r;								\
+	if (X##_e >= rsize - (rsigned > 0 || X##_s)				\
+	    || (!rsigned && X##_s))						\
+	  {	/* overflow */							\
+	  case FP_CLS_NAN:                                                      \
+	  case FP_CLS_INF:							\
+	    if (!rsigned)							\
+	      {									\
+		r = 0;								\
+		if (X##_s)							\
+		  r = ~r;							\
+	      }									\
+	    else if (rsigned != 2)						\
+	      {									\
+		r = 1;								\
+		r <<= rsize - 1;						\
+		r -= 1 - X##_s;							\
+	      }									\
+	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
+	  }									\
+	break;									\
+      case FP_CLS_ZERO:								\
+        break;									\
+      }										\
+  } while (0)
+
+#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype)			\
+  do {									\
+    if (r)								\
+      {									\
+        unsigned rtype ur_;						\
+	X##_c = FP_CLS_NORMAL;						\
+									\
+	if ((X##_s = (r < 0)))						\
+	  ur_ = (unsigned rtype) -r;					\
+	else								\
+	  ur_ = (unsigned rtype) r;					\
+	if (rsize <= _FP_W_TYPE_SIZE)					\
+	  __FP_CLZ(X##_e, ur_);						\
+	else								\
+	  __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), 	\
+		     (_FP_W_TYPE)ur_);					\
+	if (rsize < _FP_W_TYPE_SIZE)					\
+		X##_e -= (_FP_W_TYPE_SIZE - rsize);			\
+	X##_e = rsize - X##_e - 1;					\
+									\
+	if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e)	\
+	  __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
+	_FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize);			\
+	if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0)			\
+	  _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));	\
+      }									\
+    else								\
+      {									\
+	X##_c = FP_CLS_ZERO, X##_s = 0;					\
+      }									\
+  } while (0)
+
+
+#define FP_CONV(dfs,sfs,dwc,swc,D,S)			\
+  do {							\
+    _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S);	\
+    D##_e = S##_e;					\
+    D##_c = S##_c;					\
+    D##_s = S##_s;					\
+  } while (0)
+
+/*
+ * Helper primitives.
+ */
+
+/* Count leading zeros in a word.  */
+
+#ifndef __FP_CLZ
+#if _FP_W_TYPE_SIZE < 64
+/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
+#define __FP_CLZ(r, x)				\
+  do {						\
+    _FP_W_TYPE _t = (x);			\
+    r = _FP_W_TYPE_SIZE - 1;			\
+    if (_t > 0xffff) r -= 16;			\
+    if (_t > 0xffff) _t >>= 16;			\
+    if (_t > 0xff) r -= 8;			\
+    if (_t > 0xff) _t >>= 8;			\
+    if (_t & 0xf0) r -= 4;			\
+    if (_t & 0xf0) _t >>= 4;			\
+    if (_t & 0xc) r -= 2;			\
+    if (_t & 0xc) _t >>= 2;			\
+    if (_t & 0x2) r -= 1;			\
+  } while (0)
+#else /* not _FP_W_TYPE_SIZE < 64 */
+#define __FP_CLZ(r, x)				\
+  do {						\
+    _FP_W_TYPE _t = (x);			\
+    r = _FP_W_TYPE_SIZE - 1;			\
+    if (_t > 0xffffffff) r -= 32;		\
+    if (_t > 0xffffffff) _t >>= 32;		\
+    if (_t > 0xffff) r -= 16;			\
+    if (_t > 0xffff) _t >>= 16;			\
+    if (_t > 0xff) r -= 8;			\
+    if (_t > 0xff) _t >>= 8;			\
+    if (_t & 0xf0) r -= 4;			\
+    if (_t & 0xf0) _t >>= 4;			\
+    if (_t & 0xc) r -= 2;			\
+    if (_t & 0xc) _t >>= 2;			\
+    if (_t & 0x2) r -= 1;			\
+  } while (0)
+#endif /* not _FP_W_TYPE_SIZE < 64 */
+#endif /* ndef __FP_CLZ */
+
+#define _FP_DIV_HELP_imm(q, r, n, d)		\
+  do {						\
+    q = n / d, r = n % d;			\
+  } while (0)
+
+#endif /* __MATH_EMU_OP_COMMON_H__ */
diff --git a/include/math-emu/quad.h b/include/math-emu/quad.h
new file mode 100644
index 0000000..6161136
--- /dev/null
+++ b/include/math-emu/quad.h
@@ -0,0 +1,208 @@
+/* Software floating-point emulation.
+   Definitions for IEEE Quad Precision.
+   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz),
+		  David S. Miller (davem@redhat.com) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If
+   not, write to the Free Software Foundation, Inc.,
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+#ifndef  __MATH_EMU_QUAD_H__
+#define  __MATH_EMU_QUAD_H__
+
+#if _FP_W_TYPE_SIZE < 32
+#error "Here's a nickel, kid. Go buy yourself a real computer."
+#endif
+
+#if _FP_W_TYPE_SIZE < 64
+#define _FP_FRACTBITS_Q         (4*_FP_W_TYPE_SIZE)
+#else
+#define _FP_FRACTBITS_Q		(2*_FP_W_TYPE_SIZE)
+#endif
+
+#define _FP_FRACBITS_Q		113
+#define _FP_FRACXBITS_Q		(_FP_FRACTBITS_Q - _FP_FRACBITS_Q)
+#define _FP_WFRACBITS_Q		(_FP_WORKBITS + _FP_FRACBITS_Q)
+#define _FP_WFRACXBITS_Q	(_FP_FRACTBITS_Q - _FP_WFRACBITS_Q)
+#define _FP_EXPBITS_Q		15
+#define _FP_EXPBIAS_Q		16383
+#define _FP_EXPMAX_Q		32767
+
+#define _FP_QNANBIT_Q		\
+	((_FP_W_TYPE)1 << (_FP_FRACBITS_Q-2) % _FP_W_TYPE_SIZE)
+#define _FP_IMPLBIT_Q		\
+	((_FP_W_TYPE)1 << (_FP_FRACBITS_Q-1) % _FP_W_TYPE_SIZE)
+#define _FP_OVERFLOW_Q		\
+	((_FP_W_TYPE)1 << (_FP_WFRACBITS_Q % _FP_W_TYPE_SIZE))
+
+#if _FP_W_TYPE_SIZE < 64
+
+union _FP_UNION_Q
+{
+   long double flt;
+   struct 
+   {
+#if __BYTE_ORDER == __BIG_ENDIAN
+      unsigned sign : 1;
+      unsigned exp : _FP_EXPBITS_Q;
+      unsigned long frac3 : _FP_FRACBITS_Q - (_FP_IMPLBIT_Q != 0)-(_FP_W_TYPE_SIZE * 3);
+      unsigned long frac2 : _FP_W_TYPE_SIZE;
+      unsigned long frac1 : _FP_W_TYPE_SIZE;
+      unsigned long frac0 : _FP_W_TYPE_SIZE;
+#else
+      unsigned long frac0 : _FP_W_TYPE_SIZE;
+      unsigned long frac1 : _FP_W_TYPE_SIZE;
+      unsigned long frac2 : _FP_W_TYPE_SIZE;
+      unsigned long frac3 : _FP_FRACBITS_Q - (_FP_IMPLBIT_Q != 0)-(_FP_W_TYPE_SIZE * 3);
+      unsigned exp : _FP_EXPBITS_Q;
+      unsigned sign : 1;
+#endif /* not bigendian */
+   } bits __attribute__((packed));
+};
+
+
+#define FP_DECL_Q(X)		_FP_DECL(4,X)
+#define FP_UNPACK_RAW_Q(X,val)	_FP_UNPACK_RAW_4(Q,X,val)
+#define FP_UNPACK_RAW_QP(X,val)	_FP_UNPACK_RAW_4_P(Q,X,val)
+#define FP_PACK_RAW_Q(val,X)	_FP_PACK_RAW_4(Q,val,X)
+#define FP_PACK_RAW_QP(val,X)		\
+  do {					\
+    if (!FP_INHIBIT_RESULTS)		\
+      _FP_PACK_RAW_4_P(Q,val,X);	\
+  } while (0)
+
+#define FP_UNPACK_Q(X,val)		\
+  do {					\
+    _FP_UNPACK_RAW_4(Q,X,val);		\
+    _FP_UNPACK_CANONICAL(Q,4,X);	\
+  } while (0)
+
+#define FP_UNPACK_QP(X,val)		\
+  do {					\
+    _FP_UNPACK_RAW_4_P(Q,X,val);	\
+    _FP_UNPACK_CANONICAL(Q,4,X);	\
+  } while (0)
+
+#define FP_PACK_Q(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(Q,4,X);		\
+    _FP_PACK_RAW_4(Q,val,X);		\
+  } while (0)
+
+#define FP_PACK_QP(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(Q,4,X);		\
+    if (!FP_INHIBIT_RESULTS)		\
+      _FP_PACK_RAW_4_P(Q,val,X);	\
+  } while (0)
+
+#define FP_ISSIGNAN_Q(X)		_FP_ISSIGNAN(Q,4,X)
+#define FP_NEG_Q(R,X)			_FP_NEG(Q,4,R,X)
+#define FP_ADD_Q(R,X,Y)			_FP_ADD(Q,4,R,X,Y)
+#define FP_SUB_Q(R,X,Y)			_FP_SUB(Q,4,R,X,Y)
+#define FP_MUL_Q(R,X,Y)			_FP_MUL(Q,4,R,X,Y)
+#define FP_DIV_Q(R,X,Y)			_FP_DIV(Q,4,R,X,Y)
+#define FP_SQRT_Q(R,X)			_FP_SQRT(Q,4,R,X)
+#define _FP_SQRT_MEAT_Q(R,S,T,X,Q)	_FP_SQRT_MEAT_4(R,S,T,X,Q)
+
+#define FP_CMP_Q(r,X,Y,un)	_FP_CMP(Q,4,r,X,Y,un)
+#define FP_CMP_EQ_Q(r,X,Y)	_FP_CMP_EQ(Q,4,r,X,Y)
+
+#define FP_TO_INT_Q(r,X,rsz,rsg)	_FP_TO_INT(Q,4,r,X,rsz,rsg)
+#define FP_TO_INT_ROUND_Q(r,X,rsz,rsg)	_FP_TO_INT_ROUND(Q,4,r,X,rsz,rsg)
+#define FP_FROM_INT_Q(X,r,rs,rt)	_FP_FROM_INT(Q,4,X,r,rs,rt)
+
+#define _FP_FRAC_HIGH_Q(X)	_FP_FRAC_HIGH_4(X)
+#define _FP_FRAC_HIGH_RAW_Q(X)	_FP_FRAC_HIGH_4(X)
+
+#else   /* not _FP_W_TYPE_SIZE < 64 */
+union _FP_UNION_Q
+{
+  long double flt /* __attribute__((mode(TF))) */ ;
+  struct {
+#if __BYTE_ORDER == __BIG_ENDIAN
+    unsigned sign  : 1;
+    unsigned exp   : _FP_EXPBITS_Q;
+    unsigned long frac1 : _FP_FRACBITS_Q-(_FP_IMPLBIT_Q != 0)-_FP_W_TYPE_SIZE;
+    unsigned long frac0 : _FP_W_TYPE_SIZE;
+#else
+    unsigned long frac0 : _FP_W_TYPE_SIZE;
+    unsigned long frac1 : _FP_FRACBITS_Q-(_FP_IMPLBIT_Q != 0)-_FP_W_TYPE_SIZE;
+    unsigned exp   : _FP_EXPBITS_Q;
+    unsigned sign  : 1;
+#endif
+  } bits;
+};
+
+#define FP_DECL_Q(X)		_FP_DECL(2,X)
+#define FP_UNPACK_RAW_Q(X,val)	_FP_UNPACK_RAW_2(Q,X,val)
+#define FP_UNPACK_RAW_QP(X,val)	_FP_UNPACK_RAW_2_P(Q,X,val)
+#define FP_PACK_RAW_Q(val,X)	_FP_PACK_RAW_2(Q,val,X)
+#define FP_PACK_RAW_QP(val,X)		\
+  do {					\
+    if (!FP_INHIBIT_RESULTS)		\
+      _FP_PACK_RAW_2_P(Q,val,X);	\
+  } while (0)
+
+#define FP_UNPACK_Q(X,val)		\
+  do {					\
+    _FP_UNPACK_RAW_2(Q,X,val);		\
+    _FP_UNPACK_CANONICAL(Q,2,X);	\
+  } while (0)
+
+#define FP_UNPACK_QP(X,val)		\
+  do {					\
+    _FP_UNPACK_RAW_2_P(Q,X,val);	\
+    _FP_UNPACK_CANONICAL(Q,2,X);	\
+  } while (0)
+
+#define FP_PACK_Q(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(Q,2,X);		\
+    _FP_PACK_RAW_2(Q,val,X);		\
+  } while (0)
+
+#define FP_PACK_QP(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(Q,2,X);		\
+    if (!FP_INHIBIT_RESULTS)		\
+      _FP_PACK_RAW_2_P(Q,val,X);	\
+  } while (0)
+
+#define FP_ISSIGNAN_Q(X)		_FP_ISSIGNAN(Q,2,X)
+#define FP_NEG_Q(R,X)			_FP_NEG(Q,2,R,X)
+#define FP_ADD_Q(R,X,Y)			_FP_ADD(Q,2,R,X,Y)
+#define FP_SUB_Q(R,X,Y)			_FP_SUB(Q,2,R,X,Y)
+#define FP_MUL_Q(R,X,Y)			_FP_MUL(Q,2,R,X,Y)
+#define FP_DIV_Q(R,X,Y)			_FP_DIV(Q,2,R,X,Y)
+#define FP_SQRT_Q(R,X)			_FP_SQRT(Q,2,R,X)
+#define _FP_SQRT_MEAT_Q(R,S,T,X,Q)	_FP_SQRT_MEAT_2(R,S,T,X,Q)
+
+#define FP_CMP_Q(r,X,Y,un)	_FP_CMP(Q,2,r,X,Y,un)
+#define FP_CMP_EQ_Q(r,X,Y)	_FP_CMP_EQ(Q,2,r,X,Y)
+
+#define FP_TO_INT_Q(r,X,rsz,rsg)	_FP_TO_INT(Q,2,r,X,rsz,rsg)
+#define FP_TO_INT_ROUND_Q(r,X,rsz,rsg)	_FP_TO_INT_ROUND(Q,2,r,X,rsz,rsg)
+#define FP_FROM_INT_Q(X,r,rs,rt)	_FP_FROM_INT(Q,2,X,r,rs,rt)
+
+#define _FP_FRAC_HIGH_Q(X)	_FP_FRAC_HIGH_2(X)
+#define _FP_FRAC_HIGH_RAW_Q(X)	_FP_FRAC_HIGH_2(X)
+
+#endif /* not _FP_W_TYPE_SIZE < 64 */
+
+#endif /* __MATH_EMU_QUAD_H__ */
diff --git a/include/math-emu/single.h b/include/math-emu/single.h
new file mode 100644
index 0000000..87f90b0
--- /dev/null
+++ b/include/math-emu/single.h
@@ -0,0 +1,116 @@
+/* Software floating-point emulation.
+   Definitions for IEEE Single Precision.
+   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz),
+		  David S. Miller (davem@redhat.com) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If
+   not, write to the Free Software Foundation, Inc.,
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+#ifndef    __MATH_EMU_SINGLE_H__
+#define    __MATH_EMU_SINGLE_H__
+
+#if _FP_W_TYPE_SIZE < 32
+#error "Here's a nickel kid.  Go buy yourself a real computer."
+#endif
+
+#define _FP_FRACBITS_S		24
+#define _FP_FRACXBITS_S		(_FP_W_TYPE_SIZE - _FP_FRACBITS_S)
+#define _FP_WFRACBITS_S		(_FP_WORKBITS + _FP_FRACBITS_S)
+#define _FP_WFRACXBITS_S	(_FP_W_TYPE_SIZE - _FP_WFRACBITS_S)
+#define _FP_EXPBITS_S		8
+#define _FP_EXPBIAS_S		127
+#define _FP_EXPMAX_S		255
+#define _FP_QNANBIT_S		((_FP_W_TYPE)1 << (_FP_FRACBITS_S-2))
+#define _FP_IMPLBIT_S		((_FP_W_TYPE)1 << (_FP_FRACBITS_S-1))
+#define _FP_OVERFLOW_S		((_FP_W_TYPE)1 << (_FP_WFRACBITS_S))
+
+/* The implementation of _FP_MUL_MEAT_S and _FP_DIV_MEAT_S should be
+   chosen by the target machine.  */
+
+union _FP_UNION_S
+{
+  float flt;
+  struct {
+#if __BYTE_ORDER == __BIG_ENDIAN
+    unsigned sign : 1;
+    unsigned exp  : _FP_EXPBITS_S;
+    unsigned frac : _FP_FRACBITS_S - (_FP_IMPLBIT_S != 0);
+#else
+    unsigned frac : _FP_FRACBITS_S - (_FP_IMPLBIT_S != 0);
+    unsigned exp  : _FP_EXPBITS_S;
+    unsigned sign : 1;
+#endif
+  } bits __attribute__((packed));
+};
+
+#define FP_DECL_S(X)		_FP_DECL(1,X)
+#define FP_UNPACK_RAW_S(X,val)	_FP_UNPACK_RAW_1(S,X,val)
+#define FP_UNPACK_RAW_SP(X,val)	_FP_UNPACK_RAW_1_P(S,X,val)
+#define FP_PACK_RAW_S(val,X)	_FP_PACK_RAW_1(S,val,X)
+#define FP_PACK_RAW_SP(val,X)		\
+  do {					\
+    if (!FP_INHIBIT_RESULTS)		\
+      _FP_PACK_RAW_1_P(S,val,X);	\
+  } while (0)
+
+#define FP_UNPACK_S(X,val)		\
+  do {					\
+    _FP_UNPACK_RAW_1(S,X,val);		\
+    _FP_UNPACK_CANONICAL(S,1,X);	\
+  } while (0)
+
+#define FP_UNPACK_SP(X,val)		\
+  do {					\
+    _FP_UNPACK_RAW_1_P(S,X,val);	\
+    _FP_UNPACK_CANONICAL(S,1,X);	\
+  } while (0)
+
+#define FP_PACK_S(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(S,1,X);		\
+    _FP_PACK_RAW_1(S,val,X);		\
+  } while (0)
+
+#define FP_PACK_SP(val,X)		\
+  do {					\
+    _FP_PACK_CANONICAL(S,1,X);		\
+    if (!FP_INHIBIT_RESULTS)		\
+      _FP_PACK_RAW_1_P(S,val,X);	\
+  } while (0)
+
+#define FP_ISSIGNAN_S(X)		_FP_ISSIGNAN(S,1,X)
+#define FP_NEG_S(R,X)			_FP_NEG(S,1,R,X)
+#define FP_ADD_S(R,X,Y)			_FP_ADD(S,1,R,X,Y)
+#define FP_SUB_S(R,X,Y)			_FP_SUB(S,1,R,X,Y)
+#define FP_MUL_S(R,X,Y)			_FP_MUL(S,1,R,X,Y)
+#define FP_DIV_S(R,X,Y)			_FP_DIV(S,1,R,X,Y)
+#define FP_SQRT_S(R,X)			_FP_SQRT(S,1,R,X)
+#define _FP_SQRT_MEAT_S(R,S,T,X,Q)	_FP_SQRT_MEAT_1(R,S,T,X,Q)
+
+#define FP_CMP_S(r,X,Y,un)	_FP_CMP(S,1,r,X,Y,un)
+#define FP_CMP_EQ_S(r,X,Y)	_FP_CMP_EQ(S,1,r,X,Y)
+
+#define FP_TO_INT_S(r,X,rsz,rsg)	_FP_TO_INT(S,1,r,X,rsz,rsg)
+#define FP_TO_INT_ROUND_S(r,X,rsz,rsg)	_FP_TO_INT_ROUND(S,1,r,X,rsz,rsg)
+#define FP_FROM_INT_S(X,r,rs,rt)	_FP_FROM_INT(S,1,X,r,rs,rt)
+
+#define _FP_FRAC_HIGH_S(X)	_FP_FRAC_HIGH_1(X)
+#define _FP_FRAC_HIGH_RAW_S(X)	_FP_FRAC_HIGH_1(X)
+
+#endif /* __MATH_EMU_SINGLE_H__ */
diff --git a/include/math-emu/soft-fp.h b/include/math-emu/soft-fp.h
new file mode 100644
index 0000000..d02eb64
--- /dev/null
+++ b/include/math-emu/soft-fp.h
@@ -0,0 +1,181 @@
+/* Software floating-point emulation.
+   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz),
+		  David S. Miller (davem@redhat.com) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If
+   not, write to the Free Software Foundation, Inc.,
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+#ifndef __MATH_EMU_SOFT_FP_H__
+#define __MATH_EMU_SOFT_FP_H__
+
+#include <asm/sfp-machine.h>
+
+/* Allow sfp-machine to have its own byte order definitions. */
+#ifndef __BYTE_ORDER
+#include <endian.h>
+#endif
+
+#define _FP_WORKBITS		3
+#define _FP_WORK_LSB		((_FP_W_TYPE)1 << 3)
+#define _FP_WORK_ROUND		((_FP_W_TYPE)1 << 2)
+#define _FP_WORK_GUARD		((_FP_W_TYPE)1 << 1)
+#define _FP_WORK_STICKY		((_FP_W_TYPE)1 << 0)
+
+#ifndef FP_RND_NEAREST
+# define FP_RND_NEAREST		0
+# define FP_RND_ZERO		1
+# define FP_RND_PINF		2
+# define FP_RND_MINF		3
+#ifndef FP_ROUNDMODE
+# define FP_ROUNDMODE		FP_RND_NEAREST
+#endif
+#endif
+
+/* By default don't care about exceptions. */
+#ifndef FP_EX_INVALID
+#define FP_EX_INVALID		0
+#endif
+#ifndef FP_EX_OVERFLOW
+#define FP_EX_OVERFLOW		0
+#endif
+#ifndef FP_EX_UNDERFLOW
+#define FP_EX_UNDERFLOW		
+#endif
+#ifndef FP_EX_DIVZERO
+#define FP_EX_DIVZERO		0
+#endif
+#ifndef FP_EX_INEXACT
+#define FP_EX_INEXACT		0
+#endif
+#ifndef FP_EX_DENORM
+#define FP_EX_DENORM		0
+#endif
+
+#ifdef _FP_DECL_EX
+#define FP_DECL_EX					\
+  int _fex = 0;						\
+  _FP_DECL_EX
+#else
+#define FP_DECL_EX int _fex = 0
+#endif
+  
+#ifndef FP_INIT_ROUNDMODE
+#define FP_INIT_ROUNDMODE do {} while (0)
+#endif
+
+#ifndef FP_HANDLE_EXCEPTIONS
+#define FP_HANDLE_EXCEPTIONS do {} while (0)
+#endif
+
+/* By default we never flush denormal input operands to signed zero. */
+#ifndef FP_DENORM_ZERO
+#define FP_DENORM_ZERO 0
+#endif
+
+#ifndef FP_INHIBIT_RESULTS
+/* By default we write the results always.
+ * sfp-machine may override this and e.g.
+ * check if some exceptions are unmasked
+ * and inhibit it in such a case.
+ */
+#define FP_INHIBIT_RESULTS 0
+#endif
+
+#define FP_SET_EXCEPTION(ex)				\
+  _fex |= (ex)
+  
+#define FP_UNSET_EXCEPTION(ex)				\
+  _fex &= ~(ex)
+
+#define FP_CLEAR_EXCEPTIONS				\
+  _fex = 0
+
+#define _FP_ROUND_NEAREST(wc, X)			\
+do {							\
+    if ((_FP_FRAC_LOW_##wc(X) & 15) != _FP_WORK_ROUND)	\
+      _FP_FRAC_ADDI_##wc(X, _FP_WORK_ROUND);		\
+} while (0)
+
+#define _FP_ROUND_ZERO(wc, X)		0
+
+#define _FP_ROUND_PINF(wc, X)				\
+do {							\
+    if (!X##_s && (_FP_FRAC_LOW_##wc(X) & 7))		\
+      _FP_FRAC_ADDI_##wc(X, _FP_WORK_LSB);		\
+} while (0)
+
+#define _FP_ROUND_MINF(wc, X)				\
+do {							\
+    if (X##_s && (_FP_FRAC_LOW_##wc(X) & 7))		\
+      _FP_FRAC_ADDI_##wc(X, _FP_WORK_LSB);		\
+} while (0)
+
+#define _FP_ROUND(wc, X)			\
+do {						\
+	if (_FP_FRAC_LOW_##wc(X) & 7)		\
+	  FP_SET_EXCEPTION(FP_EX_INEXACT);	\
+	switch (FP_ROUNDMODE)			\
+	{					\
+	  case FP_RND_NEAREST:			\
+	    _FP_ROUND_NEAREST(wc,X);		\
+	    break;				\
+	  case FP_RND_ZERO:			\
+	    _FP_ROUND_ZERO(wc,X);		\
+	    break;				\
+	  case FP_RND_PINF:			\
+	    _FP_ROUND_PINF(wc,X);		\
+	    break;				\
+	  case FP_RND_MINF:			\
+	    _FP_ROUND_MINF(wc,X);		\
+	    break;				\
+	}					\
+} while (0)
+
+#define FP_CLS_NORMAL		0
+#define FP_CLS_ZERO		1
+#define FP_CLS_INF		2
+#define FP_CLS_NAN		3
+
+#define _FP_CLS_COMBINE(x,y)	(((x) << 2) | (y))
+
+#include <math-emu/op-1.h>
+#include <math-emu/op-2.h>
+#include <math-emu/op-4.h>
+#include <math-emu/op-8.h>
+#include <math-emu/op-common.h>
+
+/* Sigh.  Silly things longlong.h needs.  */
+#define UWtype		_FP_W_TYPE
+#define W_TYPE_SIZE	_FP_W_TYPE_SIZE
+
+typedef int SItype __attribute__((mode(SI)));
+typedef int DItype __attribute__((mode(DI)));
+typedef unsigned int USItype __attribute__((mode(SI)));
+typedef unsigned int UDItype __attribute__((mode(DI)));
+#if _FP_W_TYPE_SIZE == 32
+typedef unsigned int UHWtype __attribute__((mode(HI)));
+#elif _FP_W_TYPE_SIZE == 64
+typedef USItype UHWtype;
+#endif
+
+#ifndef umul_ppmm
+#include <stdlib/longlong.h>
+#endif
+
+#endif /* __MATH_EMU_SOFT_FP_H__ */