Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/drivers/scsi/sym53c8xx_2/sym_fw2.h b/drivers/scsi/sym53c8xx_2/sym_fw2.h
new file mode 100644
index 0000000..7ea7151
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_fw2.h
@@ -0,0 +1,1927 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000  Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ *         Wolfgang Stanglmeier        <wolf@cologne.de>
+ *         Stefan Esser                <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994  Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+/*
+ *  Scripts for SYMBIOS-Processor
+ *
+ *  We have to know the offsets of all labels before we reach 
+ *  them (for forward jumps). Therefore we declare a struct 
+ *  here. If you make changes inside the script,
+ *
+ *  DONT FORGET TO CHANGE THE LENGTHS HERE!
+ */
+
+/*
+ *  Script fragments which are loaded into the on-chip RAM 
+ *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
+ *  Must not exceed 4K bytes.
+ */
+struct SYM_FWA_SCR {
+	u32 start		[ 14];
+	u32 getjob_begin	[  4];
+	u32 getjob_end		[  4];
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+	u32 select		[  6];
+#else
+	u32 select		[  4];
+#endif
+#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
+	u32 is_dmap_dirty	[  4];
+#endif
+	u32 wf_sel_done		[  2];
+	u32 sel_done		[  2];
+	u32 send_ident		[  2];
+#ifdef SYM_CONF_IARB_SUPPORT
+	u32 select2		[  8];
+#else
+	u32 select2		[  2];
+#endif
+	u32 command		[  2];
+	u32 dispatch		[ 28];
+	u32 sel_no_cmd		[ 10];
+	u32 init		[  6];
+	u32 clrack		[  4];
+	u32 datai_done		[ 10];
+	u32 datai_done_wsr	[ 20];
+	u32 datao_done		[ 10];
+	u32 datao_done_wss	[  6];
+	u32 datai_phase		[  4];
+	u32 datao_phase		[  6];
+	u32 msg_in		[  2];
+	u32 msg_in2		[ 10];
+#ifdef SYM_CONF_IARB_SUPPORT
+	u32 status		[ 14];
+#else
+	u32 status		[ 10];
+#endif
+	u32 complete		[  6];
+	u32 complete2		[ 12];
+	u32 done		[ 14];
+	u32 done_end		[  2];
+	u32 complete_error	[  4];
+	u32 save_dp		[ 12];
+	u32 restore_dp		[  8];
+	u32 disconnect		[ 12];
+#ifdef SYM_CONF_IARB_SUPPORT
+	u32 idle		[  4];
+#else
+	u32 idle		[  2];
+#endif
+#ifdef SYM_CONF_IARB_SUPPORT
+	u32 ungetjob		[  6];
+#else
+	u32 ungetjob		[  4];
+#endif
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+	u32 reselect		[  4];
+#else
+	u32 reselect		[  2];
+#endif
+	u32 reselected		[ 22];
+	u32 resel_scntl4	[ 20];
+	u32 resel_lun0		[  6];
+#if   SYM_CONF_MAX_TASK*4 > 512
+	u32 resel_tag		[ 26];
+#elif SYM_CONF_MAX_TASK*4 > 256
+	u32 resel_tag		[ 20];
+#else
+	u32 resel_tag		[ 16];
+#endif
+	u32 resel_dsa		[  2];
+	u32 resel_dsa1		[  4];
+	u32 resel_no_tag	[  6];
+	u32 data_in		[SYM_CONF_MAX_SG * 2];
+	u32 data_in2		[  4];
+	u32 data_out		[SYM_CONF_MAX_SG * 2];
+	u32 data_out2		[  4];
+	u32 pm0_data		[ 12];
+	u32 pm0_data_out	[  6];
+	u32 pm0_data_end	[  6];
+	u32 pm1_data		[ 12];
+	u32 pm1_data_out	[  6];
+	u32 pm1_data_end	[  6];
+};
+
+/*
+ *  Script fragments which stay in main memory for all chips 
+ *  except for chips that support 8K on-chip RAM.
+ */
+struct SYM_FWB_SCR {
+	u32 start64		[  2];
+	u32 no_data		[  2];
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+	u32 sel_for_abort	[ 18];
+#else
+	u32 sel_for_abort	[ 16];
+#endif
+	u32 sel_for_abort_1	[  2];
+	u32 msg_in_etc		[ 12];
+	u32 msg_received	[  4];
+	u32 msg_weird_seen	[  4];
+	u32 msg_extended	[ 20];
+	u32 msg_bad		[  6];
+	u32 msg_weird		[  4];
+	u32 msg_weird1		[  8];
+
+	u32 wdtr_resp		[  6];
+	u32 send_wdtr		[  4];
+	u32 sdtr_resp		[  6];
+	u32 send_sdtr		[  4];
+	u32 ppr_resp		[  6];
+	u32 send_ppr		[  4];
+	u32 nego_bad_phase	[  4];
+	u32 msg_out		[  4];
+	u32 msg_out_done	[  4];
+	u32 data_ovrun		[  2];
+	u32 data_ovrun1		[ 22];
+	u32 data_ovrun2		[  8];
+	u32 abort_resel		[ 16];
+	u32 resend_ident	[  4];
+	u32 ident_break		[  4];
+	u32 ident_break_atn	[  4];
+	u32 sdata_in		[  6];
+	u32 resel_bad_lun	[  4];
+	u32 bad_i_t_l		[  4];
+	u32 bad_i_t_l_q		[  4];
+	u32 bad_status		[  6];
+	u32 pm_handle		[ 20];
+	u32 pm_handle1		[  4];
+	u32 pm_save		[  4];
+	u32 pm0_save		[ 12];
+	u32 pm_save_end		[  4];
+	u32 pm1_save		[ 14];
+
+	/* WSR handling */
+	u32 pm_wsr_handle	[ 38];
+	u32 wsr_ma_helper	[  4];
+
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+	/* Unknown direction handling */
+	u32 data_io		[  2];
+	u32 data_io_in		[  2];
+	u32 data_io_com		[  6];
+	u32 data_io_out		[  8];
+#endif
+	/* Data area */
+	u32 zero		[  1];
+	u32 scratch		[  1];
+	u32 pm0_data_addr	[  1];
+	u32 pm1_data_addr	[  1];
+	u32 done_pos		[  1];
+	u32 startpos		[  1];
+	u32 targtbl		[  1];
+};
+
+/*
+ *  Script fragments used at initialisations.
+ *  Only runs out of main memory.
+ */
+struct SYM_FWZ_SCR {
+	u32 snooptest		[  6];
+	u32 snoopend		[  2];
+};
+
+static struct SYM_FWA_SCR SYM_FWA_SCR = {
+/*--------------------------< START >----------------------------*/ {
+	/*
+	 *  Switch the LED on.
+	 *  Will be patched with a NO_OP if LED
+	 *  not needed or not desired.
+	 */
+	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
+		0,
+	/*
+	 *      Clear SIGP.
+	 */
+	SCR_FROM_REG (ctest2),
+		0,
+	/*
+	 *  Stop here if the C code wants to perform 
+	 *  some error recovery procedure manually.
+	 *  (Indicate this by setting SEM in ISTAT)
+	 */
+	SCR_FROM_REG (istat),
+		0,
+	/*
+	 *  Report to the C code the next position in 
+	 *  the start queue the SCRIPTS will schedule.
+	 *  The C code must not change SCRATCHA.
+	 */
+	SCR_LOAD_ABS (scratcha, 4),
+		PADDR_B (startpos),
+	SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
+		SIR_SCRIPT_STOPPED,
+	/*
+	 *  Start the next job.
+	 *
+	 *  @DSA     = start point for this job.
+	 *  SCRATCHA = address of this job in the start queue.
+	 *
+	 *  We will restore startpos with SCRATCHA if we fails the 
+	 *  arbitration or if it is the idle job.
+	 *
+	 *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS 
+	 *  is a critical path. If it is partially executed, it then 
+	 *  may happen that the job address is not yet in the DSA 
+	 *  and the next queue position points to the next JOB.
+	 */
+	SCR_LOAD_ABS (dsa, 4),
+		PADDR_B (startpos),
+	SCR_LOAD_REL (temp, 4),
+		4,
+}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
+	SCR_STORE_ABS (temp, 4),
+		PADDR_B (startpos),
+	SCR_LOAD_REL (dsa, 4),
+		0,
+}/*-------------------------< GETJOB_END >-----------------------*/,{
+	SCR_LOAD_REL (temp, 4),
+		0,
+	SCR_RETURN,
+		0,
+}/*-------------------------< SELECT >---------------------------*/,{
+	/*
+	 *  DSA	contains the address of a scheduled
+	 *  	data structure.
+	 *
+	 *  SCRATCHA contains the address of the start queue  
+	 *  	entry which points to the next job.
+	 *
+	 *  Set Initiator mode.
+	 *
+	 *  (Target mode is left as an exercise for the reader)
+	 */
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+	SCR_CLR (SCR_TRG),
+		0,
+#endif
+	/*
+	 *      And try to select this target.
+	 */
+	SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
+		PADDR_A (ungetjob),
+	/*
+	 *  Now there are 4 possibilities:
+	 *
+	 *  (1) The chip loses arbitration.
+	 *  This is ok, because it will try again,
+	 *  when the bus becomes idle.
+	 *  (But beware of the timeout function!)
+	 *
+	 *  (2) The chip is reselected.
+	 *  Then the script processor takes the jump
+	 *  to the RESELECT label.
+	 *
+	 *  (3) The chip wins arbitration.
+	 *  Then it will execute SCRIPTS instruction until 
+	 *  the next instruction that checks SCSI phase.
+	 *  Then will stop and wait for selection to be 
+	 *  complete or selection time-out to occur.
+	 *
+	 *  After having won arbitration, the SCRIPTS  
+	 *  processor is able to execute instructions while 
+	 *  the SCSI core is performing SCSI selection.
+	 */
+	/*
+	 *      Initialize the status registers
+	 */
+	SCR_LOAD_REL (scr0, 4),
+		offsetof (struct sym_ccb, phys.head.status),
+	/*
+	 *  We may need help from CPU if the DMA segment 
+	 *  registers aren't up-to-date for this IO.
+	 *  Patched with NOOP for chips that donnot 
+	 *  support DAC addressing.
+	 */
+#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
+}/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
+	SCR_FROM_REG (HX_REG),
+		0,
+	SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
+		SIR_DMAP_DIRTY,
+#endif
+}/*-------------------------< WF_SEL_DONE >----------------------*/,{
+	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+		SIR_SEL_ATN_NO_MSG_OUT,
+}/*-------------------------< SEL_DONE >-------------------------*/,{
+	/*
+	 *  C1010-33 errata work-around.
+	 *  Due to a race, the SCSI core may not have 
+	 *  loaded SCNTL3 on SEL_TBL instruction.
+	 *  We reload it once phase is stable.
+	 *  Patched with a NOOP for other chips.
+	 */
+	SCR_LOAD_REL (scntl3, 1),
+		offsetof(struct sym_dsb, select.sel_scntl3),
+}/*-------------------------< SEND_IDENT >-----------------------*/,{
+	/*
+	 *  Selection complete.
+	 *  Send the IDENTIFY and possibly the TAG message 
+	 *  and negotiation message if present.
+	 */
+	SCR_MOVE_TBL ^ SCR_MSG_OUT,
+		offsetof (struct sym_dsb, smsg),
+}/*-------------------------< SELECT2 >--------------------------*/,{
+#ifdef SYM_CONF_IARB_SUPPORT
+	/*
+	 *  Set IMMEDIATE ARBITRATION if we have been given 
+	 *  a hint to do so. (Some job to do after this one).
+	 */
+	SCR_FROM_REG (HF_REG),
+		0,
+	SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
+		8,
+	SCR_REG_REG (scntl1, SCR_OR, IARB),
+		0,
+#endif
+	/*
+	 *  Anticipate the COMMAND phase.
+	 *  This is the PHASE we expect at this point.
+	 */
+	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
+		PADDR_A (sel_no_cmd),
+}/*-------------------------< COMMAND >--------------------------*/,{
+	/*
+	 *  ... and send the command
+	 */
+	SCR_MOVE_TBL ^ SCR_COMMAND,
+		offsetof (struct sym_dsb, cmd),
+}/*-------------------------< DISPATCH >-------------------------*/,{
+	/*
+	 *  MSG_IN is the only phase that shall be 
+	 *  entered at least once for each (re)selection.
+	 *  So we test it first.
+	 */
+	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+		PADDR_A (msg_in),
+	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
+		PADDR_A (datao_phase),
+	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
+		PADDR_A (datai_phase),
+	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
+		PADDR_A (status),
+	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
+		PADDR_A (command),
+	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
+		PADDR_B (msg_out),
+	/*
+	 *  Discard as many illegal phases as 
+	 *  required and tell the C code about.
+	 */
+	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
+		16,
+	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
+		HADDR_1 (scratch),
+	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
+		-16,
+	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
+		16,
+	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
+		HADDR_1 (scratch),
+	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
+		-16,
+	SCR_INT,
+		SIR_BAD_PHASE,
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
+	/*
+	 *  The target does not switch to command 
+	 *  phase after IDENTIFY has been sent.
+	 *
+	 *  If it stays in MSG OUT phase send it 
+	 *  the IDENTIFY again.
+	 */
+	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
+		PADDR_B (resend_ident),
+	/*
+	 *  If target does not switch to MSG IN phase 
+	 *  and we sent a negotiation, assert the 
+	 *  failure immediately.
+	 */
+	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+		PADDR_A (dispatch),
+	SCR_FROM_REG (HS_REG),
+		0,
+	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
+		SIR_NEGO_FAILED,
+	/*
+	 *  Jump to dispatcher.
+	 */
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< INIT >-----------------------------*/,{
+	/*
+	 *  Wait for the SCSI RESET signal to be 
+	 *  inactive before restarting operations, 
+	 *  since the chip may hang on SEL_ATN 
+	 *  if SCSI RESET is active.
+	 */
+	SCR_FROM_REG (sstat0),
+		0,
+	SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
+		-16,
+	SCR_JUMP,
+		PADDR_A (start),
+}/*-------------------------< CLRACK >---------------------------*/,{
+	/*
+	 *  Terminate possible pending message phase.
+	 */
+	SCR_CLR (SCR_ACK),
+		0,
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< DATAI_DONE >-----------------------*/,{
+	/*
+	 *  Save current pointer to LASTP.
+	 */
+	SCR_STORE_REL (temp, 4),
+		offsetof (struct sym_ccb, phys.head.lastp),
+	/*
+	 *  If the SWIDE is not full, jump to dispatcher.
+	 *  We anticipate a STATUS phase.
+	 */
+	SCR_FROM_REG (scntl2),
+		0,
+	SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
+		PADDR_A (datai_done_wsr),
+	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
+		PADDR_A (status),
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
+	/*
+	 *  The SWIDE is full.
+	 *  Clear this condition.
+	 */
+	SCR_REG_REG (scntl2, SCR_OR, WSR),
+		0,
+	/*
+	 *  We are expecting an IGNORE RESIDUE message 
+	 *  from the device, otherwise we are in data 
+	 *  overrun condition. Check against MSG_IN phase.
+	 */
+	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
+		SIR_SWIDE_OVERRUN,
+	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
+		PADDR_A (dispatch),
+	/*
+	 *  We are in MSG_IN phase,
+	 *  Read the first byte of the message.
+	 *  If it is not an IGNORE RESIDUE message,
+	 *  signal overrun and jump to message 
+	 *  processing.
+	 */
+	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+		HADDR_1 (msgin[0]),
+	SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
+		SIR_SWIDE_OVERRUN,
+	SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
+		PADDR_A (msg_in2),
+	/*
+	 *  We got the message we expected.
+	 *  Read the 2nd byte, and jump to dispatcher.
+	 */
+	SCR_CLR (SCR_ACK),
+		0,
+	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+		HADDR_1 (msgin[1]),
+	SCR_CLR (SCR_ACK),
+		0,
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< DATAO_DONE >-----------------------*/,{
+	/*
+	 *  Save current pointer to LASTP.
+	 */
+	SCR_STORE_REL (temp, 4),
+		offsetof (struct sym_ccb, phys.head.lastp),
+	/*
+	 *  If the SODL is not full jump to dispatcher.
+	 *  We anticipate a STATUS phase.
+	 */
+	SCR_FROM_REG (scntl2),
+		0,
+	SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
+		PADDR_A (datao_done_wss),
+	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
+		PADDR_A (status),
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
+	/*
+	 *  The SODL is full, clear this condition.
+	 */
+	SCR_REG_REG (scntl2, SCR_OR, WSS),
+		0,
+	/*
+	 *  And signal a DATA UNDERRUN condition 
+	 *  to the C code.
+	 */
+	SCR_INT,
+		SIR_SODL_UNDERRUN,
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< DATAI_PHASE >----------------------*/,{
+	/*
+	 *  Jump to current pointer.
+	 */
+	SCR_LOAD_REL (temp, 4),
+		offsetof (struct sym_ccb, phys.head.lastp),
+	SCR_RETURN,
+		0,
+}/*-------------------------< DATAO_PHASE >----------------------*/,{
+	/*
+	 *  C1010-66 errata work-around.
+	 *  Extra clocks of data hold must be inserted 
+	 *  in DATA OUT phase on 33 MHz PCI BUS.
+	 *  Patched with a NOOP for other chips.
+	 */
+	SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
+		0,
+	/*
+	 *  Jump to current pointer.
+	 */
+	SCR_LOAD_REL (temp, 4),
+		offsetof (struct sym_ccb, phys.head.lastp),
+	SCR_RETURN,
+		0,
+}/*-------------------------< MSG_IN >---------------------------*/,{
+	/*
+	 *  Get the first byte of the message.
+	 *
+	 *  The script processor doesn't negate the
+	 *  ACK signal after this transfer.
+	 */
+	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+		HADDR_1 (msgin[0]),
+}/*-------------------------< MSG_IN2 >--------------------------*/,{
+	/*
+	 *  Check first against 1 byte messages 
+	 *  that we handle from SCRIPTS.
+	 */
+	SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
+		PADDR_A (complete),
+	SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
+		PADDR_A (disconnect),
+	SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
+		PADDR_A (save_dp),
+	SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
+		PADDR_A (restore_dp),
+	/*
+	 *  We handle all other messages from the 
+	 *  C code, so no need to waste on-chip RAM 
+	 *  for those ones.
+	 */
+	SCR_JUMP,
+		PADDR_B (msg_in_etc),
+}/*-------------------------< STATUS >---------------------------*/,{
+	/*
+	 *  get the status
+	 */
+	SCR_MOVE_ABS (1) ^ SCR_STATUS,
+		HADDR_1 (scratch),
+#ifdef SYM_CONF_IARB_SUPPORT
+	/*
+	 *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, 
+	 *  since we may have to tamper the start queue from 
+	 *  the C code.
+	 */
+	SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
+		8,
+	SCR_REG_REG (scntl1, SCR_AND, ~IARB),
+		0,
+#endif
+	/*
+	 *  save status to scsi_status.
+	 *  mark as complete.
+	 */
+	SCR_TO_REG (SS_REG),
+		0,
+	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
+		0,
+	/*
+	 *  Anticipate the MESSAGE PHASE for 
+	 *  the TASK COMPLETE message.
+	 */
+	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+		PADDR_A (msg_in),
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< COMPLETE >-------------------------*/,{
+	/*
+	 *  Complete message.
+	 *
+	 *  When we terminate the cycle by clearing ACK,
+	 *  the target may disconnect immediately.
+	 *
+	 *  We don't want to be told of an "unexpected disconnect",
+	 *  so we disable this feature.
+	 */
+	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+		0,
+	/*
+	 *  Terminate cycle ...
+	 */
+	SCR_CLR (SCR_ACK|SCR_ATN),
+		0,
+	/*
+	 *  ... and wait for the disconnect.
+	 */
+	SCR_WAIT_DISC,
+		0,
+}/*-------------------------< COMPLETE2 >------------------------*/,{
+	/*
+	 *  Save host status.
+	 */
+	SCR_STORE_REL (scr0, 4),
+		offsetof (struct sym_ccb, phys.head.status),
+	/*
+	 *  Some bridges may reorder DMA writes to memory.
+	 *  We donnot want the CPU to deal with completions  
+	 *  without all the posted write having been flushed 
+	 *  to memory. This DUMMY READ should flush posted 
+	 *  buffers prior to the CPU having to deal with 
+	 *  completions.
+	 */
+	SCR_LOAD_REL (scr0, 4),	/* DUMMY READ */
+		offsetof (struct sym_ccb, phys.head.status),
+
+	/*
+	 *  If command resulted in not GOOD status,
+	 *  call the C code if needed.
+	 */
+	SCR_FROM_REG (SS_REG),
+		0,
+	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
+		PADDR_B (bad_status),
+	/*
+	 *  If we performed an auto-sense, call 
+	 *  the C code to synchronyze task aborts 
+	 *  with UNIT ATTENTION conditions.
+	 */
+	SCR_FROM_REG (HF_REG),
+		0,
+	SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
+		PADDR_A (complete_error),
+}/*-------------------------< DONE >-----------------------------*/,{
+	/*
+	 *  Copy the DSA to the DONE QUEUE and 
+	 *  signal completion to the host.
+	 *  If we are interrupted between DONE 
+	 *  and DONE_END, we must reset, otherwise 
+	 *  the completed CCB may be lost.
+	 */
+	SCR_STORE_ABS (dsa, 4),
+		PADDR_B (scratch),
+	SCR_LOAD_ABS (dsa, 4),
+		PADDR_B (done_pos),
+	SCR_LOAD_ABS (scratcha, 4),
+		PADDR_B (scratch),
+	SCR_STORE_REL (scratcha, 4),
+		0,
+	/*
+	 *  The instruction below reads the DONE QUEUE next 
+	 *  free position from memory.
+	 *  In addition it ensures that all PCI posted writes  
+	 *  are flushed and so the DSA value of the done 
+	 *  CCB is visible by the CPU before INTFLY is raised.
+	 */
+	SCR_LOAD_REL (scratcha, 4),
+		4,
+	SCR_INT_FLY,
+		0,
+	SCR_STORE_ABS (scratcha, 4),
+		PADDR_B (done_pos),
+}/*-------------------------< DONE_END >-------------------------*/,{
+	SCR_JUMP,
+		PADDR_A (start),
+}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
+	SCR_LOAD_ABS (scratcha, 4),
+		PADDR_B (startpos),
+	SCR_INT,
+		SIR_COMPLETE_ERROR,
+}/*-------------------------< SAVE_DP >--------------------------*/,{
+	/*
+	 *  Clear ACK immediately.
+	 *  No need to delay it.
+	 */
+	SCR_CLR (SCR_ACK),
+		0,
+	/*
+	 *  Keep track we received a SAVE DP, so 
+	 *  we will switch to the other PM context 
+	 *  on the next PM since the DP may point 
+	 *  to the current PM context.
+	 */
+	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
+		0,
+	/*
+	 *  SAVE_DP message:
+	 *  Copy LASTP to SAVEP.
+	 */
+	SCR_LOAD_REL (scratcha, 4),
+		offsetof (struct sym_ccb, phys.head.lastp),
+	SCR_STORE_REL (scratcha, 4),
+		offsetof (struct sym_ccb, phys.head.savep),
+	/*
+	 *  Anticipate the MESSAGE PHASE for 
+	 *  the DISCONNECT message.
+	 */
+	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+		PADDR_A (msg_in),
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< RESTORE_DP >-----------------------*/,{
+	/*
+	 *  Clear ACK immediately.
+	 *  No need to delay it.
+	 */
+	SCR_CLR (SCR_ACK),
+		0,
+	/*
+	 *  Copy SAVEP to LASTP.
+	 */
+	SCR_LOAD_REL  (scratcha, 4),
+		offsetof (struct sym_ccb, phys.head.savep),
+	SCR_STORE_REL (scratcha, 4),
+		offsetof (struct sym_ccb, phys.head.lastp),
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< DISCONNECT >-----------------------*/,{
+	/*
+	 *  DISCONNECTing  ...
+	 *
+	 *  disable the "unexpected disconnect" feature,
+	 *  and remove the ACK signal.
+	 */
+	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+		0,
+	SCR_CLR (SCR_ACK|SCR_ATN),
+		0,
+	/*
+	 *  Wait for the disconnect.
+	 */
+	SCR_WAIT_DISC,
+		0,
+	/*
+	 *  Status is: DISCONNECTED.
+	 */
+	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
+		0,
+	/*
+	 *  Save host status.
+	 */
+	SCR_STORE_REL (scr0, 4),
+		offsetof (struct sym_ccb, phys.head.status),
+	SCR_JUMP,
+		PADDR_A (start),
+}/*-------------------------< IDLE >-----------------------------*/,{
+	/*
+	 *  Nothing to do?
+	 *  Switch the LED off and wait for reselect.
+	 *  Will be patched with a NO_OP if LED
+	 *  not needed or not desired.
+	 */
+	SCR_REG_REG (gpreg, SCR_OR, 0x01),
+		0,
+#ifdef SYM_CONF_IARB_SUPPORT
+	SCR_JUMPR,
+		8,
+#endif
+}/*-------------------------< UNGETJOB >-------------------------*/,{
+#ifdef SYM_CONF_IARB_SUPPORT
+	/*
+	 *  Set IMMEDIATE ARBITRATION, for the next time.
+	 *  This will give us better chance to win arbitration 
+	 *  for the job we just wanted to do.
+	 */
+	SCR_REG_REG (scntl1, SCR_OR, IARB),
+		0,
+#endif
+	/*
+	 *  We are not able to restart the SCRIPTS if we are 
+	 *  interrupted and these instruction haven't been 
+	 *  all executed. BTW, this is very unlikely to 
+	 *  happen, but we check that from the C code.
+	 */
+	SCR_LOAD_REG (dsa, 0xff),
+		0,
+	SCR_STORE_ABS (scratcha, 4),
+		PADDR_B (startpos),
+}/*-------------------------< RESELECT >-------------------------*/,{
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+	/*
+	 *  Make sure we are in initiator mode.
+	 */
+	SCR_CLR (SCR_TRG),
+		0,
+#endif
+	/*
+	 *  Sleep waiting for a reselection.
+	 */
+	SCR_WAIT_RESEL,
+		PADDR_A(start),
+}/*-------------------------< RESELECTED >-----------------------*/,{
+	/*
+	 *  Switch the LED on.
+	 *  Will be patched with a NO_OP if LED
+	 *  not needed or not desired.
+	 */
+	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
+		0,
+	/*
+	 *  load the target id into the sdid
+	 */
+	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
+		0,
+	SCR_TO_REG (sdid),
+		0,
+	/*
+	 *  Load the target control block address
+	 */
+	SCR_LOAD_ABS (dsa, 4),
+		PADDR_B (targtbl),
+	SCR_SFBR_REG (dsa, SCR_SHL, 0),
+		0,
+	SCR_REG_REG (dsa, SCR_SHL, 0),
+		0,
+	SCR_REG_REG (dsa, SCR_AND, 0x3c),
+		0,
+	SCR_LOAD_REL (dsa, 4),
+		0,
+	/*
+	 *  We expect MESSAGE IN phase.
+	 *  If not, get help from the C code.
+	 */
+	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
+		SIR_RESEL_NO_MSG_IN,
+	/*
+	 *  Load the legacy synchronous transfer registers.
+	 */
+	SCR_LOAD_REL (scntl3, 1),
+		offsetof(struct sym_tcb, head.wval),
+	SCR_LOAD_REL (sxfer, 1),
+		offsetof(struct sym_tcb, head.sval),
+}/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
+	/*
+	 *  The C1010 uses a new synchronous timing scheme.
+	 *  Will be patched with a NO_OP if not a C1010.
+	 */
+	SCR_LOAD_REL (scntl4, 1),
+		offsetof(struct sym_tcb, head.uval),
+	/*
+	 *  Get the IDENTIFY message.
+	 */
+	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+		HADDR_1 (msgin),
+	/*
+	 *  If IDENTIFY LUN #0, use a faster path 
+	 *  to find the LCB structure.
+	 */
+	SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
+		PADDR_A (resel_lun0),
+	/*
+	 *  If message isn't an IDENTIFY, 
+	 *  tell the C code about.
+	 */
+	SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
+		SIR_RESEL_NO_IDENTIFY,
+	/*
+	 *  It is an IDENTIFY message,
+	 *  Load the LUN control block address.
+	 */
+	SCR_LOAD_REL (dsa, 4),
+		offsetof(struct sym_tcb, head.luntbl_sa),
+	SCR_SFBR_REG (dsa, SCR_SHL, 0),
+		0,
+	SCR_REG_REG (dsa, SCR_SHL, 0),
+		0,
+	SCR_REG_REG (dsa, SCR_AND, 0xfc),
+		0,
+	SCR_LOAD_REL (dsa, 4),
+		0,
+	SCR_JUMPR,
+		8,
+}/*-------------------------< RESEL_LUN0 >-----------------------*/,{
+	/*
+	 *  LUN 0 special case (but usual one :))
+	 */
+	SCR_LOAD_REL (dsa, 4),
+		offsetof(struct sym_tcb, head.lun0_sa),
+	/*
+	 *  Jump indirectly to the reselect action for this LUN.
+	 */
+	SCR_LOAD_REL (temp, 4),
+		offsetof(struct sym_lcb, head.resel_sa),
+	SCR_RETURN,
+		0,
+	/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
+}/*-------------------------< RESEL_TAG >------------------------*/,{
+	/*
+	 *  ACK the IDENTIFY previously received.
+	 */
+	SCR_CLR (SCR_ACK),
+		0,
+	/*
+	 *  It shall be a tagged command.
+	 *  Read SIMPLE+TAG.
+	 *  The C code will deal with errors.
+	 *  Agressive optimization, is'nt it? :)
+	 */
+	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
+		HADDR_1 (msgin),
+	/*
+	 *  Load the pointer to the tagged task 
+	 *  table for this LUN.
+	 */
+	SCR_LOAD_REL (dsa, 4),
+		offsetof(struct sym_lcb, head.itlq_tbl_sa),
+	/*
+	 *  The SIDL still contains the TAG value.
+	 *  Agressive optimization, isn't it? :):)
+	 */
+	SCR_REG_SFBR (sidl, SCR_SHL, 0),
+		0,
+#if SYM_CONF_MAX_TASK*4 > 512
+	SCR_JUMPR ^ IFFALSE (CARRYSET),
+		8,
+	SCR_REG_REG (dsa1, SCR_OR, 2),
+		0,
+	SCR_REG_REG (sfbr, SCR_SHL, 0),
+		0,
+	SCR_JUMPR ^ IFFALSE (CARRYSET),
+		8,
+	SCR_REG_REG (dsa1, SCR_OR, 1),
+		0,
+#elif SYM_CONF_MAX_TASK*4 > 256
+	SCR_JUMPR ^ IFFALSE (CARRYSET),
+		8,
+	SCR_REG_REG (dsa1, SCR_OR, 1),
+		0,
+#endif
+	/*
+	 *  Retrieve the DSA of this task.
+	 *  JUMP indirectly to the restart point of the CCB.
+	 */
+	SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
+		0,
+	SCR_LOAD_REL (dsa, 4),
+		0,
+	SCR_LOAD_REL (temp, 4),
+		offsetof(struct sym_ccb, phys.head.go.restart),
+	SCR_RETURN,
+		0,
+	/* In normal situations we branch to RESEL_DSA */
+}/*-------------------------< RESEL_DSA >------------------------*/,{
+	/*
+	 *  ACK the IDENTIFY or TAG previously received.
+	 */
+	SCR_CLR (SCR_ACK),
+		0,
+}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
+	/*
+	 *      Initialize the status registers
+	 */
+	SCR_LOAD_REL (scr0, 4),
+		offsetof (struct sym_ccb, phys.head.status),
+	/*
+	 *  Jump to dispatcher.
+	 */
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
+	/*
+	 *  Load the DSA with the unique ITL task.
+	 */
+	SCR_LOAD_REL (dsa, 4),
+		offsetof(struct sym_lcb, head.itl_task_sa),
+	/*
+	 *  JUMP indirectly to the restart point of the CCB.
+	 */
+	SCR_LOAD_REL (temp, 4),
+		offsetof(struct sym_ccb, phys.head.go.restart),
+	SCR_RETURN,
+		0,
+	/* In normal situations we branch to RESEL_DSA */
+}/*-------------------------< DATA_IN >--------------------------*/,{
+/*
+ *  Because the size depends on the
+ *  #define SYM_CONF_MAX_SG parameter,
+ *  it is filled in at runtime.
+ *
+ *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
+ *  ||	SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ *  ||		offsetof (struct sym_dsb, data[ i]),
+ *  ##==========================================
+ */
+0
+}/*-------------------------< DATA_IN2 >-------------------------*/,{
+	SCR_CALL,
+		PADDR_A (datai_done),
+	SCR_JUMP,
+		PADDR_B (data_ovrun),
+}/*-------------------------< DATA_OUT >-------------------------*/,{
+/*
+ *  Because the size depends on the
+ *  #define SYM_CONF_MAX_SG parameter,
+ *  it is filled in at runtime.
+ *
+ *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
+ *  ||	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+ *  ||		offsetof (struct sym_dsb, data[ i]),
+ *  ##==========================================
+ */
+0
+}/*-------------------------< DATA_OUT2 >------------------------*/,{
+	SCR_CALL,
+		PADDR_A (datao_done),
+	SCR_JUMP,
+		PADDR_B (data_ovrun),
+}/*-------------------------< PM0_DATA >-------------------------*/,{
+	/*
+	 *  Read our host flags to SFBR, so we will be able 
+	 *  to check against the data direction we expect.
+	 */
+	SCR_FROM_REG (HF_REG),
+		0,
+	/*
+	 *  Check against actual DATA PHASE.
+	 */
+	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
+		PADDR_A (pm0_data_out),
+	/*
+	 *  Actual phase is DATA IN.
+	 *  Check against expected direction.
+	 */
+	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
+		PADDR_B (data_ovrun),
+	/*
+	 *  Keep track we are moving data from the 
+	 *  PM0 DATA mini-script.
+	 */
+	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
+		0,
+	/*
+	 *  Move the data to memory.
+	 */
+	SCR_CHMOV_TBL ^ SCR_DATA_IN,
+		offsetof (struct sym_ccb, phys.pm0.sg),
+	SCR_JUMP,
+		PADDR_A (pm0_data_end),
+}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
+	/*
+	 *  Actual phase is DATA OUT.
+	 *  Check against expected direction.
+	 */
+	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
+		PADDR_B (data_ovrun),
+	/*
+	 *  Keep track we are moving data from the 
+	 *  PM0 DATA mini-script.
+	 */
+	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
+		0,
+	/*
+	 *  Move the data from memory.
+	 */
+	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+		offsetof (struct sym_ccb, phys.pm0.sg),
+}/*-------------------------< PM0_DATA_END >---------------------*/,{
+	/*
+	 *  Clear the flag that told we were moving  
+	 *  data from the PM0 DATA mini-script.
+	 */
+	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
+		0,
+	/*
+	 *  Return to the previous DATA script which 
+	 *  is guaranteed by design (if no bug) to be 
+	 *  the main DATA script for this transfer.
+	 */
+	SCR_LOAD_REL (temp, 4),
+		offsetof (struct sym_ccb, phys.pm0.ret),
+	SCR_RETURN,
+		0,
+}/*-------------------------< PM1_DATA >-------------------------*/,{
+	/*
+	 *  Read our host flags to SFBR, so we will be able 
+	 *  to check against the data direction we expect.
+	 */
+	SCR_FROM_REG (HF_REG),
+		0,
+	/*
+	 *  Check against actual DATA PHASE.
+	 */
+	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
+		PADDR_A (pm1_data_out),
+	/*
+	 *  Actual phase is DATA IN.
+	 *  Check against expected direction.
+	 */
+	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
+		PADDR_B (data_ovrun),
+	/*
+	 *  Keep track we are moving data from the 
+	 *  PM1 DATA mini-script.
+	 */
+	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
+		0,
+	/*
+	 *  Move the data to memory.
+	 */
+	SCR_CHMOV_TBL ^ SCR_DATA_IN,
+		offsetof (struct sym_ccb, phys.pm1.sg),
+	SCR_JUMP,
+		PADDR_A (pm1_data_end),
+}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
+	/*
+	 *  Actual phase is DATA OUT.
+	 *  Check against expected direction.
+	 */
+	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
+		PADDR_B (data_ovrun),
+	/*
+	 *  Keep track we are moving data from the 
+	 *  PM1 DATA mini-script.
+	 */
+	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
+		0,
+	/*
+	 *  Move the data from memory.
+	 */
+	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+		offsetof (struct sym_ccb, phys.pm1.sg),
+}/*-------------------------< PM1_DATA_END >---------------------*/,{
+	/*
+	 *  Clear the flag that told we were moving  
+	 *  data from the PM1 DATA mini-script.
+	 */
+	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
+		0,
+	/*
+	 *  Return to the previous DATA script which 
+	 *  is guaranteed by design (if no bug) to be 
+	 *  the main DATA script for this transfer.
+	 */
+	SCR_LOAD_REL (temp, 4),
+		offsetof (struct sym_ccb, phys.pm1.ret),
+	SCR_RETURN,
+		0,
+}/*-------------------------<>-----------------------------------*/
+};
+
+static struct SYM_FWB_SCR SYM_FWB_SCR = {
+/*--------------------------< START64 >--------------------------*/ {
+	/*
+	 *  SCRIPT entry point for the 895A, 896 and 1010.
+	 *  For now, there is no specific stuff for those 
+	 *  chips at this point, but this may come.
+	 */
+	SCR_JUMP,
+		PADDR_A (init),
+}/*-------------------------< NO_DATA >--------------------------*/,{
+	SCR_JUMP,
+		PADDR_B (data_ovrun),
+}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
+	/*
+	 *  We are jumped here by the C code, if we have 
+	 *  some target to reset or some disconnected 
+	 *  job to abort. Since error recovery is a serious 
+	 *  busyness, we will really reset the SCSI BUS, if 
+	 *  case of a SCSI interrupt occurring in this path.
+	 */
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+	/*
+	 *  Set initiator mode.
+	 */
+	SCR_CLR (SCR_TRG),
+		0,
+#endif
+	/*
+	 *      And try to select this target.
+	 */
+	SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
+		PADDR_A (reselect),
+	/*
+	 *  Wait for the selection to complete or 
+	 *  the selection to time out.
+	 */
+	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+		-8,
+	/*
+	 *  Call the C code.
+	 */
+	SCR_INT,
+		SIR_TARGET_SELECTED,
+	/*
+	 *  The C code should let us continue here. 
+	 *  Send the 'kiss of death' message.
+	 *  We expect an immediate disconnect once 
+	 *  the target has eaten the message.
+	 */
+	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+		0,
+	SCR_MOVE_TBL ^ SCR_MSG_OUT,
+		offsetof (struct sym_hcb, abrt_tbl),
+	SCR_CLR (SCR_ACK|SCR_ATN),
+		0,
+	SCR_WAIT_DISC,
+		0,
+	/*
+	 *  Tell the C code that we are done.
+	 */
+	SCR_INT,
+		SIR_ABORT_SENT,
+}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
+	/*
+	 *  Jump at scheduler.
+	 */
+	SCR_JUMP,
+		PADDR_A (start),
+}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
+	/*
+	 *  If it is an EXTENDED (variable size message)
+	 *  Handle it.
+	 */
+	SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
+		PADDR_B (msg_extended),
+	/*
+	 *  Let the C code handle any other 
+	 *  1 byte message.
+	 */
+	SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
+		PADDR_B (msg_received),
+	SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
+		PADDR_B (msg_received),
+	/*
+	 *  We donnot handle 2 bytes messages from SCRIPTS.
+	 *  So, let the C code deal with these ones too.
+	 */
+	SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
+		PADDR_B (msg_weird_seen),
+	SCR_CLR (SCR_ACK),
+		0,
+	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+		HADDR_1 (msgin[1]),
+}/*-------------------------< MSG_RECEIVED >---------------------*/,{
+	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
+		0,
+	SCR_INT,
+		SIR_MSG_RECEIVED,
+}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
+	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
+		0,
+	SCR_INT,
+		SIR_MSG_WEIRD,
+}/*-------------------------< MSG_EXTENDED >---------------------*/,{
+	/*
+	 *  Clear ACK and get the next byte 
+	 *  assumed to be the message length.
+	 */
+	SCR_CLR (SCR_ACK),
+		0,
+	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+		HADDR_1 (msgin[1]),
+	/*
+	 *  Try to catch some unlikely situations as 0 length 
+	 *  or too large the length.
+	 */
+	SCR_JUMP ^ IFTRUE (DATA (0)),
+		PADDR_B (msg_weird_seen),
+	SCR_TO_REG (scratcha),
+		0,
+	SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
+		0,
+	SCR_JUMP ^ IFTRUE (CARRYSET),
+		PADDR_B (msg_weird_seen),
+	/*
+	 *  We donnot handle extended messages from SCRIPTS.
+	 *  Read the amount of data correponding to the 
+	 *  message length and call the C code.
+	 */
+	SCR_STORE_REL (scratcha, 1),
+		offsetof (struct sym_dsb, smsg_ext.size),
+	SCR_CLR (SCR_ACK),
+		0,
+	SCR_MOVE_TBL ^ SCR_MSG_IN,
+		offsetof (struct sym_dsb, smsg_ext),
+	SCR_JUMP,
+		PADDR_B (msg_received),
+}/*-------------------------< MSG_BAD >--------------------------*/,{
+	/*
+	 *  unimplemented message - reject it.
+	 */
+	SCR_INT,
+		SIR_REJECT_TO_SEND,
+	SCR_SET (SCR_ATN),
+		0,
+	SCR_JUMP,
+		PADDR_A (clrack),
+}/*-------------------------< MSG_WEIRD >------------------------*/,{
+	/*
+	 *  weird message received
+	 *  ignore all MSG IN phases and reject it.
+	 */
+	SCR_INT,
+		SIR_REJECT_TO_SEND,
+	SCR_SET (SCR_ATN),
+		0,
+}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
+	SCR_CLR (SCR_ACK),
+		0,
+	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
+		PADDR_A (dispatch),
+	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+		HADDR_1 (scratch),
+	SCR_JUMP,
+		PADDR_B (msg_weird1),
+}/*-------------------------< WDTR_RESP >------------------------*/,{
+	/*
+	 *  let the target fetch our answer.
+	 */
+	SCR_SET (SCR_ATN),
+		0,
+	SCR_CLR (SCR_ACK),
+		0,
+	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+		PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_WDTR >------------------------*/,{
+	/*
+	 *  Send the M_X_WIDE_REQ
+	 */
+	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
+		HADDR_1 (msgout),
+	SCR_JUMP,
+		PADDR_B (msg_out_done),
+}/*-------------------------< SDTR_RESP >------------------------*/,{
+	/*
+	 *  let the target fetch our answer.
+	 */
+	SCR_SET (SCR_ATN),
+		0,
+	SCR_CLR (SCR_ACK),
+		0,
+	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+		PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_SDTR >------------------------*/,{
+	/*
+	 *  Send the M_X_SYNC_REQ
+	 */
+	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
+		HADDR_1 (msgout),
+	SCR_JUMP,
+		PADDR_B (msg_out_done),
+}/*-------------------------< PPR_RESP >-------------------------*/,{
+	/*
+	 *  let the target fetch our answer.
+	 */
+	SCR_SET (SCR_ATN),
+		0,
+	SCR_CLR (SCR_ACK),
+		0,
+	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+		PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_PPR >-------------------------*/,{
+	/*
+	 *  Send the M_X_PPR_REQ
+	 */
+	SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
+		HADDR_1 (msgout),
+	SCR_JUMP,
+		PADDR_B (msg_out_done),
+}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
+	SCR_INT,
+		SIR_NEGO_PROTO,
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< MSG_OUT >--------------------------*/,{
+	/*
+	 *  The target requests a message.
+	 *  We donnot send messages that may 
+	 *  require the device to go to bus free.
+	 */
+	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
+		HADDR_1 (msgout),
+	/*
+	 *  ... wait for the next phase
+	 *  if it's a message out, send it again, ...
+	 */
+	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
+		PADDR_B (msg_out),
+}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
+	/*
+	 *  Let the C code be aware of the 
+	 *  sent message and clear the message.
+	 */
+	SCR_INT,
+		SIR_MSG_OUT_DONE,
+	/*
+	 *  ... and process the next phase
+	 */
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< DATA_OVRUN >-----------------------*/,{
+	/*
+	 *  Use scratcha to count the extra bytes.
+	 */
+	SCR_LOAD_ABS (scratcha, 4),
+		PADDR_B (zero),
+}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
+	/*
+	 *  The target may want to transfer too much data.
+	 *
+	 *  If phase is DATA OUT write 1 byte and count it.
+	 */
+	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
+		16,
+	SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
+		HADDR_1 (scratch),
+	SCR_JUMP,
+		PADDR_B (data_ovrun2),
+	/*
+	 *  If WSR is set, clear this condition, and 
+	 *  count this byte.
+	 */
+	SCR_FROM_REG (scntl2),
+		0,
+	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
+		16,
+	SCR_REG_REG (scntl2, SCR_OR, WSR),
+		0,
+	SCR_JUMP,
+		PADDR_B (data_ovrun2),
+	/*
+	 *  Finally check against DATA IN phase.
+	 *  Signal data overrun to the C code 
+	 *  and jump to dispatcher if not so.
+	 *  Read 1 byte otherwise and count it.
+	 */
+	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
+		16,
+	SCR_INT,
+		SIR_DATA_OVERRUN,
+	SCR_JUMP,
+		PADDR_A (dispatch),
+	SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
+		HADDR_1 (scratch),
+}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
+	/*
+	 *  Count this byte.
+	 *  This will allow to return a negative 
+	 *  residual to user.
+	 */
+	SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
+		0,
+	SCR_REG_REG (scratcha1, SCR_ADDC, 0),
+		0,
+	SCR_REG_REG (scratcha2, SCR_ADDC, 0),
+		0,
+	/*
+	 *  .. and repeat as required.
+	 */
+	SCR_JUMP,
+		PADDR_B (data_ovrun1),
+}/*-------------------------< ABORT_RESEL >----------------------*/,{
+	SCR_SET (SCR_ATN),
+		0,
+	SCR_CLR (SCR_ACK),
+		0,
+	/*
+	 *  send the abort/abortag/reset message
+	 *  we expect an immediate disconnect
+	 */
+	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+		0,
+	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
+		HADDR_1 (msgout),
+	SCR_CLR (SCR_ACK|SCR_ATN),
+		0,
+	SCR_WAIT_DISC,
+		0,
+	SCR_INT,
+		SIR_RESEL_ABORTED,
+	SCR_JUMP,
+		PADDR_A (start),
+}/*-------------------------< RESEND_IDENT >---------------------*/,{
+	/*
+	 *  The target stays in MSG OUT phase after having acked 
+	 *  Identify [+ Tag [+ Extended message ]]. Targets shall
+	 *  behave this way on parity error.
+	 *  We must send it again all the messages.
+	 */
+	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
+		0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
+	SCR_JUMP,
+		PADDR_A (send_ident),
+}/*-------------------------< IDENT_BREAK >----------------------*/,{
+	SCR_CLR (SCR_ATN),
+		0,
+	SCR_JUMP,
+		PADDR_A (select2),
+}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
+	SCR_SET (SCR_ATN),
+		0,
+	SCR_JUMP,
+		PADDR_A (select2),
+}/*-------------------------< SDATA_IN >-------------------------*/,{
+	SCR_CHMOV_TBL ^ SCR_DATA_IN,
+		offsetof (struct sym_dsb, sense),
+	SCR_CALL,
+		PADDR_A (datai_done),
+	SCR_JUMP,
+		PADDR_B (data_ovrun),
+}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
+	/*
+	 *  Message is an IDENTIFY, but lun is unknown.
+	 *  Signal problem to C code for logging the event.
+	 *  Send a M_ABORT to clear all pending tasks.
+	 */
+	SCR_INT,
+		SIR_RESEL_BAD_LUN,
+	SCR_JUMP,
+		PADDR_B (abort_resel),
+}/*-------------------------< BAD_I_T_L >------------------------*/,{
+	/*
+	 *  We donnot have a task for that I_T_L.
+	 *  Signal problem to C code for logging the event.
+	 *  Send a M_ABORT message.
+	 */
+	SCR_INT,
+		SIR_RESEL_BAD_I_T_L,
+	SCR_JUMP,
+		PADDR_B (abort_resel),
+}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
+	/*
+	 *  We donnot have a task that matches the tag.
+	 *  Signal problem to C code for logging the event.
+	 *  Send a M_ABORTTAG message.
+	 */
+	SCR_INT,
+		SIR_RESEL_BAD_I_T_L_Q,
+	SCR_JUMP,
+		PADDR_B (abort_resel),
+}/*-------------------------< BAD_STATUS >-----------------------*/,{
+	/*
+	 *  Anything different from INTERMEDIATE 
+	 *  CONDITION MET should be a bad SCSI status, 
+	 *  given that GOOD status has already been tested.
+	 *  Call the C code.
+	 */
+	SCR_LOAD_ABS (scratcha, 4),
+		PADDR_B (startpos),
+	SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
+		SIR_BAD_SCSI_STATUS,
+	SCR_RETURN,
+		0,
+}/*-------------------------< PM_HANDLE >------------------------*/,{
+	/*
+	 *  Phase mismatch handling.
+	 *
+	 *  Since we have to deal with 2 SCSI data pointers  
+	 *  (current and saved), we need at least 2 contexts.
+	 *  Each context (pm0 and pm1) has a saved area, a 
+	 *  SAVE mini-script and a DATA phase mini-script.
+	 */
+	/*
+	 *  Get the PM handling flags.
+	 */
+	SCR_FROM_REG (HF_REG),
+		0,
+	/*
+	 *  If no flags (1rst PM for example), avoid 
+	 *  all the below heavy flags testing.
+	 *  This makes the normal case a bit faster.
+	 */
+	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
+		PADDR_B (pm_handle1),
+	/*
+	 *  If we received a SAVE DP, switch to the 
+	 *  other PM context since the savep may point 
+	 *  to the current PM context.
+	 */
+	SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
+		8,
+	SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
+		0,
+	/*
+	 *  If we have been interrupt in a PM DATA mini-script,
+	 *  we take the return address from the corresponding 
+	 *  saved area.
+	 *  This ensure the return address always points to the 
+	 *  main DATA script for this transfer.
+	 */
+	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
+		PADDR_B (pm_handle1),
+	SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
+		16,
+	SCR_LOAD_REL (ia, 4),
+		offsetof(struct sym_ccb, phys.pm0.ret),
+	SCR_JUMP,
+		PADDR_B (pm_save),
+	SCR_LOAD_REL (ia, 4),
+		offsetof(struct sym_ccb, phys.pm1.ret),
+	SCR_JUMP,
+		PADDR_B (pm_save),
+}/*-------------------------< PM_HANDLE1 >-----------------------*/,{
+	/*
+	 *  Normal case.
+	 *  Update the return address so that it 
+	 *  will point after the interrupted MOVE.
+	 */
+	SCR_REG_REG (ia, SCR_ADD, 8),
+		0,
+	SCR_REG_REG (ia1, SCR_ADDC, 0),
+		0,
+}/*-------------------------< PM_SAVE >--------------------------*/,{
+	/*
+	 *  Clear all the flags that told us if we were 
+	 *  interrupted in a PM DATA mini-script and/or 
+	 *  we received a SAVE DP.
+	 */
+	SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
+		0,
+	/*
+	 *  Choose the current PM context.
+	 */
+	SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
+		PADDR_B (pm1_save),
+}/*-------------------------< PM0_SAVE >-------------------------*/,{
+	SCR_STORE_REL (ia, 4),
+		offsetof(struct sym_ccb, phys.pm0.ret),
+	/*
+	 *  If WSR bit is set, either UA and RBC may 
+	 *  have to be changed whether the device wants 
+	 *  to ignore this residue or not.
+	 */
+	SCR_FROM_REG (scntl2),
+		0,
+	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
+		PADDR_B (pm_wsr_handle),
+	/*
+	 *  Save the remaining byte count, the updated 
+	 *  address and the return address.
+	 */
+	SCR_STORE_REL (rbc, 4),
+		offsetof(struct sym_ccb, phys.pm0.sg.size),
+	SCR_STORE_REL (ua, 4),
+		offsetof(struct sym_ccb, phys.pm0.sg.addr),
+	/*
+	 *  Set the current pointer at the PM0 DATA mini-script.
+	 */
+	SCR_LOAD_ABS (ia, 4),
+		PADDR_B (pm0_data_addr),
+}/*-------------------------< PM_SAVE_END >----------------------*/,{
+	SCR_STORE_REL (ia, 4),
+		offsetof(struct sym_ccb, phys.head.lastp),
+	SCR_JUMP,
+		PADDR_A (dispatch),
+}/*-------------------------< PM1_SAVE >-------------------------*/,{
+	SCR_STORE_REL (ia, 4),
+		offsetof(struct sym_ccb, phys.pm1.ret),
+	/*
+	 *  If WSR bit is set, either UA and RBC may 
+	 *  have to be changed whether the device wants 
+	 *  to ignore this residue or not.
+	 */
+	SCR_FROM_REG (scntl2),
+		0,
+	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
+		PADDR_B (pm_wsr_handle),
+	/*
+	 *  Save the remaining byte count, the updated 
+	 *  address and the return address.
+	 */
+	SCR_STORE_REL (rbc, 4),
+		offsetof(struct sym_ccb, phys.pm1.sg.size),
+	SCR_STORE_REL (ua, 4),
+		offsetof(struct sym_ccb, phys.pm1.sg.addr),
+	/*
+	 *  Set the current pointer at the PM1 DATA mini-script.
+	 */
+	SCR_LOAD_ABS (ia, 4),
+		PADDR_B (pm1_data_addr),
+	SCR_JUMP,
+		PADDR_B (pm_save_end),
+}/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
+	/*
+	 *  Phase mismatch handling from SCRIPT with WSR set.
+	 *  Such a condition can occur if the chip wants to 
+	 *  execute a CHMOV(size > 1) when the WSR bit is 
+	 *  set and the target changes PHASE.
+	 *
+	 *  We must move the residual byte to memory.
+	 *
+	 *  UA contains bit 0..31 of the address to 
+	 *  move the residual byte.
+	 *  Move it to the table indirect.
+	 */
+	SCR_STORE_REL (ua, 4),
+		offsetof (struct sym_ccb, phys.wresid.addr),
+	/*
+	 *  Increment UA (move address to next position).
+	 */
+	SCR_REG_REG (ua, SCR_ADD, 1),
+		0,
+	SCR_REG_REG (ua1, SCR_ADDC, 0),
+		0,
+	SCR_REG_REG (ua2, SCR_ADDC, 0),
+		0,
+	SCR_REG_REG (ua3, SCR_ADDC, 0),
+		0,
+	/*
+	 *  Compute SCRATCHA as:
+	 *  - size to transfer = 1 byte.
+	 *  - bit 24..31 = high address bit [32...39].
+	 */
+	SCR_LOAD_ABS (scratcha, 4),
+		PADDR_B (zero),
+	SCR_REG_REG (scratcha, SCR_OR, 1),
+		0,
+	SCR_FROM_REG (rbc3),
+		0,
+	SCR_TO_REG (scratcha3),
+		0,
+	/*
+	 *  Move this value to the table indirect.
+	 */
+	SCR_STORE_REL (scratcha, 4),
+		offsetof (struct sym_ccb, phys.wresid.size),
+	/*
+	 *  Wait for a valid phase.
+	 *  While testing with bogus QUANTUM drives, the C1010 
+	 *  sometimes raised a spurious phase mismatch with 
+	 *  WSR and the CHMOV(1) triggered another PM.
+	 *  Waiting explicitely for the PHASE seemed to avoid 
+	 *  the nested phase mismatch. Btw, this didn't happen 
+	 *  using my IBM drives.
+	 */
+	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
+		0,
+	/*
+	 *  Perform the move of the residual byte.
+	 */
+	SCR_CHMOV_TBL ^ SCR_DATA_IN,
+		offsetof (struct sym_ccb, phys.wresid),
+	/*
+	 *  We can now handle the phase mismatch with UA fixed.
+	 *  RBC[0..23]=0 is a special case that does not require 
+	 *  a PM context. The C code also checks against this.
+	 */
+	SCR_FROM_REG (rbc),
+		0,
+	SCR_RETURN ^ IFFALSE (DATA (0)),
+		0,
+	SCR_FROM_REG (rbc1),
+		0,
+	SCR_RETURN ^ IFFALSE (DATA (0)),
+		0,
+	SCR_FROM_REG (rbc2),
+		0,
+	SCR_RETURN ^ IFFALSE (DATA (0)),
+		0,
+	/*
+	 *  RBC[0..23]=0.
+	 *  Not only we donnot need a PM context, but this would 
+	 *  lead to a bogus CHMOV(0). This condition means that 
+	 *  the residual was the last byte to move from this CHMOV.
+	 *  So, we just have to move the current data script pointer 
+	 *  (i.e. TEMP) to the SCRIPTS address following the 
+	 *  interrupted CHMOV and jump to dispatcher.
+	 *  IA contains the data pointer to save.
+	 */
+	SCR_JUMP,
+		PADDR_B (pm_save_end),
+}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
+	/*
+	 *  Helper for the C code when WSR bit is set.
+	 *  Perform the move of the residual byte.
+	 */
+	SCR_CHMOV_TBL ^ SCR_DATA_IN,
+		offsetof (struct sym_ccb, phys.wresid),
+	SCR_JUMP,
+		PADDR_A (dispatch),
+
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+}/*-------------------------< DATA_IO >--------------------------*/,{
+	/*
+	 *  We jump here if the data direction was unknown at the 
+	 *  time we had to queue the command to the scripts processor.
+	 *  Pointers had been set as follow in this situation:
+	 *    savep   -->   DATA_IO
+	 *    lastp   -->   start pointer when DATA_IN
+	 *    wlastp  -->   start pointer when DATA_OUT
+	 *  This script sets savep and lastp according to the 
+	 *  direction chosen by the target.
+	 */
+	SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
+		PADDR_B (data_io_out),
+}/*-------------------------< DATA_IO_IN >-----------------------*/,{
+	/*
+	 *  Direction is DATA IN.
+	 */
+	SCR_LOAD_REL  (scratcha, 4),
+		offsetof (struct sym_ccb, phys.head.lastp),
+}/*-------------------------< DATA_IO_COM >----------------------*/,{
+	SCR_STORE_REL (scratcha, 4),
+		offsetof (struct sym_ccb, phys.head.savep),
+
+	/*
+	 *  Jump to the SCRIPTS according to actual direction.
+	 */
+	SCR_LOAD_REL  (temp, 4),
+		offsetof (struct sym_ccb, phys.head.savep),
+	SCR_RETURN,
+		0,
+}/*-------------------------< DATA_IO_OUT >----------------------*/,{
+	/*
+	 *  Direction is DATA OUT.
+	 */
+	SCR_REG_REG (HF_REG, SCR_AND, (~HF_DATA_IN)),
+		0,
+	SCR_LOAD_REL  (scratcha, 4),
+		offsetof (struct sym_ccb, phys.head.wlastp),
+	SCR_STORE_REL (scratcha, 4),
+		offsetof (struct sym_ccb, phys.head.lastp),
+	SCR_JUMP,
+		PADDR_B(data_io_com),
+#endif /* SYM_OPT_HANDLE_DIR_UNKNOWN */
+
+}/*-------------------------< ZERO >-----------------------------*/,{
+	SCR_DATA_ZERO,
+}/*-------------------------< SCRATCH >--------------------------*/,{
+	SCR_DATA_ZERO,
+}/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
+	SCR_DATA_ZERO,
+}/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
+	SCR_DATA_ZERO,
+}/*-------------------------< DONE_POS >-------------------------*/,{
+	SCR_DATA_ZERO,
+}/*-------------------------< STARTPOS >-------------------------*/,{
+	SCR_DATA_ZERO,
+}/*-------------------------< TARGTBL >--------------------------*/,{
+	SCR_DATA_ZERO,
+}/*-------------------------<>-----------------------------------*/
+};
+
+static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
+ /*-------------------------< SNOOPTEST >------------------------*/{
+	/*
+	 *  Read the variable from memory.
+	 */
+	SCR_LOAD_REL (scratcha, 4),
+		offsetof(struct sym_hcb, scratch),
+	/*
+	 *  Write the variable to memory.
+	 */
+	SCR_STORE_REL (temp, 4),
+		offsetof(struct sym_hcb, scratch),
+	/*
+	 *  Read back the variable from memory.
+	 */
+	SCR_LOAD_REL (temp, 4),
+		offsetof(struct sym_hcb, scratch),
+}/*-------------------------< SNOOPEND >-------------------------*/,{
+	/*
+	 *  And stop.
+	 */
+	SCR_INT,
+		99,
+}/*-------------------------<>-----------------------------------*/
+};