Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/ia64/kernel/mca.c b/arch/ia64/kernel/mca.c
new file mode 100644
index 0000000..4d6c7b8f
--- /dev/null
+++ b/arch/ia64/kernel/mca.c
@@ -0,0 +1,1470 @@
+/*
+ * File:	mca.c
+ * Purpose:	Generic MCA handling layer
+ *
+ * Updated for latest kernel
+ * Copyright (C) 2003 Hewlett-Packard Co
+ *	David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * Copyright (C) 2002 Dell Inc.
+ * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
+ *
+ * Copyright (C) 2002 Intel
+ * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
+ *
+ * Copyright (C) 2001 Intel
+ * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
+ *
+ * Copyright (C) 2000 Intel
+ * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
+ *
+ * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
+ * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
+ *
+ * 03/04/15 D. Mosberger Added INIT backtrace support.
+ * 02/03/25 M. Domsch	GUID cleanups
+ *
+ * 02/01/04 J. Hall	Aligned MCA stack to 16 bytes, added platform vs. CPU
+ *			error flag, set SAL default return values, changed
+ *			error record structure to linked list, added init call
+ *			to sal_get_state_info_size().
+ *
+ * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
+ *                      platform errors, completed code for logging of
+ *                      corrected & uncorrected machine check errors, and
+ *                      updated for conformance with Nov. 2000 revision of the
+ *                      SAL 3.0 spec.
+ * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
+ *                           added min save state dump, added INIT handler.
+ *
+ * 2003-12-08 Keith Owens <kaos@sgi.com>
+ *            smp_call_function() must not be called from interrupt context (can
+ *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
+ *
+ * 2004-02-01 Keith Owens <kaos@sgi.com>
+ *            Avoid deadlock when using printk() for MCA and INIT records.
+ *            Delete all record printing code, moved to salinfo_decode in user space.
+ *            Mark variables and functions static where possible.
+ *            Delete dead variables and functions.
+ *            Reorder to remove the need for forward declarations and to consolidate
+ *            related code.
+ */
+#include <linux/config.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/kallsyms.h>
+#include <linux/smp_lock.h>
+#include <linux/bootmem.h>
+#include <linux/acpi.h>
+#include <linux/timer.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/smp.h>
+#include <linux/workqueue.h>
+
+#include <asm/delay.h>
+#include <asm/machvec.h>
+#include <asm/meminit.h>
+#include <asm/page.h>
+#include <asm/ptrace.h>
+#include <asm/system.h>
+#include <asm/sal.h>
+#include <asm/mca.h>
+
+#include <asm/irq.h>
+#include <asm/hw_irq.h>
+
+#if defined(IA64_MCA_DEBUG_INFO)
+# define IA64_MCA_DEBUG(fmt...)	printk(fmt)
+#else
+# define IA64_MCA_DEBUG(fmt...)
+#endif
+
+/* Used by mca_asm.S */
+ia64_mca_sal_to_os_state_t	ia64_sal_to_os_handoff_state;
+ia64_mca_os_to_sal_state_t	ia64_os_to_sal_handoff_state;
+u64				ia64_mca_serialize;
+DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
+DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
+DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
+DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
+
+unsigned long __per_cpu_mca[NR_CPUS];
+
+/* In mca_asm.S */
+extern void			ia64_monarch_init_handler (void);
+extern void			ia64_slave_init_handler (void);
+
+static ia64_mc_info_t		ia64_mc_info;
+
+#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
+#define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
+#define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
+#define CPE_HISTORY_LENGTH    5
+#define CMC_HISTORY_LENGTH    5
+
+static struct timer_list cpe_poll_timer;
+static struct timer_list cmc_poll_timer;
+/*
+ * This variable tells whether we are currently in polling mode.
+ * Start with this in the wrong state so we won't play w/ timers
+ * before the system is ready.
+ */
+static int cmc_polling_enabled = 1;
+
+/*
+ * Clearing this variable prevents CPE polling from getting activated
+ * in mca_late_init.  Use it if your system doesn't provide a CPEI,
+ * but encounters problems retrieving CPE logs.  This should only be
+ * necessary for debugging.
+ */
+static int cpe_poll_enabled = 1;
+
+extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
+
+static int mca_init;
+
+/*
+ * IA64_MCA log support
+ */
+#define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
+#define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
+
+typedef struct ia64_state_log_s
+{
+	spinlock_t	isl_lock;
+	int		isl_index;
+	unsigned long	isl_count;
+	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
+} ia64_state_log_t;
+
+static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
+
+#define IA64_LOG_ALLOCATE(it, size) \
+	{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
+		(ia64_err_rec_t *)alloc_bootmem(size); \
+	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
+		(ia64_err_rec_t *)alloc_bootmem(size);}
+#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
+#define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
+#define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
+#define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
+#define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
+#define IA64_LOG_INDEX_INC(it) \
+    {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
+    ia64_state_log[it].isl_count++;}
+#define IA64_LOG_INDEX_DEC(it) \
+    ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
+#define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
+#define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
+#define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
+
+/*
+ * ia64_log_init
+ *	Reset the OS ia64 log buffer
+ * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
+ * Outputs	:	None
+ */
+static void
+ia64_log_init(int sal_info_type)
+{
+	u64	max_size = 0;
+
+	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
+	IA64_LOG_LOCK_INIT(sal_info_type);
+
+	// SAL will tell us the maximum size of any error record of this type
+	max_size = ia64_sal_get_state_info_size(sal_info_type);
+	if (!max_size)
+		/* alloc_bootmem() doesn't like zero-sized allocations! */
+		return;
+
+	// set up OS data structures to hold error info
+	IA64_LOG_ALLOCATE(sal_info_type, max_size);
+	memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
+	memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
+}
+
+/*
+ * ia64_log_get
+ *
+ *	Get the current MCA log from SAL and copy it into the OS log buffer.
+ *
+ *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
+ *              irq_safe    whether you can use printk at this point
+ *  Outputs :   size        (total record length)
+ *              *buffer     (ptr to error record)
+ *
+ */
+static u64
+ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
+{
+	sal_log_record_header_t     *log_buffer;
+	u64                         total_len = 0;
+	int                         s;
+
+	IA64_LOG_LOCK(sal_info_type);
+
+	/* Get the process state information */
+	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
+
+	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
+
+	if (total_len) {
+		IA64_LOG_INDEX_INC(sal_info_type);
+		IA64_LOG_UNLOCK(sal_info_type);
+		if (irq_safe) {
+			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
+				       "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
+		}
+		*buffer = (u8 *) log_buffer;
+		return total_len;
+	} else {
+		IA64_LOG_UNLOCK(sal_info_type);
+		return 0;
+	}
+}
+
+/*
+ *  ia64_mca_log_sal_error_record
+ *
+ *  This function retrieves a specified error record type from SAL
+ *  and wakes up any processes waiting for error records.
+ *
+ *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE/INIT)
+ */
+static void
+ia64_mca_log_sal_error_record(int sal_info_type)
+{
+	u8 *buffer;
+	sal_log_record_header_t *rh;
+	u64 size;
+	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT;
+#ifdef IA64_MCA_DEBUG_INFO
+	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
+#endif
+
+	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
+	if (!size)
+		return;
+
+	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
+
+	if (irq_safe)
+		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
+			smp_processor_id(),
+			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
+
+	/* Clear logs from corrected errors in case there's no user-level logger */
+	rh = (sal_log_record_header_t *)buffer;
+	if (rh->severity == sal_log_severity_corrected)
+		ia64_sal_clear_state_info(sal_info_type);
+}
+
+/*
+ * platform dependent error handling
+ */
+#ifndef PLATFORM_MCA_HANDLERS
+
+#ifdef CONFIG_ACPI
+
+static int cpe_vector = -1;
+
+static irqreturn_t
+ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
+{
+	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
+	static int		index;
+	static DEFINE_SPINLOCK(cpe_history_lock);
+
+	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
+		       __FUNCTION__, cpe_irq, smp_processor_id());
+
+	/* SAL spec states this should run w/ interrupts enabled */
+	local_irq_enable();
+
+	/* Get the CPE error record and log it */
+	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
+
+	spin_lock(&cpe_history_lock);
+	if (!cpe_poll_enabled && cpe_vector >= 0) {
+
+		int i, count = 1; /* we know 1 happened now */
+		unsigned long now = jiffies;
+
+		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
+			if (now - cpe_history[i] <= HZ)
+				count++;
+		}
+
+		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
+		if (count >= CPE_HISTORY_LENGTH) {
+
+			cpe_poll_enabled = 1;
+			spin_unlock(&cpe_history_lock);
+			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
+
+			/*
+			 * Corrected errors will still be corrected, but
+			 * make sure there's a log somewhere that indicates
+			 * something is generating more than we can handle.
+			 */
+			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
+
+			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
+
+			/* lock already released, get out now */
+			return IRQ_HANDLED;
+		} else {
+			cpe_history[index++] = now;
+			if (index == CPE_HISTORY_LENGTH)
+				index = 0;
+		}
+	}
+	spin_unlock(&cpe_history_lock);
+	return IRQ_HANDLED;
+}
+
+#endif /* CONFIG_ACPI */
+
+static void
+show_min_state (pal_min_state_area_t *minstate)
+{
+	u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
+	u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
+
+	printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
+	printk("pr\t\t%016lx\n", minstate->pmsa_pr);
+	printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
+	printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
+	printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
+	printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
+	printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
+	printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
+	printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
+	printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
+	printk("b1\t\t%016lx ", minstate->pmsa_br1);
+	print_symbol("%s\n", minstate->pmsa_br1);
+
+	printk("\nstatic registers r0-r15:\n");
+	printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
+	       0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
+	printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_gr[3], minstate->pmsa_gr[4],
+	       minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
+	printk(" r8-11 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_gr[7], minstate->pmsa_gr[8],
+	       minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
+	printk("r12-15 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_gr[11], minstate->pmsa_gr[12],
+	       minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
+
+	printk("\nbank 0:\n");
+	printk("r16-19 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
+	       minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
+	printk("r20-23 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
+	       minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
+	printk("r24-27 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
+	       minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
+	printk("r28-31 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
+	       minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
+
+	printk("\nbank 1:\n");
+	printk("r16-19 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
+	       minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
+	printk("r20-23 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
+	       minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
+	printk("r24-27 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
+	       minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
+	printk("r28-31 %016lx %016lx %016lx %016lx\n",
+	       minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
+	       minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
+}
+
+static void
+fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
+{
+	u64 *dst_banked, *src_banked, bit, shift, nat_bits;
+	int i;
+
+	/*
+	 * First, update the pt-regs and switch-stack structures with the contents stored
+	 * in the min-state area:
+	 */
+	if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
+		pt->cr_ipsr = ms->pmsa_xpsr;
+		pt->cr_iip = ms->pmsa_xip;
+		pt->cr_ifs = ms->pmsa_xfs;
+	} else {
+		pt->cr_ipsr = ms->pmsa_ipsr;
+		pt->cr_iip = ms->pmsa_iip;
+		pt->cr_ifs = ms->pmsa_ifs;
+	}
+	pt->ar_rsc = ms->pmsa_rsc;
+	pt->pr = ms->pmsa_pr;
+	pt->r1 = ms->pmsa_gr[0];
+	pt->r2 = ms->pmsa_gr[1];
+	pt->r3 = ms->pmsa_gr[2];
+	sw->r4 = ms->pmsa_gr[3];
+	sw->r5 = ms->pmsa_gr[4];
+	sw->r6 = ms->pmsa_gr[5];
+	sw->r7 = ms->pmsa_gr[6];
+	pt->r8 = ms->pmsa_gr[7];
+	pt->r9 = ms->pmsa_gr[8];
+	pt->r10 = ms->pmsa_gr[9];
+	pt->r11 = ms->pmsa_gr[10];
+	pt->r12 = ms->pmsa_gr[11];
+	pt->r13 = ms->pmsa_gr[12];
+	pt->r14 = ms->pmsa_gr[13];
+	pt->r15 = ms->pmsa_gr[14];
+	dst_banked = &pt->r16;		/* r16-r31 are contiguous in struct pt_regs */
+	src_banked = ms->pmsa_bank1_gr;
+	for (i = 0; i < 16; ++i)
+		dst_banked[i] = src_banked[i];
+	pt->b0 = ms->pmsa_br0;
+	sw->b1 = ms->pmsa_br1;
+
+	/* construct the NaT bits for the pt-regs structure: */
+#	define PUT_NAT_BIT(dst, addr)					\
+	do {								\
+		bit = nat_bits & 1; nat_bits >>= 1;			\
+		shift = ((unsigned long) addr >> 3) & 0x3f;		\
+		dst = ((dst) & ~(1UL << shift)) | (bit << shift);	\
+	} while (0)
+
+	/* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
+	shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
+	nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
+
+	PUT_NAT_BIT(sw->caller_unat, &pt->r1);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r2);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r3);
+	PUT_NAT_BIT(sw->ar_unat, &sw->r4);
+	PUT_NAT_BIT(sw->ar_unat, &sw->r5);
+	PUT_NAT_BIT(sw->ar_unat, &sw->r6);
+	PUT_NAT_BIT(sw->ar_unat, &sw->r7);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r8);	PUT_NAT_BIT(sw->caller_unat, &pt->r9);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r10);	PUT_NAT_BIT(sw->caller_unat, &pt->r11);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r12);	PUT_NAT_BIT(sw->caller_unat, &pt->r13);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r14);	PUT_NAT_BIT(sw->caller_unat, &pt->r15);
+	nat_bits >>= 16;	/* skip over bank0 NaT bits */
+	PUT_NAT_BIT(sw->caller_unat, &pt->r16);	PUT_NAT_BIT(sw->caller_unat, &pt->r17);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r18);	PUT_NAT_BIT(sw->caller_unat, &pt->r19);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r20);	PUT_NAT_BIT(sw->caller_unat, &pt->r21);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r22);	PUT_NAT_BIT(sw->caller_unat, &pt->r23);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r24);	PUT_NAT_BIT(sw->caller_unat, &pt->r25);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r26);	PUT_NAT_BIT(sw->caller_unat, &pt->r27);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r28);	PUT_NAT_BIT(sw->caller_unat, &pt->r29);
+	PUT_NAT_BIT(sw->caller_unat, &pt->r30);	PUT_NAT_BIT(sw->caller_unat, &pt->r31);
+}
+
+static void
+init_handler_platform (pal_min_state_area_t *ms,
+		       struct pt_regs *pt, struct switch_stack *sw)
+{
+	struct unw_frame_info info;
+
+	/* if a kernel debugger is available call it here else just dump the registers */
+
+	/*
+	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
+	 * generated via the BMC's command-line interface, but since the console is on the
+	 * same serial line, the user will need some time to switch out of the BMC before
+	 * the dump begins.
+	 */
+	printk("Delaying for 5 seconds...\n");
+	udelay(5*1000000);
+	show_min_state(ms);
+
+	printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
+	fetch_min_state(ms, pt, sw);
+	unw_init_from_interruption(&info, current, pt, sw);
+	ia64_do_show_stack(&info, NULL);
+
+#ifdef CONFIG_SMP
+	/* read_trylock() would be handy... */
+	if (!tasklist_lock.write_lock)
+		read_lock(&tasklist_lock);
+#endif
+	{
+		struct task_struct *g, *t;
+		do_each_thread (g, t) {
+			if (t == current)
+				continue;
+
+			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
+			show_stack(t, NULL);
+		} while_each_thread (g, t);
+	}
+#ifdef CONFIG_SMP
+	if (!tasklist_lock.write_lock)
+		read_unlock(&tasklist_lock);
+#endif
+
+	printk("\nINIT dump complete.  Please reboot now.\n");
+	while (1);			/* hang city if no debugger */
+}
+
+#ifdef CONFIG_ACPI
+/*
+ * ia64_mca_register_cpev
+ *
+ *  Register the corrected platform error vector with SAL.
+ *
+ *  Inputs
+ *      cpev        Corrected Platform Error Vector number
+ *
+ *  Outputs
+ *      None
+ */
+static void
+ia64_mca_register_cpev (int cpev)
+{
+	/* Register the CPE interrupt vector with SAL */
+	struct ia64_sal_retval isrv;
+
+	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
+	if (isrv.status) {
+		printk(KERN_ERR "Failed to register Corrected Platform "
+		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
+		return;
+	}
+
+	IA64_MCA_DEBUG("%s: corrected platform error "
+		       "vector %#x registered\n", __FUNCTION__, cpev);
+}
+#endif /* CONFIG_ACPI */
+
+#endif /* PLATFORM_MCA_HANDLERS */
+
+/*
+ * ia64_mca_cmc_vector_setup
+ *
+ *  Setup the corrected machine check vector register in the processor.
+ *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
+ *  This function is invoked on a per-processor basis.
+ *
+ * Inputs
+ *      None
+ *
+ * Outputs
+ *	None
+ */
+void
+ia64_mca_cmc_vector_setup (void)
+{
+	cmcv_reg_t	cmcv;
+
+	cmcv.cmcv_regval	= 0;
+	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
+	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
+	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
+
+	IA64_MCA_DEBUG("%s: CPU %d corrected "
+		       "machine check vector %#x registered.\n",
+		       __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
+
+	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
+		       __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
+}
+
+/*
+ * ia64_mca_cmc_vector_disable
+ *
+ *  Mask the corrected machine check vector register in the processor.
+ *  This function is invoked on a per-processor basis.
+ *
+ * Inputs
+ *      dummy(unused)
+ *
+ * Outputs
+ *	None
+ */
+static void
+ia64_mca_cmc_vector_disable (void *dummy)
+{
+	cmcv_reg_t	cmcv;
+
+	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
+
+	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
+	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
+
+	IA64_MCA_DEBUG("%s: CPU %d corrected "
+		       "machine check vector %#x disabled.\n",
+		       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
+}
+
+/*
+ * ia64_mca_cmc_vector_enable
+ *
+ *  Unmask the corrected machine check vector register in the processor.
+ *  This function is invoked on a per-processor basis.
+ *
+ * Inputs
+ *      dummy(unused)
+ *
+ * Outputs
+ *	None
+ */
+static void
+ia64_mca_cmc_vector_enable (void *dummy)
+{
+	cmcv_reg_t	cmcv;
+
+	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
+
+	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
+	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
+
+	IA64_MCA_DEBUG("%s: CPU %d corrected "
+		       "machine check vector %#x enabled.\n",
+		       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
+}
+
+/*
+ * ia64_mca_cmc_vector_disable_keventd
+ *
+ * Called via keventd (smp_call_function() is not safe in interrupt context) to
+ * disable the cmc interrupt vector.
+ */
+static void
+ia64_mca_cmc_vector_disable_keventd(void *unused)
+{
+	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
+}
+
+/*
+ * ia64_mca_cmc_vector_enable_keventd
+ *
+ * Called via keventd (smp_call_function() is not safe in interrupt context) to
+ * enable the cmc interrupt vector.
+ */
+static void
+ia64_mca_cmc_vector_enable_keventd(void *unused)
+{
+	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
+}
+
+/*
+ * ia64_mca_wakeup_ipi_wait
+ *
+ *	Wait for the inter-cpu interrupt to be sent by the
+ *	monarch processor once it is done with handling the
+ *	MCA.
+ *
+ *  Inputs  :   None
+ *  Outputs :   None
+ */
+static void
+ia64_mca_wakeup_ipi_wait(void)
+{
+	int	irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
+	int	irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
+	u64	irr = 0;
+
+	do {
+		switch(irr_num) {
+		      case 0:
+			irr = ia64_getreg(_IA64_REG_CR_IRR0);
+			break;
+		      case 1:
+			irr = ia64_getreg(_IA64_REG_CR_IRR1);
+			break;
+		      case 2:
+			irr = ia64_getreg(_IA64_REG_CR_IRR2);
+			break;
+		      case 3:
+			irr = ia64_getreg(_IA64_REG_CR_IRR3);
+			break;
+		}
+		cpu_relax();
+	} while (!(irr & (1UL << irr_bit))) ;
+}
+
+/*
+ * ia64_mca_wakeup
+ *
+ *	Send an inter-cpu interrupt to wake-up a particular cpu
+ *	and mark that cpu to be out of rendez.
+ *
+ *  Inputs  :   cpuid
+ *  Outputs :   None
+ */
+static void
+ia64_mca_wakeup(int cpu)
+{
+	platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
+	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
+
+}
+
+/*
+ * ia64_mca_wakeup_all
+ *
+ *	Wakeup all the cpus which have rendez'ed previously.
+ *
+ *  Inputs  :   None
+ *  Outputs :   None
+ */
+static void
+ia64_mca_wakeup_all(void)
+{
+	int cpu;
+
+	/* Clear the Rendez checkin flag for all cpus */
+	for(cpu = 0; cpu < NR_CPUS; cpu++) {
+		if (!cpu_online(cpu))
+			continue;
+		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
+			ia64_mca_wakeup(cpu);
+	}
+
+}
+
+/*
+ * ia64_mca_rendez_interrupt_handler
+ *
+ *	This is handler used to put slave processors into spinloop
+ *	while the monarch processor does the mca handling and later
+ *	wake each slave up once the monarch is done.
+ *
+ *  Inputs  :   None
+ *  Outputs :   None
+ */
+static irqreturn_t
+ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
+{
+	unsigned long flags;
+	int cpu = smp_processor_id();
+
+	/* Mask all interrupts */
+	local_irq_save(flags);
+
+	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
+	/* Register with the SAL monarch that the slave has
+	 * reached SAL
+	 */
+	ia64_sal_mc_rendez();
+
+	/* Wait for the wakeup IPI from the monarch
+	 * This waiting is done by polling on the wakeup-interrupt
+	 * vector bit in the processor's IRRs
+	 */
+	ia64_mca_wakeup_ipi_wait();
+
+	/* Enable all interrupts */
+	local_irq_restore(flags);
+	return IRQ_HANDLED;
+}
+
+/*
+ * ia64_mca_wakeup_int_handler
+ *
+ *	The interrupt handler for processing the inter-cpu interrupt to the
+ *	slave cpu which was spinning in the rendez loop.
+ *	Since this spinning is done by turning off the interrupts and
+ *	polling on the wakeup-interrupt bit in the IRR, there is
+ *	nothing useful to be done in the handler.
+ *
+ *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
+ *	arg		(Interrupt handler specific argument)
+ *	ptregs		(Exception frame at the time of the interrupt)
+ *  Outputs :   None
+ *
+ */
+static irqreturn_t
+ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
+{
+	return IRQ_HANDLED;
+}
+
+/*
+ * ia64_return_to_sal_check
+ *
+ *	This is function called before going back from the OS_MCA handler
+ *	to the OS_MCA dispatch code which finally takes the control back
+ *	to the SAL.
+ *	The main purpose of this routine is to setup the OS_MCA to SAL
+ *	return state which can be used by the OS_MCA dispatch code
+ *	just before going back to SAL.
+ *
+ *  Inputs  :   None
+ *  Outputs :   None
+ */
+
+static void
+ia64_return_to_sal_check(int recover)
+{
+
+	/* Copy over some relevant stuff from the sal_to_os_mca_handoff
+	 * so that it can be used at the time of os_mca_to_sal_handoff
+	 */
+	ia64_os_to_sal_handoff_state.imots_sal_gp =
+		ia64_sal_to_os_handoff_state.imsto_sal_gp;
+
+	ia64_os_to_sal_handoff_state.imots_sal_check_ra =
+		ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
+
+	if (recover)
+		ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
+	else
+		ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
+
+	/* Default = tell SAL to return to same context */
+	ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
+
+	ia64_os_to_sal_handoff_state.imots_new_min_state =
+		(u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
+
+}
+
+/* Function pointer for extra MCA recovery */
+int (*ia64_mca_ucmc_extension)
+	(void*,ia64_mca_sal_to_os_state_t*,ia64_mca_os_to_sal_state_t*)
+	= NULL;
+
+int
+ia64_reg_MCA_extension(void *fn)
+{
+	if (ia64_mca_ucmc_extension)
+		return 1;
+
+	ia64_mca_ucmc_extension = fn;
+	return 0;
+}
+
+void
+ia64_unreg_MCA_extension(void)
+{
+	if (ia64_mca_ucmc_extension)
+		ia64_mca_ucmc_extension = NULL;
+}
+
+EXPORT_SYMBOL(ia64_reg_MCA_extension);
+EXPORT_SYMBOL(ia64_unreg_MCA_extension);
+
+/*
+ * ia64_mca_ucmc_handler
+ *
+ *	This is uncorrectable machine check handler called from OS_MCA
+ *	dispatch code which is in turn called from SAL_CHECK().
+ *	This is the place where the core of OS MCA handling is done.
+ *	Right now the logs are extracted and displayed in a well-defined
+ *	format. This handler code is supposed to be run only on the
+ *	monarch processor. Once the monarch is done with MCA handling
+ *	further MCA logging is enabled by clearing logs.
+ *	Monarch also has the duty of sending wakeup-IPIs to pull the
+ *	slave processors out of rendezvous spinloop.
+ *
+ *  Inputs  :   None
+ *  Outputs :   None
+ */
+void
+ia64_mca_ucmc_handler(void)
+{
+	pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
+		&ia64_sal_to_os_handoff_state.proc_state_param;
+	int recover; 
+
+	/* Get the MCA error record and log it */
+	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
+
+	/* TLB error is only exist in this SAL error record */
+	recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
+	/* other error recovery */
+	   || (ia64_mca_ucmc_extension 
+		&& ia64_mca_ucmc_extension(
+			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
+			&ia64_sal_to_os_handoff_state,
+			&ia64_os_to_sal_handoff_state)); 
+
+	if (recover) {
+		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
+		rh->severity = sal_log_severity_corrected;
+		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
+	}
+	/*
+	 *  Wakeup all the processors which are spinning in the rendezvous
+	 *  loop.
+	 */
+	ia64_mca_wakeup_all();
+
+	/* Return to SAL */
+	ia64_return_to_sal_check(recover);
+}
+
+static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
+static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
+
+/*
+ * ia64_mca_cmc_int_handler
+ *
+ *  This is corrected machine check interrupt handler.
+ *	Right now the logs are extracted and displayed in a well-defined
+ *	format.
+ *
+ * Inputs
+ *      interrupt number
+ *      client data arg ptr
+ *      saved registers ptr
+ *
+ * Outputs
+ *	None
+ */
+static irqreturn_t
+ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
+{
+	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
+	static int		index;
+	static DEFINE_SPINLOCK(cmc_history_lock);
+
+	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
+		       __FUNCTION__, cmc_irq, smp_processor_id());
+
+	/* SAL spec states this should run w/ interrupts enabled */
+	local_irq_enable();
+
+	/* Get the CMC error record and log it */
+	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
+
+	spin_lock(&cmc_history_lock);
+	if (!cmc_polling_enabled) {
+		int i, count = 1; /* we know 1 happened now */
+		unsigned long now = jiffies;
+
+		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
+			if (now - cmc_history[i] <= HZ)
+				count++;
+		}
+
+		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
+		if (count >= CMC_HISTORY_LENGTH) {
+
+			cmc_polling_enabled = 1;
+			spin_unlock(&cmc_history_lock);
+			schedule_work(&cmc_disable_work);
+
+			/*
+			 * Corrected errors will still be corrected, but
+			 * make sure there's a log somewhere that indicates
+			 * something is generating more than we can handle.
+			 */
+			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
+
+			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
+
+			/* lock already released, get out now */
+			return IRQ_HANDLED;
+		} else {
+			cmc_history[index++] = now;
+			if (index == CMC_HISTORY_LENGTH)
+				index = 0;
+		}
+	}
+	spin_unlock(&cmc_history_lock);
+	return IRQ_HANDLED;
+}
+
+/*
+ *  ia64_mca_cmc_int_caller
+ *
+ * 	Triggered by sw interrupt from CMC polling routine.  Calls
+ * 	real interrupt handler and either triggers a sw interrupt
+ * 	on the next cpu or does cleanup at the end.
+ *
+ * Inputs
+ *	interrupt number
+ *	client data arg ptr
+ *	saved registers ptr
+ * Outputs
+ * 	handled
+ */
+static irqreturn_t
+ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
+{
+	static int start_count = -1;
+	unsigned int cpuid;
+
+	cpuid = smp_processor_id();
+
+	/* If first cpu, update count */
+	if (start_count == -1)
+		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
+
+	ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
+
+	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
+
+	if (cpuid < NR_CPUS) {
+		platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
+	} else {
+		/* If no log record, switch out of polling mode */
+		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
+
+			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
+			schedule_work(&cmc_enable_work);
+			cmc_polling_enabled = 0;
+
+		} else {
+
+			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
+		}
+
+		start_count = -1;
+	}
+
+	return IRQ_HANDLED;
+}
+
+/*
+ *  ia64_mca_cmc_poll
+ *
+ *	Poll for Corrected Machine Checks (CMCs)
+ *
+ * Inputs   :   dummy(unused)
+ * Outputs  :   None
+ *
+ */
+static void
+ia64_mca_cmc_poll (unsigned long dummy)
+{
+	/* Trigger a CMC interrupt cascade  */
+	platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
+}
+
+/*
+ *  ia64_mca_cpe_int_caller
+ *
+ * 	Triggered by sw interrupt from CPE polling routine.  Calls
+ * 	real interrupt handler and either triggers a sw interrupt
+ * 	on the next cpu or does cleanup at the end.
+ *
+ * Inputs
+ *	interrupt number
+ *	client data arg ptr
+ *	saved registers ptr
+ * Outputs
+ * 	handled
+ */
+#ifdef CONFIG_ACPI
+
+static irqreturn_t
+ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
+{
+	static int start_count = -1;
+	static int poll_time = MIN_CPE_POLL_INTERVAL;
+	unsigned int cpuid;
+
+	cpuid = smp_processor_id();
+
+	/* If first cpu, update count */
+	if (start_count == -1)
+		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
+
+	ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
+
+	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
+
+	if (cpuid < NR_CPUS) {
+		platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
+	} else {
+		/*
+		 * If a log was recorded, increase our polling frequency,
+		 * otherwise, backoff or return to interrupt mode.
+		 */
+		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
+			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
+		} else if (cpe_vector < 0) {
+			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
+		} else {
+			poll_time = MIN_CPE_POLL_INTERVAL;
+
+			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
+			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
+			cpe_poll_enabled = 0;
+		}
+
+		if (cpe_poll_enabled)
+			mod_timer(&cpe_poll_timer, jiffies + poll_time);
+		start_count = -1;
+	}
+
+	return IRQ_HANDLED;
+}
+
+#endif /* CONFIG_ACPI */
+
+/*
+ *  ia64_mca_cpe_poll
+ *
+ *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
+ *	on first cpu, from there it will trickle through all the cpus.
+ *
+ * Inputs   :   dummy(unused)
+ * Outputs  :   None
+ *
+ */
+static void
+ia64_mca_cpe_poll (unsigned long dummy)
+{
+	/* Trigger a CPE interrupt cascade  */
+	platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
+}
+
+/*
+ * C portion of the OS INIT handler
+ *
+ * Called from ia64_monarch_init_handler
+ *
+ * Inputs: pointer to pt_regs where processor info was saved.
+ *
+ * Returns:
+ *   0 if SAL must warm boot the System
+ *   1 if SAL must return to interrupted context using PAL_MC_RESUME
+ *
+ */
+void
+ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
+{
+	pal_min_state_area_t *ms;
+
+	oops_in_progress = 1;	/* avoid deadlock in printk, but it makes recovery dodgy */
+	console_loglevel = 15;	/* make sure printks make it to console */
+
+	printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
+		ia64_sal_to_os_handoff_state.proc_state_param);
+
+	/*
+	 * Address of minstate area provided by PAL is physical,
+	 * uncacheable (bit 63 set). Convert to Linux virtual
+	 * address in region 6.
+	 */
+	ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
+
+	init_handler_platform(ms, pt, sw);	/* call platform specific routines */
+}
+
+static int __init
+ia64_mca_disable_cpe_polling(char *str)
+{
+	cpe_poll_enabled = 0;
+	return 1;
+}
+
+__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
+
+static struct irqaction cmci_irqaction = {
+	.handler =	ia64_mca_cmc_int_handler,
+	.flags =	SA_INTERRUPT,
+	.name =		"cmc_hndlr"
+};
+
+static struct irqaction cmcp_irqaction = {
+	.handler =	ia64_mca_cmc_int_caller,
+	.flags =	SA_INTERRUPT,
+	.name =		"cmc_poll"
+};
+
+static struct irqaction mca_rdzv_irqaction = {
+	.handler =	ia64_mca_rendez_int_handler,
+	.flags =	SA_INTERRUPT,
+	.name =		"mca_rdzv"
+};
+
+static struct irqaction mca_wkup_irqaction = {
+	.handler =	ia64_mca_wakeup_int_handler,
+	.flags =	SA_INTERRUPT,
+	.name =		"mca_wkup"
+};
+
+#ifdef CONFIG_ACPI
+static struct irqaction mca_cpe_irqaction = {
+	.handler =	ia64_mca_cpe_int_handler,
+	.flags =	SA_INTERRUPT,
+	.name =		"cpe_hndlr"
+};
+
+static struct irqaction mca_cpep_irqaction = {
+	.handler =	ia64_mca_cpe_int_caller,
+	.flags =	SA_INTERRUPT,
+	.name =		"cpe_poll"
+};
+#endif /* CONFIG_ACPI */
+
+/* Do per-CPU MCA-related initialization.  */
+
+void __devinit
+ia64_mca_cpu_init(void *cpu_data)
+{
+	void *pal_vaddr;
+
+	if (smp_processor_id() == 0) {
+		void *mca_data;
+		int cpu;
+
+		mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
+					 * NR_CPUS);
+		for (cpu = 0; cpu < NR_CPUS; cpu++) {
+			__per_cpu_mca[cpu] = __pa(mca_data);
+			mca_data += sizeof(struct ia64_mca_cpu);
+		}
+	}
+
+        /*
+         * The MCA info structure was allocated earlier and its
+         * physical address saved in __per_cpu_mca[cpu].  Copy that
+         * address * to ia64_mca_data so we can access it as a per-CPU
+         * variable.
+         */
+	__get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
+
+	/*
+	 * Stash away a copy of the PTE needed to map the per-CPU page.
+	 * We may need it during MCA recovery.
+	 */
+	__get_cpu_var(ia64_mca_per_cpu_pte) =
+		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
+
+        /*
+         * Also, stash away a copy of the PAL address and the PTE
+         * needed to map it.
+         */
+        pal_vaddr = efi_get_pal_addr();
+	if (!pal_vaddr)
+		return;
+	__get_cpu_var(ia64_mca_pal_base) =
+		GRANULEROUNDDOWN((unsigned long) pal_vaddr);
+	__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
+							      PAGE_KERNEL));
+}
+
+/*
+ * ia64_mca_init
+ *
+ *  Do all the system level mca specific initialization.
+ *
+ *	1. Register spinloop and wakeup request interrupt vectors
+ *
+ *	2. Register OS_MCA handler entry point
+ *
+ *	3. Register OS_INIT handler entry point
+ *
+ *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
+ *
+ *  Note that this initialization is done very early before some kernel
+ *  services are available.
+ *
+ *  Inputs  :   None
+ *
+ *  Outputs :   None
+ */
+void __init
+ia64_mca_init(void)
+{
+	ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
+	ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
+	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
+	int i;
+	s64 rc;
+	struct ia64_sal_retval isrv;
+	u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;	/* platform specific */
+
+	IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
+
+	/* Clear the Rendez checkin flag for all cpus */
+	for(i = 0 ; i < NR_CPUS; i++)
+		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
+
+	/*
+	 * Register the rendezvous spinloop and wakeup mechanism with SAL
+	 */
+
+	/* Register the rendezvous interrupt vector with SAL */
+	while (1) {
+		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
+					      SAL_MC_PARAM_MECHANISM_INT,
+					      IA64_MCA_RENDEZ_VECTOR,
+					      timeout,
+					      SAL_MC_PARAM_RZ_ALWAYS);
+		rc = isrv.status;
+		if (rc == 0)
+			break;
+		if (rc == -2) {
+			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
+				"%ld to %ld milliseconds\n", timeout, isrv.v0);
+			timeout = isrv.v0;
+			continue;
+		}
+		printk(KERN_ERR "Failed to register rendezvous interrupt "
+		       "with SAL (status %ld)\n", rc);
+		return;
+	}
+
+	/* Register the wakeup interrupt vector with SAL */
+	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
+				      SAL_MC_PARAM_MECHANISM_INT,
+				      IA64_MCA_WAKEUP_VECTOR,
+				      0, 0);
+	rc = isrv.status;
+	if (rc) {
+		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
+		       "(status %ld)\n", rc);
+		return;
+	}
+
+	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
+
+	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
+	/*
+	 * XXX - disable SAL checksum by setting size to 0; should be
+	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
+	 */
+	ia64_mc_info.imi_mca_handler_size	= 0;
+
+	/* Register the os mca handler with SAL */
+	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
+				       ia64_mc_info.imi_mca_handler,
+				       ia64_tpa(mca_hldlr_ptr->gp),
+				       ia64_mc_info.imi_mca_handler_size,
+				       0, 0, 0)))
+	{
+		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
+		       "(status %ld)\n", rc);
+		return;
+	}
+
+	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
+		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
+
+	/*
+	 * XXX - disable SAL checksum by setting size to 0, should be
+	 * size of the actual init handler in mca_asm.S.
+	 */
+	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(mon_init_ptr->fp);
+	ia64_mc_info.imi_monarch_init_handler_size	= 0;
+	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(slave_init_ptr->fp);
+	ia64_mc_info.imi_slave_init_handler_size	= 0;
+
+	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
+		       ia64_mc_info.imi_monarch_init_handler);
+
+	/* Register the os init handler with SAL */
+	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
+				       ia64_mc_info.imi_monarch_init_handler,
+				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
+				       ia64_mc_info.imi_monarch_init_handler_size,
+				       ia64_mc_info.imi_slave_init_handler,
+				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
+				       ia64_mc_info.imi_slave_init_handler_size)))
+	{
+		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
+		       "(status %ld)\n", rc);
+		return;
+	}
+
+	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
+
+	/*
+	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
+	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
+	 */
+	register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
+	register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
+	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
+
+	/* Setup the MCA rendezvous interrupt vector */
+	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
+
+	/* Setup the MCA wakeup interrupt vector */
+	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
+
+#ifdef CONFIG_ACPI
+	/* Setup the CPEI/P vector and handler */
+	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
+	register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
+#endif
+
+	/* Initialize the areas set aside by the OS to buffer the
+	 * platform/processor error states for MCA/INIT/CMC
+	 * handling.
+	 */
+	ia64_log_init(SAL_INFO_TYPE_MCA);
+	ia64_log_init(SAL_INFO_TYPE_INIT);
+	ia64_log_init(SAL_INFO_TYPE_CMC);
+	ia64_log_init(SAL_INFO_TYPE_CPE);
+
+	mca_init = 1;
+	printk(KERN_INFO "MCA related initialization done\n");
+}
+
+/*
+ * ia64_mca_late_init
+ *
+ *	Opportunity to setup things that require initialization later
+ *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
+ *	platform doesn't support an interrupt driven mechanism.
+ *
+ *  Inputs  :   None
+ *  Outputs :   Status
+ */
+static int __init
+ia64_mca_late_init(void)
+{
+	if (!mca_init)
+		return 0;
+
+	/* Setup the CMCI/P vector and handler */
+	init_timer(&cmc_poll_timer);
+	cmc_poll_timer.function = ia64_mca_cmc_poll;
+
+	/* Unmask/enable the vector */
+	cmc_polling_enabled = 0;
+	schedule_work(&cmc_enable_work);
+
+	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
+
+#ifdef CONFIG_ACPI
+	/* Setup the CPEI/P vector and handler */
+	init_timer(&cpe_poll_timer);
+	cpe_poll_timer.function = ia64_mca_cpe_poll;
+
+	{
+		irq_desc_t *desc;
+		unsigned int irq;
+
+		if (cpe_vector >= 0) {
+			/* If platform supports CPEI, enable the irq. */
+			cpe_poll_enabled = 0;
+			for (irq = 0; irq < NR_IRQS; ++irq)
+				if (irq_to_vector(irq) == cpe_vector) {
+					desc = irq_descp(irq);
+					desc->status |= IRQ_PER_CPU;
+					setup_irq(irq, &mca_cpe_irqaction);
+				}
+			ia64_mca_register_cpev(cpe_vector);
+			IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
+		} else {
+			/* If platform doesn't support CPEI, get the timer going. */
+			if (cpe_poll_enabled) {
+				ia64_mca_cpe_poll(0UL);
+				IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
+			}
+		}
+	}
+#endif
+
+	return 0;
+}
+
+device_initcall(ia64_mca_late_init);