| /* |
| * Code for working with individual keys, and sorted sets of keys with in a |
| * btree node |
| * |
| * Copyright 2012 Google, Inc. |
| */ |
| |
| #include "bcache.h" |
| #include "btree.h" |
| #include "debug.h" |
| |
| #include <linux/random.h> |
| #include <linux/prefetch.h> |
| |
| /* Keylists */ |
| |
| void bch_keylist_copy(struct keylist *dest, struct keylist *src) |
| { |
| *dest = *src; |
| |
| if (src->list == src->d) { |
| size_t n = (uint64_t *) src->top - src->d; |
| dest->top = (struct bkey *) &dest->d[n]; |
| dest->list = dest->d; |
| } |
| } |
| |
| int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c) |
| { |
| unsigned oldsize = (uint64_t *) l->top - l->list; |
| unsigned newsize = oldsize + 2 + nptrs; |
| uint64_t *new; |
| |
| /* The journalling code doesn't handle the case where the keys to insert |
| * is bigger than an empty write: If we just return -ENOMEM here, |
| * bio_insert() and bio_invalidate() will insert the keys created so far |
| * and finish the rest when the keylist is empty. |
| */ |
| if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) |
| return -ENOMEM; |
| |
| newsize = roundup_pow_of_two(newsize); |
| |
| if (newsize <= KEYLIST_INLINE || |
| roundup_pow_of_two(oldsize) == newsize) |
| return 0; |
| |
| new = krealloc(l->list == l->d ? NULL : l->list, |
| sizeof(uint64_t) * newsize, GFP_NOIO); |
| |
| if (!new) |
| return -ENOMEM; |
| |
| if (l->list == l->d) |
| memcpy(new, l->list, sizeof(uint64_t) * KEYLIST_INLINE); |
| |
| l->list = new; |
| l->top = (struct bkey *) (&l->list[oldsize]); |
| |
| return 0; |
| } |
| |
| struct bkey *bch_keylist_pop(struct keylist *l) |
| { |
| struct bkey *k = l->bottom; |
| |
| if (k == l->top) |
| return NULL; |
| |
| while (bkey_next(k) != l->top) |
| k = bkey_next(k); |
| |
| return l->top = k; |
| } |
| |
| /* Pointer validation */ |
| |
| bool __bch_ptr_invalid(struct cache_set *c, int level, const struct bkey *k) |
| { |
| unsigned i; |
| |
| if (level && (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))) |
| goto bad; |
| |
| if (!level && KEY_SIZE(k) > KEY_OFFSET(k)) |
| goto bad; |
| |
| if (!KEY_SIZE(k)) |
| return true; |
| |
| for (i = 0; i < KEY_PTRS(k); i++) |
| if (ptr_available(c, k, i)) { |
| struct cache *ca = PTR_CACHE(c, k, i); |
| size_t bucket = PTR_BUCKET_NR(c, k, i); |
| size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); |
| |
| if (KEY_SIZE(k) + r > c->sb.bucket_size || |
| bucket < ca->sb.first_bucket || |
| bucket >= ca->sb.nbuckets) |
| goto bad; |
| } |
| |
| return false; |
| bad: |
| cache_bug(c, "spotted bad key %s: %s", pkey(k), bch_ptr_status(c, k)); |
| return true; |
| } |
| |
| bool bch_ptr_bad(struct btree *b, const struct bkey *k) |
| { |
| struct bucket *g; |
| unsigned i, stale; |
| |
| if (!bkey_cmp(k, &ZERO_KEY) || |
| !KEY_PTRS(k) || |
| bch_ptr_invalid(b, k)) |
| return true; |
| |
| if (KEY_PTRS(k) && PTR_DEV(k, 0) == PTR_CHECK_DEV) |
| return true; |
| |
| for (i = 0; i < KEY_PTRS(k); i++) |
| if (ptr_available(b->c, k, i)) { |
| g = PTR_BUCKET(b->c, k, i); |
| stale = ptr_stale(b->c, k, i); |
| |
| btree_bug_on(stale > 96, b, |
| "key too stale: %i, need_gc %u", |
| stale, b->c->need_gc); |
| |
| btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k), |
| b, "stale dirty pointer"); |
| |
| if (stale) |
| return true; |
| |
| #ifdef CONFIG_BCACHE_EDEBUG |
| if (!mutex_trylock(&b->c->bucket_lock)) |
| continue; |
| |
| if (b->level) { |
| if (KEY_DIRTY(k) || |
| g->prio != BTREE_PRIO || |
| (b->c->gc_mark_valid && |
| GC_MARK(g) != GC_MARK_METADATA)) |
| goto bug; |
| |
| } else { |
| if (g->prio == BTREE_PRIO) |
| goto bug; |
| |
| if (KEY_DIRTY(k) && |
| b->c->gc_mark_valid && |
| GC_MARK(g) != GC_MARK_DIRTY) |
| goto bug; |
| } |
| mutex_unlock(&b->c->bucket_lock); |
| #endif |
| } |
| |
| return false; |
| #ifdef CONFIG_BCACHE_EDEBUG |
| bug: |
| mutex_unlock(&b->c->bucket_lock); |
| btree_bug(b, |
| "inconsistent pointer %s: bucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i", |
| pkey(k), PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin), |
| g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen); |
| return true; |
| #endif |
| } |
| |
| /* Key/pointer manipulation */ |
| |
| void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, |
| unsigned i) |
| { |
| BUG_ON(i > KEY_PTRS(src)); |
| |
| /* Only copy the header, key, and one pointer. */ |
| memcpy(dest, src, 2 * sizeof(uint64_t)); |
| dest->ptr[0] = src->ptr[i]; |
| SET_KEY_PTRS(dest, 1); |
| /* We didn't copy the checksum so clear that bit. */ |
| SET_KEY_CSUM(dest, 0); |
| } |
| |
| bool __bch_cut_front(const struct bkey *where, struct bkey *k) |
| { |
| unsigned i, len = 0; |
| |
| if (bkey_cmp(where, &START_KEY(k)) <= 0) |
| return false; |
| |
| if (bkey_cmp(where, k) < 0) |
| len = KEY_OFFSET(k) - KEY_OFFSET(where); |
| else |
| bkey_copy_key(k, where); |
| |
| for (i = 0; i < KEY_PTRS(k); i++) |
| SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); |
| |
| BUG_ON(len > KEY_SIZE(k)); |
| SET_KEY_SIZE(k, len); |
| return true; |
| } |
| |
| bool __bch_cut_back(const struct bkey *where, struct bkey *k) |
| { |
| unsigned len = 0; |
| |
| if (bkey_cmp(where, k) >= 0) |
| return false; |
| |
| BUG_ON(KEY_INODE(where) != KEY_INODE(k)); |
| |
| if (bkey_cmp(where, &START_KEY(k)) > 0) |
| len = KEY_OFFSET(where) - KEY_START(k); |
| |
| bkey_copy_key(k, where); |
| |
| BUG_ON(len > KEY_SIZE(k)); |
| SET_KEY_SIZE(k, len); |
| return true; |
| } |
| |
| static uint64_t merge_chksums(struct bkey *l, struct bkey *r) |
| { |
| return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) & |
| ~((uint64_t)1 << 63); |
| } |
| |
| /* Tries to merge l and r: l should be lower than r |
| * Returns true if we were able to merge. If we did merge, l will be the merged |
| * key, r will be untouched. |
| */ |
| bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r) |
| { |
| unsigned i; |
| |
| if (key_merging_disabled(b->c)) |
| return false; |
| |
| if (KEY_PTRS(l) != KEY_PTRS(r) || |
| KEY_DIRTY(l) != KEY_DIRTY(r) || |
| bkey_cmp(l, &START_KEY(r))) |
| return false; |
| |
| for (i = 0; i < KEY_PTRS(l); i++) |
| if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] || |
| PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i)) |
| return false; |
| |
| /* Keys with no pointers aren't restricted to one bucket and could |
| * overflow KEY_SIZE |
| */ |
| if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) { |
| SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l)); |
| SET_KEY_SIZE(l, USHRT_MAX); |
| |
| bch_cut_front(l, r); |
| return false; |
| } |
| |
| if (KEY_CSUM(l)) { |
| if (KEY_CSUM(r)) |
| l->ptr[KEY_PTRS(l)] = merge_chksums(l, r); |
| else |
| SET_KEY_CSUM(l, 0); |
| } |
| |
| SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r)); |
| SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r)); |
| |
| return true; |
| } |
| |
| /* Binary tree stuff for auxiliary search trees */ |
| |
| static unsigned inorder_next(unsigned j, unsigned size) |
| { |
| if (j * 2 + 1 < size) { |
| j = j * 2 + 1; |
| |
| while (j * 2 < size) |
| j *= 2; |
| } else |
| j >>= ffz(j) + 1; |
| |
| return j; |
| } |
| |
| static unsigned inorder_prev(unsigned j, unsigned size) |
| { |
| if (j * 2 < size) { |
| j = j * 2; |
| |
| while (j * 2 + 1 < size) |
| j = j * 2 + 1; |
| } else |
| j >>= ffs(j); |
| |
| return j; |
| } |
| |
| /* I have no idea why this code works... and I'm the one who wrote it |
| * |
| * However, I do know what it does: |
| * Given a binary tree constructed in an array (i.e. how you normally implement |
| * a heap), it converts a node in the tree - referenced by array index - to the |
| * index it would have if you did an inorder traversal. |
| * |
| * Also tested for every j, size up to size somewhere around 6 million. |
| * |
| * The binary tree starts at array index 1, not 0 |
| * extra is a function of size: |
| * extra = (size - rounddown_pow_of_two(size - 1)) << 1; |
| */ |
| static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra) |
| { |
| unsigned b = fls(j); |
| unsigned shift = fls(size - 1) - b; |
| |
| j ^= 1U << (b - 1); |
| j <<= 1; |
| j |= 1; |
| j <<= shift; |
| |
| if (j > extra) |
| j -= (j - extra) >> 1; |
| |
| return j; |
| } |
| |
| static unsigned to_inorder(unsigned j, struct bset_tree *t) |
| { |
| return __to_inorder(j, t->size, t->extra); |
| } |
| |
| static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra) |
| { |
| unsigned shift; |
| |
| if (j > extra) |
| j += j - extra; |
| |
| shift = ffs(j); |
| |
| j >>= shift; |
| j |= roundup_pow_of_two(size) >> shift; |
| |
| return j; |
| } |
| |
| static unsigned inorder_to_tree(unsigned j, struct bset_tree *t) |
| { |
| return __inorder_to_tree(j, t->size, t->extra); |
| } |
| |
| #if 0 |
| void inorder_test(void) |
| { |
| unsigned long done = 0; |
| ktime_t start = ktime_get(); |
| |
| for (unsigned size = 2; |
| size < 65536000; |
| size++) { |
| unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1; |
| unsigned i = 1, j = rounddown_pow_of_two(size - 1); |
| |
| if (!(size % 4096)) |
| printk(KERN_NOTICE "loop %u, %llu per us\n", size, |
| done / ktime_us_delta(ktime_get(), start)); |
| |
| while (1) { |
| if (__inorder_to_tree(i, size, extra) != j) |
| panic("size %10u j %10u i %10u", size, j, i); |
| |
| if (__to_inorder(j, size, extra) != i) |
| panic("size %10u j %10u i %10u", size, j, i); |
| |
| if (j == rounddown_pow_of_two(size) - 1) |
| break; |
| |
| BUG_ON(inorder_prev(inorder_next(j, size), size) != j); |
| |
| j = inorder_next(j, size); |
| i++; |
| } |
| |
| done += size - 1; |
| } |
| } |
| #endif |
| |
| /* |
| * Cacheline/offset <-> bkey pointer arithmatic: |
| * |
| * t->tree is a binary search tree in an array; each node corresponds to a key |
| * in one cacheline in t->set (BSET_CACHELINE bytes). |
| * |
| * This means we don't have to store the full index of the key that a node in |
| * the binary tree points to; to_inorder() gives us the cacheline, and then |
| * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. |
| * |
| * cacheline_to_bkey() and friends abstract out all the pointer arithmatic to |
| * make this work. |
| * |
| * To construct the bfloat for an arbitrary key we need to know what the key |
| * immediately preceding it is: we have to check if the two keys differ in the |
| * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size |
| * of the previous key so we can walk backwards to it from t->tree[j]'s key. |
| */ |
| |
| static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline, |
| unsigned offset) |
| { |
| return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; |
| } |
| |
| static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k) |
| { |
| return ((void *) k - (void *) t->data) / BSET_CACHELINE; |
| } |
| |
| static unsigned bkey_to_cacheline_offset(struct bkey *k) |
| { |
| return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t); |
| } |
| |
| static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j) |
| { |
| return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); |
| } |
| |
| static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j) |
| { |
| return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); |
| } |
| |
| /* |
| * For the write set - the one we're currently inserting keys into - we don't |
| * maintain a full search tree, we just keep a simple lookup table in t->prev. |
| */ |
| static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline) |
| { |
| return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); |
| } |
| |
| static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) |
| { |
| #ifdef CONFIG_X86_64 |
| asm("shrd %[shift],%[high],%[low]" |
| : [low] "+Rm" (low) |
| : [high] "R" (high), |
| [shift] "ci" (shift) |
| : "cc"); |
| #else |
| low >>= shift; |
| low |= (high << 1) << (63U - shift); |
| #endif |
| return low; |
| } |
| |
| static inline unsigned bfloat_mantissa(const struct bkey *k, |
| struct bkey_float *f) |
| { |
| const uint64_t *p = &k->low - (f->exponent >> 6); |
| return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; |
| } |
| |
| static void make_bfloat(struct bset_tree *t, unsigned j) |
| { |
| struct bkey_float *f = &t->tree[j]; |
| struct bkey *m = tree_to_bkey(t, j); |
| struct bkey *p = tree_to_prev_bkey(t, j); |
| |
| struct bkey *l = is_power_of_2(j) |
| ? t->data->start |
| : tree_to_prev_bkey(t, j >> ffs(j)); |
| |
| struct bkey *r = is_power_of_2(j + 1) |
| ? node(t->data, t->data->keys - bkey_u64s(&t->end)) |
| : tree_to_bkey(t, j >> (ffz(j) + 1)); |
| |
| BUG_ON(m < l || m > r); |
| BUG_ON(bkey_next(p) != m); |
| |
| if (KEY_INODE(l) != KEY_INODE(r)) |
| f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; |
| else |
| f->exponent = fls64(r->low ^ l->low); |
| |
| f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); |
| |
| /* |
| * Setting f->exponent = 127 flags this node as failed, and causes the |
| * lookup code to fall back to comparing against the original key. |
| */ |
| |
| if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) |
| f->mantissa = bfloat_mantissa(m, f) - 1; |
| else |
| f->exponent = 127; |
| } |
| |
| static void bset_alloc_tree(struct btree *b, struct bset_tree *t) |
| { |
| if (t != b->sets) { |
| unsigned j = roundup(t[-1].size, |
| 64 / sizeof(struct bkey_float)); |
| |
| t->tree = t[-1].tree + j; |
| t->prev = t[-1].prev + j; |
| } |
| |
| while (t < b->sets + MAX_BSETS) |
| t++->size = 0; |
| } |
| |
| static void bset_build_unwritten_tree(struct btree *b) |
| { |
| struct bset_tree *t = b->sets + b->nsets; |
| |
| bset_alloc_tree(b, t); |
| |
| if (t->tree != b->sets->tree + bset_tree_space(b)) { |
| t->prev[0] = bkey_to_cacheline_offset(t->data->start); |
| t->size = 1; |
| } |
| } |
| |
| static void bset_build_written_tree(struct btree *b) |
| { |
| struct bset_tree *t = b->sets + b->nsets; |
| struct bkey *k = t->data->start; |
| unsigned j, cacheline = 1; |
| |
| bset_alloc_tree(b, t); |
| |
| t->size = min_t(unsigned, |
| bkey_to_cacheline(t, end(t->data)), |
| b->sets->tree + bset_tree_space(b) - t->tree); |
| |
| if (t->size < 2) { |
| t->size = 0; |
| return; |
| } |
| |
| t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; |
| |
| /* First we figure out where the first key in each cacheline is */ |
| for (j = inorder_next(0, t->size); |
| j; |
| j = inorder_next(j, t->size)) { |
| while (bkey_to_cacheline(t, k) != cacheline) |
| k = bkey_next(k); |
| |
| t->prev[j] = bkey_u64s(k); |
| k = bkey_next(k); |
| cacheline++; |
| t->tree[j].m = bkey_to_cacheline_offset(k); |
| } |
| |
| while (bkey_next(k) != end(t->data)) |
| k = bkey_next(k); |
| |
| t->end = *k; |
| |
| /* Then we build the tree */ |
| for (j = inorder_next(0, t->size); |
| j; |
| j = inorder_next(j, t->size)) |
| make_bfloat(t, j); |
| } |
| |
| void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k) |
| { |
| struct bset_tree *t; |
| unsigned inorder, j = 1; |
| |
| for (t = b->sets; t <= &b->sets[b->nsets]; t++) |
| if (k < end(t->data)) |
| goto found_set; |
| |
| BUG(); |
| found_set: |
| if (!t->size || !bset_written(b, t)) |
| return; |
| |
| inorder = bkey_to_cacheline(t, k); |
| |
| if (k == t->data->start) |
| goto fix_left; |
| |
| if (bkey_next(k) == end(t->data)) { |
| t->end = *k; |
| goto fix_right; |
| } |
| |
| j = inorder_to_tree(inorder, t); |
| |
| if (j && |
| j < t->size && |
| k == tree_to_bkey(t, j)) |
| fix_left: do { |
| make_bfloat(t, j); |
| j = j * 2; |
| } while (j < t->size); |
| |
| j = inorder_to_tree(inorder + 1, t); |
| |
| if (j && |
| j < t->size && |
| k == tree_to_prev_bkey(t, j)) |
| fix_right: do { |
| make_bfloat(t, j); |
| j = j * 2 + 1; |
| } while (j < t->size); |
| } |
| |
| void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k) |
| { |
| struct bset_tree *t = &b->sets[b->nsets]; |
| unsigned shift = bkey_u64s(k); |
| unsigned j = bkey_to_cacheline(t, k); |
| |
| /* We're getting called from btree_split() or btree_gc, just bail out */ |
| if (!t->size) |
| return; |
| |
| /* k is the key we just inserted; we need to find the entry in the |
| * lookup table for the first key that is strictly greater than k: |
| * it's either k's cacheline or the next one |
| */ |
| if (j < t->size && |
| table_to_bkey(t, j) <= k) |
| j++; |
| |
| /* Adjust all the lookup table entries, and find a new key for any that |
| * have gotten too big |
| */ |
| for (; j < t->size; j++) { |
| t->prev[j] += shift; |
| |
| if (t->prev[j] > 7) { |
| k = table_to_bkey(t, j - 1); |
| |
| while (k < cacheline_to_bkey(t, j, 0)) |
| k = bkey_next(k); |
| |
| t->prev[j] = bkey_to_cacheline_offset(k); |
| } |
| } |
| |
| if (t->size == b->sets->tree + bset_tree_space(b) - t->tree) |
| return; |
| |
| /* Possibly add a new entry to the end of the lookup table */ |
| |
| for (k = table_to_bkey(t, t->size - 1); |
| k != end(t->data); |
| k = bkey_next(k)) |
| if (t->size == bkey_to_cacheline(t, k)) { |
| t->prev[t->size] = bkey_to_cacheline_offset(k); |
| t->size++; |
| } |
| } |
| |
| void bch_bset_init_next(struct btree *b) |
| { |
| struct bset *i = write_block(b); |
| |
| if (i != b->sets[0].data) { |
| b->sets[++b->nsets].data = i; |
| i->seq = b->sets[0].data->seq; |
| } else |
| get_random_bytes(&i->seq, sizeof(uint64_t)); |
| |
| i->magic = bset_magic(b->c); |
| i->version = 0; |
| i->keys = 0; |
| |
| bset_build_unwritten_tree(b); |
| } |
| |
| struct bset_search_iter { |
| struct bkey *l, *r; |
| }; |
| |
| static struct bset_search_iter bset_search_write_set(struct btree *b, |
| struct bset_tree *t, |
| const struct bkey *search) |
| { |
| unsigned li = 0, ri = t->size; |
| |
| BUG_ON(!b->nsets && |
| t->size < bkey_to_cacheline(t, end(t->data))); |
| |
| while (li + 1 != ri) { |
| unsigned m = (li + ri) >> 1; |
| |
| if (bkey_cmp(table_to_bkey(t, m), search) > 0) |
| ri = m; |
| else |
| li = m; |
| } |
| |
| return (struct bset_search_iter) { |
| table_to_bkey(t, li), |
| ri < t->size ? table_to_bkey(t, ri) : end(t->data) |
| }; |
| } |
| |
| static struct bset_search_iter bset_search_tree(struct btree *b, |
| struct bset_tree *t, |
| const struct bkey *search) |
| { |
| struct bkey *l, *r; |
| struct bkey_float *f; |
| unsigned inorder, j, n = 1; |
| |
| do { |
| unsigned p = n << 4; |
| p &= ((int) (p - t->size)) >> 31; |
| |
| prefetch(&t->tree[p]); |
| |
| j = n; |
| f = &t->tree[j]; |
| |
| /* |
| * n = (f->mantissa > bfloat_mantissa()) |
| * ? j * 2 |
| * : j * 2 + 1; |
| * |
| * We need to subtract 1 from f->mantissa for the sign bit trick |
| * to work - that's done in make_bfloat() |
| */ |
| if (likely(f->exponent != 127)) |
| n = j * 2 + (((unsigned) |
| (f->mantissa - |
| bfloat_mantissa(search, f))) >> 31); |
| else |
| n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) |
| ? j * 2 |
| : j * 2 + 1; |
| } while (n < t->size); |
| |
| inorder = to_inorder(j, t); |
| |
| /* |
| * n would have been the node we recursed to - the low bit tells us if |
| * we recursed left or recursed right. |
| */ |
| if (n & 1) { |
| l = cacheline_to_bkey(t, inorder, f->m); |
| |
| if (++inorder != t->size) { |
| f = &t->tree[inorder_next(j, t->size)]; |
| r = cacheline_to_bkey(t, inorder, f->m); |
| } else |
| r = end(t->data); |
| } else { |
| r = cacheline_to_bkey(t, inorder, f->m); |
| |
| if (--inorder) { |
| f = &t->tree[inorder_prev(j, t->size)]; |
| l = cacheline_to_bkey(t, inorder, f->m); |
| } else |
| l = t->data->start; |
| } |
| |
| return (struct bset_search_iter) {l, r}; |
| } |
| |
| struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t, |
| const struct bkey *search) |
| { |
| struct bset_search_iter i; |
| |
| /* |
| * First, we search for a cacheline, then lastly we do a linear search |
| * within that cacheline. |
| * |
| * To search for the cacheline, there's three different possibilities: |
| * * The set is too small to have a search tree, so we just do a linear |
| * search over the whole set. |
| * * The set is the one we're currently inserting into; keeping a full |
| * auxiliary search tree up to date would be too expensive, so we |
| * use a much simpler lookup table to do a binary search - |
| * bset_search_write_set(). |
| * * Or we use the auxiliary search tree we constructed earlier - |
| * bset_search_tree() |
| */ |
| |
| if (unlikely(!t->size)) { |
| i.l = t->data->start; |
| i.r = end(t->data); |
| } else if (bset_written(b, t)) { |
| /* |
| * Each node in the auxiliary search tree covers a certain range |
| * of bits, and keys above and below the set it covers might |
| * differ outside those bits - so we have to special case the |
| * start and end - handle that here: |
| */ |
| |
| if (unlikely(bkey_cmp(search, &t->end) >= 0)) |
| return end(t->data); |
| |
| if (unlikely(bkey_cmp(search, t->data->start) < 0)) |
| return t->data->start; |
| |
| i = bset_search_tree(b, t, search); |
| } else |
| i = bset_search_write_set(b, t, search); |
| |
| #ifdef CONFIG_BCACHE_EDEBUG |
| BUG_ON(bset_written(b, t) && |
| i.l != t->data->start && |
| bkey_cmp(tree_to_prev_bkey(t, |
| inorder_to_tree(bkey_to_cacheline(t, i.l), t)), |
| search) > 0); |
| |
| BUG_ON(i.r != end(t->data) && |
| bkey_cmp(i.r, search) <= 0); |
| #endif |
| |
| while (likely(i.l != i.r) && |
| bkey_cmp(i.l, search) <= 0) |
| i.l = bkey_next(i.l); |
| |
| return i.l; |
| } |
| |
| /* Btree iterator */ |
| |
| static inline bool btree_iter_cmp(struct btree_iter_set l, |
| struct btree_iter_set r) |
| { |
| int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k)); |
| |
| return c ? c > 0 : l.k < r.k; |
| } |
| |
| static inline bool btree_iter_end(struct btree_iter *iter) |
| { |
| return !iter->used; |
| } |
| |
| void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, |
| struct bkey *end) |
| { |
| if (k != end) |
| BUG_ON(!heap_add(iter, |
| ((struct btree_iter_set) { k, end }), |
| btree_iter_cmp)); |
| } |
| |
| struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter, |
| struct bkey *search, struct bset_tree *start) |
| { |
| struct bkey *ret = NULL; |
| iter->size = ARRAY_SIZE(iter->data); |
| iter->used = 0; |
| |
| for (; start <= &b->sets[b->nsets]; start++) { |
| ret = bch_bset_search(b, start, search); |
| bch_btree_iter_push(iter, ret, end(start->data)); |
| } |
| |
| return ret; |
| } |
| |
| struct bkey *bch_btree_iter_next(struct btree_iter *iter) |
| { |
| struct btree_iter_set unused; |
| struct bkey *ret = NULL; |
| |
| if (!btree_iter_end(iter)) { |
| ret = iter->data->k; |
| iter->data->k = bkey_next(iter->data->k); |
| |
| if (iter->data->k > iter->data->end) { |
| WARN_ONCE(1, "bset was corrupt!\n"); |
| iter->data->k = iter->data->end; |
| } |
| |
| if (iter->data->k == iter->data->end) |
| heap_pop(iter, unused, btree_iter_cmp); |
| else |
| heap_sift(iter, 0, btree_iter_cmp); |
| } |
| |
| return ret; |
| } |
| |
| struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, |
| struct btree *b, ptr_filter_fn fn) |
| { |
| struct bkey *ret; |
| |
| do { |
| ret = bch_btree_iter_next(iter); |
| } while (ret && fn(b, ret)); |
| |
| return ret; |
| } |
| |
| struct bkey *bch_next_recurse_key(struct btree *b, struct bkey *search) |
| { |
| struct btree_iter iter; |
| |
| bch_btree_iter_init(b, &iter, search); |
| return bch_btree_iter_next_filter(&iter, b, bch_ptr_bad); |
| } |
| |
| /* Mergesort */ |
| |
| static void btree_sort_fixup(struct btree_iter *iter) |
| { |
| while (iter->used > 1) { |
| struct btree_iter_set *top = iter->data, *i = top + 1; |
| struct bkey *k; |
| |
| if (iter->used > 2 && |
| btree_iter_cmp(i[0], i[1])) |
| i++; |
| |
| for (k = i->k; |
| k != i->end && bkey_cmp(top->k, &START_KEY(k)) > 0; |
| k = bkey_next(k)) |
| if (top->k > i->k) |
| __bch_cut_front(top->k, k); |
| else if (KEY_SIZE(k)) |
| bch_cut_back(&START_KEY(k), top->k); |
| |
| if (top->k < i->k || k == i->k) |
| break; |
| |
| heap_sift(iter, i - top, btree_iter_cmp); |
| } |
| } |
| |
| static void btree_mergesort(struct btree *b, struct bset *out, |
| struct btree_iter *iter, |
| bool fixup, bool remove_stale) |
| { |
| struct bkey *k, *last = NULL; |
| bool (*bad)(struct btree *, const struct bkey *) = remove_stale |
| ? bch_ptr_bad |
| : bch_ptr_invalid; |
| |
| while (!btree_iter_end(iter)) { |
| if (fixup && !b->level) |
| btree_sort_fixup(iter); |
| |
| k = bch_btree_iter_next(iter); |
| if (bad(b, k)) |
| continue; |
| |
| if (!last) { |
| last = out->start; |
| bkey_copy(last, k); |
| } else if (b->level || |
| !bch_bkey_try_merge(b, last, k)) { |
| last = bkey_next(last); |
| bkey_copy(last, k); |
| } |
| } |
| |
| out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; |
| |
| pr_debug("sorted %i keys", out->keys); |
| bch_check_key_order(b, out); |
| } |
| |
| static void __btree_sort(struct btree *b, struct btree_iter *iter, |
| unsigned start, unsigned order, bool fixup) |
| { |
| uint64_t start_time; |
| bool remove_stale = !b->written; |
| struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO, |
| order); |
| if (!out) { |
| mutex_lock(&b->c->sort_lock); |
| out = b->c->sort; |
| order = ilog2(bucket_pages(b->c)); |
| } |
| |
| start_time = local_clock(); |
| |
| btree_mergesort(b, out, iter, fixup, remove_stale); |
| b->nsets = start; |
| |
| if (!fixup && !start && b->written) |
| bch_btree_verify(b, out); |
| |
| if (!start && order == b->page_order) { |
| /* |
| * Our temporary buffer is the same size as the btree node's |
| * buffer, we can just swap buffers instead of doing a big |
| * memcpy() |
| */ |
| |
| out->magic = bset_magic(b->c); |
| out->seq = b->sets[0].data->seq; |
| out->version = b->sets[0].data->version; |
| swap(out, b->sets[0].data); |
| |
| if (b->c->sort == b->sets[0].data) |
| b->c->sort = out; |
| } else { |
| b->sets[start].data->keys = out->keys; |
| memcpy(b->sets[start].data->start, out->start, |
| (void *) end(out) - (void *) out->start); |
| } |
| |
| if (out == b->c->sort) |
| mutex_unlock(&b->c->sort_lock); |
| else |
| free_pages((unsigned long) out, order); |
| |
| if (b->written) |
| bset_build_written_tree(b); |
| |
| if (!start) { |
| spin_lock(&b->c->sort_time_lock); |
| bch_time_stats_update(&b->c->sort_time, start_time); |
| spin_unlock(&b->c->sort_time_lock); |
| } |
| } |
| |
| void bch_btree_sort_partial(struct btree *b, unsigned start) |
| { |
| size_t oldsize = 0, order = b->page_order, keys = 0; |
| struct btree_iter iter; |
| __bch_btree_iter_init(b, &iter, NULL, &b->sets[start]); |
| |
| BUG_ON(b->sets[b->nsets].data == write_block(b) && |
| (b->sets[b->nsets].size || b->nsets)); |
| |
| if (b->written) |
| oldsize = bch_count_data(b); |
| |
| if (start) { |
| unsigned i; |
| |
| for (i = start; i <= b->nsets; i++) |
| keys += b->sets[i].data->keys; |
| |
| order = roundup_pow_of_two(__set_bytes(b->sets->data, |
| keys)) / PAGE_SIZE; |
| if (order) |
| order = ilog2(order); |
| } |
| |
| __btree_sort(b, &iter, start, order, false); |
| |
| EBUG_ON(b->written && bch_count_data(b) != oldsize); |
| } |
| |
| void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter) |
| { |
| BUG_ON(!b->written); |
| __btree_sort(b, iter, 0, b->page_order, true); |
| } |
| |
| void bch_btree_sort_into(struct btree *b, struct btree *new) |
| { |
| uint64_t start_time = local_clock(); |
| |
| struct btree_iter iter; |
| bch_btree_iter_init(b, &iter, NULL); |
| |
| btree_mergesort(b, new->sets->data, &iter, false, true); |
| |
| spin_lock(&b->c->sort_time_lock); |
| bch_time_stats_update(&b->c->sort_time, start_time); |
| spin_unlock(&b->c->sort_time_lock); |
| |
| bkey_copy_key(&new->key, &b->key); |
| new->sets->size = 0; |
| } |
| |
| void bch_btree_sort_lazy(struct btree *b) |
| { |
| if (b->nsets) { |
| unsigned i, j, keys = 0, total; |
| |
| for (i = 0; i <= b->nsets; i++) |
| keys += b->sets[i].data->keys; |
| |
| total = keys; |
| |
| for (j = 0; j < b->nsets; j++) { |
| if (keys * 2 < total || |
| keys < 1000) { |
| bch_btree_sort_partial(b, j); |
| return; |
| } |
| |
| keys -= b->sets[j].data->keys; |
| } |
| |
| /* Must sort if b->nsets == 3 or we'll overflow */ |
| if (b->nsets >= (MAX_BSETS - 1) - b->level) { |
| bch_btree_sort(b); |
| return; |
| } |
| } |
| |
| bset_build_written_tree(b); |
| } |
| |
| /* Sysfs stuff */ |
| |
| struct bset_stats { |
| size_t nodes; |
| size_t sets_written, sets_unwritten; |
| size_t bytes_written, bytes_unwritten; |
| size_t floats, failed; |
| }; |
| |
| static int bch_btree_bset_stats(struct btree *b, struct btree_op *op, |
| struct bset_stats *stats) |
| { |
| struct bkey *k; |
| unsigned i; |
| |
| stats->nodes++; |
| |
| for (i = 0; i <= b->nsets; i++) { |
| struct bset_tree *t = &b->sets[i]; |
| size_t bytes = t->data->keys * sizeof(uint64_t); |
| size_t j; |
| |
| if (bset_written(b, t)) { |
| stats->sets_written++; |
| stats->bytes_written += bytes; |
| |
| stats->floats += t->size - 1; |
| |
| for (j = 1; j < t->size; j++) |
| if (t->tree[j].exponent == 127) |
| stats->failed++; |
| } else { |
| stats->sets_unwritten++; |
| stats->bytes_unwritten += bytes; |
| } |
| } |
| |
| if (b->level) { |
| struct btree_iter iter; |
| |
| for_each_key_filter(b, k, &iter, bch_ptr_bad) { |
| int ret = btree(bset_stats, k, b, op, stats); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int bch_bset_print_stats(struct cache_set *c, char *buf) |
| { |
| struct btree_op op; |
| struct bset_stats t; |
| int ret; |
| |
| bch_btree_op_init_stack(&op); |
| memset(&t, 0, sizeof(struct bset_stats)); |
| |
| ret = btree_root(bset_stats, c, &op, &t); |
| if (ret) |
| return ret; |
| |
| return snprintf(buf, PAGE_SIZE, |
| "btree nodes: %zu\n" |
| "written sets: %zu\n" |
| "unwritten sets: %zu\n" |
| "written key bytes: %zu\n" |
| "unwritten key bytes: %zu\n" |
| "floats: %zu\n" |
| "failed: %zu\n", |
| t.nodes, |
| t.sets_written, t.sets_unwritten, |
| t.bytes_written, t.bytes_unwritten, |
| t.floats, t.failed); |
| } |