| /* |
| * Driver O/S-independent utility routines |
| * |
| * Copyright (C) 1999-2019, Broadcom. |
| * |
| * Unless you and Broadcom execute a separate written software license |
| * agreement governing use of this software, this software is licensed to you |
| * under the terms of the GNU General Public License version 2 (the "GPL"), |
| * available at http://www.broadcom.com/licenses/GPLv2.php, with the |
| * following added to such license: |
| * |
| * As a special exception, the copyright holders of this software give you |
| * permission to link this software with independent modules, and to copy and |
| * distribute the resulting executable under terms of your choice, provided that |
| * you also meet, for each linked independent module, the terms and conditions of |
| * the license of that module. An independent module is a module which is not |
| * derived from this software. The special exception does not apply to any |
| * modifications of the software. |
| * |
| * Notwithstanding the above, under no circumstances may you combine this |
| * software in any way with any other Broadcom software provided under a license |
| * other than the GPL, without Broadcom's express prior written consent. |
| * |
| * |
| * <<Broadcom-WL-IPTag/Open:>> |
| * |
| * $Id: bcmutils.c 813798 2019-04-08 10:20:21Z $ |
| */ |
| |
| #include <bcm_cfg.h> |
| #include <typedefs.h> |
| #include <bcmdefs.h> |
| #include <stdarg.h> |
| #ifdef BCMDRIVER |
| #include <osl.h> |
| #include <bcmutils.h> |
| |
| #else /* !BCMDRIVER */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <bcm_math.h> |
| #include <bcmutils.h> |
| |
| #if defined(BCMEXTSUP) |
| #include <bcm_osl.h> |
| #endif // endif |
| |
| #ifndef ASSERT |
| #define ASSERT(exp) |
| #endif // endif |
| |
| #endif /* !BCMDRIVER */ |
| |
| #ifdef WL_UNITTEST |
| #ifdef ASSERT |
| #undef ASSERT |
| #endif /* ASSERT */ |
| #define ASSERT(exp) |
| #endif /* WL_UNITTEST */ |
| |
| #include <bcmstdlib_s.h> |
| #include <bcmendian.h> |
| #include <bcmdevs.h> |
| #include <ethernet.h> |
| #include <vlan.h> |
| #include <bcmip.h> |
| #include <802.1d.h> |
| #include <802.11.h> |
| #include <bcmip.h> |
| #include <bcmipv6.h> |
| #include <bcmtcp.h> |
| |
| #ifdef BCMDRIVER |
| |
| /* return total length of buffer chain */ |
| uint BCMFASTPATH |
| pkttotlen(osl_t *osh, void *p) |
| { |
| uint total; |
| int len; |
| |
| total = 0; |
| for (; p; p = PKTNEXT(osh, p)) { |
| len = PKTLEN(osh, p); |
| total += (uint)len; |
| #ifdef BCMLFRAG |
| if (BCMLFRAG_ENAB()) { |
| if (PKTISFRAG(osh, p)) { |
| total += PKTFRAGTOTLEN(osh, p); |
| } |
| } |
| #endif // endif |
| } |
| |
| return (total); |
| } |
| |
| /* return the last buffer of chained pkt */ |
| void * |
| pktlast(osl_t *osh, void *p) |
| { |
| for (; PKTNEXT(osh, p); p = PKTNEXT(osh, p)) |
| ; |
| |
| return (p); |
| } |
| |
| /* count segments of a chained packet */ |
| uint BCMFASTPATH |
| pktsegcnt(osl_t *osh, void *p) |
| { |
| uint cnt; |
| |
| for (cnt = 0; p; p = PKTNEXT(osh, p)) { |
| cnt++; |
| #ifdef BCMLFRAG |
| if (BCMLFRAG_ENAB()) { |
| if (PKTISFRAG(osh, p)) { |
| cnt += PKTFRAGTOTNUM(osh, p); |
| } |
| } |
| #endif // endif |
| } |
| |
| return cnt; |
| } |
| |
| /* copy a pkt buffer chain into a buffer */ |
| uint |
| pktcopy(osl_t *osh, void *p, uint offset, int len, uchar *buf) |
| { |
| uint n, ret = 0; |
| |
| if (len < 0) |
| len = 4096; /* "infinite" */ |
| |
| /* skip 'offset' bytes */ |
| for (; p && offset; p = PKTNEXT(osh, p)) { |
| if (offset < (uint)PKTLEN(osh, p)) |
| break; |
| offset -= (uint)PKTLEN(osh, p); |
| } |
| |
| if (!p) |
| return 0; |
| |
| /* copy the data */ |
| for (; p && len; p = PKTNEXT(osh, p)) { |
| n = MIN((uint)PKTLEN(osh, p) - offset, (uint)len); |
| bcopy(PKTDATA(osh, p) + offset, buf, n); |
| buf += n; |
| len -= n; |
| ret += n; |
| offset = 0; |
| } |
| |
| return ret; |
| } |
| |
| /* copy a buffer into a pkt buffer chain */ |
| uint |
| pktfrombuf(osl_t *osh, void *p, uint offset, int len, uchar *buf) |
| { |
| uint n, ret = 0; |
| |
| /* skip 'offset' bytes */ |
| for (; p && offset; p = PKTNEXT(osh, p)) { |
| if (offset < (uint)PKTLEN(osh, p)) |
| break; |
| offset -= (uint)PKTLEN(osh, p); |
| } |
| |
| if (!p) |
| return 0; |
| |
| /* copy the data */ |
| for (; p && len; p = PKTNEXT(osh, p)) { |
| n = MIN((uint)PKTLEN(osh, p) - offset, (uint)len); |
| bcopy(buf, PKTDATA(osh, p) + offset, n); |
| buf += n; |
| len -= n; |
| ret += n; |
| offset = 0; |
| } |
| |
| return ret; |
| } |
| |
| uint8 * BCMFASTPATH |
| pktdataoffset(osl_t *osh, void *p, uint offset) |
| { |
| uint total = pkttotlen(osh, p); |
| uint pkt_off = 0, len = 0; |
| uint8 *pdata = (uint8 *) PKTDATA(osh, p); |
| |
| if (offset > total) |
| return NULL; |
| |
| for (; p; p = PKTNEXT(osh, p)) { |
| pdata = (uint8 *) PKTDATA(osh, p); |
| pkt_off = offset - len; |
| len += (uint)PKTLEN(osh, p); |
| if (len > offset) |
| break; |
| } |
| return (uint8*) (pdata+pkt_off); |
| } |
| |
| /* given a offset in pdata, find the pkt seg hdr */ |
| void * |
| pktoffset(osl_t *osh, void *p, uint offset) |
| { |
| uint total = pkttotlen(osh, p); |
| uint len = 0; |
| |
| if (offset > total) |
| return NULL; |
| |
| for (; p; p = PKTNEXT(osh, p)) { |
| len += (uint)PKTLEN(osh, p); |
| if (len > offset) |
| break; |
| } |
| return p; |
| } |
| |
| void |
| bcm_mdelay(uint ms) |
| { |
| uint i; |
| |
| for (i = 0; i < ms; i++) { |
| OSL_DELAY(1000); |
| } |
| } |
| |
| #if defined(DHD_DEBUG) |
| /* pretty hex print a pkt buffer chain */ |
| void |
| prpkt(const char *msg, osl_t *osh, void *p0) |
| { |
| void *p; |
| |
| if (msg && (msg[0] != '\0')) |
| printf("%s:\n", msg); |
| |
| for (p = p0; p; p = PKTNEXT(osh, p)) |
| prhex(NULL, PKTDATA(osh, p), (uint)PKTLEN(osh, p)); |
| } |
| #endif // endif |
| |
| /* Takes an Ethernet frame and sets out-of-bound PKTPRIO. |
| * Also updates the inplace vlan tag if requested. |
| * For debugging, it returns an indication of what it did. |
| */ |
| uint BCMFASTPATH |
| pktsetprio(void *pkt, bool update_vtag) |
| { |
| struct ether_header *eh; |
| struct ethervlan_header *evh; |
| uint8 *pktdata; |
| uint priority = 0; |
| uint rc = 0; |
| |
| pktdata = (uint8 *)PKTDATA(OSH_NULL, pkt); |
| ASSERT(ISALIGNED((uintptr)pktdata, sizeof(uint16))); |
| |
| eh = (struct ether_header *) pktdata; |
| |
| if (eh->ether_type == hton16(ETHER_TYPE_8021Q)) { |
| uint16 vlan_tag; |
| uint vlan_prio, dscp_prio = 0; |
| |
| evh = (struct ethervlan_header *)eh; |
| |
| vlan_tag = ntoh16(evh->vlan_tag); |
| vlan_prio = (vlan_tag >> VLAN_PRI_SHIFT) & VLAN_PRI_MASK; |
| |
| if ((evh->ether_type == hton16(ETHER_TYPE_IP)) || |
| (evh->ether_type == hton16(ETHER_TYPE_IPV6))) { |
| uint8 *ip_body = pktdata + sizeof(struct ethervlan_header); |
| uint8 tos_tc = (uint8)IP_TOS46(ip_body); |
| dscp_prio = tos_tc >> IPV4_TOS_PREC_SHIFT; |
| } |
| |
| /* DSCP priority gets precedence over 802.1P (vlan tag) */ |
| if (dscp_prio != 0) { |
| priority = dscp_prio; |
| rc |= PKTPRIO_VDSCP; |
| } else { |
| priority = vlan_prio; |
| rc |= PKTPRIO_VLAN; |
| } |
| /* |
| * If the DSCP priority is not the same as the VLAN priority, |
| * then overwrite the priority field in the vlan tag, with the |
| * DSCP priority value. This is required for Linux APs because |
| * the VLAN driver on Linux, overwrites the skb->priority field |
| * with the priority value in the vlan tag |
| */ |
| if (update_vtag && (priority != vlan_prio)) { |
| vlan_tag &= ~(VLAN_PRI_MASK << VLAN_PRI_SHIFT); |
| vlan_tag |= (uint16)priority << VLAN_PRI_SHIFT; |
| evh->vlan_tag = hton16(vlan_tag); |
| rc |= PKTPRIO_UPD; |
| } |
| #if defined(EAPOL_PKT_PRIO) || defined(DHD_LOSSLESS_ROAMING) |
| } else if (eh->ether_type == hton16(ETHER_TYPE_802_1X)) { |
| priority = PRIO_8021D_NC; |
| rc = PKTPRIO_DSCP; |
| #endif /* EAPOL_PKT_PRIO || DHD_LOSSLESS_ROAMING */ |
| } else if ((eh->ether_type == hton16(ETHER_TYPE_IP)) || |
| (eh->ether_type == hton16(ETHER_TYPE_IPV6))) { |
| uint8 *ip_body = pktdata + sizeof(struct ether_header); |
| uint8 tos_tc = (uint8)IP_TOS46(ip_body); |
| uint8 dscp = tos_tc >> IPV4_TOS_DSCP_SHIFT; |
| switch (dscp) { |
| case DSCP_EF: |
| case DSCP_VA: |
| priority = PRIO_8021D_VO; |
| break; |
| case DSCP_AF31: |
| case DSCP_AF32: |
| case DSCP_AF33: |
| case DSCP_CS3: |
| priority = PRIO_8021D_CL; |
| break; |
| case DSCP_AF21: |
| case DSCP_AF22: |
| case DSCP_AF23: |
| priority = PRIO_8021D_EE; |
| break; |
| case DSCP_AF11: |
| case DSCP_AF12: |
| case DSCP_AF13: |
| case DSCP_CS2: |
| priority = PRIO_8021D_BE; |
| break; |
| case DSCP_CS6: |
| case DSCP_CS7: |
| priority = PRIO_8021D_NC; |
| break; |
| default: |
| priority = tos_tc >> IPV4_TOS_PREC_SHIFT; |
| break; |
| } |
| |
| rc |= PKTPRIO_DSCP; |
| } |
| |
| ASSERT(priority <= MAXPRIO); |
| PKTSETPRIO(pkt, (int)priority); |
| return (rc | priority); |
| } |
| |
| /* lookup user priority for specified DSCP */ |
| static uint8 |
| dscp2up(uint8 *up_table, uint8 dscp) |
| { |
| uint8 user_priority = 255; |
| |
| /* lookup up from table if parameters valid */ |
| if (up_table != NULL && dscp < UP_TABLE_MAX) { |
| user_priority = up_table[dscp]; |
| } |
| |
| /* 255 is unused value so return up from dscp */ |
| if (user_priority == 255) { |
| user_priority = dscp >> (IPV4_TOS_PREC_SHIFT - IPV4_TOS_DSCP_SHIFT); |
| } |
| |
| return user_priority; |
| } |
| |
| /* set user priority by QoS Map Set table (UP table), table size is UP_TABLE_MAX */ |
| uint BCMFASTPATH |
| pktsetprio_qms(void *pkt, uint8* up_table, bool update_vtag) |
| { |
| if (up_table) { |
| uint8 *pktdata; |
| uint pktlen; |
| uint8 dscp; |
| uint user_priority = 0; |
| uint rc = 0; |
| |
| pktdata = (uint8 *)PKTDATA(OSH_NULL, pkt); |
| pktlen = (uint)PKTLEN(OSH_NULL, pkt); |
| |
| if (pktgetdscp(pktdata, pktlen, &dscp)) { |
| rc = PKTPRIO_DSCP; |
| user_priority = dscp2up(up_table, dscp); |
| PKTSETPRIO(pkt, (int)user_priority); |
| } |
| |
| return (rc | user_priority); |
| } else { |
| return pktsetprio(pkt, update_vtag); |
| } |
| } |
| |
| /* Returns TRUE and DSCP if IP header found, FALSE otherwise. |
| */ |
| bool BCMFASTPATH |
| pktgetdscp(uint8 *pktdata, uint pktlen, uint8 *dscp) |
| { |
| struct ether_header *eh; |
| struct ethervlan_header *evh; |
| uint8 *ip_body; |
| bool rc = FALSE; |
| |
| /* minimum length is ether header and IP header */ |
| if (pktlen < sizeof(struct ether_header) + IPV4_MIN_HEADER_LEN) |
| return FALSE; |
| |
| eh = (struct ether_header *) pktdata; |
| |
| if (eh->ether_type == HTON16(ETHER_TYPE_IP)) { |
| ip_body = pktdata + sizeof(struct ether_header); |
| *dscp = (uint8)IP_DSCP46(ip_body); |
| rc = TRUE; |
| } |
| else if (eh->ether_type == HTON16(ETHER_TYPE_8021Q)) { |
| evh = (struct ethervlan_header *)eh; |
| |
| /* minimum length is ethervlan header and IP header */ |
| if (pktlen >= sizeof(struct ethervlan_header) + IPV4_MIN_HEADER_LEN && |
| evh->ether_type == HTON16(ETHER_TYPE_IP)) { |
| ip_body = pktdata + sizeof(struct ethervlan_header); |
| *dscp = (uint8)IP_DSCP46(ip_body); |
| rc = TRUE; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* usr_prio range from low to high with usr_prio value */ |
| static bool |
| up_table_set(uint8 *up_table, uint8 usr_prio, uint8 low, uint8 high) |
| { |
| int i; |
| |
| if (usr_prio > 7 || low > high || low >= UP_TABLE_MAX || high >= UP_TABLE_MAX) { |
| return FALSE; |
| } |
| |
| for (i = low; i <= high; i++) { |
| up_table[i] = usr_prio; |
| } |
| |
| return TRUE; |
| } |
| |
| /* set user priority table */ |
| int BCMFASTPATH |
| wl_set_up_table(uint8 *up_table, bcm_tlv_t *qos_map_ie) |
| { |
| uint8 len; |
| |
| if (up_table == NULL || qos_map_ie == NULL) { |
| return BCME_ERROR; |
| } |
| |
| /* clear table to check table was set or not */ |
| memset(up_table, 0xff, UP_TABLE_MAX); |
| |
| /* length of QoS Map IE must be 16+n*2, n is number of exceptions */ |
| if (qos_map_ie != NULL && qos_map_ie->id == DOT11_MNG_QOS_MAP_ID && |
| (len = qos_map_ie->len) >= QOS_MAP_FIXED_LENGTH && |
| (len % 2) == 0) { |
| uint8 *except_ptr = (uint8 *)qos_map_ie->data; |
| uint8 except_len = len - QOS_MAP_FIXED_LENGTH; |
| uint8 *range_ptr = except_ptr + except_len; |
| uint8 i; |
| |
| /* fill in ranges */ |
| for (i = 0; i < QOS_MAP_FIXED_LENGTH; i += 2) { |
| uint8 low = range_ptr[i]; |
| uint8 high = range_ptr[i + 1]; |
| if (low == 255 && high == 255) { |
| continue; |
| } |
| |
| if (!up_table_set(up_table, i / 2, low, high)) { |
| /* clear the table on failure */ |
| memset(up_table, 0xff, UP_TABLE_MAX); |
| return BCME_ERROR; |
| } |
| } |
| |
| /* update exceptions */ |
| for (i = 0; i < except_len; i += 2) { |
| uint8 dscp = except_ptr[i]; |
| uint8 usr_prio = except_ptr[i+1]; |
| |
| /* exceptions with invalid dscp/usr_prio are ignored */ |
| up_table_set(up_table, usr_prio, dscp, dscp); |
| } |
| } |
| |
| return BCME_OK; |
| } |
| |
| /* The 0.5KB string table is not removed by compiler even though it's unused */ |
| |
| static char bcm_undeferrstr[32]; |
| static const char *bcmerrorstrtable[] = BCMERRSTRINGTABLE; |
| |
| /* Convert the error codes into related error strings */ |
| const char * |
| BCMRAMFN(bcmerrorstr)(int bcmerror) |
| { |
| /* check if someone added a bcmerror code but forgot to add errorstring */ |
| ASSERT((uint)ABS(BCME_LAST) == (ARRAYSIZE(bcmerrorstrtable) - 1)); |
| |
| if (bcmerror > 0 || bcmerror < BCME_LAST) { |
| snprintf(bcm_undeferrstr, sizeof(bcm_undeferrstr), "Undefined error %d", bcmerror); |
| return bcm_undeferrstr; |
| } |
| |
| ASSERT(strlen(bcmerrorstrtable[-bcmerror]) < BCME_STRLEN); |
| |
| return bcmerrorstrtable[-bcmerror]; |
| } |
| |
| /* iovar table lookup */ |
| /* could mandate sorted tables and do a binary search */ |
| const bcm_iovar_t* |
| bcm_iovar_lookup(const bcm_iovar_t *table, const char *name) |
| { |
| const bcm_iovar_t *vi; |
| const char *lookup_name; |
| |
| /* skip any ':' delimited option prefixes */ |
| lookup_name = strrchr(name, ':'); |
| if (lookup_name != NULL) |
| lookup_name++; |
| else |
| lookup_name = name; |
| |
| ASSERT(table != NULL); |
| |
| for (vi = table; vi->name; vi++) { |
| if (!strcmp(vi->name, lookup_name)) |
| return vi; |
| } |
| /* ran to end of table */ |
| |
| return NULL; /* var name not found */ |
| } |
| |
| int |
| bcm_iovar_lencheck(const bcm_iovar_t *vi, void *arg, int len, bool set) |
| { |
| int bcmerror = 0; |
| BCM_REFERENCE(arg); |
| |
| /* length check on io buf */ |
| switch (vi->type) { |
| case IOVT_BOOL: |
| case IOVT_INT8: |
| case IOVT_INT16: |
| case IOVT_INT32: |
| case IOVT_UINT8: |
| case IOVT_UINT16: |
| case IOVT_UINT32: |
| /* all integers are int32 sized args at the ioctl interface */ |
| if (len < (int)sizeof(int)) { |
| bcmerror = BCME_BUFTOOSHORT; |
| } |
| break; |
| |
| case IOVT_BUFFER: |
| /* buffer must meet minimum length requirement */ |
| if (len < vi->minlen) { |
| bcmerror = BCME_BUFTOOSHORT; |
| } |
| break; |
| |
| case IOVT_VOID: |
| if (!set) { |
| /* Cannot return nil... */ |
| bcmerror = BCME_UNSUPPORTED; |
| } |
| break; |
| |
| default: |
| /* unknown type for length check in iovar info */ |
| ASSERT(0); |
| bcmerror = BCME_UNSUPPORTED; |
| } |
| |
| return bcmerror; |
| } |
| |
| #if !defined(_CFEZ_) |
| /* |
| * Hierarchical Multiword bitmap based small id allocator. |
| * |
| * Multilevel hierarchy bitmap. (maximum 2 levels) |
| * First hierarchy uses a multiword bitmap to identify 32bit words in the |
| * second hierarchy that have at least a single bit set. Each bit in a word of |
| * the second hierarchy represents a unique ID that may be allocated. |
| * |
| * BCM_MWBMAP_ITEMS_MAX: Maximum number of IDs managed. |
| * BCM_MWBMAP_BITS_WORD: Number of bits in a bitmap word word |
| * BCM_MWBMAP_WORDS_MAX: Maximum number of bitmap words needed for free IDs. |
| * BCM_MWBMAP_WDMAP_MAX: Maximum number of bitmap wordss identifying first non |
| * non-zero bitmap word carrying at least one free ID. |
| * BCM_MWBMAP_SHIFT_OP: Used in MOD, DIV and MUL operations. |
| * BCM_MWBMAP_INVALID_IDX: Value ~0U is treated as an invalid ID |
| * |
| * Design Notes: |
| * BCM_MWBMAP_USE_CNTSETBITS trades CPU for memory. A runtime count of how many |
| * bits are computed each time on allocation and deallocation, requiring 4 |
| * array indexed access and 3 arithmetic operations. When not defined, a runtime |
| * count of set bits state is maintained. Upto 32 Bytes per 1024 IDs is needed. |
| * In a 4K max ID allocator, up to 128Bytes are hence used per instantiation. |
| * In a memory limited system e.g. dongle builds, a CPU for memory tradeoff may |
| * be used by defining BCM_MWBMAP_USE_CNTSETBITS. |
| * |
| * Note: wd_bitmap[] is statically declared and is not ROM friendly ... array |
| * size is fixed. No intention to support larger than 4K indice allocation. ID |
| * allocators for ranges smaller than 4K will have a wastage of only 12Bytes |
| * with savings in not having to use an indirect access, had it been dynamically |
| * allocated. |
| */ |
| #define BCM_MWBMAP_ITEMS_MAX (64 * 1024) /* May increase to 64K */ |
| |
| #define BCM_MWBMAP_BITS_WORD (NBITS(uint32)) |
| #define BCM_MWBMAP_WORDS_MAX (BCM_MWBMAP_ITEMS_MAX / BCM_MWBMAP_BITS_WORD) |
| #define BCM_MWBMAP_WDMAP_MAX (BCM_MWBMAP_WORDS_MAX / BCM_MWBMAP_BITS_WORD) |
| #define BCM_MWBMAP_SHIFT_OP (5) |
| #define BCM_MWBMAP_MODOP(ix) ((ix) & (BCM_MWBMAP_BITS_WORD - 1)) |
| #define BCM_MWBMAP_DIVOP(ix) ((ix) >> BCM_MWBMAP_SHIFT_OP) |
| #define BCM_MWBMAP_MULOP(ix) ((ix) << BCM_MWBMAP_SHIFT_OP) |
| |
| /* Redefine PTR() and/or HDL() conversion to invoke audit for debugging */ |
| #define BCM_MWBMAP_PTR(hdl) ((struct bcm_mwbmap *)(hdl)) |
| #define BCM_MWBMAP_HDL(ptr) ((void *)(ptr)) |
| |
| #if defined(BCM_MWBMAP_DEBUG) |
| #define BCM_MWBMAP_AUDIT(mwb) \ |
| do { \ |
| ASSERT((mwb != NULL) && \ |
| (((struct bcm_mwbmap *)(mwb))->magic == (void *)(mwb))); \ |
| bcm_mwbmap_audit(mwb); \ |
| } while (0) |
| #define MWBMAP_ASSERT(exp) ASSERT(exp) |
| #define MWBMAP_DBG(x) printf x |
| #else /* !BCM_MWBMAP_DEBUG */ |
| #define BCM_MWBMAP_AUDIT(mwb) do {} while (0) |
| #define MWBMAP_ASSERT(exp) do {} while (0) |
| #define MWBMAP_DBG(x) |
| #endif /* !BCM_MWBMAP_DEBUG */ |
| |
| typedef struct bcm_mwbmap { /* Hierarchical multiword bitmap allocator */ |
| uint16 wmaps; /* Total number of words in free wd bitmap */ |
| uint16 imaps; /* Total number of words in free id bitmap */ |
| int32 ifree; /* Count of free indices. Used only in audits */ |
| uint16 total; /* Total indices managed by multiword bitmap */ |
| |
| void * magic; /* Audit handle parameter from user */ |
| |
| uint32 wd_bitmap[BCM_MWBMAP_WDMAP_MAX]; /* 1st level bitmap of */ |
| #if !defined(BCM_MWBMAP_USE_CNTSETBITS) |
| int8 wd_count[BCM_MWBMAP_WORDS_MAX]; /* free id running count, 1st lvl */ |
| #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| |
| uint32 id_bitmap[0]; /* Second level bitmap */ |
| } bcm_mwbmap_t; |
| |
| /* Incarnate a hierarchical multiword bitmap based small index allocator. */ |
| struct bcm_mwbmap * |
| bcm_mwbmap_init(osl_t *osh, uint32 items_max) |
| { |
| struct bcm_mwbmap * mwbmap_p; |
| uint32 wordix, size, words, extra; |
| |
| /* Implementation Constraint: Uses 32bit word bitmap */ |
| MWBMAP_ASSERT(BCM_MWBMAP_BITS_WORD == 32U); |
| MWBMAP_ASSERT(BCM_MWBMAP_SHIFT_OP == 5U); |
| MWBMAP_ASSERT(ISPOWEROF2(BCM_MWBMAP_ITEMS_MAX)); |
| MWBMAP_ASSERT((BCM_MWBMAP_ITEMS_MAX % BCM_MWBMAP_BITS_WORD) == 0U); |
| |
| ASSERT(items_max <= BCM_MWBMAP_ITEMS_MAX); |
| |
| /* Determine the number of words needed in the multiword bitmap */ |
| extra = BCM_MWBMAP_MODOP(items_max); |
| words = BCM_MWBMAP_DIVOP(items_max) + ((extra != 0U) ? 1U : 0U); |
| |
| /* Allocate runtime state of multiword bitmap */ |
| /* Note: wd_count[] or wd_bitmap[] are not dynamically allocated */ |
| size = sizeof(bcm_mwbmap_t) + (sizeof(uint32) * words); |
| mwbmap_p = (bcm_mwbmap_t *)MALLOC(osh, size); |
| if (mwbmap_p == (bcm_mwbmap_t *)NULL) { |
| ASSERT(0); |
| goto error1; |
| } |
| memset(mwbmap_p, 0, size); |
| |
| /* Initialize runtime multiword bitmap state */ |
| mwbmap_p->imaps = (uint16)words; |
| mwbmap_p->ifree = (int32)items_max; |
| mwbmap_p->total = (uint16)items_max; |
| |
| /* Setup magic, for use in audit of handle */ |
| mwbmap_p->magic = BCM_MWBMAP_HDL(mwbmap_p); |
| |
| /* Setup the second level bitmap of free indices */ |
| /* Mark all indices as available */ |
| for (wordix = 0U; wordix < mwbmap_p->imaps; wordix++) { |
| mwbmap_p->id_bitmap[wordix] = (uint32)(~0U); |
| #if !defined(BCM_MWBMAP_USE_CNTSETBITS) |
| mwbmap_p->wd_count[wordix] = BCM_MWBMAP_BITS_WORD; |
| #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| } |
| |
| /* Ensure that extra indices are tagged as un-available */ |
| if (extra) { /* fixup the free ids in last bitmap and wd_count */ |
| uint32 * bmap_p = &mwbmap_p->id_bitmap[mwbmap_p->imaps - 1]; |
| *bmap_p ^= (uint32)(~0U << extra); /* fixup bitmap */ |
| #if !defined(BCM_MWBMAP_USE_CNTSETBITS) |
| mwbmap_p->wd_count[mwbmap_p->imaps - 1] = (int8)extra; /* fixup count */ |
| #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| } |
| |
| /* Setup the first level bitmap hierarchy */ |
| extra = BCM_MWBMAP_MODOP(mwbmap_p->imaps); |
| words = BCM_MWBMAP_DIVOP(mwbmap_p->imaps) + ((extra != 0U) ? 1U : 0U); |
| |
| mwbmap_p->wmaps = (uint16)words; |
| |
| for (wordix = 0U; wordix < mwbmap_p->wmaps; wordix++) |
| mwbmap_p->wd_bitmap[wordix] = (uint32)(~0U); |
| if (extra) { |
| uint32 * bmap_p = &mwbmap_p->wd_bitmap[mwbmap_p->wmaps - 1]; |
| *bmap_p ^= (uint32)(~0U << extra); /* fixup bitmap */ |
| } |
| |
| return mwbmap_p; |
| |
| error1: |
| return BCM_MWBMAP_INVALID_HDL; |
| } |
| |
| /* Release resources used by multiword bitmap based small index allocator. */ |
| void |
| bcm_mwbmap_fini(osl_t * osh, struct bcm_mwbmap * mwbmap_hdl) |
| { |
| bcm_mwbmap_t * mwbmap_p; |
| |
| BCM_MWBMAP_AUDIT(mwbmap_hdl); |
| mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); |
| |
| MFREE(osh, mwbmap_p, sizeof(struct bcm_mwbmap) |
| + (sizeof(uint32) * mwbmap_p->imaps)); |
| return; |
| } |
| |
| /* Allocate a unique small index using a multiword bitmap index allocator. */ |
| uint32 BCMFASTPATH |
| bcm_mwbmap_alloc(struct bcm_mwbmap * mwbmap_hdl) |
| { |
| bcm_mwbmap_t * mwbmap_p; |
| uint32 wordix, bitmap; |
| |
| BCM_MWBMAP_AUDIT(mwbmap_hdl); |
| mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); |
| |
| /* Start with the first hierarchy */ |
| for (wordix = 0; wordix < mwbmap_p->wmaps; ++wordix) { |
| |
| bitmap = mwbmap_p->wd_bitmap[wordix]; /* get the word bitmap */ |
| |
| if (bitmap != 0U) { |
| |
| uint32 count, bitix, *bitmap_p; |
| |
| bitmap_p = &mwbmap_p->wd_bitmap[wordix]; |
| |
| /* clear all except trailing 1 */ |
| bitmap = (uint32)(((int)(bitmap)) & (-((int)(bitmap)))); |
| MWBMAP_ASSERT(C_bcm_count_leading_zeros(bitmap) == |
| bcm_count_leading_zeros(bitmap)); |
| bitix = (BCM_MWBMAP_BITS_WORD - 1) |
| - (uint32)bcm_count_leading_zeros(bitmap); /* use asm clz */ |
| wordix = BCM_MWBMAP_MULOP(wordix) + bitix; |
| |
| /* Clear bit if wd count is 0, without conditional branch */ |
| #if defined(BCM_MWBMAP_USE_CNTSETBITS) |
| count = bcm_cntsetbits(mwbmap_p->id_bitmap[wordix]) - 1; |
| #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| mwbmap_p->wd_count[wordix]--; |
| count = (uint32)mwbmap_p->wd_count[wordix]; |
| MWBMAP_ASSERT(count == |
| (bcm_cntsetbits(mwbmap_p->id_bitmap[wordix]) - 1)); |
| #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| MWBMAP_ASSERT(count >= 0); |
| |
| /* clear wd_bitmap bit if id_map count is 0 */ |
| bitmap = ((uint32)(count == 0)) << BCM_MWBMAP_MODOP(bitix); |
| |
| MWBMAP_DBG(( |
| "Lvl1: bitix<%02u> wordix<%02u>: %08x ^ %08x = %08x wfree %d", |
| bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, count)); |
| |
| *bitmap_p ^= bitmap; |
| |
| /* Use bitix in the second hierarchy */ |
| bitmap_p = &mwbmap_p->id_bitmap[wordix]; |
| |
| bitmap = mwbmap_p->id_bitmap[wordix]; /* get the id bitmap */ |
| MWBMAP_ASSERT(bitmap != 0U); |
| |
| /* clear all except trailing 1 */ |
| bitmap = (uint32)(((int)(bitmap)) & (-((int)(bitmap)))); |
| MWBMAP_ASSERT(C_bcm_count_leading_zeros(bitmap) == |
| bcm_count_leading_zeros(bitmap)); |
| bitix = BCM_MWBMAP_MULOP(wordix) |
| + (BCM_MWBMAP_BITS_WORD - 1) |
| - (uint32)bcm_count_leading_zeros(bitmap); /* use asm clz */ |
| |
| mwbmap_p->ifree--; /* decrement system wide free count */ |
| MWBMAP_ASSERT(mwbmap_p->ifree >= 0); |
| |
| MWBMAP_DBG(( |
| "Lvl2: bitix<%02u> wordix<%02u>: %08x ^ %08x = %08x ifree %d", |
| bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, |
| mwbmap_p->ifree)); |
| |
| *bitmap_p ^= bitmap; /* mark as allocated = 1b0 */ |
| |
| return bitix; |
| } |
| } |
| |
| ASSERT(mwbmap_p->ifree == 0); |
| |
| return BCM_MWBMAP_INVALID_IDX; |
| } |
| |
| /* Force an index at a specified position to be in use */ |
| void |
| bcm_mwbmap_force(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix) |
| { |
| bcm_mwbmap_t * mwbmap_p; |
| uint32 count, wordix, bitmap, *bitmap_p; |
| |
| BCM_MWBMAP_AUDIT(mwbmap_hdl); |
| mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); |
| |
| ASSERT(bitix < mwbmap_p->total); |
| |
| /* Start with second hierarchy */ |
| wordix = BCM_MWBMAP_DIVOP(bitix); |
| bitmap = (uint32)(1U << BCM_MWBMAP_MODOP(bitix)); |
| bitmap_p = &mwbmap_p->id_bitmap[wordix]; |
| |
| ASSERT((*bitmap_p & bitmap) == bitmap); |
| |
| mwbmap_p->ifree--; /* update free count */ |
| ASSERT(mwbmap_p->ifree >= 0); |
| |
| MWBMAP_DBG(("Lvl2: bitix<%u> wordix<%u>: %08x ^ %08x = %08x ifree %d", |
| bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, |
| mwbmap_p->ifree)); |
| |
| *bitmap_p ^= bitmap; /* mark as in use */ |
| |
| /* Update first hierarchy */ |
| bitix = wordix; |
| |
| wordix = BCM_MWBMAP_DIVOP(bitix); |
| bitmap_p = &mwbmap_p->wd_bitmap[wordix]; |
| |
| #if defined(BCM_MWBMAP_USE_CNTSETBITS) |
| count = bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]); |
| #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| mwbmap_p->wd_count[bitix]--; |
| count = (uint32)mwbmap_p->wd_count[bitix]; |
| MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[bitix])); |
| #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| MWBMAP_ASSERT(count >= 0); |
| |
| bitmap = (uint32)(count == 0) << BCM_MWBMAP_MODOP(bitix); |
| |
| MWBMAP_DBG(("Lvl1: bitix<%02lu> wordix<%02u>: %08x ^ %08x = %08x wfree %d", |
| BCM_MWBMAP_MODOP(bitix), wordix, *bitmap_p, bitmap, |
| (*bitmap_p) ^ bitmap, count)); |
| |
| *bitmap_p ^= bitmap; /* mark as in use */ |
| |
| return; |
| } |
| |
| /* Free a previously allocated index back into the multiword bitmap allocator */ |
| void BCMFASTPATH |
| bcm_mwbmap_free(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix) |
| { |
| bcm_mwbmap_t * mwbmap_p; |
| uint32 wordix, bitmap, *bitmap_p; |
| |
| BCM_MWBMAP_AUDIT(mwbmap_hdl); |
| mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); |
| |
| ASSERT(bitix < mwbmap_p->total); |
| |
| /* Start with second level hierarchy */ |
| wordix = BCM_MWBMAP_DIVOP(bitix); |
| bitmap = (1U << BCM_MWBMAP_MODOP(bitix)); |
| bitmap_p = &mwbmap_p->id_bitmap[wordix]; |
| |
| ASSERT((*bitmap_p & bitmap) == 0U); /* ASSERT not a double free */ |
| |
| mwbmap_p->ifree++; /* update free count */ |
| ASSERT(mwbmap_p->ifree <= mwbmap_p->total); |
| |
| MWBMAP_DBG(("Lvl2: bitix<%02u> wordix<%02u>: %08x | %08x = %08x ifree %d", |
| bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) | bitmap, |
| mwbmap_p->ifree)); |
| |
| *bitmap_p |= bitmap; /* mark as available */ |
| |
| /* Now update first level hierarchy */ |
| |
| bitix = wordix; |
| |
| wordix = BCM_MWBMAP_DIVOP(bitix); /* first level's word index */ |
| bitmap = (1U << BCM_MWBMAP_MODOP(bitix)); |
| bitmap_p = &mwbmap_p->wd_bitmap[wordix]; |
| |
| #if !defined(BCM_MWBMAP_USE_CNTSETBITS) |
| mwbmap_p->wd_count[bitix]++; |
| #endif // endif |
| |
| #if defined(BCM_MWBMAP_DEBUG) |
| { |
| uint32 count; |
| #if defined(BCM_MWBMAP_USE_CNTSETBITS) |
| count = bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]); |
| #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| count = mwbmap_p->wd_count[bitix]; |
| MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[bitix])); |
| #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| |
| MWBMAP_ASSERT(count <= BCM_MWBMAP_BITS_WORD); |
| |
| MWBMAP_DBG(("Lvl1: bitix<%02u> wordix<%02u>: %08x | %08x = %08x wfree %d", |
| bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) | bitmap, count)); |
| } |
| #endif /* BCM_MWBMAP_DEBUG */ |
| |
| *bitmap_p |= bitmap; |
| |
| return; |
| } |
| |
| /* Fetch the toal number of free indices in the multiword bitmap allocator */ |
| uint32 |
| bcm_mwbmap_free_cnt(struct bcm_mwbmap * mwbmap_hdl) |
| { |
| bcm_mwbmap_t * mwbmap_p; |
| |
| BCM_MWBMAP_AUDIT(mwbmap_hdl); |
| mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); |
| |
| ASSERT(mwbmap_p->ifree >= 0); |
| |
| return (uint32)mwbmap_p->ifree; |
| } |
| |
| /* Determine whether an index is inuse or free */ |
| bool |
| bcm_mwbmap_isfree(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix) |
| { |
| bcm_mwbmap_t * mwbmap_p; |
| uint32 wordix, bitmap; |
| |
| BCM_MWBMAP_AUDIT(mwbmap_hdl); |
| mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); |
| |
| ASSERT(bitix < mwbmap_p->total); |
| |
| wordix = BCM_MWBMAP_DIVOP(bitix); |
| bitmap = (1U << BCM_MWBMAP_MODOP(bitix)); |
| |
| return ((mwbmap_p->id_bitmap[wordix] & bitmap) != 0U); |
| } |
| |
| /* Debug dump a multiword bitmap allocator */ |
| void |
| bcm_mwbmap_show(struct bcm_mwbmap * mwbmap_hdl) |
| { |
| uint32 ix, count; |
| bcm_mwbmap_t * mwbmap_p; |
| |
| BCM_MWBMAP_AUDIT(mwbmap_hdl); |
| mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); |
| |
| printf("mwbmap_p %p wmaps %u imaps %u ifree %d total %u\n", |
| OSL_OBFUSCATE_BUF((void *)mwbmap_p), |
| mwbmap_p->wmaps, mwbmap_p->imaps, mwbmap_p->ifree, mwbmap_p->total); |
| for (ix = 0U; ix < mwbmap_p->wmaps; ix++) { |
| printf("\tWDMAP:%2u. 0x%08x\t", ix, mwbmap_p->wd_bitmap[ix]); |
| bcm_bitprint32(mwbmap_p->wd_bitmap[ix]); |
| printf("\n"); |
| } |
| for (ix = 0U; ix < mwbmap_p->imaps; ix++) { |
| #if defined(BCM_MWBMAP_USE_CNTSETBITS) |
| count = bcm_cntsetbits(mwbmap_p->id_bitmap[ix]); |
| #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| count = (uint32)mwbmap_p->wd_count[ix]; |
| MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[ix])); |
| #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| printf("\tIDMAP:%2u. 0x%08x %02u\t", ix, mwbmap_p->id_bitmap[ix], count); |
| bcm_bitprint32(mwbmap_p->id_bitmap[ix]); |
| printf("\n"); |
| } |
| |
| return; |
| } |
| |
| /* Audit a hierarchical multiword bitmap */ |
| void |
| bcm_mwbmap_audit(struct bcm_mwbmap * mwbmap_hdl) |
| { |
| bcm_mwbmap_t * mwbmap_p; |
| uint32 count, free_cnt = 0U, wordix, idmap_ix, bitix, *bitmap_p; |
| |
| mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); |
| |
| for (wordix = 0U; wordix < mwbmap_p->wmaps; ++wordix) { |
| |
| bitmap_p = &mwbmap_p->wd_bitmap[wordix]; |
| |
| for (bitix = 0U; bitix < BCM_MWBMAP_BITS_WORD; bitix++) { |
| if ((*bitmap_p) & (1 << bitix)) { |
| idmap_ix = BCM_MWBMAP_MULOP(wordix) + bitix; |
| #if defined(BCM_MWBMAP_USE_CNTSETBITS) |
| count = bcm_cntsetbits(mwbmap_p->id_bitmap[idmap_ix]); |
| #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| count = (uint32)mwbmap_p->wd_count[idmap_ix]; |
| ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[idmap_ix])); |
| #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ |
| ASSERT(count != 0U); |
| free_cnt += count; |
| } |
| } |
| } |
| |
| ASSERT((int)free_cnt == mwbmap_p->ifree); |
| } |
| /* END : Multiword bitmap based 64bit to Unique 32bit Id allocator. */ |
| |
| /* Simple 16bit Id allocator using a stack implementation. */ |
| typedef struct id16_map { |
| uint32 failures; /* count of failures */ |
| void *dbg; /* debug placeholder */ |
| uint16 total; /* total number of ids managed by allocator */ |
| uint16 start; /* start value of 16bit ids to be managed */ |
| int stack_idx; /* index into stack of available ids */ |
| uint16 stack[0]; /* stack of 16 bit ids */ |
| } id16_map_t; |
| |
| #define ID16_MAP_SZ(items) (sizeof(id16_map_t) + \ |
| (sizeof(uint16) * (items))) |
| |
| #if defined(BCM_DBG) |
| |
| /* Uncomment BCM_DBG_ID16 to debug double free */ |
| /* #define BCM_DBG_ID16 */ |
| |
| typedef struct id16_map_dbg { |
| uint16 total; |
| bool avail[0]; |
| } id16_map_dbg_t; |
| #define ID16_MAP_DBG_SZ(items) (sizeof(id16_map_dbg_t) + \ |
| (sizeof(bool) * (items))) |
| #define ID16_MAP_MSG(x) print x |
| #else |
| #define ID16_MAP_MSG(x) |
| #endif /* BCM_DBG */ |
| |
| void * /* Construct an id16 allocator: [start_val16 .. start_val16+total_ids) */ |
| id16_map_init(osl_t *osh, uint16 total_ids, uint16 start_val16) |
| { |
| uint16 idx, val16; |
| id16_map_t * id16_map; |
| |
| ASSERT(total_ids > 0); |
| |
| /* A start_val16 of ID16_UNDEFINED, allows the caller to fill the id16 map |
| * with random values. |
| */ |
| ASSERT((start_val16 == ID16_UNDEFINED) || |
| (start_val16 + total_ids) < ID16_INVALID); |
| |
| id16_map = (id16_map_t *) MALLOC(osh, ID16_MAP_SZ(total_ids)); |
| if (id16_map == NULL) { |
| return NULL; |
| } |
| |
| id16_map->total = total_ids; |
| id16_map->start = start_val16; |
| id16_map->failures = 0; |
| id16_map->dbg = NULL; |
| |
| /* |
| * Populate stack with 16bit id values, commencing with start_val16. |
| * if start_val16 is ID16_UNDEFINED, then do not populate the id16 map. |
| */ |
| id16_map->stack_idx = -1; |
| |
| if (id16_map->start != ID16_UNDEFINED) { |
| val16 = start_val16; |
| |
| for (idx = 0; idx < total_ids; idx++, val16++) { |
| id16_map->stack_idx = idx; |
| id16_map->stack[id16_map->stack_idx] = val16; |
| } |
| } |
| |
| #if defined(BCM_DBG) && defined(BCM_DBG_ID16) |
| if (id16_map->start != ID16_UNDEFINED) { |
| id16_map->dbg = MALLOC(osh, ID16_MAP_DBG_SZ(total_ids)); |
| |
| if (id16_map->dbg) { |
| id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg; |
| |
| id16_map_dbg->total = total_ids; |
| for (idx = 0; idx < total_ids; idx++) { |
| id16_map_dbg->avail[idx] = TRUE; |
| } |
| } |
| } |
| #endif /* BCM_DBG && BCM_DBG_ID16 */ |
| |
| return (void *)id16_map; |
| } |
| |
| void * /* Destruct an id16 allocator instance */ |
| id16_map_fini(osl_t *osh, void * id16_map_hndl) |
| { |
| uint16 total_ids; |
| id16_map_t * id16_map; |
| |
| if (id16_map_hndl == NULL) |
| return NULL; |
| |
| id16_map = (id16_map_t *)id16_map_hndl; |
| |
| total_ids = id16_map->total; |
| ASSERT(total_ids > 0); |
| |
| #if defined(BCM_DBG) && defined(BCM_DBG_ID16) |
| if (id16_map->dbg) { |
| MFREE(osh, id16_map->dbg, ID16_MAP_DBG_SZ(total_ids)); |
| id16_map->dbg = NULL; |
| } |
| #endif /* BCM_DBG && BCM_DBG_ID16 */ |
| |
| id16_map->total = 0; |
| MFREE(osh, id16_map, ID16_MAP_SZ(total_ids)); |
| |
| return NULL; |
| } |
| |
| void |
| id16_map_clear(void * id16_map_hndl, uint16 total_ids, uint16 start_val16) |
| { |
| uint16 idx, val16; |
| id16_map_t * id16_map; |
| |
| ASSERT(total_ids > 0); |
| /* A start_val16 of ID16_UNDEFINED, allows the caller to fill the id16 map |
| * with random values. |
| */ |
| ASSERT((start_val16 == ID16_UNDEFINED) || |
| (start_val16 + total_ids) < ID16_INVALID); |
| |
| id16_map = (id16_map_t *)id16_map_hndl; |
| if (id16_map == NULL) { |
| return; |
| } |
| |
| id16_map->total = total_ids; |
| id16_map->start = start_val16; |
| id16_map->failures = 0; |
| |
| /* Populate stack with 16bit id values, commencing with start_val16 */ |
| id16_map->stack_idx = -1; |
| |
| if (id16_map->start != ID16_UNDEFINED) { |
| val16 = start_val16; |
| |
| for (idx = 0; idx < total_ids; idx++, val16++) { |
| id16_map->stack_idx = idx; |
| id16_map->stack[id16_map->stack_idx] = val16; |
| } |
| } |
| |
| #if defined(BCM_DBG) && defined(BCM_DBG_ID16) |
| if (id16_map->start != ID16_UNDEFINED) { |
| if (id16_map->dbg) { |
| id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg; |
| |
| id16_map_dbg->total = total_ids; |
| for (idx = 0; idx < total_ids; idx++) { |
| id16_map_dbg->avail[idx] = TRUE; |
| } |
| } |
| } |
| #endif /* BCM_DBG && BCM_DBG_ID16 */ |
| } |
| |
| uint16 BCMFASTPATH /* Allocate a unique 16bit id */ |
| id16_map_alloc(void * id16_map_hndl) |
| { |
| uint16 val16; |
| id16_map_t * id16_map; |
| |
| ASSERT(id16_map_hndl != NULL); |
| if (!id16_map_hndl) { |
| return ID16_INVALID; |
| } |
| id16_map = (id16_map_t *)id16_map_hndl; |
| |
| ASSERT(id16_map->total > 0); |
| |
| if (id16_map->stack_idx < 0) { |
| id16_map->failures++; |
| return ID16_INVALID; |
| } |
| |
| val16 = id16_map->stack[id16_map->stack_idx]; |
| id16_map->stack_idx--; |
| |
| #if defined(BCM_DBG) && defined(BCM_DBG_ID16) |
| ASSERT((id16_map->start == ID16_UNDEFINED) || |
| (val16 < (id16_map->start + id16_map->total))); |
| |
| if (id16_map->dbg) { /* Validate val16 */ |
| id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg; |
| |
| ASSERT(id16_map_dbg->avail[val16 - id16_map->start] == TRUE); |
| id16_map_dbg->avail[val16 - id16_map->start] = FALSE; |
| } |
| #endif /* BCM_DBG && BCM_DBG_ID16 */ |
| |
| return val16; |
| } |
| |
| void BCMFASTPATH /* Free a 16bit id value into the id16 allocator */ |
| id16_map_free(void * id16_map_hndl, uint16 val16) |
| { |
| id16_map_t * id16_map; |
| |
| ASSERT(id16_map_hndl != NULL); |
| |
| id16_map = (id16_map_t *)id16_map_hndl; |
| |
| #if defined(BCM_DBG) && defined(BCM_DBG_ID16) |
| ASSERT((id16_map->start == ID16_UNDEFINED) || |
| (val16 < (id16_map->start + id16_map->total))); |
| |
| if (id16_map->dbg) { /* Validate val16 */ |
| id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg; |
| |
| ASSERT(id16_map_dbg->avail[val16 - id16_map->start] == FALSE); |
| id16_map_dbg->avail[val16 - id16_map->start] = TRUE; |
| } |
| #endif /* BCM_DBG && BCM_DBG_ID16 */ |
| |
| id16_map->stack_idx++; |
| id16_map->stack[id16_map->stack_idx] = val16; |
| } |
| |
| uint32 /* Returns number of failures to allocate an unique id16 */ |
| id16_map_failures(void * id16_map_hndl) |
| { |
| ASSERT(id16_map_hndl != NULL); |
| return ((id16_map_t *)id16_map_hndl)->failures; |
| } |
| |
| bool |
| id16_map_audit(void * id16_map_hndl) |
| { |
| int idx; |
| int insane = 0; |
| id16_map_t * id16_map; |
| |
| ASSERT(id16_map_hndl != NULL); |
| if (!id16_map_hndl) { |
| goto done; |
| } |
| id16_map = (id16_map_t *)id16_map_hndl; |
| |
| ASSERT(id16_map->stack_idx >= -1); |
| ASSERT(id16_map->stack_idx < (int)id16_map->total); |
| |
| if (id16_map->start == ID16_UNDEFINED) |
| goto done; |
| |
| for (idx = 0; idx <= id16_map->stack_idx; idx++) { |
| ASSERT(id16_map->stack[idx] >= id16_map->start); |
| ASSERT(id16_map->stack[idx] < (id16_map->start + id16_map->total)); |
| |
| #if defined(BCM_DBG) && defined(BCM_DBG_ID16) |
| if (id16_map->dbg) { |
| uint16 val16 = id16_map->stack[idx]; |
| if (((id16_map_dbg_t *)(id16_map->dbg))->avail[val16] != TRUE) { |
| insane |= 1; |
| ID16_MAP_MSG(("id16_map<%p>: stack_idx %u invalid val16 %u\n", |
| OSL_OBFUSATE_BUF(id16_map_hndl), idx, val16)); |
| } |
| } |
| #endif /* BCM_DBG && BCM_DBG_ID16 */ |
| } |
| |
| #if defined(BCM_DBG) && defined(BCM_DBG_ID16) |
| if (id16_map->dbg) { |
| uint16 avail = 0; /* Audit available ids counts */ |
| for (idx = 0; idx < id16_map_dbg->total; idx++) { |
| if (((id16_map_dbg_t *)(id16_map->dbg))->avail[idx16] == TRUE) |
| avail++; |
| } |
| if (avail && (avail != (id16_map->stack_idx + 1))) { |
| insane |= 1; |
| ID16_MAP_MSG(("id16_map<%p>: avail %u stack_idx %u\n", |
| OSL_OBFUSCATE_BUF(id16_map_hndl), |
| avail, id16_map->stack_idx)); |
| } |
| } |
| #endif /* BCM_DBG && BCM_DBG_ID16 */ |
| |
| done: |
| /* invoke any other system audits */ |
| return (!!insane); |
| } |
| /* END: Simple id16 allocator */ |
| |
| void |
| dll_pool_detach(void * osh, dll_pool_t * pool, uint16 elems_max, uint16 elem_size) |
| { |
| uint32 memsize; |
| memsize = sizeof(dll_pool_t) + (elems_max * elem_size); |
| if (pool) |
| MFREE(osh, pool, memsize); |
| } |
| dll_pool_t * |
| dll_pool_init(void * osh, uint16 elems_max, uint16 elem_size) |
| { |
| uint32 memsize, i; |
| dll_pool_t * dll_pool_p; |
| dll_t * elem_p; |
| |
| ASSERT(elem_size > sizeof(dll_t)); |
| |
| memsize = sizeof(dll_pool_t) + (elems_max * elem_size); |
| |
| if ((dll_pool_p = (dll_pool_t *)MALLOCZ(osh, memsize)) == NULL) { |
| printf("dll_pool_init: elems_max<%u> elem_size<%u> malloc failure\n", |
| elems_max, elem_size); |
| ASSERT(0); |
| return dll_pool_p; |
| } |
| |
| dll_init(&dll_pool_p->free_list); |
| dll_pool_p->elems_max = elems_max; |
| dll_pool_p->elem_size = elem_size; |
| |
| elem_p = dll_pool_p->elements; |
| for (i = 0; i < elems_max; i++) { |
| dll_append(&dll_pool_p->free_list, elem_p); |
| elem_p = (dll_t *)((uintptr)elem_p + elem_size); |
| } |
| |
| dll_pool_p->free_count = elems_max; |
| |
| return dll_pool_p; |
| } |
| |
| void * |
| dll_pool_alloc(dll_pool_t * dll_pool_p) |
| { |
| dll_t * elem_p; |
| |
| if (dll_pool_p->free_count == 0) { |
| ASSERT(dll_empty(&dll_pool_p->free_list)); |
| return NULL; |
| } |
| |
| elem_p = dll_head_p(&dll_pool_p->free_list); |
| dll_delete(elem_p); |
| dll_pool_p->free_count -= 1; |
| |
| return (void *)elem_p; |
| } |
| |
| void |
| dll_pool_free(dll_pool_t * dll_pool_p, void * elem_p) |
| { |
| dll_t * node_p = (dll_t *)elem_p; |
| dll_prepend(&dll_pool_p->free_list, node_p); |
| dll_pool_p->free_count += 1; |
| } |
| |
| void |
| dll_pool_free_tail(dll_pool_t * dll_pool_p, void * elem_p) |
| { |
| dll_t * node_p = (dll_t *)elem_p; |
| dll_append(&dll_pool_p->free_list, node_p); |
| dll_pool_p->free_count += 1; |
| } |
| |
| #endif // endif |
| |
| #endif /* BCMDRIVER */ |
| |
| #if defined(BCMDRIVER) || defined(WL_UNITTEST) |
| |
| /* triggers bcm_bprintf to print to kernel log */ |
| bool bcm_bprintf_bypass = FALSE; |
| |
| /* Initialization of bcmstrbuf structure */ |
| void |
| bcm_binit(struct bcmstrbuf *b, char *buf, uint size) |
| { |
| b->origsize = b->size = size; |
| b->origbuf = b->buf = buf; |
| if (size > 0) { |
| buf[0] = '\0'; |
| } |
| } |
| |
| /* Buffer sprintf wrapper to guard against buffer overflow */ |
| int |
| bcm_bprintf(struct bcmstrbuf *b, const char *fmt, ...) |
| { |
| va_list ap; |
| int r; |
| |
| va_start(ap, fmt); |
| |
| r = vsnprintf(b->buf, b->size, fmt, ap); |
| if (bcm_bprintf_bypass == TRUE) { |
| printf("%s", b->buf); |
| goto exit; |
| } |
| |
| /* Non Ansi C99 compliant returns -1, |
| * Ansi compliant return r >= b->size, |
| * bcmstdlib returns 0, handle all |
| */ |
| /* r == 0 is also the case when strlen(fmt) is zero. |
| * typically the case when "" is passed as argument. |
| */ |
| if ((r == -1) || (r >= (int)b->size)) { |
| b->size = 0; |
| } else { |
| b->size -= (uint)r; |
| b->buf += r; |
| } |
| |
| exit: |
| va_end(ap); |
| |
| return r; |
| } |
| |
| void |
| bcm_bprhex(struct bcmstrbuf *b, const char *msg, bool newline, const uint8 *buf, int len) |
| { |
| int i; |
| |
| if (msg != NULL && msg[0] != '\0') |
| bcm_bprintf(b, "%s", msg); |
| for (i = 0; i < len; i ++) |
| bcm_bprintf(b, "%02X", buf[i]); |
| if (newline) |
| bcm_bprintf(b, "\n"); |
| } |
| |
| void |
| bcm_inc_bytes(uchar *num, int num_bytes, uint8 amount) |
| { |
| int i; |
| |
| for (i = 0; i < num_bytes; i++) { |
| num[i] += amount; |
| if (num[i] >= amount) |
| break; |
| amount = 1; |
| } |
| } |
| |
| int |
| bcm_cmp_bytes(const uchar *arg1, const uchar *arg2, uint8 nbytes) |
| { |
| int i; |
| |
| for (i = nbytes - 1; i >= 0; i--) { |
| if (arg1[i] != arg2[i]) |
| return (arg1[i] - arg2[i]); |
| } |
| return 0; |
| } |
| |
| void |
| bcm_print_bytes(const char *name, const uchar *data, int len) |
| { |
| int i; |
| int per_line = 0; |
| |
| printf("%s: %d \n", name ? name : "", len); |
| for (i = 0; i < len; i++) { |
| printf("%02x ", *data++); |
| per_line++; |
| if (per_line == 16) { |
| per_line = 0; |
| printf("\n"); |
| } |
| } |
| printf("\n"); |
| } |
| |
| /* Look for vendor-specific IE with specified OUI and optional type */ |
| bcm_tlv_t * |
| bcm_find_vendor_ie(const void *tlvs, uint tlvs_len, const char *voui, uint8 *type, uint type_len) |
| { |
| const bcm_tlv_t *ie; |
| uint8 ie_len; |
| |
| ie = (const bcm_tlv_t*)tlvs; |
| |
| /* make sure we are looking at a valid IE */ |
| if (ie == NULL || !bcm_valid_tlv(ie, tlvs_len)) { |
| return NULL; |
| } |
| |
| /* Walk through the IEs looking for an OUI match */ |
| do { |
| ie_len = ie->len; |
| if ((ie->id == DOT11_MNG_VS_ID) && |
| (ie_len >= (DOT11_OUI_LEN + type_len)) && |
| !bcmp(ie->data, voui, DOT11_OUI_LEN)) |
| { |
| /* compare optional type */ |
| if (type_len == 0 || |
| !bcmp(&ie->data[DOT11_OUI_LEN], type, type_len)) { |
| GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); |
| return (bcm_tlv_t *)(ie); /* a match */ |
| GCC_DIAGNOSTIC_POP(); |
| } |
| } |
| } while ((ie = bcm_next_tlv(ie, &tlvs_len)) != NULL); |
| |
| return NULL; |
| } |
| |
| #if defined(WLTINYDUMP) || defined(WLMSG_INFORM) || defined(WLMSG_ASSOC) || \ |
| defined(WLMSG_PRPKT) || defined(WLMSG_WSEC) |
| #define SSID_FMT_BUF_LEN ((4 * DOT11_MAX_SSID_LEN) + 1) |
| |
| int |
| bcm_format_ssid(char* buf, const uchar ssid[], uint ssid_len) |
| { |
| uint i, c; |
| char *p = buf; |
| char *endp = buf + SSID_FMT_BUF_LEN; |
| |
| if (ssid_len > DOT11_MAX_SSID_LEN) ssid_len = DOT11_MAX_SSID_LEN; |
| |
| for (i = 0; i < ssid_len; i++) { |
| c = (uint)ssid[i]; |
| if (c == '\\') { |
| *p++ = '\\'; |
| *p++ = '\\'; |
| } else if (bcm_isprint((uchar)c)) { |
| *p++ = (char)c; |
| } else { |
| p += snprintf(p, (size_t)(endp - p), "\\x%02X", c); |
| } |
| } |
| *p = '\0'; |
| ASSERT(p < endp); |
| |
| return (int)(p - buf); |
| } |
| #endif // endif |
| |
| #endif /* BCMDRIVER || WL_UNITTEST */ |
| |
| char * |
| bcm_ether_ntoa(const struct ether_addr *ea, char *buf) |
| { |
| static const char hex[] = |
| { |
| '0', '1', '2', '3', '4', '5', '6', '7', |
| '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' |
| }; |
| const uint8 *octet = ea->octet; |
| char *p = buf; |
| int i; |
| |
| for (i = 0; i < 6; i++, octet++) { |
| *p++ = hex[(*octet >> 4) & 0xf]; |
| *p++ = hex[*octet & 0xf]; |
| *p++ = ':'; |
| } |
| |
| *(p-1) = '\0'; |
| |
| return (buf); |
| } |
| |
| /* Find the position of first bit set |
| * in the given number. |
| */ |
| int |
| bcm_find_fsb(uint32 num) |
| { |
| uint8 pos = 0; |
| if (!num) |
| return pos; |
| while (!(num & 1)) { |
| num >>= 1; |
| pos++; |
| } |
| return (pos+1); |
| } |
| |
| char * |
| bcm_ip_ntoa(struct ipv4_addr *ia, char *buf) |
| { |
| snprintf(buf, 16, "%d.%d.%d.%d", |
| ia->addr[0], ia->addr[1], ia->addr[2], ia->addr[3]); |
| return (buf); |
| } |
| |
| char * |
| bcm_ipv6_ntoa(void *ipv6, char *buf) |
| { |
| /* Implementing RFC 5952 Sections 4 + 5 */ |
| /* Not thoroughly tested */ |
| uint16 tmp[8]; |
| uint16 *a = &tmp[0]; |
| char *p = buf; |
| int i, i_max = -1, cnt = 0, cnt_max = 1; |
| uint8 *a4 = NULL; |
| memcpy((uint8 *)&tmp[0], (uint8 *)ipv6, IPV6_ADDR_LEN); |
| |
| for (i = 0; i < IPV6_ADDR_LEN/2; i++) { |
| if (a[i]) { |
| if (cnt > cnt_max) { |
| cnt_max = cnt; |
| i_max = i - cnt; |
| } |
| cnt = 0; |
| } else |
| cnt++; |
| } |
| if (cnt > cnt_max) { |
| cnt_max = cnt; |
| i_max = i - cnt; |
| } |
| if (i_max == 0 && |
| /* IPv4-translated: ::ffff:0:a.b.c.d */ |
| ((cnt_max == 4 && a[4] == 0xffff && a[5] == 0) || |
| /* IPv4-mapped: ::ffff:a.b.c.d */ |
| (cnt_max == 5 && a[5] == 0xffff))) |
| a4 = (uint8*) (a + 6); |
| |
| for (i = 0; i < IPV6_ADDR_LEN/2; i++) { |
| if ((uint8*) (a + i) == a4) { |
| snprintf(p, 16, ":%u.%u.%u.%u", a4[0], a4[1], a4[2], a4[3]); |
| break; |
| } else if (i == i_max) { |
| *p++ = ':'; |
| i += cnt_max - 1; |
| p[0] = ':'; |
| p[1] = '\0'; |
| } else { |
| if (i) |
| *p++ = ':'; |
| p += snprintf(p, 8, "%x", ntoh16(a[i])); |
| } |
| } |
| |
| return buf; |
| } |
| |
| #if !defined(BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS) |
| const unsigned char bcm_ctype[] = { |
| |
| _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 0-7 */ |
| _BCM_C, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C, |
| _BCM_C, /* 8-15 */ |
| _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 16-23 */ |
| _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 24-31 */ |
| _BCM_S|_BCM_SP,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 32-39 */ |
| _BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 40-47 */ |
| _BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D, /* 48-55 */ |
| _BCM_D,_BCM_D,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 56-63 */ |
| _BCM_P, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, |
| _BCM_U|_BCM_X, _BCM_U, /* 64-71 */ |
| _BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U, /* 72-79 */ |
| _BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U, /* 80-87 */ |
| _BCM_U,_BCM_U,_BCM_U,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 88-95 */ |
| _BCM_P, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, |
| _BCM_L|_BCM_X, _BCM_L, /* 96-103 */ |
| _BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L, /* 104-111 */ |
| _BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L, /* 112-119 */ |
| _BCM_L,_BCM_L,_BCM_L,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_C, /* 120-127 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 128-143 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 144-159 */ |
| _BCM_S|_BCM_SP, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, |
| _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, /* 160-175 */ |
| _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, |
| _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, /* 176-191 */ |
| _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, |
| _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, /* 192-207 */ |
| _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_P, _BCM_U, _BCM_U, _BCM_U, |
| _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_L, /* 208-223 */ |
| _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, |
| _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, /* 224-239 */ |
| _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_P, _BCM_L, _BCM_L, _BCM_L, |
| _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L /* 240-255 */ |
| }; |
| |
| uint64 |
| bcm_strtoull(const char *cp, char **endp, uint base) |
| { |
| uint64 result, last_result = 0, value; |
| bool minus; |
| |
| minus = FALSE; |
| |
| while (bcm_isspace(*cp)) |
| cp++; |
| |
| if (cp[0] == '+') |
| cp++; |
| else if (cp[0] == '-') { |
| minus = TRUE; |
| cp++; |
| } |
| |
| if (base == 0) { |
| if (cp[0] == '0') { |
| if ((cp[1] == 'x') || (cp[1] == 'X')) { |
| base = 16; |
| cp = &cp[2]; |
| } else { |
| base = 8; |
| cp = &cp[1]; |
| } |
| } else |
| base = 10; |
| } else if (base == 16 && (cp[0] == '0') && ((cp[1] == 'x') || (cp[1] == 'X'))) { |
| cp = &cp[2]; |
| } |
| |
| result = 0; |
| |
| while (bcm_isxdigit(*cp) && |
| (value = (uint64)(bcm_isdigit(*cp) ? *cp-'0' : bcm_toupper(*cp)-'A'+10)) < base) { |
| result = result*base + value; |
| /* Detected overflow */ |
| if (result < last_result && !minus) { |
| if (endp) { |
| /* Go to the end of current number */ |
| while (bcm_isxdigit(*cp)) { |
| cp++; |
| } |
| *endp = DISCARD_QUAL(cp, char); |
| } |
| return (ulong)-1; |
| } |
| last_result = result; |
| cp++; |
| } |
| |
| if (minus) |
| result = (ulong)(-(long)result); |
| |
| if (endp) |
| *endp = DISCARD_QUAL(cp, char); |
| |
| return (result); |
| } |
| |
| ulong |
| bcm_strtoul(const char *cp, char **endp, uint base) |
| { |
| return (ulong) bcm_strtoull(cp, endp, base); |
| } |
| |
| int |
| bcm_atoi(const char *s) |
| { |
| return (int)bcm_strtoul(s, NULL, 10); |
| } |
| |
| /* return pointer to location of substring 'needle' in 'haystack' */ |
| char * |
| bcmstrstr(const char *haystack, const char *needle) |
| { |
| int len, nlen; |
| int i; |
| |
| if ((haystack == NULL) || (needle == NULL)) |
| return DISCARD_QUAL(haystack, char); |
| |
| nlen = (int)strlen(needle); |
| len = (int)strlen(haystack) - nlen + 1; |
| |
| for (i = 0; i < len; i++) |
| if (memcmp(needle, &haystack[i], (size_t)nlen) == 0) |
| return DISCARD_QUAL(&haystack[i], char); |
| return (NULL); |
| } |
| |
| char * |
| bcmstrnstr(const char *s, uint s_len, const char *substr, uint substr_len) |
| { |
| for (; s_len >= substr_len; s++, s_len--) |
| if (strncmp(s, substr, substr_len) == 0) |
| return DISCARD_QUAL(s, char); |
| |
| return NULL; |
| } |
| |
| char * |
| bcmstrcat(char *dest, const char *src) |
| { |
| char *p; |
| |
| p = dest + strlen(dest); |
| |
| while ((*p++ = *src++) != '\0') |
| ; |
| |
| return (dest); |
| } |
| |
| char * |
| bcmstrncat(char *dest, const char *src, uint size) |
| { |
| char *endp; |
| char *p; |
| |
| p = dest + strlen(dest); |
| endp = p + size; |
| |
| while (p != endp && (*p++ = *src++) != '\0') |
| ; |
| |
| return (dest); |
| } |
| |
| /**************************************************************************** |
| * Function: bcmstrtok |
| * |
| * Purpose: |
| * Tokenizes a string. This function is conceptually similiar to ANSI C strtok(), |
| * but allows strToken() to be used by different strings or callers at the same |
| * time. Each call modifies '*string' by substituting a NULL character for the |
| * first delimiter that is encountered, and updates 'string' to point to the char |
| * after the delimiter. Leading delimiters are skipped. |
| * |
| * Parameters: |
| * string (mod) Ptr to string ptr, updated by token. |
| * delimiters (in) Set of delimiter characters. |
| * tokdelim (out) Character that delimits the returned token. (May |
| * be set to NULL if token delimiter is not required). |
| * |
| * Returns: Pointer to the next token found. NULL when no more tokens are found. |
| ***************************************************************************** |
| */ |
| char * |
| bcmstrtok(char **string, const char *delimiters, char *tokdelim) |
| { |
| unsigned char *str; |
| unsigned long map[8]; |
| int count; |
| char *nextoken; |
| |
| if (tokdelim != NULL) { |
| /* Prime the token delimiter */ |
| *tokdelim = '\0'; |
| } |
| |
| /* Clear control map */ |
| for (count = 0; count < 8; count++) { |
| map[count] = 0; |
| } |
| |
| /* Set bits in delimiter table */ |
| do { |
| map[*delimiters >> 5] |= (1 << (*delimiters & 31)); |
| } |
| while (*delimiters++); |
| |
| str = (unsigned char*)*string; |
| |
| /* Find beginning of token (skip over leading delimiters). Note that |
| * there is no token iff this loop sets str to point to the terminal |
| * null (*str == '\0') |
| */ |
| while (((map[*str >> 5] & (1 << (*str & 31))) && *str) || (*str == ' ')) { |
| str++; |
| } |
| |
| nextoken = (char*)str; |
| |
| /* Find the end of the token. If it is not the end of the string, |
| * put a null there. |
| */ |
| for (; *str; str++) { |
| if (map[*str >> 5] & (1 << (*str & 31))) { |
| if (tokdelim != NULL) { |
| *tokdelim = (char)*str; |
| } |
| |
| *str++ = '\0'; |
| break; |
| } |
| } |
| |
| *string = (char*)str; |
| |
| /* Determine if a token has been found. */ |
| if (nextoken == (char *) str) { |
| return NULL; |
| } |
| else { |
| return nextoken; |
| } |
| } |
| |
| #define xToLower(C) \ |
| ((C >= 'A' && C <= 'Z') ? (char)((int)C - (int)'A' + (int)'a') : C) |
| |
| /**************************************************************************** |
| * Function: bcmstricmp |
| * |
| * Purpose: Compare to strings case insensitively. |
| * |
| * Parameters: s1 (in) First string to compare. |
| * s2 (in) Second string to compare. |
| * |
| * Returns: Return 0 if the two strings are equal, -1 if t1 < t2 and 1 if |
| * t1 > t2, when ignoring case sensitivity. |
| ***************************************************************************** |
| */ |
| int |
| bcmstricmp(const char *s1, const char *s2) |
| { |
| char dc, sc; |
| |
| while (*s2 && *s1) { |
| dc = xToLower(*s1); |
| sc = xToLower(*s2); |
| if (dc < sc) return -1; |
| if (dc > sc) return 1; |
| s1++; |
| s2++; |
| } |
| |
| if (*s1 && !*s2) return 1; |
| if (!*s1 && *s2) return -1; |
| return 0; |
| } |
| |
| /**************************************************************************** |
| * Function: bcmstrnicmp |
| * |
| * Purpose: Compare to strings case insensitively, upto a max of 'cnt' |
| * characters. |
| * |
| * Parameters: s1 (in) First string to compare. |
| * s2 (in) Second string to compare. |
| * cnt (in) Max characters to compare. |
| * |
| * Returns: Return 0 if the two strings are equal, -1 if t1 < t2 and 1 if |
| * t1 > t2, when ignoring case sensitivity. |
| ***************************************************************************** |
| */ |
| int |
| bcmstrnicmp(const char* s1, const char* s2, int cnt) |
| { |
| char dc, sc; |
| |
| while (*s2 && *s1 && cnt) { |
| dc = xToLower(*s1); |
| sc = xToLower(*s2); |
| if (dc < sc) return -1; |
| if (dc > sc) return 1; |
| s1++; |
| s2++; |
| cnt--; |
| } |
| |
| if (!cnt) return 0; |
| if (*s1 && !*s2) return 1; |
| if (!*s1 && *s2) return -1; |
| return 0; |
| } |
| |
| /* parse a xx:xx:xx:xx:xx:xx format ethernet address */ |
| int |
| bcm_ether_atoe(const char *p, struct ether_addr *ea) |
| { |
| int i = 0; |
| char *ep; |
| |
| for (;;) { |
| ea->octet[i++] = (uint8) bcm_strtoul(p, &ep, 16); |
| p = ep; |
| if (!*p++ || i == 6) |
| break; |
| } |
| |
| return (i == 6); |
| } |
| |
| int |
| bcm_atoipv4(const char *p, struct ipv4_addr *ip) |
| { |
| |
| int i = 0; |
| char *c; |
| for (;;) { |
| ip->addr[i++] = (uint8)bcm_strtoul(p, &c, 0); |
| if (*c++ != '.' || i == IPV4_ADDR_LEN) |
| break; |
| p = c; |
| } |
| return (i == IPV4_ADDR_LEN); |
| } |
| #endif /* !BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS */ |
| |
| #if defined(CONFIG_USBRNDIS_RETAIL) || defined(NDIS_MINIPORT_DRIVER) |
| /* registry routine buffer preparation utility functions: |
| * parameter order is like strncpy, but returns count |
| * of bytes copied. Minimum bytes copied is null char(1)/wchar(2) |
| */ |
| ulong |
| wchar2ascii(char *abuf, ushort *wbuf, ushort wbuflen, ulong abuflen) |
| { |
| ulong copyct = 1; |
| ushort i; |
| |
| if (abuflen == 0) |
| return 0; |
| |
| /* wbuflen is in bytes */ |
| wbuflen /= sizeof(ushort); |
| |
| for (i = 0; i < wbuflen; ++i) { |
| if (--abuflen == 0) |
| break; |
| *abuf++ = (char) *wbuf++; |
| ++copyct; |
| } |
| *abuf = '\0'; |
| |
| return copyct; |
| } |
| #endif /* CONFIG_USBRNDIS_RETAIL || NDIS_MINIPORT_DRIVER */ |
| |
| #ifdef BCM_OBJECT_TRACE |
| |
| #define BCM_OBJECT_MERGE_SAME_OBJ 0 |
| |
| /* some place may add / remove the object to trace list for Linux: */ |
| /* add: osl_alloc_skb dev_alloc_skb skb_realloc_headroom dhd_start_xmit */ |
| /* remove: osl_pktfree dev_kfree_skb netif_rx */ |
| |
| #define BCM_OBJDBG_COUNT (1024 * 100) |
| static spinlock_t dbgobj_lock; |
| #define BCM_OBJDBG_LOCK_INIT() spin_lock_init(&dbgobj_lock) |
| #define BCM_OBJDBG_LOCK_DESTROY() |
| #define BCM_OBJDBG_LOCK spin_lock_irqsave |
| #define BCM_OBJDBG_UNLOCK spin_unlock_irqrestore |
| |
| #define BCM_OBJDBG_ADDTOHEAD 0 |
| #define BCM_OBJDBG_ADDTOTAIL 1 |
| |
| #define BCM_OBJDBG_CALLER_LEN 32 |
| struct bcm_dbgobj { |
| struct bcm_dbgobj *prior; |
| struct bcm_dbgobj *next; |
| uint32 flag; |
| void *obj; |
| uint32 obj_sn; |
| uint32 obj_state; |
| uint32 line; |
| char caller[BCM_OBJDBG_CALLER_LEN]; |
| }; |
| |
| static struct bcm_dbgobj *dbgobj_freehead = NULL; |
| static struct bcm_dbgobj *dbgobj_freetail = NULL; |
| static struct bcm_dbgobj *dbgobj_objhead = NULL; |
| static struct bcm_dbgobj *dbgobj_objtail = NULL; |
| |
| static uint32 dbgobj_sn = 0; |
| static int dbgobj_count = 0; |
| static struct bcm_dbgobj bcm_dbg_objs[BCM_OBJDBG_COUNT]; |
| |
| void |
| bcm_object_trace_init(void) |
| { |
| int i = 0; |
| BCM_OBJDBG_LOCK_INIT(); |
| memset(&bcm_dbg_objs, 0x00, sizeof(struct bcm_dbgobj) * BCM_OBJDBG_COUNT); |
| dbgobj_freehead = &bcm_dbg_objs[0]; |
| dbgobj_freetail = &bcm_dbg_objs[BCM_OBJDBG_COUNT - 1]; |
| |
| for (i = 0; i < BCM_OBJDBG_COUNT; ++i) { |
| bcm_dbg_objs[i].next = (i == (BCM_OBJDBG_COUNT - 1)) ? |
| dbgobj_freehead : &bcm_dbg_objs[i + 1]; |
| bcm_dbg_objs[i].prior = (i == 0) ? |
| dbgobj_freetail : &bcm_dbg_objs[i - 1]; |
| } |
| } |
| |
| void |
| bcm_object_trace_deinit(void) |
| { |
| if (dbgobj_objhead || dbgobj_objtail) { |
| printf("%s: not all objects are released\n", __FUNCTION__); |
| ASSERT(0); |
| } |
| BCM_OBJDBG_LOCK_DESTROY(); |
| } |
| |
| static void |
| bcm_object_rm_list(struct bcm_dbgobj **head, struct bcm_dbgobj **tail, |
| struct bcm_dbgobj *dbgobj) |
| { |
| if ((dbgobj == *head) && (dbgobj == *tail)) { |
| *head = NULL; |
| *tail = NULL; |
| } else if (dbgobj == *head) { |
| *head = (*head)->next; |
| } else if (dbgobj == *tail) { |
| *tail = (*tail)->prior; |
| } |
| dbgobj->next->prior = dbgobj->prior; |
| dbgobj->prior->next = dbgobj->next; |
| } |
| |
| static void |
| bcm_object_add_list(struct bcm_dbgobj **head, struct bcm_dbgobj **tail, |
| struct bcm_dbgobj *dbgobj, int addtotail) |
| { |
| if (!(*head) && !(*tail)) { |
| *head = dbgobj; |
| *tail = dbgobj; |
| dbgobj->next = dbgobj; |
| dbgobj->prior = dbgobj; |
| } else if ((*head) && (*tail)) { |
| (*tail)->next = dbgobj; |
| (*head)->prior = dbgobj; |
| dbgobj->next = *head; |
| dbgobj->prior = *tail; |
| if (addtotail == BCM_OBJDBG_ADDTOTAIL) |
| *tail = dbgobj; |
| else |
| *head = dbgobj; |
| } else { |
| ASSERT(0); /* can't be this case */ |
| } |
| } |
| |
| static INLINE void |
| bcm_object_movetoend(struct bcm_dbgobj **head, struct bcm_dbgobj **tail, |
| struct bcm_dbgobj *dbgobj, int movetotail) |
| { |
| if ((*head) && (*tail)) { |
| if (movetotail == BCM_OBJDBG_ADDTOTAIL) { |
| if (dbgobj != (*tail)) { |
| bcm_object_rm_list(head, tail, dbgobj); |
| bcm_object_add_list(head, tail, dbgobj, movetotail); |
| } |
| } else { |
| if (dbgobj != (*head)) { |
| bcm_object_rm_list(head, tail, dbgobj); |
| bcm_object_add_list(head, tail, dbgobj, movetotail); |
| } |
| } |
| } else { |
| ASSERT(0); /* can't be this case */ |
| } |
| } |
| |
| void |
| bcm_object_trace_opr(void *obj, uint32 opt, const char *caller, int line) |
| { |
| struct bcm_dbgobj *dbgobj; |
| unsigned long flags; |
| |
| BCM_REFERENCE(flags); |
| BCM_OBJDBG_LOCK(&dbgobj_lock, flags); |
| |
| if (opt == BCM_OBJDBG_ADD_PKT || |
| opt == BCM_OBJDBG_ADD) { |
| dbgobj = dbgobj_objtail; |
| while (dbgobj) { |
| if (dbgobj->obj == obj) { |
| printf("%s: obj %p allocated from %s(%d)," |
| " allocate again from %s(%d)\n", |
| __FUNCTION__, dbgobj->obj, |
| dbgobj->caller, dbgobj->line, |
| caller, line); |
| ASSERT(0); |
| goto EXIT; |
| } |
| dbgobj = dbgobj->prior; |
| if (dbgobj == dbgobj_objtail) |
| break; |
| } |
| |
| #if BCM_OBJECT_MERGE_SAME_OBJ |
| dbgobj = dbgobj_freetail; |
| while (dbgobj) { |
| if (dbgobj->obj == obj) { |
| goto FREED_ENTRY_FOUND; |
| } |
| dbgobj = dbgobj->prior; |
| if (dbgobj == dbgobj_freetail) |
| break; |
| } |
| #endif /* BCM_OBJECT_MERGE_SAME_OBJ */ |
| |
| dbgobj = dbgobj_freehead; |
| #if BCM_OBJECT_MERGE_SAME_OBJ |
| FREED_ENTRY_FOUND: |
| #endif /* BCM_OBJECT_MERGE_SAME_OBJ */ |
| if (!dbgobj) { |
| printf("%s: already got %d objects ?????????????????????\n", |
| __FUNCTION__, BCM_OBJDBG_COUNT); |
| ASSERT(0); |
| goto EXIT; |
| } |
| |
| bcm_object_rm_list(&dbgobj_freehead, &dbgobj_freetail, dbgobj); |
| dbgobj->obj = obj; |
| strncpy(dbgobj->caller, caller, BCM_OBJDBG_CALLER_LEN); |
| dbgobj->caller[BCM_OBJDBG_CALLER_LEN-1] = '\0'; |
| dbgobj->line = line; |
| dbgobj->flag = 0; |
| if (opt == BCM_OBJDBG_ADD_PKT) { |
| dbgobj->obj_sn = dbgobj_sn++; |
| dbgobj->obj_state = 0; |
| /* first 4 bytes is pkt sn */ |
| if (((unsigned long)PKTTAG(obj)) & 0x3) |
| printf("pkt tag address not aligned by 4: %p\n", PKTTAG(obj)); |
| *(uint32*)PKTTAG(obj) = dbgobj->obj_sn; |
| } |
| bcm_object_add_list(&dbgobj_objhead, &dbgobj_objtail, dbgobj, |
| BCM_OBJDBG_ADDTOTAIL); |
| |
| dbgobj_count++; |
| |
| } else if (opt == BCM_OBJDBG_REMOVE) { |
| dbgobj = dbgobj_objtail; |
| while (dbgobj) { |
| if (dbgobj->obj == obj) { |
| if (dbgobj->flag) { |
| printf("%s: rm flagged obj %p flag 0x%08x from %s(%d)\n", |
| __FUNCTION__, obj, dbgobj->flag, caller, line); |
| } |
| bcm_object_rm_list(&dbgobj_objhead, &dbgobj_objtail, dbgobj); |
| memset(dbgobj->caller, 0x00, BCM_OBJDBG_CALLER_LEN); |
| strncpy(dbgobj->caller, caller, BCM_OBJDBG_CALLER_LEN); |
| dbgobj->caller[BCM_OBJDBG_CALLER_LEN-1] = '\0'; |
| dbgobj->line = line; |
| bcm_object_add_list(&dbgobj_freehead, &dbgobj_freetail, dbgobj, |
| BCM_OBJDBG_ADDTOTAIL); |
| dbgobj_count--; |
| goto EXIT; |
| } |
| dbgobj = dbgobj->prior; |
| if (dbgobj == dbgobj_objtail) |
| break; |
| } |
| |
| dbgobj = dbgobj_freetail; |
| while (dbgobj && dbgobj->obj) { |
| if (dbgobj->obj == obj) { |
| printf("%s: obj %p already freed from from %s(%d)," |
| " try free again from %s(%d)\n", |
| __FUNCTION__, obj, |
| dbgobj->caller, dbgobj->line, |
| caller, line); |
| //ASSERT(0); /* release same obj more than one time? */ |
| goto EXIT; |
| } |
| dbgobj = dbgobj->prior; |
| if (dbgobj == dbgobj_freetail) |
| break; |
| } |
| |
| printf("%s: ################### release none-existing obj %p from %s(%d)\n", |
| __FUNCTION__, obj, caller, line); |
| //ASSERT(0); /* release same obj more than one time? */ |
| |
| } |
| |
| EXIT: |
| BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags); |
| return; |
| } |
| |
| void |
| bcm_object_trace_upd(void *obj, void *obj_new) |
| { |
| struct bcm_dbgobj *dbgobj; |
| unsigned long flags; |
| |
| BCM_REFERENCE(flags); |
| BCM_OBJDBG_LOCK(&dbgobj_lock, flags); |
| |
| dbgobj = dbgobj_objtail; |
| while (dbgobj) { |
| if (dbgobj->obj == obj) { |
| dbgobj->obj = obj_new; |
| if (dbgobj != dbgobj_objtail) { |
| bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail, |
| dbgobj, BCM_OBJDBG_ADDTOTAIL); |
| } |
| goto EXIT; |
| } |
| dbgobj = dbgobj->prior; |
| if (dbgobj == dbgobj_objtail) |
| break; |
| } |
| |
| EXIT: |
| BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags); |
| return; |
| } |
| |
| void |
| bcm_object_trace_chk(void *obj, uint32 chksn, uint32 sn, |
| const char *caller, int line) |
| { |
| struct bcm_dbgobj *dbgobj; |
| unsigned long flags; |
| |
| BCM_REFERENCE(flags); |
| BCM_OBJDBG_LOCK(&dbgobj_lock, flags); |
| |
| dbgobj = dbgobj_objtail; |
| while (dbgobj) { |
| if ((dbgobj->obj == obj) && |
| ((!chksn) || (dbgobj->obj_sn == sn))) { |
| if (dbgobj != dbgobj_objtail) { |
| bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail, |
| dbgobj, BCM_OBJDBG_ADDTOTAIL); |
| } |
| goto EXIT; |
| } |
| dbgobj = dbgobj->prior; |
| if (dbgobj == dbgobj_objtail) |
| break; |
| } |
| |
| dbgobj = dbgobj_freetail; |
| while (dbgobj) { |
| if ((dbgobj->obj == obj) && |
| ((!chksn) || (dbgobj->obj_sn == sn))) { |
| printf("%s: (%s:%d) obj %p (sn %d state %d) was freed from %s(%d)\n", |
| __FUNCTION__, caller, line, |
| dbgobj->obj, dbgobj->obj_sn, dbgobj->obj_state, |
| dbgobj->caller, dbgobj->line); |
| goto EXIT; |
| } |
| else if (dbgobj->obj == NULL) { |
| break; |
| } |
| dbgobj = dbgobj->prior; |
| if (dbgobj == dbgobj_freetail) |
| break; |
| } |
| |
| printf("%s: obj %p not found, check from %s(%d), chksn %s, sn %d\n", |
| __FUNCTION__, obj, caller, line, chksn ? "yes" : "no", sn); |
| dbgobj = dbgobj_objtail; |
| while (dbgobj) { |
| printf("%s: (%s:%d) obj %p sn %d was allocated from %s(%d)\n", |
| __FUNCTION__, caller, line, |
| dbgobj->obj, dbgobj->obj_sn, dbgobj->caller, dbgobj->line); |
| dbgobj = dbgobj->prior; |
| if (dbgobj == dbgobj_objtail) |
| break; |
| } |
| |
| EXIT: |
| BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags); |
| return; |
| } |
| |
| void |
| bcm_object_feature_set(void *obj, uint32 type, uint32 value) |
| { |
| struct bcm_dbgobj *dbgobj; |
| unsigned long flags; |
| |
| BCM_REFERENCE(flags); |
| BCM_OBJDBG_LOCK(&dbgobj_lock, flags); |
| |
| dbgobj = dbgobj_objtail; |
| while (dbgobj) { |
| if (dbgobj->obj == obj) { |
| if (type == BCM_OBJECT_FEATURE_FLAG) { |
| if (value & BCM_OBJECT_FEATURE_CLEAR) |
| dbgobj->flag &= ~(value); |
| else |
| dbgobj->flag |= (value); |
| } else if (type == BCM_OBJECT_FEATURE_PKT_STATE) { |
| dbgobj->obj_state = value; |
| } |
| if (dbgobj != dbgobj_objtail) { |
| bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail, |
| dbgobj, BCM_OBJDBG_ADDTOTAIL); |
| } |
| goto EXIT; |
| } |
| dbgobj = dbgobj->prior; |
| if (dbgobj == dbgobj_objtail) |
| break; |
| } |
| |
| printf("%s: obj %p not found in active list\n", __FUNCTION__, obj); |
| ASSERT(0); |
| |
| EXIT: |
| BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags); |
| return; |
| } |
| |
| int |
| bcm_object_feature_get(void *obj, uint32 type, uint32 value) |
| { |
| int rtn = 0; |
| struct bcm_dbgobj *dbgobj; |
| unsigned long flags; |
| |
| BCM_REFERENCE(flags); |
| BCM_OBJDBG_LOCK(&dbgobj_lock, flags); |
| |
| dbgobj = dbgobj_objtail; |
| while (dbgobj) { |
| if (dbgobj->obj == obj) { |
| if (type == BCM_OBJECT_FEATURE_FLAG) { |
| rtn = (dbgobj->flag & value) & (~BCM_OBJECT_FEATURE_CLEAR); |
| } |
| if (dbgobj != dbgobj_objtail) { |
| bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail, |
| dbgobj, BCM_OBJDBG_ADDTOTAIL); |
| } |
| goto EXIT; |
| } |
| dbgobj = dbgobj->prior; |
| if (dbgobj == dbgobj_objtail) |
| break; |
| } |
| |
| printf("%s: obj %p not found in active list\n", __FUNCTION__, obj); |
| ASSERT(0); |
| |
| EXIT: |
| BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags); |
| return rtn; |
| } |
| |
| #endif /* BCM_OBJECT_TRACE */ |
| |
| uint8 * |
| bcm_write_tlv(int type, const void *data, int datalen, uint8 *dst) |
| { |
| uint8 *new_dst = dst; |
| bcm_tlv_t *dst_tlv = (bcm_tlv_t *)dst; |
| |
| /* dst buffer should always be valid */ |
| ASSERT(dst); |
| |
| /* data len must be within valid range */ |
| ASSERT((datalen >= 0) && (datalen <= BCM_TLV_MAX_DATA_SIZE)); |
| |
| /* source data buffer pointer should be valid, unless datalen is 0 |
| * meaning no data with this TLV |
| */ |
| ASSERT((data != NULL) || (datalen == 0)); |
| |
| /* only do work if the inputs are valid |
| * - must have a dst to write to AND |
| * - datalen must be within range AND |
| * - the source data pointer must be non-NULL if datalen is non-zero |
| * (this last condition detects datalen > 0 with a NULL data pointer) |
| */ |
| if ((dst != NULL) && |
| ((datalen >= 0) && (datalen <= BCM_TLV_MAX_DATA_SIZE)) && |
| ((data != NULL) || (datalen == 0))) { |
| |
| /* write type, len fields */ |
| dst_tlv->id = (uint8)type; |
| dst_tlv->len = (uint8)datalen; |
| |
| /* if data is present, copy to the output buffer and update |
| * pointer to output buffer |
| */ |
| if (datalen > 0) { |
| |
| memcpy(dst_tlv->data, data, (size_t)datalen); |
| } |
| |
| /* update the output destination poitner to point past |
| * the TLV written |
| */ |
| new_dst = dst + BCM_TLV_HDR_SIZE + datalen; |
| } |
| |
| return (new_dst); |
| } |
| |
| uint8 * |
| bcm_write_tlv_ext(uint8 type, uint8 ext, const void *data, uint8 datalen, uint8 *dst) |
| { |
| uint8 *new_dst = dst; |
| bcm_tlv_ext_t *dst_tlv = (bcm_tlv_ext_t *)dst; |
| |
| /* dst buffer should always be valid */ |
| ASSERT(dst); |
| |
| /* data len must be within valid range */ |
| ASSERT(datalen <= BCM_TLV_EXT_MAX_DATA_SIZE); |
| |
| /* source data buffer pointer should be valid, unless datalen is 0 |
| * meaning no data with this TLV |
| */ |
| ASSERT((data != NULL) || (datalen == 0)); |
| |
| /* only do work if the inputs are valid |
| * - must have a dst to write to AND |
| * - datalen must be within range AND |
| * - the source data pointer must be non-NULL if datalen is non-zero |
| * (this last condition detects datalen > 0 with a NULL data pointer) |
| */ |
| if ((dst != NULL) && |
| (datalen <= BCM_TLV_EXT_MAX_DATA_SIZE) && |
| ((data != NULL) || (datalen == 0))) { |
| |
| /* write type, len fields */ |
| dst_tlv->id = (uint8)type; |
| dst_tlv->ext = ext; |
| dst_tlv->len = 1 + (uint8)datalen; |
| |
| /* if data is present, copy to the output buffer and update |
| * pointer to output buffer |
| */ |
| if (datalen > 0) { |
| memcpy(dst_tlv->data, data, datalen); |
| } |
| |
| /* update the output destination poitner to point past |
| * the TLV written |
| */ |
| new_dst = dst + BCM_TLV_EXT_HDR_SIZE + datalen; |
| } |
| |
| return (new_dst); |
| } |
| |
| uint8 * |
| bcm_write_tlv_safe(int type, const void *data, int datalen, uint8 *dst, int dst_maxlen) |
| { |
| uint8 *new_dst = dst; |
| |
| if ((datalen >= 0) && (datalen <= BCM_TLV_MAX_DATA_SIZE)) { |
| |
| /* if len + tlv hdr len is more than destlen, don't do anything |
| * just return the buffer untouched |
| */ |
| if ((int)(datalen + (int)BCM_TLV_HDR_SIZE) <= dst_maxlen) { |
| |
| new_dst = bcm_write_tlv(type, data, datalen, dst); |
| } |
| } |
| |
| return (new_dst); |
| } |
| |
| uint8 * |
| bcm_copy_tlv(const void *src, uint8 *dst) |
| { |
| uint8 *new_dst = dst; |
| const bcm_tlv_t *src_tlv = (const bcm_tlv_t *)src; |
| uint totlen; |
| |
| ASSERT(dst && src); |
| if (dst && src) { |
| |
| totlen = BCM_TLV_HDR_SIZE + src_tlv->len; |
| memcpy(dst, src_tlv, totlen); |
| new_dst = dst + totlen; |
| } |
| |
| return (new_dst); |
| } |
| |
| uint8 *bcm_copy_tlv_safe(const void *src, uint8 *dst, int dst_maxlen) |
| { |
| uint8 *new_dst = dst; |
| const bcm_tlv_t *src_tlv = (const bcm_tlv_t *)src; |
| |
| ASSERT(src); |
| if (src) { |
| if (bcm_valid_tlv(src_tlv, dst_maxlen)) { |
| new_dst = bcm_copy_tlv(src, dst); |
| } |
| } |
| |
| return (new_dst); |
| } |
| |
| #if !defined(BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS) |
| /******************************************************************************* |
| * crc8 |
| * |
| * Computes a crc8 over the input data using the polynomial: |
| * |
| * x^8 + x^7 +x^6 + x^4 + x^2 + 1 |
| * |
| * The caller provides the initial value (either CRC8_INIT_VALUE |
| * or the previous returned value) to allow for processing of |
| * discontiguous blocks of data. When generating the CRC the |
| * caller is responsible for complementing the final return value |
| * and inserting it into the byte stream. When checking, a final |
| * return value of CRC8_GOOD_VALUE indicates a valid CRC. |
| * |
| * Reference: Dallas Semiconductor Application Note 27 |
| * Williams, Ross N., "A Painless Guide to CRC Error Detection Algorithms", |
| * ver 3, Aug 1993, ross@guest.adelaide.edu.au, Rocksoft Pty Ltd., |
| * ftp://ftp.rocksoft.com/clients/rocksoft/papers/crc_v3.txt |
| * |
| * **************************************************************************** |
| */ |
| |
| static const uint8 crc8_table[256] = { |
| 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B, |
| 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21, |
| 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF, |
| 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5, |
| 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14, |
| 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E, |
| 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80, |
| 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA, |
| 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95, |
| 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF, |
| 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01, |
| 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B, |
| 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA, |
| 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0, |
| 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E, |
| 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34, |
| 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0, |
| 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A, |
| 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54, |
| 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E, |
| 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF, |
| 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5, |
| 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B, |
| 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61, |
| 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E, |
| 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74, |
| 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA, |
| 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0, |
| 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41, |
| 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B, |
| 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5, |
| 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F |
| }; |
| |
| #define CRC_INNER_LOOP(n, c, x) \ |
| (c) = ((c) >> 8) ^ crc##n##_table[((c) ^ (x)) & 0xff] |
| |
| uint8 |
| hndcrc8( |
| const uint8 *pdata, /* pointer to array of data to process */ |
| uint nbytes, /* number of input data bytes to process */ |
| uint8 crc /* either CRC8_INIT_VALUE or previous return value */ |
| ) |
| { |
| /* hard code the crc loop instead of using CRC_INNER_LOOP macro |
| * to avoid the undefined and unnecessary (uint8 >> 8) operation. |
| */ |
| while (nbytes-- > 0) |
| crc = crc8_table[(crc ^ *pdata++) & 0xff]; |
| |
| return crc; |
| } |
| |
| /******************************************************************************* |
| * crc16 |
| * |
| * Computes a crc16 over the input data using the polynomial: |
| * |
| * x^16 + x^12 +x^5 + 1 |
| * |
| * The caller provides the initial value (either CRC16_INIT_VALUE |
| * or the previous returned value) to allow for processing of |
| * discontiguous blocks of data. When generating the CRC the |
| * caller is responsible for complementing the final return value |
| * and inserting it into the byte stream. When checking, a final |
| * return value of CRC16_GOOD_VALUE indicates a valid CRC. |
| * |
| * Reference: Dallas Semiconductor Application Note 27 |
| * Williams, Ross N., "A Painless Guide to CRC Error Detection Algorithms", |
| * ver 3, Aug 1993, ross@guest.adelaide.edu.au, Rocksoft Pty Ltd., |
| * ftp://ftp.rocksoft.com/clients/rocksoft/papers/crc_v3.txt |
| * |
| * **************************************************************************** |
| */ |
| |
| static const uint16 crc16_table[256] = { |
| 0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF, |
| 0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7, |
| 0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x75B7, 0x643E, |
| 0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0xF9FF, 0xE876, |
| 0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x4434, 0x55BD, |
| 0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0xC87C, 0xD9F5, |
| 0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x54B5, 0x453C, |
| 0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0xD8FD, 0xC974, |
| 0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x2732, 0x36BB, |
| 0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0xAB7A, 0xBAF3, |
| 0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x37B3, 0x263A, |
| 0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0xBBFB, 0xAA72, |
| 0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x0630, 0x17B9, |
| 0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x8A78, 0x9BF1, |
| 0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x16B1, 0x0738, |
| 0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x9AF9, 0x8B70, |
| 0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0xE13E, 0xF0B7, |
| 0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x6D76, 0x7CFF, |
| 0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0xF1BF, 0xE036, |
| 0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x7DF7, 0x6C7E, |
| 0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0xC03C, 0xD1B5, |
| 0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x4C74, 0x5DFD, |
| 0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0xD0BD, 0xC134, |
| 0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x5CF5, 0x4D7C, |
| 0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0xA33A, 0xB2B3, |
| 0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x2F72, 0x3EFB, |
| 0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0xB3BB, 0xA232, |
| 0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x3FF3, 0x2E7A, |
| 0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x8238, 0x93B1, |
| 0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x0E70, 0x1FF9, |
| 0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x92B9, 0x8330, |
| 0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x1EF1, 0x0F78 |
| }; |
| |
| uint16 |
| hndcrc16( |
| const uint8 *pdata, /* pointer to array of data to process */ |
| uint nbytes, /* number of input data bytes to process */ |
| uint16 crc /* either CRC16_INIT_VALUE or previous return value */ |
| ) |
| { |
| while (nbytes-- > 0) |
| CRC_INNER_LOOP(16, crc, *pdata++); |
| return crc; |
| } |
| |
| static const uint32 crc32_table[256] = { |
| 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, |
| 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, |
| 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, |
| 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, |
| 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, |
| 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, |
| 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, |
| 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, |
| 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, |
| 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, |
| 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, |
| 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, |
| 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, |
| 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, |
| 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, |
| 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, |
| 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, |
| 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, |
| 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, |
| 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, |
| 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, |
| 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, |
| 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, |
| 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, |
| 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, |
| 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, |
| 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, |
| 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, |
| 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, |
| 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, |
| 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, |
| 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, |
| 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, |
| 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, |
| 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, |
| 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, |
| 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, |
| 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, |
| 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, |
| 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, |
| 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, |
| 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, |
| 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, |
| 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, |
| 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, |
| 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, |
| 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, |
| 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, |
| 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, |
| 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, |
| 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, |
| 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, |
| 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, |
| 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, |
| 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, |
| 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, |
| 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, |
| 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, |
| 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, |
| 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, |
| 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, |
| 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, |
| 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, |
| 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D |
| }; |
| |
| /* |
| * crc input is CRC32_INIT_VALUE for a fresh start, or previous return value if |
| * accumulating over multiple pieces. |
| */ |
| uint32 |
| hndcrc32(const uint8 *pdata, uint nbytes, uint32 crc) |
| { |
| const uint8 *pend; |
| pend = pdata + nbytes; |
| while (pdata < pend) |
| CRC_INNER_LOOP(32, crc, *pdata++); |
| |
| return crc; |
| } |
| |
| #ifdef notdef |
| #define CLEN 1499 /* CRC Length */ |
| #define CBUFSIZ (CLEN+4) |
| #define CNBUFS 5 /* # of bufs */ |
| |
| void |
| testcrc32(void) |
| { |
| uint j, k, l; |
| uint8 *buf; |
| uint len[CNBUFS]; |
| uint32 crcr; |
| uint32 crc32tv[CNBUFS] = |
| {0xd2cb1faa, 0xd385c8fa, 0xf5b4f3f3, 0x55789e20, 0x00343110}; |
| |
| ASSERT((buf = MALLOC(CBUFSIZ*CNBUFS)) != NULL); |
| |
| /* step through all possible alignments */ |
| for (l = 0; l <= 4; l++) { |
| for (j = 0; j < CNBUFS; j++) { |
| len[j] = CLEN; |
| for (k = 0; k < len[j]; k++) |
| *(buf + j*CBUFSIZ + (k+l)) = (j+k) & 0xff; |
| } |
| |
| for (j = 0; j < CNBUFS; j++) { |
| crcr = crc32(buf + j*CBUFSIZ + l, len[j], CRC32_INIT_VALUE); |
| ASSERT(crcr == crc32tv[j]); |
| } |
| } |
| |
| MFREE(buf, CBUFSIZ*CNBUFS); |
| return; |
| } |
| #endif /* notdef */ |
| |
| /* |
| * Advance from the current 1-byte tag/1-byte length/variable-length value |
| * triple, to the next, returning a pointer to the next. |
| * If the current or next TLV is invalid (does not fit in given buffer length), |
| * NULL is returned. |
| * *buflen is not modified if the TLV elt parameter is invalid, or is decremented |
| * by the TLV parameter's length if it is valid. |
| */ |
| bcm_tlv_t * |
| bcm_next_tlv(const bcm_tlv_t *elt, uint *buflen) |
| { |
| uint len; |
| |
| /* validate current elt */ |
| if (!bcm_valid_tlv(elt, *buflen)) { |
| return NULL; |
| } |
| |
| /* advance to next elt */ |
| len = elt->len; |
| elt = (const bcm_tlv_t*)(elt->data + len); |
| *buflen -= (TLV_HDR_LEN + len); |
| |
| /* validate next elt */ |
| if (!bcm_valid_tlv(elt, *buflen)) { |
| return NULL; |
| } |
| |
| GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); |
| return (bcm_tlv_t *)(elt); |
| GCC_DIAGNOSTIC_POP(); |
| } |
| |
| /** |
| * Advance a const tlv buffer pointer and length up to the given tlv element pointer |
| * 'elt'. The function checks that elt is a valid tlv; the elt pointer and data |
| * are all in the range of the buffer/length. |
| * |
| * @param elt pointer to a valid bcm_tlv_t in the buffer |
| * @param buffer pointer to a tlv buffer |
| * @param buflen length of the buffer in bytes |
| * |
| * On return, if elt is not a tlv in the buffer bounds, the *buffer parameter |
| * will be set to NULL and *buflen parameter will be set to zero. Otherwise, |
| * *buffer will point to elt, and *buflen will have been adjusted by the the |
| * difference between *buffer and elt. |
| */ |
| void |
| bcm_tlv_buffer_advance_to(const bcm_tlv_t *elt, const uint8 **buffer, uint *buflen) |
| { |
| uint new_buflen; |
| const uint8 *new_buffer; |
| |
| new_buffer = (const uint8*)elt; |
| |
| /* make sure the input buffer pointer is non-null, that (buffer + buflen) does not wrap, |
| * and that the elt pointer is in the range of [buffer, buffer + buflen] |
| */ |
| if ((*buffer != NULL) && |
| ((uintptr)*buffer < ((uintptr)*buffer + *buflen)) && |
| (new_buffer >= *buffer) && |
| (new_buffer < (*buffer + *buflen))) { |
| /* delta between buffer and new_buffer is <= *buflen, so truncating cast to uint |
| * from ptrdiff is ok |
| */ |
| uint delta = (uint)(new_buffer - *buffer); |
| |
| /* New buffer length is old len minus the delta from the buffer start to elt. |
| * The check just above guarantees that the subtractions does not underflow. |
| */ |
| new_buflen = *buflen - delta; |
| |
| /* validate current elt */ |
| if (bcm_valid_tlv(elt, new_buflen)) { |
| /* All good, so update the input/output parameters */ |
| *buffer = new_buffer; |
| *buflen = new_buflen; |
| return; |
| } |
| } |
| |
| /* something did not check out, clear out the buffer info */ |
| *buffer = NULL; |
| *buflen = 0; |
| |
| return; |
| } |
| |
| /** |
| * Advance a const tlv buffer pointer and length past the given tlv element pointer |
| * 'elt'. The function checks that elt is a valid tlv; the elt pointer and data |
| * are all in the range of the buffer/length. The function also checks that the |
| * remaining buffer starts with a valid tlv. |
| * |
| * @param elt pointer to a valid bcm_tlv_t in the buffer |
| * @param buffer pointer to a tlv buffer |
| * @param buflen length of the buffer in bytes |
| * |
| * On return, if elt is not a tlv in the buffer bounds, or the remaining buffer |
| * following the elt does not begin with a tlv in the buffer bounds, the *buffer |
| * parameter will be set to NULL and *buflen parameter will be set to zero. |
| * Otherwise, *buffer will point to the first byte past elt, and *buflen will |
| * have the remaining buffer length. |
| */ |
| void |
| bcm_tlv_buffer_advance_past(const bcm_tlv_t *elt, const uint8 **buffer, uint *buflen) |
| { |
| /* Start by advancing the buffer up to the given elt */ |
| bcm_tlv_buffer_advance_to(elt, buffer, buflen); |
| |
| /* if that did not work, bail out */ |
| if (*buflen == 0) { |
| return; |
| } |
| |
| #if defined(__COVERITY__) |
| /* The elt has been verified by bcm_tlv_buffer_advance_to() to be a valid element, |
| * so its elt->len is in the bounds of the buffer. The following check prevents |
| * Coverity from flagging the (elt->data + elt->len) statement below as using a |
| * tainted elt->len to index into array 'elt->data'. |
| */ |
| if (elt->len > *buflen) { |
| return; |
| } |
| #endif /* __COVERITY__ */ |
| |
| /* We know we are advanced up to a good tlv. |
| * Now just advance to the following tlv. |
| */ |
| elt = (const bcm_tlv_t*)(elt->data + elt->len); |
| |
| bcm_tlv_buffer_advance_to(elt, buffer, buflen); |
| |
| return; |
| } |
| |
| /* |
| * Traverse a string of 1-byte tag/1-byte length/variable-length value |
| * triples, returning a pointer to the substring whose first element |
| * matches tag |
| */ |
| bcm_tlv_t * |
| bcm_parse_tlvs(const void *buf, uint buflen, uint key) |
| { |
| const bcm_tlv_t *elt; |
| int totlen; |
| |
| if ((elt = (const bcm_tlv_t*)buf) == NULL) { |
| return NULL; |
| } |
| totlen = (int)buflen; |
| |
| /* find tagged parameter */ |
| while (totlen >= TLV_HDR_LEN) { |
| uint len = elt->len; |
| |
| /* validate remaining totlen */ |
| if ((elt->id == key) && (totlen >= (int)(len + TLV_HDR_LEN))) { |
| GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); |
| return (bcm_tlv_t *)(elt); |
| GCC_DIAGNOSTIC_POP(); |
| } |
| |
| elt = (const bcm_tlv_t*)((const uint8*)elt + (len + TLV_HDR_LEN)); |
| totlen -= (len + TLV_HDR_LEN); |
| } |
| |
| return NULL; |
| } |
| |
| bcm_tlv_t * |
| bcm_parse_tlvs_dot11(const void *buf, int buflen, uint key, bool id_ext) |
| { |
| bcm_tlv_t *elt; |
| int totlen; |
| |
| /* |
| ideally, we don't want to do that, but returning a const pointer |
| from these parse function spreads casting everywhere in the code |
| */ |
| GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); |
| elt = (bcm_tlv_t*)buf; |
| GCC_DIAGNOSTIC_POP(); |
| |
| totlen = buflen; |
| |
| /* find tagged parameter */ |
| while (totlen >= TLV_HDR_LEN) { |
| int len = elt->len; |
| |
| do { |
| /* validate remaining totlen */ |
| if (totlen < (int)(len + TLV_HDR_LEN)) |
| break; |
| |
| if (id_ext) { |
| if (!DOT11_MNG_IE_ID_EXT_MATCH(elt, key)) |
| break; |
| } else if (elt->id != key) { |
| break; |
| } |
| |
| return (bcm_tlv_t *)(elt); /* a match */ |
| } while (0); |
| |
| elt = (bcm_tlv_t*)((uint8*)elt + (len + TLV_HDR_LEN)); |
| totlen -= (len + TLV_HDR_LEN); |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Traverse a string of 1-byte tag/1-byte length/variable-length value |
| * triples, returning a pointer to the substring whose first element |
| * matches tag |
| * return NULL if not found or length field < min_varlen |
| */ |
| bcm_tlv_t * |
| bcm_parse_tlvs_min_bodylen(const void *buf, int buflen, uint key, int min_bodylen) |
| { |
| bcm_tlv_t * ret; |
| ret = bcm_parse_tlvs(buf, (uint)buflen, key); |
| if (ret == NULL || ret->len < min_bodylen) { |
| return NULL; |
| } |
| return ret; |
| } |
| |
| /* |
| * Traverse a string of 1-byte tag/1-byte length/variable-length value |
| * triples, returning a pointer to the substring whose first element |
| * matches tag. Stop parsing when we see an element whose ID is greater |
| * than the target key. |
| */ |
| const bcm_tlv_t * |
| bcm_parse_ordered_tlvs(const void *buf, int buflen, uint key) |
| { |
| const bcm_tlv_t *elt; |
| int totlen; |
| |
| elt = (const bcm_tlv_t*)buf; |
| totlen = buflen; |
| |
| /* find tagged parameter */ |
| while (totlen >= TLV_HDR_LEN) { |
| uint id = elt->id; |
| int len = elt->len; |
| |
| /* Punt if we start seeing IDs > than target key */ |
| if (id > key) { |
| return (NULL); |
| } |
| |
| /* validate remaining totlen */ |
| if ((id == key) && (totlen >= (int)(len + TLV_HDR_LEN))) { |
| return (elt); |
| } |
| |
| elt = (const bcm_tlv_t*)((const uint8*)elt + (len + TLV_HDR_LEN)); |
| totlen -= (len + TLV_HDR_LEN); |
| } |
| return NULL; |
| } |
| #endif /* !BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS */ |
| |
| #if defined(WLMSG_PRHDRS) || defined(WLMSG_PRPKT) || defined(WLMSG_ASSOC) || \ |
| defined(DHD_DEBUG) |
| int |
| bcm_format_field(const bcm_bit_desc_ex_t *bd, uint32 flags, char* buf, int len) |
| { |
| int i, slen = 0; |
| uint32 bit, mask; |
| const char *name; |
| mask = bd->mask; |
| if (len < 2 || !buf) |
| return 0; |
| |
| buf[0] = '\0'; |
| |
| for (i = 0; (name = bd->bitfield[i].name) != NULL; i++) { |
| bit = bd->bitfield[i].bit; |
| if ((flags & mask) == bit) { |
| if (len > (int)strlen(name)) { |
| slen = (int)strlen(name); |
| strncpy(buf, name, (size_t)slen+1); |
| } |
| break; |
| } |
| } |
| return slen; |
| } |
| |
| int |
| bcm_format_flags(const bcm_bit_desc_t *bd, uint32 flags, char* buf, int len) |
| { |
| int i; |
| char* p = buf; |
| char hexstr[16]; |
| int slen = 0, nlen = 0; |
| uint32 bit; |
| const char* name; |
| |
| if (len < 2 || !buf) |
| return 0; |
| |
| buf[0] = '\0'; |
| |
| for (i = 0; flags != 0; i++) { |
| bit = bd[i].bit; |
| name = bd[i].name; |
| if (bit == 0 && flags != 0) { |
| /* print any unnamed bits */ |
| snprintf(hexstr, 16, "0x%X", flags); |
| name = hexstr; |
| flags = 0; /* exit loop */ |
| } else if ((flags & bit) == 0) |
| continue; |
| flags &= ~bit; |
| nlen = (int)strlen(name); |
| slen += nlen; |
| /* count btwn flag space */ |
| if (flags != 0) |
| slen += 1; |
| /* need NULL char as well */ |
| if (len <= slen) |
| break; |
| /* copy NULL char but don't count it */ |
| strncpy(p, name, (size_t)nlen + 1); |
| p += nlen; |
| /* copy btwn flag space and NULL char */ |
| if (flags != 0) |
| p += snprintf(p, 2, " "); |
| } |
| |
| /* indicate the str was too short */ |
| if (flags != 0) { |
| p += snprintf(p, 2, ">"); |
| } |
| |
| return (int)(p - buf); |
| } |
| |
| /* print out whcih bits in octet array 'addr' are set. bcm_bit_desc_t:bit is a bit offset. */ |
| int |
| bcm_format_octets(const bcm_bit_desc_t *bd, uint bdsz, |
| const uint8 *addr, uint size, char *buf, int len) |
| { |
| uint i; |
| char *p = buf; |
| int slen = 0, nlen = 0; |
| uint32 bit; |
| const char* name; |
| bool more = FALSE; |
| |
| BCM_REFERENCE(size); |
| |
| if (len < 2 || !buf) |
| return 0; |
| |
| buf[0] = '\0'; |
| |
| for (i = 0; i < bdsz; i++) { |
| bit = bd[i].bit; |
| name = bd[i].name; |
| CLANG_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); |
| if (isset(addr, bit)) { |
| CLANG_DIAGNOSTIC_POP(); |
| nlen = (int)strlen(name); |
| slen += nlen; |
| /* need SPACE - for simplicity */ |
| slen += 1; |
| /* need NULL as well */ |
| if (len < slen + 1) { |
| more = TRUE; |
| break; |
| } |
| memcpy(p, name, (size_t)nlen); |
| p += nlen; |
| p[0] = ' '; |
| p += 1; |
| p[0] = '\0'; |
| } |
| } |
| |
| if (more) { |
| p[0] = '>'; |
| p += 1; |
| p[0] = '\0'; |
| } |
| |
| return (int)(p - buf); |
| } |
| #endif // endif |
| |
| /* print bytes formatted as hex to a string. return the resulting string length */ |
| int |
| bcm_format_hex(char *str, const void *bytes, int len) |
| { |
| int i; |
| char *p = str; |
| const uint8 *src = (const uint8*)bytes; |
| |
| for (i = 0; i < len; i++) { |
| p += snprintf(p, 3, "%02X", *src); |
| src++; |
| } |
| return (int)(p - str); |
| } |
| |
| /* pretty hex print a contiguous buffer */ |
| void |
| prhex(const char *msg, const uchar *buf, uint nbytes) |
| { |
| char line[128], *p; |
| int len = sizeof(line); |
| int nchar; |
| uint i; |
| |
| if (msg && (msg[0] != '\0')) |
| printf("%s:\n", msg); |
| |
| p = line; |
| for (i = 0; i < nbytes; i++) { |
| if (i % 16 == 0) { |
| nchar = snprintf(p, (size_t)len, " %04x: ", i); /* line prefix */ |
| p += nchar; |
| len -= nchar; |
| } |
| if (len > 0) { |
| nchar = snprintf(p, (size_t)len, "%02x ", buf[i]); |
| p += nchar; |
| len -= nchar; |
| } |
| |
| if (i % 16 == 15) { |
| printf("%s\n", line); /* flush line */ |
| p = line; |
| len = sizeof(line); |
| } |
| } |
| |
| /* flush last partial line */ |
| if (p != line) |
| printf("%s\n", line); |
| } |
| |
| static const char *crypto_algo_names[] = { |
| "NONE", |
| "WEP1", |
| "TKIP", |
| "WEP128", |
| "AES_CCM", |
| "AES_OCB_MSDU", |
| "AES_OCB_MPDU", |
| #ifdef BCMCCX |
| "CKIP", |
| "CKIP_MMH", |
| "WEP_MMH", |
| "NALG", |
| #else |
| "NALG", |
| "UNDEF", |
| "UNDEF", |
| "UNDEF", |
| #endif /* BCMCCX */ |
| #ifdef BCMWAPI_WAI |
| "WAPI", |
| #else |
| "UNDEF", |
| #endif // endif |
| "PMK", |
| "BIP", |
| "AES_GCM", |
| "AES_CCM256", |
| "AES_GCM256", |
| "BIP_CMAC256", |
| "BIP_GMAC", |
| "BIP_GMAC256", |
| "UNDEF" |
| }; |
| |
| const char * |
| bcm_crypto_algo_name(uint algo) |
| { |
| return (algo < ARRAYSIZE(crypto_algo_names)) ? crypto_algo_names[algo] : "ERR"; |
| } |
| |
| char * |
| bcm_chipname(uint chipid, char *buf, uint len) |
| { |
| const char *fmt; |
| |
| fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x"; |
| /* |
| * The following call to snprintf generates a compiler warning |
| * due to -Wformat-nonliteral. However, the format string is coming |
| * from internal callers rather than external data input, and is a |
| * useful debugging tool serving a variety of diagnostics. Rather |
| * than expand code size by replicating multiple functions with different |
| * argument lists, or disabling the warning globally, let's consider |
| * if we can just disable the warning for this one instance. |
| */ |
| CLANG_DIAGNOSTIC_PUSH_SUPPRESS_FORMAT() |
| snprintf(buf, len, fmt, chipid); |
| CLANG_DIAGNOSTIC_POP() |
| return buf; |
| } |
| |
| /* Produce a human-readable string for boardrev */ |
| char * |
| bcm_brev_str(uint32 brev, char *buf) |
| { |
| if (brev < 0x100) |
| snprintf(buf, 8, "%d.%d", (brev & 0xf0) >> 4, brev & 0xf); |
| else |
| snprintf(buf, 8, "%c%03x", ((brev & 0xf000) == 0x1000) ? 'P' : 'A', brev & 0xfff); |
| |
| return (buf); |
| } |
| |
| #define BUFSIZE_TODUMP_ATONCE 512 /* Buffer size */ |
| |
| /* dump large strings to console */ |
| void |
| printbig(char *buf) |
| { |
| uint len, max_len; |
| char c; |
| |
| len = (uint)strlen(buf); |
| |
| max_len = BUFSIZE_TODUMP_ATONCE; |
| |
| while (len > max_len) { |
| c = buf[max_len]; |
| buf[max_len] = '\0'; |
| printf("%s", buf); |
| buf[max_len] = c; |
| |
| buf += max_len; |
| len -= max_len; |
| } |
| /* print the remaining string */ |
| printf("%s\n", buf); |
| return; |
| } |
| |
| /* routine to dump fields in a fileddesc structure */ |
| uint |
| bcmdumpfields(bcmutl_rdreg_rtn read_rtn, void *arg0, uint arg1, struct fielddesc *fielddesc_array, |
| char *buf, uint32 bufsize) |
| { |
| uint filled_len; |
| int len; |
| struct fielddesc *cur_ptr; |
| |
| filled_len = 0; |
| cur_ptr = fielddesc_array; |
| |
| while (bufsize > 1) { |
| if (cur_ptr->nameandfmt == NULL) |
| break; |
| |
| /* |
| * The following call to snprintf generates a compiler warning |
| * due to -Wformat-nonliteral. However, the format string is coming |
| * from internal callers rather than external data input, and is a |
| * useful debugging tool serving a variety of diagnostics. Rather |
| * than expand code size by replicating multiple functions with different |
| * argument lists, or disabling the warning globally, let's consider |
| * if we can just disable the warning for this one instance. |
| */ |
| CLANG_DIAGNOSTIC_PUSH_SUPPRESS_FORMAT() |
| len = snprintf(buf, bufsize, cur_ptr->nameandfmt, |
| read_rtn(arg0, arg1, cur_ptr->offset)); |
| CLANG_DIAGNOSTIC_POP() |
| /* check for snprintf overflow or error */ |
| if (len < 0 || (uint32)len >= bufsize) |
| len = (int)(bufsize - 1); |
| buf += len; |
| bufsize -= (uint32)len; |
| filled_len += (uint32)len; |
| cur_ptr++; |
| } |
| return filled_len; |
| } |
| |
| uint |
| bcm_mkiovar(const char *name, const char *data, uint datalen, char *buf, uint buflen) |
| { |
| uint len; |
| |
| len = (uint)strlen(name) + 1; |
| |
| if ((len + datalen) > buflen) |
| return 0; |
| |
| strncpy(buf, name, buflen); |
| |
| /* append data onto the end of the name string */ |
| if (data && datalen != 0) { |
| memcpy(&buf[len], data, datalen); |
| len += datalen; |
| } |
| |
| return len; |
| } |
| |
| /* Quarter dBm units to mW |
| * Table starts at QDBM_OFFSET, so the first entry is mW for qdBm=153 |
| * Table is offset so the last entry is largest mW value that fits in |
| * a uint16. |
| */ |
| |
| #define QDBM_OFFSET 153 /* Offset for first entry */ |
| #define QDBM_TABLE_LEN 40 /* Table size */ |
| |
| /* Smallest mW value that will round up to the first table entry, QDBM_OFFSET. |
| * Value is ( mW(QDBM_OFFSET - 1) + mW(QDBM_OFFSET) ) / 2 |
| */ |
| #define QDBM_TABLE_LOW_BOUND 6493 /* Low bound */ |
| |
| /* Largest mW value that will round down to the last table entry, |
| * QDBM_OFFSET + QDBM_TABLE_LEN-1. |
| * Value is ( mW(QDBM_OFFSET + QDBM_TABLE_LEN - 1) + mW(QDBM_OFFSET + QDBM_TABLE_LEN) ) / 2. |
| */ |
| #define QDBM_TABLE_HIGH_BOUND 64938 /* High bound */ |
| |
| static const uint16 nqdBm_to_mW_map[QDBM_TABLE_LEN] = { |
| /* qdBm: +0 +1 +2 +3 +4 +5 +6 +7 */ |
| /* 153: */ 6683, 7079, 7499, 7943, 8414, 8913, 9441, 10000, |
| /* 161: */ 10593, 11220, 11885, 12589, 13335, 14125, 14962, 15849, |
| /* 169: */ 16788, 17783, 18836, 19953, 21135, 22387, 23714, 25119, |
| /* 177: */ 26607, 28184, 29854, 31623, 33497, 35481, 37584, 39811, |
| /* 185: */ 42170, 44668, 47315, 50119, 53088, 56234, 59566, 63096 |
| }; |
| |
| uint16 |
| bcm_qdbm_to_mw(uint8 qdbm) |
| { |
| uint factor = 1; |
| int idx = qdbm - QDBM_OFFSET; |
| |
| if (idx >= QDBM_TABLE_LEN) { |
| /* clamp to max uint16 mW value */ |
| return 0xFFFF; |
| } |
| |
| /* scale the qdBm index up to the range of the table 0-40 |
| * where an offset of 40 qdBm equals a factor of 10 mW. |
| */ |
| while (idx < 0) { |
| idx += 40; |
| factor *= 10; |
| } |
| |
| /* return the mW value scaled down to the correct factor of 10, |
| * adding in factor/2 to get proper rounding. |
| */ |
| return (uint16)((nqdBm_to_mW_map[idx] + factor/2) / factor); |
| } |
| |
| uint8 |
| bcm_mw_to_qdbm(uint16 mw) |
| { |
| uint8 qdbm; |
| int offset; |
| uint mw_uint = mw; |
| uint boundary; |
| |
| /* handle boundary case */ |
| if (mw_uint <= 1) |
| return 0; |
| |
| offset = QDBM_OFFSET; |
| |
| /* move mw into the range of the table */ |
| while (mw_uint < QDBM_TABLE_LOW_BOUND) { |
| mw_uint *= 10; |
| offset -= 40; |
| } |
| |
| for (qdbm = 0; qdbm < QDBM_TABLE_LEN-1; qdbm++) { |
| boundary = nqdBm_to_mW_map[qdbm] + (nqdBm_to_mW_map[qdbm+1] - |
| nqdBm_to_mW_map[qdbm])/2; |
| if (mw_uint < boundary) break; |
| } |
| |
| qdbm += (uint8)offset; |
| |
| return (qdbm); |
| } |
| |
| uint |
| bcm_bitcount(uint8 *bitmap, uint length) |
| { |
| uint bitcount = 0, i; |
| uint8 tmp; |
| for (i = 0; i < length; i++) { |
| tmp = bitmap[i]; |
| while (tmp) { |
| bitcount++; |
| tmp &= (tmp - 1); |
| } |
| } |
| return bitcount; |
| } |
| |
| /* |
| * ProcessVars:Takes a buffer of "<var>=<value>\n" lines read from a file and ending in a NUL. |
| * also accepts nvram files which are already in the format of <var1>=<value>\0\<var2>=<value2>\0 |
| * Removes carriage returns, empty lines, comment lines, and converts newlines to NULs. |
| * Shortens buffer as needed and pads with NULs. End of buffer is marked by two NULs. |
| */ |
| |
| unsigned int |
| process_nvram_vars(char *varbuf, unsigned int len) |
| { |
| char *dp; |
| bool findNewline; |
| int column; |
| unsigned int buf_len, n; |
| unsigned int pad = 0; |
| |
| dp = varbuf; |
| |
| findNewline = FALSE; |
| column = 0; |
| |
| for (n = 0; n < len; n++) { |
| if (varbuf[n] == '\r') |
| continue; |
| if (findNewline && varbuf[n] != '\n') |
| continue; |
| findNewline = FALSE; |
| if (varbuf[n] == '#') { |
| findNewline = TRUE; |
| continue; |
| } |
| if (varbuf[n] == '\n') { |
| if (column == 0) |
| continue; |
| *dp++ = 0; |
| column = 0; |
| continue; |
| } |
| *dp++ = varbuf[n]; |
| column++; |
| } |
| buf_len = (unsigned int)(dp - varbuf); |
| if (buf_len % 4) { |
| pad = 4 - buf_len % 4; |
| if (pad && (buf_len + pad <= len)) { |
| buf_len += pad; |
| } |
| } |
| |
| while (dp < varbuf + n) |
| *dp++ = 0; |
| |
| return buf_len; |
| } |
| |
| #ifndef setbit /* As in the header file */ |
| #ifdef BCMUTILS_BIT_MACROS_USE_FUNCS |
| /* Set bit in byte array. */ |
| void |
| setbit(void *array, uint bit) |
| { |
| ((uint8 *)array)[bit / NBBY] |= 1 << (bit % NBBY); |
| } |
| |
| /* Clear bit in byte array. */ |
| void |
| clrbit(void *array, uint bit) |
| { |
| ((uint8 *)array)[bit / NBBY] &= ~(1 << (bit % NBBY)); |
| } |
| |
| /* Test if bit is set in byte array. */ |
| bool |
| isset(const void *array, uint bit) |
| { |
| return (((const uint8 *)array)[bit / NBBY] & (1 << (bit % NBBY))); |
| } |
| |
| /* Test if bit is clear in byte array. */ |
| bool |
| isclr(const void *array, uint bit) |
| { |
| return ((((const uint8 *)array)[bit / NBBY] & (1 << (bit % NBBY))) == 0); |
| } |
| #endif /* BCMUTILS_BIT_MACROS_USE_FUNCS */ |
| #endif /* setbit */ |
| |
| void |
| set_bitrange(void *array, uint start, uint end, uint maxbit) |
| { |
| uint startbyte = start/NBBY; |
| uint endbyte = end/NBBY; |
| uint i, startbytelastbit, endbytestartbit; |
| |
| if (end >= start) { |
| if (endbyte - startbyte > 1) |
| { |
| startbytelastbit = (startbyte+1)*NBBY - 1; |
| endbytestartbit = endbyte*NBBY; |
| for (i = startbyte+1; i < endbyte; i++) |
| ((uint8 *)array)[i] = 0xFF; |
| for (i = start; i <= startbytelastbit; i++) |
| setbit(array, i); |
| for (i = endbytestartbit; i <= end; i++) |
| setbit(array, i); |
| } else { |
| for (i = start; i <= end; i++) |
| setbit(array, i); |
| } |
| } |
| else { |
| set_bitrange(array, start, maxbit, maxbit); |
| set_bitrange(array, 0, end, maxbit); |
| } |
| } |
| |
| void |
| bcm_bitprint32(const uint32 u32arg) |
| { |
| int i; |
| for (i = NBITS(uint32) - 1; i >= 0; i--) { |
| if (isbitset(u32arg, i)) { |
| printf("1"); |
| } else { |
| printf("0"); |
| } |
| |
| if ((i % NBBY) == 0) printf(" "); |
| } |
| printf("\n"); |
| } |
| |
| /* calculate checksum for ip header, tcp / udp header / data */ |
| uint16 |
| bcm_ip_cksum(uint8 *buf, uint32 len, uint32 sum) |
| { |
| while (len > 1) { |
| sum += (uint32)((buf[0] << 8) | buf[1]); |
| buf += 2; |
| len -= 2; |
| } |
| |
| if (len > 0) { |
| sum += (uint32)((*buf) << 8); |
| } |
| |
| while (sum >> 16) { |
| sum = (sum & 0xffff) + (sum >> 16); |
| } |
| |
| return ((uint16)~sum); |
| } |
| |
| int |
| BCMRAMFN(valid_bcmerror)(int e) |
| { |
| return ((e <= 0) && (e >= BCME_LAST)); |
| } |
| |
| #ifdef DEBUG_COUNTER |
| #if (OSL_SYSUPTIME_SUPPORT == TRUE) |
| void counter_printlog(counter_tbl_t *ctr_tbl) |
| { |
| uint32 now; |
| |
| if (!ctr_tbl->enabled) |
| return; |
| |
| now = OSL_SYSUPTIME(); |
| |
| if (now - ctr_tbl->prev_log_print > ctr_tbl->log_print_interval) { |
| uint8 i = 0; |
| printf("counter_print(%s %d):", ctr_tbl->name, now - ctr_tbl->prev_log_print); |
| |
| for (i = 0; i < ctr_tbl->needed_cnt; i++) { |
| printf(" %u", ctr_tbl->cnt[i]); |
| } |
| printf("\n"); |
| |
| ctr_tbl->prev_log_print = now; |
| bzero(ctr_tbl->cnt, CNTR_TBL_MAX * sizeof(uint)); |
| } |
| } |
| #else |
| /* OSL_SYSUPTIME is not supported so no way to get time */ |
| #define counter_printlog(a) do {} while (0) |
| #endif /* OSL_SYSUPTIME_SUPPORT == TRUE */ |
| #endif /* DEBUG_COUNTER */ |
| |
| /* calculate partial checksum */ |
| static uint32 |
| ip_cksum_partial(uint32 sum, uint8 *val8, uint32 count) |
| { |
| uint32 i; |
| uint16 *val16 = (uint16 *)val8; |
| |
| ASSERT(val8 != NULL); |
| /* partial chksum calculated on 16-bit values */ |
| ASSERT((count % 2) == 0); |
| |
| count /= 2; |
| |
| for (i = 0; i < count; i++) { |
| sum += *val16++; |
| } |
| return sum; |
| } |
| |
| /* calculate IP checksum */ |
| static uint16 |
| ip_cksum(uint32 sum, uint8 *val8, uint32 count) |
| { |
| uint16 *val16 = (uint16 *)val8; |
| |
| ASSERT(val8 != NULL); |
| |
| while (count > 1) { |
| sum += *val16++; |
| count -= 2; |
| } |
| /* add left-over byte, if any */ |
| if (count > 0) { |
| sum += (*(uint8 *)val16); |
| } |
| |
| /* fold 32-bit sum to 16 bits */ |
| sum = (sum >> 16) + (sum & 0xffff); |
| sum += (sum >> 16); |
| return ((uint16)~sum); |
| } |
| |
| /* calculate IPv4 header checksum |
| * - input ip points to IP header in network order |
| * - output cksum is in network order |
| */ |
| uint16 |
| ipv4_hdr_cksum(uint8 *ip, int ip_len) |
| { |
| uint32 sum = 0; |
| uint8 *ptr = ip; |
| |
| ASSERT(ip != NULL); |
| ASSERT(ip_len >= IPV4_MIN_HEADER_LEN); |
| |
| /* partial cksum skipping the hdr_chksum field */ |
| sum = ip_cksum_partial(sum, ptr, OFFSETOF(struct ipv4_hdr, hdr_chksum)); |
| ptr += OFFSETOF(struct ipv4_hdr, hdr_chksum) + 2; |
| |
| /* return calculated chksum */ |
| return ip_cksum(sum, ptr, (uint32)((uint)ip_len - OFFSETOF(struct ipv4_hdr, src_ip))); |
| } |
| |
| /* calculate TCP header checksum using partial sum */ |
| static uint16 |
| tcp_hdr_chksum(uint32 sum, uint8 *tcp_hdr, uint16 tcp_len) |
| { |
| uint8 *ptr = tcp_hdr; |
| |
| ASSERT(tcp_hdr != NULL); |
| ASSERT(tcp_len >= TCP_MIN_HEADER_LEN); |
| |
| /* partial TCP cksum skipping the chksum field */ |
| sum = ip_cksum_partial(sum, ptr, OFFSETOF(struct bcmtcp_hdr, chksum)); |
| ptr += OFFSETOF(struct bcmtcp_hdr, chksum) + 2; |
| |
| /* return calculated chksum */ |
| return ip_cksum(sum, ptr, tcp_len - OFFSETOF(struct bcmtcp_hdr, urg_ptr)); |
| } |
| |
| struct tcp_pseudo_hdr { |
| uint8 src_ip[IPV4_ADDR_LEN]; /* Source IP Address */ |
| uint8 dst_ip[IPV4_ADDR_LEN]; /* Destination IP Address */ |
| uint8 zero; |
| uint8 prot; |
| uint16 tcp_size; |
| }; |
| |
| /* calculate IPv4 TCP header checksum |
| * - input ip and tcp points to IP and TCP header in network order |
| * - output cksum is in network order |
| */ |
| uint16 |
| ipv4_tcp_hdr_cksum(uint8 *ip, uint8 *tcp, uint16 tcp_len) |
| { |
| struct ipv4_hdr *ip_hdr = (struct ipv4_hdr *)ip; |
| struct tcp_pseudo_hdr tcp_ps; |
| uint32 sum = 0; |
| |
| ASSERT(ip != NULL); |
| ASSERT(tcp != NULL); |
| ASSERT(tcp_len >= TCP_MIN_HEADER_LEN); |
| |
| if (!ip || !tcp || !(tcp_len >= TCP_MIN_HEADER_LEN)) |
| return 0; |
| /* pseudo header cksum */ |
| memset(&tcp_ps, 0, sizeof(tcp_ps)); |
| memcpy(&tcp_ps.dst_ip, ip_hdr->dst_ip, IPV4_ADDR_LEN); |
| memcpy(&tcp_ps.src_ip, ip_hdr->src_ip, IPV4_ADDR_LEN); |
| tcp_ps.zero = 0; |
| tcp_ps.prot = ip_hdr->prot; |
| tcp_ps.tcp_size = hton16(tcp_len); |
| sum = ip_cksum_partial(sum, (uint8 *)&tcp_ps, sizeof(tcp_ps)); |
| |
| /* return calculated TCP header chksum */ |
| return tcp_hdr_chksum(sum, tcp, tcp_len); |
| } |
| |
| struct ipv6_pseudo_hdr { |
| uint8 saddr[IPV6_ADDR_LEN]; |
| uint8 daddr[IPV6_ADDR_LEN]; |
| uint16 payload_len; |
| uint8 zero; |
| uint8 next_hdr; |
| }; |
| |
| /* calculate IPv6 TCP header checksum |
| * - input ipv6 and tcp points to IPv6 and TCP header in network order |
| * - output cksum is in network order |
| */ |
| uint16 |
| ipv6_tcp_hdr_cksum(uint8 *ipv6, uint8 *tcp, uint16 tcp_len) |
| { |
| struct ipv6_hdr *ipv6_hdr = (struct ipv6_hdr *)ipv6; |
| struct ipv6_pseudo_hdr ipv6_pseudo; |
| uint32 sum = 0; |
| |
| ASSERT(ipv6 != NULL); |
| ASSERT(tcp != NULL); |
| ASSERT(tcp_len >= TCP_MIN_HEADER_LEN); |
| |
| if (!ipv6 || !tcp || !(tcp_len >= TCP_MIN_HEADER_LEN)) |
| return 0; |
| /* pseudo header cksum */ |
| memset((char *)&ipv6_pseudo, 0, sizeof(ipv6_pseudo)); |
| memcpy((char *)ipv6_pseudo.saddr, (char *)ipv6_hdr->saddr.addr, |
| sizeof(ipv6_pseudo.saddr)); |
| memcpy((char *)ipv6_pseudo.daddr, (char *)ipv6_hdr->daddr.addr, |
| sizeof(ipv6_pseudo.daddr)); |
| ipv6_pseudo.payload_len = ipv6_hdr->payload_len; |
| ipv6_pseudo.next_hdr = ipv6_hdr->nexthdr; |
| sum = ip_cksum_partial(sum, (uint8 *)&ipv6_pseudo, sizeof(ipv6_pseudo)); |
| |
| /* return calculated TCP header chksum */ |
| return tcp_hdr_chksum(sum, tcp, tcp_len); |
| } |
| |
| void *_bcmutils_dummy_fn = NULL; |
| |
| /* GROUP 1 --- start |
| * These function under GROUP 1 are general purpose functions to do complex number |
| * calculations and square root calculation. |
| */ |
| |
| uint32 sqrt_int(uint32 value) |
| { |
| uint32 root = 0, shift = 0; |
| |
| /* Compute integer nearest to square root of input integer value */ |
| for (shift = 0; shift < 32; shift += 2) { |
| if (((0x40000000 >> shift) + root) <= value) { |
| value -= ((0x40000000 >> shift) + root); |
| root = (root >> 1) | (0x40000000 >> shift); |
| } |
| else { |
| root = root >> 1; |
| } |
| } |
| |
| /* round to the nearest integer */ |
| if (root < value) ++root; |
| |
| return root; |
| } |
| /* GROUP 1 --- end */ |
| |
| /* read/write field in a consecutive bits in an octet array. |
| * 'addr' is the octet array's start byte address |
| * 'size' is the octet array's byte size |
| * 'stbit' is the value's start bit offset |
| * 'nbits' is the value's bit size |
| * This set of utilities are for convenience. Don't use them |
| * in time critical/data path as there's a great overhead in them. |
| */ |
| void |
| setbits(uint8 *addr, uint size, uint stbit, uint nbits, uint32 val) |
| { |
| uint fbyte = stbit >> 3; /* first byte */ |
| uint lbyte = (stbit + nbits - 1) >> 3; /* last byte */ |
| uint fbit = stbit & 7; /* first bit in the first byte */ |
| uint rbits = (nbits > 8 - fbit ? |
| nbits - (8 - fbit) : |
| 0) & 7; /* remaining bits of the last byte when not 0 */ |
| uint8 mask; |
| uint byte; |
| |
| BCM_REFERENCE(size); |
| |
| ASSERT(fbyte < size); |
| ASSERT(lbyte < size); |
| ASSERT(nbits <= (sizeof(val) << 3)); |
| |
| /* all bits are in the same byte */ |
| if (fbyte == lbyte) { |
| mask = (uint8)(((1 << nbits) - 1) << fbit); |
| addr[fbyte] &= ~mask; |
| addr[fbyte] |= (uint8)(val << fbit); |
| return; |
| } |
| |
| /* first partial byte */ |
| if (fbit > 0) { |
| mask = (uint8)(0xff << fbit); |
| addr[fbyte] &= ~mask; |
| addr[fbyte] |= (uint8)(val << fbit); |
| val >>= (8 - fbit); |
| nbits -= (8 - fbit); |
| fbyte ++; /* first full byte */ |
| } |
| |
| /* last partial byte */ |
| if (rbits > 0) { |
| mask = (uint8)((1 << rbits) - 1); |
| addr[lbyte] &= ~mask; |
| addr[lbyte] |= (uint8)(val >> (nbits - rbits)); |
| lbyte --; /* last full byte */ |
| } |
| |
| /* remaining full byte(s) */ |
| for (byte = fbyte; byte <= lbyte; byte ++) { |
| addr[byte] = (uint8)val; |
| val >>= 8; |
| } |
| } |
| |
| uint32 |
| getbits(const uint8 *addr, uint size, uint stbit, uint nbits) |
| { |
| uint fbyte = stbit >> 3; /* first byte */ |
| uint lbyte = (stbit + nbits - 1) >> 3; /* last byte */ |
| uint fbit = stbit & 7; /* first bit in the first byte */ |
| uint rbits = (nbits > 8 - fbit ? |
| nbits - (8 - fbit) : |
| 0) & 7; /* remaining bits of the last byte when not 0 */ |
| uint32 val = 0; |
| uint bits = 0; /* bits in first partial byte */ |
| uint8 mask; |
| uint byte; |
| |
| BCM_REFERENCE(size); |
| |
| ASSERT(fbyte < size); |
| ASSERT(lbyte < size); |
| ASSERT(nbits <= (sizeof(val) << 3)); |
| |
| /* all bits are in the same byte */ |
| if (fbyte == lbyte) { |
| mask = (uint8)(((1 << nbits) - 1) << fbit); |
| val = (addr[fbyte] & mask) >> fbit; |
| return val; |
| } |
| |
| /* first partial byte */ |
| if (fbit > 0) { |
| bits = 8 - fbit; |
| mask = (uint8)(0xFFu << fbit); |
| val |= (addr[fbyte] & mask) >> fbit; |
| fbyte ++; /* first full byte */ |
| } |
| |
| /* last partial byte */ |
| if (rbits > 0) { |
| mask = (uint8)((1 << rbits) - 1); |
| val |= (uint32)((addr[lbyte] & mask) << (nbits - rbits)); |
| lbyte --; /* last full byte */ |
| } |
| |
| /* remaining full byte(s) */ |
| for (byte = fbyte; byte <= lbyte; byte ++) { |
| val |= (uint32)((addr[byte] << (((byte - fbyte) << 3) + bits))); |
| } |
| |
| return val; |
| } |
| |
| #ifdef BCMDRIVER |
| |
| /** allocate variable sized data with 'size' bytes. note: vld should NOT be null. |
| */ |
| int |
| bcm_vdata_alloc(osl_t *osh, var_len_data_t *vld, uint32 size) |
| { |
| int ret = BCME_ERROR; |
| uint8 *dat = NULL; |
| |
| if (vld == NULL) { |
| ASSERT(0); |
| goto done; |
| } |
| |
| /* trying to allocate twice? */ |
| if (vld->vdata != NULL) { |
| ASSERT(0); |
| goto done; |
| } |
| |
| /* trying to allocate 0 size? */ |
| if (size == 0) { |
| ASSERT(0); |
| ret = BCME_BADARG; |
| goto done; |
| } |
| |
| dat = MALLOCZ(osh, size); |
| if (dat == NULL) { |
| ret = BCME_NOMEM; |
| goto done; |
| } |
| vld->vlen = size; |
| vld->vdata = dat; |
| ret = BCME_OK; |
| done: |
| return ret; |
| } |
| |
| /** free memory associated with variable sized data. note: vld should NOT be null. |
| */ |
| int |
| bcm_vdata_free(osl_t *osh, var_len_data_t *vld) |
| { |
| int ret = BCME_ERROR; |
| |
| if (vld == NULL) { |
| ASSERT(0); |
| goto done; |
| } |
| |
| if (vld->vdata) { |
| MFREE(osh, vld->vdata, vld->vlen); |
| vld->vdata = NULL; |
| vld->vlen = 0; |
| ret = BCME_OK; |
| } |
| done: |
| return ret; |
| } |
| |
| #endif /* BCMDRIVER */ |
| |
| /* Count the number of elements not matching a given value in a null terminated array */ |
| int |
| array_value_mismatch_count(uint8 value, uint8 *array, int array_size) |
| { |
| int i; |
| int count = 0; |
| |
| for (i = 0; i < array_size; i++) { |
| /* exit if a null terminator is found */ |
| if (array[i] == 0) { |
| break; |
| } |
| if (array[i] != value) { |
| count++; |
| } |
| } |
| return count; |
| } |
| |
| /* Count the number of non-zero elements in an uint8 array */ |
| int |
| array_nonzero_count(uint8 *array, int array_size) |
| { |
| return array_value_mismatch_count(0, array, array_size); |
| } |
| |
| /* Count the number of non-zero elements in an int16 array */ |
| int |
| array_nonzero_count_int16(int16 *array, int array_size) |
| { |
| int i; |
| int count = 0; |
| |
| for (i = 0; i < array_size; i++) { |
| if (array[i] != 0) { |
| count++; |
| } |
| } |
| return count; |
| } |
| |
| /* Count the number of zero elements in an uint8 array */ |
| int |
| array_zero_count(uint8 *array, int array_size) |
| { |
| int i; |
| int count = 0; |
| |
| for (i = 0; i < array_size; i++) { |
| if (array[i] == 0) { |
| count++; |
| } |
| } |
| return count; |
| } |
| |
| /* Validate an array that can be 1 of 2 data types. |
| * One of array1 or array2 should be non-NULL. The other should be NULL. |
| */ |
| static int |
| verify_ordered_array(uint8 *array1, int16 *array2, int array_size, |
| int range_lo, int range_hi, bool err_if_no_zero_term, bool is_ordered) |
| { |
| int ret; |
| int i; |
| int val = 0; |
| int prev_val = 0; |
| |
| ret = err_if_no_zero_term ? BCME_NOTFOUND : BCME_OK; |
| |
| /* Check that: |
| * - values are in strict descending order. |
| * - values are within the valid range. |
| */ |
| for (i = 0; i < array_size; i++) { |
| if (array1) { |
| val = (int)array1[i]; |
| } else if (array2) { |
| val = (int)array2[i]; |
| } else { |
| /* both array parameters are NULL */ |
| return BCME_NOTFOUND; |
| } |
| if (val == 0) { |
| /* array is zero-terminated */ |
| ret = BCME_OK; |
| break; |
| } |
| |
| if (is_ordered && i > 0 && val >= prev_val) { |
| /* array is not in descending order */ |
| ret = BCME_BADOPTION; |
| break; |
| } |
| prev_val = val; |
| |
| if (val < range_lo || val > range_hi) { |
| /* array value out of range */ |
| ret = BCME_RANGE; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* Validate an ordered uint8 configuration array */ |
| int |
| verify_ordered_array_uint8(uint8 *array, int array_size, |
| uint8 range_lo, uint8 range_hi) |
| { |
| return verify_ordered_array(array, NULL, array_size, (int)range_lo, (int)range_hi, |
| TRUE, TRUE); |
| } |
| |
| /* Validate an ordered int16 non-zero-terminated configuration array */ |
| int |
| verify_ordered_array_int16(int16 *array, int array_size, |
| int16 range_lo, int16 range_hi) |
| { |
| return verify_ordered_array(NULL, array, array_size, (int)range_lo, (int)range_hi, |
| FALSE, TRUE); |
| } |
| |
| /* Validate all values in an array are in range */ |
| int |
| verify_array_values(uint8 *array, int array_size, |
| int range_lo, int range_hi, bool zero_terminated) |
| { |
| int ret = BCME_OK; |
| int i; |
| int val = 0; |
| |
| /* Check that: |
| * - values are in strict descending order. |
| * - values are within the valid range. |
| */ |
| for (i = 0; i < array_size; i++) { |
| val = (int)array[i]; |
| if (val == 0 && zero_terminated) { |
| ret = BCME_OK; |
| break; |
| } |
| if (val < range_lo || val > range_hi) { |
| /* array value out of range */ |
| ret = BCME_RANGE; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| /* Adds/replaces NVRAM variable with given value |
| * varbuf[in,out] - Buffer with NVRAM variables (sequence of zero-terminated 'name=value' records, |
| * terminated with additional zero) |
| * buflen[in] - Length of buffer (may, even should, have some unused space) |
| * variable[in] - Variable to add/replace in 'name=value' form |
| * datalen[out,opt] - Optional output parameter - resulting length of data in buffer |
| * Returns TRUE on success, FALSE if buffer too short or variable specified incorrectly |
| */ |
| bool |
| replace_nvram_variable(char *varbuf, unsigned int buflen, const char *variable, |
| unsigned int *datalen) |
| { |
| char *p; |
| int variable_heading_len, record_len, variable_record_len = (int)strlen(variable) + 1; |
| char *buf_end = varbuf + buflen; |
| p = strchr(variable, '='); |
| if (!p) { |
| return FALSE; |
| } |
| /* Length of given variable name, followed by '=' */ |
| variable_heading_len = (int)((const char *)(p + 1) - variable); |
| /* Scanning NVRAM, record by record up to trailing 0 */ |
| for (p = varbuf; *p; p += strlen(p) + 1) { |
| /* If given variable found - remove it */ |
| if (!strncmp(p, variable, (size_t)variable_heading_len)) { |
| record_len = (int)strlen(p) + 1; |
| memmove_s(p, buf_end - p, p + record_len, |
| (size_t)(buf_end - (p + record_len))); |
| } |
| } |
| /* If buffer does not have space for given variable - return FALSE */ |
| if ((p + variable_record_len + 1) > buf_end) { |
| return FALSE; |
| } |
| /* Copy given variable to end of buffer */ |
| memmove_s(p, buf_end - p, variable, (size_t)variable_record_len); |
| /* Adding trailing 0 */ |
| p[variable_record_len] = 0; |
| /* Setting optional output parameter - length of data in buffer */ |
| if (datalen) { |
| *datalen = (unsigned int)(p + variable_record_len + 1 - varbuf); |
| } |
| return TRUE; |
| } |